ARMInstrInfo.td revision 360784
1//===- ARMInstrInfo.td - Target Description for ARM Target -*- tablegen -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file describes the ARM instructions in TableGen format.
10//
11//===----------------------------------------------------------------------===//
12
13//===----------------------------------------------------------------------===//
14// ARM specific DAG Nodes.
15//
16
17// Type profiles.
18def SDT_ARMCallSeqStart : SDCallSeqStart<[ SDTCisVT<0, i32>,
19                                           SDTCisVT<1, i32> ]>;
20def SDT_ARMCallSeqEnd   : SDCallSeqEnd<[ SDTCisVT<0, i32>, SDTCisVT<1, i32> ]>;
21def SDT_ARMStructByVal : SDTypeProfile<0, 4,
22                                       [SDTCisVT<0, i32>, SDTCisVT<1, i32>,
23                                        SDTCisVT<2, i32>, SDTCisVT<3, i32>]>;
24
25def SDT_ARMSaveCallPC : SDTypeProfile<0, 1, []>;
26
27def SDT_ARMcall    : SDTypeProfile<0, -1, [SDTCisPtrTy<0>]>;
28
29def SDT_ARMCMov    : SDTypeProfile<1, 3,
30                                   [SDTCisSameAs<0, 1>, SDTCisSameAs<0, 2>,
31                                    SDTCisVT<3, i32>]>;
32
33def SDT_ARMBrcond  : SDTypeProfile<0, 2,
34                                   [SDTCisVT<0, OtherVT>, SDTCisVT<1, i32>]>;
35
36def SDT_ARMBrJT    : SDTypeProfile<0, 2,
37                                  [SDTCisPtrTy<0>, SDTCisVT<1, i32>]>;
38
39def SDT_ARMBr2JT   : SDTypeProfile<0, 3,
40                                  [SDTCisPtrTy<0>, SDTCisVT<1, i32>,
41                                   SDTCisVT<2, i32>]>;
42
43def SDT_ARMBCC_i64 : SDTypeProfile<0, 6,
44                                  [SDTCisVT<0, i32>,
45                                   SDTCisVT<1, i32>, SDTCisVT<2, i32>,
46                                   SDTCisVT<3, i32>, SDTCisVT<4, i32>,
47                                   SDTCisVT<5, OtherVT>]>;
48
49def SDT_ARMAnd     : SDTypeProfile<1, 2,
50                                   [SDTCisVT<0, i32>, SDTCisVT<1, i32>,
51                                    SDTCisVT<2, i32>]>;
52
53def SDT_ARMCmp     : SDTypeProfile<0, 2, [SDTCisSameAs<0, 1>]>;
54
55def SDT_ARMPICAdd  : SDTypeProfile<1, 2, [SDTCisSameAs<0, 1>,
56                                          SDTCisPtrTy<1>, SDTCisVT<2, i32>]>;
57
58def SDT_ARMThreadPointer : SDTypeProfile<1, 0, [SDTCisPtrTy<0>]>;
59def SDT_ARMEH_SJLJ_Setjmp : SDTypeProfile<1, 2, [SDTCisInt<0>, SDTCisPtrTy<1>,
60                                                 SDTCisInt<2>]>;
61def SDT_ARMEH_SJLJ_Longjmp: SDTypeProfile<0, 2, [SDTCisPtrTy<0>, SDTCisInt<1>]>;
62def SDT_ARMEH_SJLJ_SetupDispatch: SDTypeProfile<0, 0, []>;
63
64def SDT_ARMMEMBARRIER     : SDTypeProfile<0, 1, [SDTCisInt<0>]>;
65
66def SDT_ARMPREFETCH : SDTypeProfile<0, 3, [SDTCisPtrTy<0>, SDTCisSameAs<1, 2>,
67                                           SDTCisInt<1>]>;
68
69def SDT_ARMTCRET : SDTypeProfile<0, 1, [SDTCisPtrTy<0>]>;
70
71def SDT_ARMBFI : SDTypeProfile<1, 3, [SDTCisVT<0, i32>, SDTCisVT<1, i32>,
72                                      SDTCisVT<2, i32>, SDTCisVT<3, i32>]>;
73
74def SDT_WIN__DBZCHK : SDTypeProfile<0, 1, [SDTCisVT<0, i32>]>;
75
76def SDT_ARMMEMCPY  : SDTypeProfile<2, 3, [SDTCisVT<0, i32>, SDTCisVT<1, i32>,
77                                          SDTCisVT<2, i32>, SDTCisVT<3, i32>,
78                                          SDTCisVT<4, i32>]>;
79
80def SDTBinaryArithWithFlags : SDTypeProfile<2, 2,
81                                            [SDTCisSameAs<0, 2>,
82                                             SDTCisSameAs<0, 3>,
83                                             SDTCisInt<0>, SDTCisVT<1, i32>]>;
84
85// SDTBinaryArithWithFlagsInOut - RES1, CPSR = op LHS, RHS, CPSR
86def SDTBinaryArithWithFlagsInOut : SDTypeProfile<2, 3,
87                                            [SDTCisSameAs<0, 2>,
88                                             SDTCisSameAs<0, 3>,
89                                             SDTCisInt<0>,
90                                             SDTCisVT<1, i32>,
91                                             SDTCisVT<4, i32>]>;
92
93def SDT_LongMac  : SDTypeProfile<2, 4, [SDTCisVT<0, i32>,
94                                        SDTCisSameAs<0, 1>,
95                                        SDTCisSameAs<0, 2>,
96                                        SDTCisSameAs<0, 3>,
97                                        SDTCisSameAs<0, 4>,
98                                        SDTCisSameAs<0, 5>]>;
99
100// ARMlsll, ARMlsrl, ARMasrl
101def SDT_ARMIntShiftParts : SDTypeProfile<2, 3, [SDTCisSameAs<0, 1>,
102                                              SDTCisSameAs<0, 2>,
103                                              SDTCisSameAs<0, 3>,
104                                              SDTCisInt<0>,
105                                              SDTCisInt<4>]>;
106
107// TODO Add another operand for 'Size' so that we can re-use this node when we
108// start supporting *TP versions.
109def SDT_ARMLoLoop : SDTypeProfile<0, 2, [SDTCisVT<0, i32>,
110                                         SDTCisVT<1, OtherVT>]>;
111
112def ARMSmlald        : SDNode<"ARMISD::SMLALD", SDT_LongMac>;
113def ARMSmlaldx       : SDNode<"ARMISD::SMLALDX", SDT_LongMac>;
114def ARMSmlsld        : SDNode<"ARMISD::SMLSLD", SDT_LongMac>;
115def ARMSmlsldx       : SDNode<"ARMISD::SMLSLDX", SDT_LongMac>;
116
117def SDT_ARMCSel      : SDTypeProfile<1, 3,
118                                   [SDTCisSameAs<0, 1>,
119                                    SDTCisSameAs<0, 2>,
120                                    SDTCisInt<3>,
121                                    SDTCisVT<3, i32>]>;
122
123def ARMcsinv         : SDNode<"ARMISD::CSINV", SDT_ARMCSel, [SDNPOptInGlue]>;
124def ARMcsneg         : SDNode<"ARMISD::CSNEG", SDT_ARMCSel, [SDNPOptInGlue]>;
125def ARMcsinc         : SDNode<"ARMISD::CSINC", SDT_ARMCSel, [SDNPOptInGlue]>;
126
127def SDT_MulHSR       : SDTypeProfile<1, 3, [SDTCisVT<0,i32>,
128                                            SDTCisSameAs<0, 1>,
129                                            SDTCisSameAs<0, 2>,
130                                            SDTCisSameAs<0, 3>]>;
131
132def ARMsmmlar      : SDNode<"ARMISD::SMMLAR", SDT_MulHSR>;
133def ARMsmmlsr      : SDNode<"ARMISD::SMMLSR", SDT_MulHSR>;
134
135// Node definitions.
136def ARMWrapper       : SDNode<"ARMISD::Wrapper",     SDTIntUnaryOp>;
137def ARMWrapperPIC    : SDNode<"ARMISD::WrapperPIC",  SDTIntUnaryOp>;
138def ARMWrapperJT     : SDNode<"ARMISD::WrapperJT",   SDTIntUnaryOp>;
139
140def ARMcallseq_start : SDNode<"ISD::CALLSEQ_START", SDT_ARMCallSeqStart,
141                              [SDNPHasChain, SDNPSideEffect, SDNPOutGlue]>;
142def ARMcallseq_end   : SDNode<"ISD::CALLSEQ_END",   SDT_ARMCallSeqEnd,
143                              [SDNPHasChain, SDNPSideEffect,
144                               SDNPOptInGlue, SDNPOutGlue]>;
145def ARMcopystructbyval : SDNode<"ARMISD::COPY_STRUCT_BYVAL" ,
146                                SDT_ARMStructByVal,
147                                [SDNPHasChain, SDNPInGlue, SDNPOutGlue,
148                                 SDNPMayStore, SDNPMayLoad]>;
149
150def ARMcall          : SDNode<"ARMISD::CALL", SDT_ARMcall,
151                              [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue,
152                               SDNPVariadic]>;
153def ARMcall_pred    : SDNode<"ARMISD::CALL_PRED", SDT_ARMcall,
154                              [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue,
155                               SDNPVariadic]>;
156def ARMcall_nolink   : SDNode<"ARMISD::CALL_NOLINK", SDT_ARMcall,
157                              [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue,
158                               SDNPVariadic]>;
159
160def ARMretflag       : SDNode<"ARMISD::RET_FLAG", SDTNone,
161                              [SDNPHasChain, SDNPOptInGlue, SDNPVariadic]>;
162def ARMintretflag    : SDNode<"ARMISD::INTRET_FLAG", SDT_ARMcall,
163                              [SDNPHasChain, SDNPOptInGlue, SDNPVariadic]>;
164def ARMcmov          : SDNode<"ARMISD::CMOV", SDT_ARMCMov,
165                              [SDNPInGlue]>;
166def ARMsubs          : SDNode<"ARMISD::SUBS", SDTIntBinOp, [SDNPOutGlue]>;
167
168def ARMssatnoshift   : SDNode<"ARMISD::SSAT", SDTIntSatNoShOp, []>;
169
170def ARMusatnoshift   : SDNode<"ARMISD::USAT", SDTIntSatNoShOp, []>;
171
172def ARMbrcond        : SDNode<"ARMISD::BRCOND", SDT_ARMBrcond,
173                              [SDNPHasChain, SDNPInGlue, SDNPOutGlue]>;
174
175def ARMbrjt          : SDNode<"ARMISD::BR_JT", SDT_ARMBrJT,
176                              [SDNPHasChain]>;
177def ARMbr2jt         : SDNode<"ARMISD::BR2_JT", SDT_ARMBr2JT,
178                              [SDNPHasChain]>;
179
180def ARMBcci64        : SDNode<"ARMISD::BCC_i64", SDT_ARMBCC_i64,
181                              [SDNPHasChain]>;
182
183def ARMcmp           : SDNode<"ARMISD::CMP", SDT_ARMCmp,
184                              [SDNPOutGlue]>;
185
186def ARMcmn           : SDNode<"ARMISD::CMN", SDT_ARMCmp,
187                              [SDNPOutGlue]>;
188
189def ARMcmpZ          : SDNode<"ARMISD::CMPZ", SDT_ARMCmp,
190                              [SDNPOutGlue, SDNPCommutative]>;
191
192def ARMpic_add       : SDNode<"ARMISD::PIC_ADD", SDT_ARMPICAdd>;
193
194def ARMasrl          : SDNode<"ARMISD::ASRL", SDT_ARMIntShiftParts, []>;
195def ARMlsrl          : SDNode<"ARMISD::LSRL", SDT_ARMIntShiftParts, []>;
196def ARMlsll          : SDNode<"ARMISD::LSLL", SDT_ARMIntShiftParts, []>;
197
198def ARMsrl_flag      : SDNode<"ARMISD::SRL_FLAG", SDTIntUnaryOp, [SDNPOutGlue]>;
199def ARMsra_flag      : SDNode<"ARMISD::SRA_FLAG", SDTIntUnaryOp, [SDNPOutGlue]>;
200def ARMrrx           : SDNode<"ARMISD::RRX"     , SDTIntUnaryOp, [SDNPInGlue ]>;
201
202def ARMaddc          : SDNode<"ARMISD::ADDC",  SDTBinaryArithWithFlags,
203                              [SDNPCommutative]>;
204def ARMsubc          : SDNode<"ARMISD::SUBC",  SDTBinaryArithWithFlags>;
205def ARMlsls          : SDNode<"ARMISD::LSLS",  SDTBinaryArithWithFlags>;
206def ARMadde          : SDNode<"ARMISD::ADDE",  SDTBinaryArithWithFlagsInOut>;
207def ARMsube          : SDNode<"ARMISD::SUBE",  SDTBinaryArithWithFlagsInOut>;
208
209def ARMthread_pointer: SDNode<"ARMISD::THREAD_POINTER", SDT_ARMThreadPointer>;
210def ARMeh_sjlj_setjmp: SDNode<"ARMISD::EH_SJLJ_SETJMP",
211                               SDT_ARMEH_SJLJ_Setjmp,
212                               [SDNPHasChain, SDNPSideEffect]>;
213def ARMeh_sjlj_longjmp: SDNode<"ARMISD::EH_SJLJ_LONGJMP",
214                               SDT_ARMEH_SJLJ_Longjmp,
215                               [SDNPHasChain, SDNPSideEffect]>;
216def ARMeh_sjlj_setup_dispatch: SDNode<"ARMISD::EH_SJLJ_SETUP_DISPATCH",
217                                      SDT_ARMEH_SJLJ_SetupDispatch,
218                                      [SDNPHasChain, SDNPSideEffect]>;
219
220def ARMMemBarrierMCR  : SDNode<"ARMISD::MEMBARRIER_MCR", SDT_ARMMEMBARRIER,
221                               [SDNPHasChain, SDNPSideEffect]>;
222def ARMPreload        : SDNode<"ARMISD::PRELOAD", SDT_ARMPREFETCH,
223                               [SDNPHasChain, SDNPMayLoad, SDNPMayStore]>;
224
225def ARMtcret         : SDNode<"ARMISD::TC_RETURN", SDT_ARMTCRET,
226                        [SDNPHasChain,  SDNPOptInGlue, SDNPVariadic]>;
227
228def ARMbfi           : SDNode<"ARMISD::BFI", SDT_ARMBFI>;
229
230def ARMmemcopy : SDNode<"ARMISD::MEMCPY", SDT_ARMMEMCPY,
231                        [SDNPHasChain, SDNPInGlue, SDNPOutGlue,
232                         SDNPMayStore, SDNPMayLoad]>;
233
234def ARMsmulwb       : SDNode<"ARMISD::SMULWB", SDTIntBinOp, []>;
235def ARMsmulwt       : SDNode<"ARMISD::SMULWT", SDTIntBinOp, []>;
236def ARMsmlalbb      : SDNode<"ARMISD::SMLALBB", SDT_LongMac, []>;
237def ARMsmlalbt      : SDNode<"ARMISD::SMLALBT", SDT_LongMac, []>;
238def ARMsmlaltb      : SDNode<"ARMISD::SMLALTB", SDT_LongMac, []>;
239def ARMsmlaltt      : SDNode<"ARMISD::SMLALTT", SDT_LongMac, []>;
240
241def ARMqadd8b       : SDNode<"ARMISD::QADD8b", SDT_ARMAnd, []>;
242def ARMqsub8b       : SDNode<"ARMISD::QSUB8b", SDT_ARMAnd, []>;
243def ARMqadd16b      : SDNode<"ARMISD::QADD16b", SDT_ARMAnd, []>;
244def ARMqsub16b      : SDNode<"ARMISD::QSUB16b", SDT_ARMAnd, []>;
245
246// Vector operations shared between NEON and MVE
247
248def ARMvdup      : SDNode<"ARMISD::VDUP", SDTypeProfile<1, 1, [SDTCisVec<0>]>>;
249
250// VDUPLANE can produce a quad-register result from a double-register source,
251// so the result is not constrained to match the source.
252def ARMvduplane  : SDNode<"ARMISD::VDUPLANE",
253                          SDTypeProfile<1, 2, [SDTCisVec<0>, SDTCisVec<1>,
254                                               SDTCisVT<2, i32>]>>;
255
256def SDTARMVSHUF   : SDTypeProfile<1, 1, [SDTCisVec<0>, SDTCisSameAs<0, 1>]>;
257def ARMvrev64    : SDNode<"ARMISD::VREV64", SDTARMVSHUF>;
258def ARMvrev32    : SDNode<"ARMISD::VREV32", SDTARMVSHUF>;
259def ARMvrev16    : SDNode<"ARMISD::VREV16", SDTARMVSHUF>;
260
261def SDTARMVGETLN  : SDTypeProfile<1, 2, [SDTCisVT<0, i32>, SDTCisInt<1>,
262                                         SDTCisVT<2, i32>]>;
263def ARMvgetlaneu : SDNode<"ARMISD::VGETLANEu", SDTARMVGETLN>;
264def ARMvgetlanes : SDNode<"ARMISD::VGETLANEs", SDTARMVGETLN>;
265
266def SDTARMVMOVIMM : SDTypeProfile<1, 1, [SDTCisVec<0>, SDTCisVT<1, i32>]>;
267def ARMvmovImm   : SDNode<"ARMISD::VMOVIMM", SDTARMVMOVIMM>;
268def ARMvmvnImm   : SDNode<"ARMISD::VMVNIMM", SDTARMVMOVIMM>;
269def ARMvmovFPImm : SDNode<"ARMISD::VMOVFPIMM", SDTARMVMOVIMM>;
270
271
272def SDTARMVSHIMM : SDTypeProfile<1, 2, [SDTCisInt<0>, SDTCisSameAs<0, 1>,
273                                        SDTCisVT<2, i32>]>;
274def SDTARMVSH : SDTypeProfile<1, 2, [SDTCisInt<0>, SDTCisSameAs<0, 1>,
275                                     SDTCisSameAs<0, 2>,]>;
276def ARMvshlImm   : SDNode<"ARMISD::VSHLIMM", SDTARMVSHIMM>;
277def ARMvshrsImm  : SDNode<"ARMISD::VSHRsIMM", SDTARMVSHIMM>;
278def ARMvshruImm  : SDNode<"ARMISD::VSHRuIMM", SDTARMVSHIMM>;
279def ARMvshls     : SDNode<"ARMISD::VSHLs", SDTARMVSH>;
280def ARMvshlu     : SDNode<"ARMISD::VSHLu", SDTARMVSH>;
281
282def SDTARMVCMP    : SDTypeProfile<1, 3, [SDTCisInt<0>, SDTCisSameAs<1, 2>,
283                                         SDTCisInt<3>]>;
284def SDTARMVCMPZ   : SDTypeProfile<1, 2, [SDTCisInt<2>]>;
285
286def ARMvcmp      : SDNode<"ARMISD::VCMP", SDTARMVCMP>;
287def ARMvcmpz     : SDNode<"ARMISD::VCMPZ", SDTARMVCMPZ>;
288
289def ARMWLS      : SDNode<"ARMISD::WLS", SDT_ARMLoLoop, [SDNPHasChain]>;
290def ARMLE       : SDNode<"ARMISD::LE", SDT_ARMLoLoop, [SDNPHasChain]>;
291def ARMLoopDec  : SDNode<"ARMISD::LOOP_DEC", SDTIntBinOp, [SDNPHasChain]>;
292
293//===----------------------------------------------------------------------===//
294// ARM Flag Definitions.
295
296class RegConstraint<string C> {
297  string Constraints = C;
298}
299
300// ARMCC condition codes. See ARMCC::CondCodes
301def ARMCCeq : PatLeaf<(i32 0)>;
302def ARMCCne : PatLeaf<(i32 1)>;
303def ARMCChs : PatLeaf<(i32 2)>;
304def ARMCClo : PatLeaf<(i32 3)>;
305def ARMCCmi : PatLeaf<(i32 4)>;
306def ARMCCpl : PatLeaf<(i32 5)>;
307def ARMCCvs : PatLeaf<(i32 6)>;
308def ARMCCvc : PatLeaf<(i32 7)>;
309def ARMCChi : PatLeaf<(i32 8)>;
310def ARMCCls : PatLeaf<(i32 9)>;
311def ARMCCge : PatLeaf<(i32 10)>;
312def ARMCClt : PatLeaf<(i32 11)>;
313def ARMCCgt : PatLeaf<(i32 12)>;
314def ARMCCle : PatLeaf<(i32 13)>;
315def ARMCCal : PatLeaf<(i32 14)>;
316
317// VCC predicates. See ARMVCC::VPTCodes
318def ARMVCCNone : PatLeaf<(i32 0)>;
319def ARMVCCThen : PatLeaf<(i32 1)>;
320def ARMVCCElse : PatLeaf<(i32 2)>;
321
322//===----------------------------------------------------------------------===//
323//  ARM specific transformation functions and pattern fragments.
324//
325
326// imm_neg_XFORM - Return the negation of an i32 immediate value.
327def imm_neg_XFORM : SDNodeXForm<imm, [{
328  return CurDAG->getTargetConstant(-(int)N->getZExtValue(), SDLoc(N), MVT::i32);
329}]>;
330
331// imm_not_XFORM - Return the complement of a i32 immediate value.
332def imm_not_XFORM : SDNodeXForm<imm, [{
333  return CurDAG->getTargetConstant(~(int)N->getZExtValue(), SDLoc(N), MVT::i32);
334}]>;
335
336/// imm16_31 predicate - True if the 32-bit immediate is in the range [16,31].
337def imm16_31 : ImmLeaf<i32, [{
338  return (int32_t)Imm >= 16 && (int32_t)Imm < 32;
339}]>;
340
341// sext_16_node predicate - True if the SDNode is sign-extended 16 or more bits.
342def sext_16_node : PatLeaf<(i32 GPR:$a), [{
343  return CurDAG->ComputeNumSignBits(SDValue(N,0)) >= 17;
344}]>;
345
346def sext_bottom_16 : PatFrag<(ops node:$a),
347                             (sext_inreg node:$a, i16)>;
348def sext_top_16 : PatFrag<(ops node:$a),
349                          (i32 (sra node:$a, (i32 16)))>;
350
351def bb_mul : PatFrag<(ops node:$a, node:$b),
352                     (mul (sext_bottom_16 node:$a), (sext_bottom_16 node:$b))>;
353def bt_mul : PatFrag<(ops node:$a, node:$b),
354                     (mul (sext_bottom_16 node:$a), (sra node:$b, (i32 16)))>;
355def tb_mul : PatFrag<(ops node:$a, node:$b),
356                     (mul (sra node:$a, (i32 16)), (sext_bottom_16 node:$b))>;
357def tt_mul : PatFrag<(ops node:$a, node:$b),
358                     (mul (sra node:$a, (i32 16)), (sra node:$b, (i32 16)))>;
359
360/// Split a 32-bit immediate into two 16 bit parts.
361def hi16 : SDNodeXForm<imm, [{
362  return CurDAG->getTargetConstant((uint32_t)N->getZExtValue() >> 16, SDLoc(N),
363                                   MVT::i32);
364}]>;
365
366def lo16AllZero : PatLeaf<(i32 imm), [{
367  // Returns true if all low 16-bits are 0.
368  return (((uint32_t)N->getZExtValue()) & 0xFFFFUL) == 0;
369}], hi16>;
370
371class BinOpFrag<dag res> : PatFrag<(ops node:$LHS, node:$RHS), res>;
372class UnOpFrag <dag res> : PatFrag<(ops node:$Src), res>;
373
374// An 'and' node with a single use.
375def and_su : PatFrag<(ops node:$lhs, node:$rhs), (and node:$lhs, node:$rhs), [{
376  return N->hasOneUse();
377}]>;
378
379// An 'xor' node with a single use.
380def xor_su : PatFrag<(ops node:$lhs, node:$rhs), (xor node:$lhs, node:$rhs), [{
381  return N->hasOneUse();
382}]>;
383
384// An 'fmul' node with a single use.
385def fmul_su : PatFrag<(ops node:$lhs, node:$rhs), (fmul node:$lhs, node:$rhs),[{
386  return N->hasOneUse();
387}]>;
388
389// An 'fadd' node which checks for single non-hazardous use.
390def fadd_mlx : PatFrag<(ops node:$lhs, node:$rhs),(fadd node:$lhs, node:$rhs),[{
391  return hasNoVMLxHazardUse(N);
392}]>;
393
394// An 'fsub' node which checks for single non-hazardous use.
395def fsub_mlx : PatFrag<(ops node:$lhs, node:$rhs),(fsub node:$lhs, node:$rhs),[{
396  return hasNoVMLxHazardUse(N);
397}]>;
398
399//===----------------------------------------------------------------------===//
400// Operand Definitions.
401//
402
403// Immediate operands with a shared generic asm render method.
404class ImmAsmOperand<int Low, int High> : AsmOperandClass {
405  let RenderMethod = "addImmOperands";
406  let PredicateMethod = "isImmediate<" # Low # "," # High # ">";
407  let DiagnosticString = "operand must be an immediate in the range [" # Low # "," # High # "]";
408}
409
410class ImmAsmOperandMinusOne<int Low, int High> : AsmOperandClass {
411  let PredicateMethod = "isImmediate<" # Low # "," # High # ">";
412  let DiagnosticType = "ImmRange" # Low # "_" # High;
413  let DiagnosticString = "operand must be an immediate in the range [" # Low # "," # High # "]";
414}
415
416// Operands that are part of a memory addressing mode.
417class MemOperand : Operand<i32> { let OperandType = "OPERAND_MEMORY"; }
418
419// Branch target.
420// FIXME: rename brtarget to t2_brtarget
421def brtarget : Operand<OtherVT> {
422  let EncoderMethod = "getBranchTargetOpValue";
423  let OperandType = "OPERAND_PCREL";
424  let DecoderMethod = "DecodeT2BROperand";
425}
426
427// Branches targeting ARM-mode must be divisible by 4 if they're a raw
428// immediate.
429def ARMBranchTarget : AsmOperandClass {
430  let Name = "ARMBranchTarget";
431}
432
433// Branches targeting Thumb-mode must be divisible by 2 if they're a raw
434// immediate.
435def ThumbBranchTarget : AsmOperandClass {
436  let Name = "ThumbBranchTarget";
437}
438
439def arm_br_target : Operand<OtherVT> {
440  let ParserMatchClass = ARMBranchTarget;
441  let EncoderMethod = "getARMBranchTargetOpValue";
442  let OperandType = "OPERAND_PCREL";
443}
444
445// Call target for ARM. Handles conditional/unconditional
446// FIXME: rename bl_target to t2_bltarget?
447def arm_bl_target : Operand<i32> {
448  let ParserMatchClass = ARMBranchTarget;
449  let EncoderMethod = "getARMBLTargetOpValue";
450  let OperandType = "OPERAND_PCREL";
451}
452
453// Target for BLX *from* ARM mode.
454def arm_blx_target : Operand<i32> {
455  let ParserMatchClass = ThumbBranchTarget;
456  let EncoderMethod = "getARMBLXTargetOpValue";
457  let OperandType = "OPERAND_PCREL";
458}
459
460// A list of registers separated by comma. Used by load/store multiple.
461def RegListAsmOperand : AsmOperandClass { let Name = "RegList"; }
462def reglist : Operand<i32> {
463  let EncoderMethod = "getRegisterListOpValue";
464  let ParserMatchClass = RegListAsmOperand;
465  let PrintMethod = "printRegisterList";
466  let DecoderMethod = "DecodeRegListOperand";
467}
468
469// A list of general purpose registers and APSR separated by comma.
470// Used by CLRM
471def RegListWithAPSRAsmOperand : AsmOperandClass { let Name = "RegListWithAPSR"; }
472def reglist_with_apsr : Operand<i32> {
473  let EncoderMethod = "getRegisterListOpValue";
474  let ParserMatchClass = RegListWithAPSRAsmOperand;
475  let PrintMethod = "printRegisterList";
476  let DecoderMethod = "DecodeRegListOperand";
477}
478
479def GPRPairOp : RegisterOperand<GPRPair, "printGPRPairOperand">;
480
481def DPRRegListAsmOperand : AsmOperandClass {
482  let Name = "DPRRegList";
483  let DiagnosticType = "DPR_RegList";
484}
485def dpr_reglist : Operand<i32> {
486  let EncoderMethod = "getRegisterListOpValue";
487  let ParserMatchClass = DPRRegListAsmOperand;
488  let PrintMethod = "printRegisterList";
489  let DecoderMethod = "DecodeDPRRegListOperand";
490}
491
492def SPRRegListAsmOperand : AsmOperandClass {
493  let Name = "SPRRegList";
494  let DiagnosticString = "operand must be a list of registers in range [s0, s31]";
495}
496def spr_reglist : Operand<i32> {
497  let EncoderMethod = "getRegisterListOpValue";
498  let ParserMatchClass = SPRRegListAsmOperand;
499  let PrintMethod = "printRegisterList";
500  let DecoderMethod = "DecodeSPRRegListOperand";
501}
502
503def FPSRegListWithVPRAsmOperand : AsmOperandClass { let Name =
504    "FPSRegListWithVPR"; }
505def fp_sreglist_with_vpr : Operand<i32> {
506  let EncoderMethod = "getRegisterListOpValue";
507  let ParserMatchClass = FPSRegListWithVPRAsmOperand;
508  let PrintMethod = "printRegisterList";
509}
510def FPDRegListWithVPRAsmOperand : AsmOperandClass { let Name =
511    "FPDRegListWithVPR"; }
512def fp_dreglist_with_vpr : Operand<i32> {
513  let EncoderMethod = "getRegisterListOpValue";
514  let ParserMatchClass = FPDRegListWithVPRAsmOperand;
515  let PrintMethod = "printRegisterList";
516}
517
518// An operand for the CONSTPOOL_ENTRY pseudo-instruction.
519def cpinst_operand : Operand<i32> {
520  let PrintMethod = "printCPInstOperand";
521}
522
523// Local PC labels.
524def pclabel : Operand<i32> {
525  let PrintMethod = "printPCLabel";
526}
527
528// ADR instruction labels.
529def AdrLabelAsmOperand : AsmOperandClass { let Name = "AdrLabel"; }
530def adrlabel : Operand<i32> {
531  let EncoderMethod = "getAdrLabelOpValue";
532  let ParserMatchClass = AdrLabelAsmOperand;
533  let PrintMethod = "printAdrLabelOperand<0>";
534}
535
536def neon_vcvt_imm32 : Operand<i32> {
537  let EncoderMethod = "getNEONVcvtImm32OpValue";
538  let DecoderMethod = "DecodeVCVTImmOperand";
539}
540
541// rot_imm: An integer that encodes a rotate amount. Must be 8, 16, or 24.
542def rot_imm_XFORM: SDNodeXForm<imm, [{
543  switch (N->getZExtValue()){
544  default: llvm_unreachable(nullptr);
545  case 0:  return CurDAG->getTargetConstant(0, SDLoc(N), MVT::i32);
546  case 8:  return CurDAG->getTargetConstant(1, SDLoc(N), MVT::i32);
547  case 16: return CurDAG->getTargetConstant(2, SDLoc(N), MVT::i32);
548  case 24: return CurDAG->getTargetConstant(3, SDLoc(N), MVT::i32);
549  }
550}]>;
551def RotImmAsmOperand : AsmOperandClass {
552  let Name = "RotImm";
553  let ParserMethod = "parseRotImm";
554}
555def rot_imm : Operand<i32>, PatLeaf<(i32 imm), [{
556    int32_t v = N->getZExtValue();
557    return v == 8 || v == 16 || v == 24; }],
558    rot_imm_XFORM> {
559  let PrintMethod = "printRotImmOperand";
560  let ParserMatchClass = RotImmAsmOperand;
561}
562
563// Power-of-two operand for MVE VIDUP and friends, which encode
564// {1,2,4,8} as its log to base 2, i.e. as {0,1,2,3} respectively
565def MVE_VIDUP_imm_asmoperand : AsmOperandClass {
566  let Name = "VIDUP_imm";
567  let PredicateMethod = "isPowerTwoInRange<1,8>";
568  let RenderMethod = "addPowerTwoOperands";
569  let DiagnosticString = "vector increment immediate must be 1, 2, 4 or 8";
570}
571def MVE_VIDUP_imm : Operand<i32> {
572  let EncoderMethod = "getPowerTwoOpValue";
573  let DecoderMethod = "DecodePowerTwoOperand<0,3>";
574  let ParserMatchClass = MVE_VIDUP_imm_asmoperand;
575}
576
577// Pair vector indexing
578class MVEPairVectorIndexOperand<string start, string end> : AsmOperandClass {
579  let Name = "MVEPairVectorIndex"#start;
580  let RenderMethod = "addMVEPairVectorIndexOperands";
581  let PredicateMethod = "isMVEPairVectorIndex<"#start#", "#end#">";
582}
583
584class MVEPairVectorIndex<string opval> : Operand<i32> {
585  let PrintMethod = "printVectorIndex";
586  let EncoderMethod = "getMVEPairVectorIndexOpValue<"#opval#">";
587  let DecoderMethod = "DecodeMVEPairVectorIndexOperand<"#opval#">";
588  let MIOperandInfo = (ops i32imm);
589}
590
591def MVEPairVectorIndex0 : MVEPairVectorIndex<"0"> {
592  let ParserMatchClass = MVEPairVectorIndexOperand<"0", "1">;
593}
594
595def MVEPairVectorIndex2 : MVEPairVectorIndex<"2"> {
596  let ParserMatchClass = MVEPairVectorIndexOperand<"2", "3">;
597}
598
599// Vector indexing
600class MVEVectorIndexOperand<int NumLanes> : AsmOperandClass {
601  let Name = "MVEVectorIndex"#NumLanes;
602  let RenderMethod = "addMVEVectorIndexOperands";
603  let PredicateMethod = "isVectorIndexInRange<"#NumLanes#">";
604}
605
606class MVEVectorIndex<int NumLanes> : Operand<i32> {
607  let PrintMethod = "printVectorIndex";
608  let ParserMatchClass = MVEVectorIndexOperand<NumLanes>;
609  let MIOperandInfo = (ops i32imm);
610}
611
612// shift_imm: An integer that encodes a shift amount and the type of shift
613// (asr or lsl). The 6-bit immediate encodes as:
614//    {5}     0 ==> lsl
615//            1     asr
616//    {4-0}   imm5 shift amount.
617//            asr #32 encoded as imm5 == 0.
618def ShifterImmAsmOperand : AsmOperandClass {
619  let Name = "ShifterImm";
620  let ParserMethod = "parseShifterImm";
621}
622def shift_imm : Operand<i32> {
623  let PrintMethod = "printShiftImmOperand";
624  let ParserMatchClass = ShifterImmAsmOperand;
625}
626
627// shifter_operand operands: so_reg_reg, so_reg_imm, and mod_imm.
628def ShiftedRegAsmOperand : AsmOperandClass { let Name = "RegShiftedReg"; }
629def so_reg_reg : Operand<i32>,  // reg reg imm
630                 ComplexPattern<i32, 3, "SelectRegShifterOperand",
631                                [shl, srl, sra, rotr]> {
632  let EncoderMethod = "getSORegRegOpValue";
633  let PrintMethod = "printSORegRegOperand";
634  let DecoderMethod = "DecodeSORegRegOperand";
635  let ParserMatchClass = ShiftedRegAsmOperand;
636  let MIOperandInfo = (ops GPRnopc, GPRnopc, i32imm);
637}
638
639def ShiftedImmAsmOperand : AsmOperandClass { let Name = "RegShiftedImm"; }
640def so_reg_imm : Operand<i32>, // reg imm
641                 ComplexPattern<i32, 2, "SelectImmShifterOperand",
642                                [shl, srl, sra, rotr]> {
643  let EncoderMethod = "getSORegImmOpValue";
644  let PrintMethod = "printSORegImmOperand";
645  let DecoderMethod = "DecodeSORegImmOperand";
646  let ParserMatchClass = ShiftedImmAsmOperand;
647  let MIOperandInfo = (ops GPR, i32imm);
648}
649
650// FIXME: Does this need to be distinct from so_reg?
651def shift_so_reg_reg : Operand<i32>,    // reg reg imm
652                   ComplexPattern<i32, 3, "SelectShiftRegShifterOperand",
653                                  [shl,srl,sra,rotr]> {
654  let EncoderMethod = "getSORegRegOpValue";
655  let PrintMethod = "printSORegRegOperand";
656  let DecoderMethod = "DecodeSORegRegOperand";
657  let ParserMatchClass = ShiftedRegAsmOperand;
658  let MIOperandInfo = (ops GPR, GPR, i32imm);
659}
660
661// FIXME: Does this need to be distinct from so_reg?
662def shift_so_reg_imm : Operand<i32>,    // reg reg imm
663                   ComplexPattern<i32, 2, "SelectShiftImmShifterOperand",
664                                  [shl,srl,sra,rotr]> {
665  let EncoderMethod = "getSORegImmOpValue";
666  let PrintMethod = "printSORegImmOperand";
667  let DecoderMethod = "DecodeSORegImmOperand";
668  let ParserMatchClass = ShiftedImmAsmOperand;
669  let MIOperandInfo = (ops GPR, i32imm);
670}
671
672// mod_imm: match a 32-bit immediate operand, which can be encoded into
673// a 12-bit immediate; an 8-bit integer and a 4-bit rotator (See ARMARM
674// - "Modified Immediate Constants"). Within the MC layer we keep this
675// immediate in its encoded form.
676def ModImmAsmOperand: AsmOperandClass {
677  let Name = "ModImm";
678  let ParserMethod = "parseModImm";
679}
680def mod_imm : Operand<i32>, ImmLeaf<i32, [{
681    return ARM_AM::getSOImmVal(Imm) != -1;
682  }]> {
683  let EncoderMethod = "getModImmOpValue";
684  let PrintMethod = "printModImmOperand";
685  let ParserMatchClass = ModImmAsmOperand;
686}
687
688// Note: the patterns mod_imm_not and mod_imm_neg do not require an encoder
689// method and such, as they are only used on aliases (Pat<> and InstAlias<>).
690// The actual parsing, encoding, decoding are handled by the destination
691// instructions, which use mod_imm.
692
693def ModImmNotAsmOperand : AsmOperandClass { let Name = "ModImmNot"; }
694def mod_imm_not : Operand<i32>, PatLeaf<(imm), [{
695    return ARM_AM::getSOImmVal(~(uint32_t)N->getZExtValue()) != -1;
696  }], imm_not_XFORM> {
697  let ParserMatchClass = ModImmNotAsmOperand;
698}
699
700def ModImmNegAsmOperand : AsmOperandClass { let Name = "ModImmNeg"; }
701def mod_imm_neg : Operand<i32>, PatLeaf<(imm), [{
702    unsigned Value = -(unsigned)N->getZExtValue();
703    return Value && ARM_AM::getSOImmVal(Value) != -1;
704  }], imm_neg_XFORM> {
705  let ParserMatchClass = ModImmNegAsmOperand;
706}
707
708/// arm_i32imm - True for +V6T2, or when isSOImmTwoParVal()
709def arm_i32imm : IntImmLeaf<i32, [{
710  if (Subtarget->useMovt())
711    return true;
712  return ARM_AM::isSOImmTwoPartVal(Imm.getZExtValue());
713}]>;
714
715/// imm0_1 predicate - Immediate in the range [0,1].
716def Imm0_1AsmOperand: ImmAsmOperand<0,1> { let Name = "Imm0_1"; }
717def imm0_1 : Operand<i32> { let ParserMatchClass = Imm0_1AsmOperand; }
718
719/// imm0_3 predicate - Immediate in the range [0,3].
720def Imm0_3AsmOperand: ImmAsmOperand<0,3> { let Name = "Imm0_3"; }
721def imm0_3 : Operand<i32> { let ParserMatchClass = Imm0_3AsmOperand; }
722
723/// imm0_7 predicate - Immediate in the range [0,7].
724def Imm0_7AsmOperand: ImmAsmOperand<0,7> {
725  let Name = "Imm0_7";
726}
727def imm0_7 : Operand<i32>, ImmLeaf<i32, [{
728  return Imm >= 0 && Imm < 8;
729}]> {
730  let ParserMatchClass = Imm0_7AsmOperand;
731}
732
733/// imm8_255 predicate - Immediate in the range [8,255].
734def Imm8_255AsmOperand: ImmAsmOperand<8,255> { let Name = "Imm8_255"; }
735def imm8_255 : Operand<i32>, ImmLeaf<i32, [{
736  return Imm >= 8 && Imm < 256;
737}]> {
738  let ParserMatchClass = Imm8_255AsmOperand;
739}
740
741/// imm8 predicate - Immediate is exactly 8.
742def Imm8AsmOperand: ImmAsmOperand<8,8> { let Name = "Imm8"; }
743def imm8 : Operand<i32>, ImmLeaf<i32, [{ return Imm == 8; }]> {
744  let ParserMatchClass = Imm8AsmOperand;
745}
746
747/// imm16 predicate - Immediate is exactly 16.
748def Imm16AsmOperand: ImmAsmOperand<16,16> { let Name = "Imm16"; }
749def imm16 : Operand<i32>, ImmLeaf<i32, [{ return Imm == 16; }]> {
750  let ParserMatchClass = Imm16AsmOperand;
751}
752
753/// imm32 predicate - Immediate is exactly 32.
754def Imm32AsmOperand: ImmAsmOperand<32,32> { let Name = "Imm32"; }
755def imm32 : Operand<i32>, ImmLeaf<i32, [{ return Imm == 32; }]> {
756  let ParserMatchClass = Imm32AsmOperand;
757}
758
759def imm8_or_16 : ImmLeaf<i32, [{ return Imm == 8 || Imm == 16;}]>;
760
761/// imm1_7 predicate - Immediate in the range [1,7].
762def Imm1_7AsmOperand: ImmAsmOperand<1,7> { let Name = "Imm1_7"; }
763def imm1_7 : Operand<i32>, ImmLeaf<i32, [{ return Imm > 0 && Imm < 8; }]> {
764  let ParserMatchClass = Imm1_7AsmOperand;
765}
766
767/// imm1_15 predicate - Immediate in the range [1,15].
768def Imm1_15AsmOperand: ImmAsmOperand<1,15> { let Name = "Imm1_15"; }
769def imm1_15 : Operand<i32>, ImmLeaf<i32, [{ return Imm > 0 && Imm < 16; }]> {
770  let ParserMatchClass = Imm1_15AsmOperand;
771}
772
773/// imm1_31 predicate - Immediate in the range [1,31].
774def Imm1_31AsmOperand: ImmAsmOperand<1,31> { let Name = "Imm1_31"; }
775def imm1_31 : Operand<i32>, ImmLeaf<i32, [{ return Imm > 0 && Imm < 32; }]> {
776  let ParserMatchClass = Imm1_31AsmOperand;
777}
778
779/// imm0_15 predicate - Immediate in the range [0,15].
780def Imm0_15AsmOperand: ImmAsmOperand<0,15> {
781  let Name = "Imm0_15";
782}
783def imm0_15 : Operand<i32>, ImmLeaf<i32, [{
784  return Imm >= 0 && Imm < 16;
785}]> {
786  let ParserMatchClass = Imm0_15AsmOperand;
787}
788
789/// imm0_31 predicate - True if the 32-bit immediate is in the range [0,31].
790def Imm0_31AsmOperand: ImmAsmOperand<0,31> { let Name = "Imm0_31"; }
791def imm0_31 : Operand<i32>, ImmLeaf<i32, [{
792  return Imm >= 0 && Imm < 32;
793}]> {
794  let ParserMatchClass = Imm0_31AsmOperand;
795}
796
797/// imm0_32 predicate - True if the 32-bit immediate is in the range [0,32].
798def Imm0_32AsmOperand: ImmAsmOperand<0,32> { let Name = "Imm0_32"; }
799def imm0_32 : Operand<i32>, ImmLeaf<i32, [{
800  return Imm >= 0 && Imm < 33;
801}]> {
802  let ParserMatchClass = Imm0_32AsmOperand;
803}
804
805/// imm0_63 predicate - True if the 32-bit immediate is in the range [0,63].
806def Imm0_63AsmOperand: ImmAsmOperand<0,63> { let Name = "Imm0_63"; }
807def imm0_63 : Operand<i32>, ImmLeaf<i32, [{
808  return Imm >= 0 && Imm < 64;
809}]> {
810  let ParserMatchClass = Imm0_63AsmOperand;
811}
812
813/// imm0_239 predicate - Immediate in the range [0,239].
814def Imm0_239AsmOperand : ImmAsmOperand<0,239> {
815  let Name = "Imm0_239";
816}
817def imm0_239 : Operand<i32>, ImmLeaf<i32, [{ return Imm >= 0 && Imm < 240; }]> {
818  let ParserMatchClass = Imm0_239AsmOperand;
819}
820
821/// imm0_255 predicate - Immediate in the range [0,255].
822def Imm0_255AsmOperand : ImmAsmOperand<0,255> { let Name = "Imm0_255"; }
823def imm0_255 : Operand<i32>, ImmLeaf<i32, [{ return Imm >= 0 && Imm < 256; }]> {
824  let ParserMatchClass = Imm0_255AsmOperand;
825}
826
827/// imm0_65535 - An immediate is in the range [0,65535].
828def Imm0_65535AsmOperand: ImmAsmOperand<0,65535> { let Name = "Imm0_65535"; }
829def imm0_65535 : Operand<i32>, ImmLeaf<i32, [{
830  return Imm >= 0 && Imm < 65536;
831}]> {
832  let ParserMatchClass = Imm0_65535AsmOperand;
833}
834
835// imm0_65535_neg - An immediate whose negative value is in the range [0.65535].
836def imm0_65535_neg : Operand<i32>, ImmLeaf<i32, [{
837  return -Imm >= 0 && -Imm < 65536;
838}]>;
839
840// imm0_65535_expr - For movt/movw - 16-bit immediate that can also reference
841// a relocatable expression.
842//
843// FIXME: This really needs a Thumb version separate from the ARM version.
844// While the range is the same, and can thus use the same match class,
845// the encoding is different so it should have a different encoder method.
846def Imm0_65535ExprAsmOperand: AsmOperandClass {
847  let Name = "Imm0_65535Expr";
848  let RenderMethod = "addImmOperands";
849  let DiagnosticString = "operand must be an immediate in the range [0,0xffff] or a relocatable expression";
850}
851
852def imm0_65535_expr : Operand<i32> {
853  let EncoderMethod = "getHiLo16ImmOpValue";
854  let ParserMatchClass = Imm0_65535ExprAsmOperand;
855}
856
857def Imm256_65535ExprAsmOperand: ImmAsmOperand<256,65535> { let Name = "Imm256_65535Expr"; }
858def imm256_65535_expr : Operand<i32> {
859  let ParserMatchClass = Imm256_65535ExprAsmOperand;
860}
861
862/// imm24b - True if the 32-bit immediate is encodable in 24 bits.
863def Imm24bitAsmOperand: ImmAsmOperand<0,0xffffff> {
864  let Name = "Imm24bit";
865  let DiagnosticString = "operand must be an immediate in the range [0,0xffffff]";
866}
867def imm24b : Operand<i32>, ImmLeaf<i32, [{
868  return Imm >= 0 && Imm <= 0xffffff;
869}]> {
870  let ParserMatchClass = Imm24bitAsmOperand;
871}
872
873
874/// bf_inv_mask_imm predicate - An AND mask to clear an arbitrary width bitfield
875/// e.g., 0xf000ffff
876def BitfieldAsmOperand : AsmOperandClass {
877  let Name = "Bitfield";
878  let ParserMethod = "parseBitfield";
879}
880
881def bf_inv_mask_imm : Operand<i32>,
882                      PatLeaf<(imm), [{
883  return ARM::isBitFieldInvertedMask(N->getZExtValue());
884}] > {
885  let EncoderMethod = "getBitfieldInvertedMaskOpValue";
886  let PrintMethod = "printBitfieldInvMaskImmOperand";
887  let DecoderMethod = "DecodeBitfieldMaskOperand";
888  let ParserMatchClass = BitfieldAsmOperand;
889  let GISelPredicateCode = [{
890    // There's better methods of implementing this check. IntImmLeaf<> would be
891    // equivalent and have less boilerplate but we need a test for C++
892    // predicates and this one causes new rules to be imported into GlobalISel
893    // without requiring additional features first.
894    const auto &MO = MI.getOperand(1);
895    if (!MO.isCImm())
896      return false;
897    return ARM::isBitFieldInvertedMask(MO.getCImm()->getZExtValue());
898  }];
899}
900
901def imm1_32_XFORM: SDNodeXForm<imm, [{
902  return CurDAG->getTargetConstant((int)N->getZExtValue() - 1, SDLoc(N),
903                                   MVT::i32);
904}]>;
905def Imm1_32AsmOperand: ImmAsmOperandMinusOne<1,32> {
906  let Name = "Imm1_32";
907}
908def imm1_32 : Operand<i32>, PatLeaf<(imm), [{
909   uint64_t Imm = N->getZExtValue();
910   return Imm > 0 && Imm <= 32;
911 }],
912    imm1_32_XFORM> {
913  let PrintMethod = "printImmPlusOneOperand";
914  let ParserMatchClass = Imm1_32AsmOperand;
915}
916
917def imm1_16_XFORM: SDNodeXForm<imm, [{
918  return CurDAG->getTargetConstant((int)N->getZExtValue() - 1, SDLoc(N),
919                                   MVT::i32);
920}]>;
921def Imm1_16AsmOperand: ImmAsmOperandMinusOne<1,16> { let Name = "Imm1_16"; }
922def imm1_16 : Operand<i32>, ImmLeaf<i32, [{
923    return Imm > 0 && Imm <= 16;
924  }],
925    imm1_16_XFORM> {
926  let PrintMethod = "printImmPlusOneOperand";
927  let ParserMatchClass = Imm1_16AsmOperand;
928}
929
930def MVEShiftImm1_7AsmOperand: ImmAsmOperand<1,7> {
931  let Name = "MVEShiftImm1_7";
932  // Reason we're doing this is because instruction vshll.s8 t1 encoding
933  // accepts 1,7 but the t2 encoding accepts 8.  By doing this we can get a
934  // better diagnostic message if someone uses bigger immediate than the t1/t2
935  // encodings allow.
936  let DiagnosticString = "operand must be an immediate in the range [1,8]";
937}
938def mve_shift_imm1_7 : Operand<i32>,
939    // SelectImmediateInRange / isScaledConstantInRange uses a
940    // half-open interval, so the parameters <1,8> mean 1-7 inclusive
941    ComplexPattern<i32, 1, "SelectImmediateInRange<1,8>", [], []> {
942  let ParserMatchClass = MVEShiftImm1_7AsmOperand;
943  let EncoderMethod = "getMVEShiftImmOpValue";
944}
945
946def MVEShiftImm1_15AsmOperand: ImmAsmOperand<1,15> {
947  let Name = "MVEShiftImm1_15";
948  // Reason we're doing this is because instruction vshll.s16 t1 encoding
949  // accepts 1,15 but the t2 encoding accepts 16.  By doing this we can get a
950  // better diagnostic message if someone uses bigger immediate than the t1/t2
951  // encodings allow.
952  let DiagnosticString = "operand must be an immediate in the range [1,16]";
953}
954def mve_shift_imm1_15 : Operand<i32>,
955    // SelectImmediateInRange / isScaledConstantInRange uses a
956    // half-open interval, so the parameters <1,16> mean 1-15 inclusive
957    ComplexPattern<i32, 1, "SelectImmediateInRange<1,16>", [], []> {
958  let ParserMatchClass = MVEShiftImm1_15AsmOperand;
959  let EncoderMethod = "getMVEShiftImmOpValue";
960}
961
962// Define ARM specific addressing modes.
963// addrmode_imm12 := reg +/- imm12
964//
965def MemImm12OffsetAsmOperand : AsmOperandClass { let Name = "MemImm12Offset"; }
966class AddrMode_Imm12 : MemOperand,
967                     ComplexPattern<i32, 2, "SelectAddrModeImm12", []> {
968  // 12-bit immediate operand. Note that instructions using this encode
969  // #0 and #-0 differently. We flag #-0 as the magic value INT32_MIN. All other
970  // immediate values are as normal.
971
972  let EncoderMethod = "getAddrModeImm12OpValue";
973  let DecoderMethod = "DecodeAddrModeImm12Operand";
974  let ParserMatchClass = MemImm12OffsetAsmOperand;
975  let MIOperandInfo = (ops GPR:$base, i32imm:$offsimm);
976}
977
978def addrmode_imm12 : AddrMode_Imm12 {
979  let PrintMethod = "printAddrModeImm12Operand<false>";
980}
981
982def addrmode_imm12_pre : AddrMode_Imm12 {
983  let PrintMethod = "printAddrModeImm12Operand<true>";
984}
985
986// ldst_so_reg := reg +/- reg shop imm
987//
988def MemRegOffsetAsmOperand : AsmOperandClass { let Name = "MemRegOffset"; }
989def ldst_so_reg : MemOperand,
990                  ComplexPattern<i32, 3, "SelectLdStSOReg", []> {
991  let EncoderMethod = "getLdStSORegOpValue";
992  // FIXME: Simplify the printer
993  let PrintMethod = "printAddrMode2Operand";
994  let DecoderMethod = "DecodeSORegMemOperand";
995  let ParserMatchClass = MemRegOffsetAsmOperand;
996  let MIOperandInfo = (ops GPR:$base, GPRnopc:$offsreg, i32imm:$shift);
997}
998
999// postidx_imm8 := +/- [0,255]
1000//
1001// 9 bit value:
1002//  {8}       1 is imm8 is non-negative. 0 otherwise.
1003//  {7-0}     [0,255] imm8 value.
1004def PostIdxImm8AsmOperand : AsmOperandClass { let Name = "PostIdxImm8"; }
1005def postidx_imm8 : MemOperand {
1006  let PrintMethod = "printPostIdxImm8Operand";
1007  let ParserMatchClass = PostIdxImm8AsmOperand;
1008  let MIOperandInfo = (ops i32imm);
1009}
1010
1011// postidx_imm8s4 := +/- [0,1020]
1012//
1013// 9 bit value:
1014//  {8}       1 is imm8 is non-negative. 0 otherwise.
1015//  {7-0}     [0,255] imm8 value, scaled by 4.
1016def PostIdxImm8s4AsmOperand : AsmOperandClass { let Name = "PostIdxImm8s4"; }
1017def postidx_imm8s4 : MemOperand {
1018  let PrintMethod = "printPostIdxImm8s4Operand";
1019  let ParserMatchClass = PostIdxImm8s4AsmOperand;
1020  let MIOperandInfo = (ops i32imm);
1021}
1022
1023
1024// postidx_reg := +/- reg
1025//
1026def PostIdxRegAsmOperand : AsmOperandClass {
1027  let Name = "PostIdxReg";
1028  let ParserMethod = "parsePostIdxReg";
1029}
1030def postidx_reg : MemOperand {
1031  let EncoderMethod = "getPostIdxRegOpValue";
1032  let DecoderMethod = "DecodePostIdxReg";
1033  let PrintMethod = "printPostIdxRegOperand";
1034  let ParserMatchClass = PostIdxRegAsmOperand;
1035  let MIOperandInfo = (ops GPRnopc, i32imm);
1036}
1037
1038def PostIdxRegShiftedAsmOperand : AsmOperandClass {
1039  let Name = "PostIdxRegShifted";
1040  let ParserMethod = "parsePostIdxReg";
1041}
1042def am2offset_reg : MemOperand,
1043                ComplexPattern<i32, 2, "SelectAddrMode2OffsetReg",
1044                [], [SDNPWantRoot]> {
1045  let EncoderMethod = "getAddrMode2OffsetOpValue";
1046  let PrintMethod = "printAddrMode2OffsetOperand";
1047  // When using this for assembly, it's always as a post-index offset.
1048  let ParserMatchClass = PostIdxRegShiftedAsmOperand;
1049  let MIOperandInfo = (ops GPRnopc, i32imm);
1050}
1051
1052// FIXME: am2offset_imm should only need the immediate, not the GPR. Having
1053// the GPR is purely vestigal at this point.
1054def AM2OffsetImmAsmOperand : AsmOperandClass { let Name = "AM2OffsetImm"; }
1055def am2offset_imm : MemOperand,
1056                ComplexPattern<i32, 2, "SelectAddrMode2OffsetImm",
1057                [], [SDNPWantRoot]> {
1058  let EncoderMethod = "getAddrMode2OffsetOpValue";
1059  let PrintMethod = "printAddrMode2OffsetOperand";
1060  let ParserMatchClass = AM2OffsetImmAsmOperand;
1061  let MIOperandInfo = (ops GPRnopc, i32imm);
1062}
1063
1064
1065// addrmode3 := reg +/- reg
1066// addrmode3 := reg +/- imm8
1067//
1068// FIXME: split into imm vs. reg versions.
1069def AddrMode3AsmOperand : AsmOperandClass { let Name = "AddrMode3"; }
1070class AddrMode3 : MemOperand,
1071                  ComplexPattern<i32, 3, "SelectAddrMode3", []> {
1072  let EncoderMethod = "getAddrMode3OpValue";
1073  let ParserMatchClass = AddrMode3AsmOperand;
1074  let MIOperandInfo = (ops GPR:$base, GPR:$offsreg, i32imm:$offsimm);
1075}
1076
1077def addrmode3 : AddrMode3
1078{
1079  let PrintMethod = "printAddrMode3Operand<false>";
1080}
1081
1082def addrmode3_pre : AddrMode3
1083{
1084  let PrintMethod = "printAddrMode3Operand<true>";
1085}
1086
1087// FIXME: split into imm vs. reg versions.
1088// FIXME: parser method to handle +/- register.
1089def AM3OffsetAsmOperand : AsmOperandClass {
1090  let Name = "AM3Offset";
1091  let ParserMethod = "parseAM3Offset";
1092}
1093def am3offset : MemOperand,
1094                ComplexPattern<i32, 2, "SelectAddrMode3Offset",
1095                               [], [SDNPWantRoot]> {
1096  let EncoderMethod = "getAddrMode3OffsetOpValue";
1097  let PrintMethod = "printAddrMode3OffsetOperand";
1098  let ParserMatchClass = AM3OffsetAsmOperand;
1099  let MIOperandInfo = (ops GPR, i32imm);
1100}
1101
1102// ldstm_mode := {ia, ib, da, db}
1103//
1104def ldstm_mode : OptionalDefOperand<OtherVT, (ops i32), (ops (i32 1))> {
1105  let EncoderMethod = "getLdStmModeOpValue";
1106  let PrintMethod = "printLdStmModeOperand";
1107}
1108
1109// addrmode5 := reg +/- imm8*4
1110//
1111def AddrMode5AsmOperand : AsmOperandClass { let Name = "AddrMode5"; }
1112class AddrMode5 : MemOperand,
1113                  ComplexPattern<i32, 2, "SelectAddrMode5", []> {
1114  let EncoderMethod = "getAddrMode5OpValue";
1115  let DecoderMethod = "DecodeAddrMode5Operand";
1116  let ParserMatchClass = AddrMode5AsmOperand;
1117  let MIOperandInfo = (ops GPR:$base, i32imm);
1118}
1119
1120def addrmode5 : AddrMode5 {
1121   let PrintMethod = "printAddrMode5Operand<false>";
1122}
1123
1124def addrmode5_pre : AddrMode5 {
1125   let PrintMethod = "printAddrMode5Operand<true>";
1126}
1127
1128// addrmode5fp16 := reg +/- imm8*2
1129//
1130def AddrMode5FP16AsmOperand : AsmOperandClass { let Name = "AddrMode5FP16"; }
1131class AddrMode5FP16 : Operand<i32>,
1132                      ComplexPattern<i32, 2, "SelectAddrMode5FP16", []> {
1133  let EncoderMethod = "getAddrMode5FP16OpValue";
1134  let DecoderMethod = "DecodeAddrMode5FP16Operand";
1135  let ParserMatchClass = AddrMode5FP16AsmOperand;
1136  let MIOperandInfo = (ops GPR:$base, i32imm);
1137}
1138
1139def addrmode5fp16 : AddrMode5FP16 {
1140   let PrintMethod = "printAddrMode5FP16Operand<false>";
1141}
1142
1143// addrmode6 := reg with optional alignment
1144//
1145def AddrMode6AsmOperand : AsmOperandClass { let Name = "AlignedMemory"; }
1146def addrmode6 : MemOperand,
1147                ComplexPattern<i32, 2, "SelectAddrMode6", [], [SDNPWantParent]>{
1148  let PrintMethod = "printAddrMode6Operand";
1149  let MIOperandInfo = (ops GPR:$addr, i32imm:$align);
1150  let EncoderMethod = "getAddrMode6AddressOpValue";
1151  let DecoderMethod = "DecodeAddrMode6Operand";
1152  let ParserMatchClass = AddrMode6AsmOperand;
1153}
1154
1155def am6offset : MemOperand,
1156                ComplexPattern<i32, 1, "SelectAddrMode6Offset",
1157                               [], [SDNPWantRoot]> {
1158  let PrintMethod = "printAddrMode6OffsetOperand";
1159  let MIOperandInfo = (ops GPR);
1160  let EncoderMethod = "getAddrMode6OffsetOpValue";
1161  let DecoderMethod = "DecodeGPRRegisterClass";
1162}
1163
1164// Special version of addrmode6 to handle alignment encoding for VST1/VLD1
1165// (single element from one lane) for size 32.
1166def addrmode6oneL32 : MemOperand,
1167                ComplexPattern<i32, 2, "SelectAddrMode6", [], [SDNPWantParent]>{
1168  let PrintMethod = "printAddrMode6Operand";
1169  let MIOperandInfo = (ops GPR:$addr, i32imm);
1170  let EncoderMethod = "getAddrMode6OneLane32AddressOpValue";
1171}
1172
1173// Base class for addrmode6 with specific alignment restrictions.
1174class AddrMode6Align : MemOperand,
1175                ComplexPattern<i32, 2, "SelectAddrMode6", [], [SDNPWantParent]>{
1176  let PrintMethod = "printAddrMode6Operand";
1177  let MIOperandInfo = (ops GPR:$addr, i32imm:$align);
1178  let EncoderMethod = "getAddrMode6AddressOpValue";
1179  let DecoderMethod = "DecodeAddrMode6Operand";
1180}
1181
1182// Special version of addrmode6 to handle no allowed alignment encoding for
1183// VLD/VST instructions and checking the alignment is not specified.
1184def AddrMode6AlignNoneAsmOperand : AsmOperandClass {
1185  let Name = "AlignedMemoryNone";
1186  let DiagnosticString = "alignment must be omitted";
1187}
1188def addrmode6alignNone : AddrMode6Align {
1189  // The alignment specifier can only be omitted.
1190  let ParserMatchClass = AddrMode6AlignNoneAsmOperand;
1191}
1192
1193// Special version of addrmode6 to handle 16-bit alignment encoding for
1194// VLD/VST instructions and checking the alignment value.
1195def AddrMode6Align16AsmOperand : AsmOperandClass {
1196  let Name = "AlignedMemory16";
1197  let DiagnosticString = "alignment must be 16 or omitted";
1198}
1199def addrmode6align16 : AddrMode6Align {
1200  // The alignment specifier can only be 16 or omitted.
1201  let ParserMatchClass = AddrMode6Align16AsmOperand;
1202}
1203
1204// Special version of addrmode6 to handle 32-bit alignment encoding for
1205// VLD/VST instructions and checking the alignment value.
1206def AddrMode6Align32AsmOperand : AsmOperandClass {
1207  let Name = "AlignedMemory32";
1208  let DiagnosticString = "alignment must be 32 or omitted";
1209}
1210def addrmode6align32 : AddrMode6Align {
1211  // The alignment specifier can only be 32 or omitted.
1212  let ParserMatchClass = AddrMode6Align32AsmOperand;
1213}
1214
1215// Special version of addrmode6 to handle 64-bit alignment encoding for
1216// VLD/VST instructions and checking the alignment value.
1217def AddrMode6Align64AsmOperand : AsmOperandClass {
1218  let Name = "AlignedMemory64";
1219  let DiagnosticString = "alignment must be 64 or omitted";
1220}
1221def addrmode6align64 : AddrMode6Align {
1222  // The alignment specifier can only be 64 or omitted.
1223  let ParserMatchClass = AddrMode6Align64AsmOperand;
1224}
1225
1226// Special version of addrmode6 to handle 64-bit or 128-bit alignment encoding
1227// for VLD/VST instructions and checking the alignment value.
1228def AddrMode6Align64or128AsmOperand : AsmOperandClass {
1229  let Name = "AlignedMemory64or128";
1230  let DiagnosticString = "alignment must be 64, 128 or omitted";
1231}
1232def addrmode6align64or128 : AddrMode6Align {
1233  // The alignment specifier can only be 64, 128 or omitted.
1234  let ParserMatchClass = AddrMode6Align64or128AsmOperand;
1235}
1236
1237// Special version of addrmode6 to handle 64-bit, 128-bit or 256-bit alignment
1238// encoding for VLD/VST instructions and checking the alignment value.
1239def AddrMode6Align64or128or256AsmOperand : AsmOperandClass {
1240  let Name = "AlignedMemory64or128or256";
1241  let DiagnosticString = "alignment must be 64, 128, 256 or omitted";
1242}
1243def addrmode6align64or128or256 : AddrMode6Align {
1244  // The alignment specifier can only be 64, 128, 256 or omitted.
1245  let ParserMatchClass = AddrMode6Align64or128or256AsmOperand;
1246}
1247
1248// Special version of addrmode6 to handle alignment encoding for VLD-dup
1249// instructions, specifically VLD4-dup.
1250def addrmode6dup : MemOperand,
1251                ComplexPattern<i32, 2, "SelectAddrMode6", [], [SDNPWantParent]>{
1252  let PrintMethod = "printAddrMode6Operand";
1253  let MIOperandInfo = (ops GPR:$addr, i32imm);
1254  let EncoderMethod = "getAddrMode6DupAddressOpValue";
1255  // FIXME: This is close, but not quite right. The alignment specifier is
1256  // different.
1257  let ParserMatchClass = AddrMode6AsmOperand;
1258}
1259
1260// Base class for addrmode6dup with specific alignment restrictions.
1261class AddrMode6DupAlign : MemOperand,
1262                ComplexPattern<i32, 2, "SelectAddrMode6", [], [SDNPWantParent]>{
1263  let PrintMethod = "printAddrMode6Operand";
1264  let MIOperandInfo = (ops GPR:$addr, i32imm);
1265  let EncoderMethod = "getAddrMode6DupAddressOpValue";
1266}
1267
1268// Special version of addrmode6 to handle no allowed alignment encoding for
1269// VLD-dup instruction and checking the alignment is not specified.
1270def AddrMode6dupAlignNoneAsmOperand : AsmOperandClass {
1271  let Name = "DupAlignedMemoryNone";
1272  let DiagnosticString = "alignment must be omitted";
1273}
1274def addrmode6dupalignNone : AddrMode6DupAlign {
1275  // The alignment specifier can only be omitted.
1276  let ParserMatchClass = AddrMode6dupAlignNoneAsmOperand;
1277}
1278
1279// Special version of addrmode6 to handle 16-bit alignment encoding for VLD-dup
1280// instruction and checking the alignment value.
1281def AddrMode6dupAlign16AsmOperand : AsmOperandClass {
1282  let Name = "DupAlignedMemory16";
1283  let DiagnosticString = "alignment must be 16 or omitted";
1284}
1285def addrmode6dupalign16 : AddrMode6DupAlign {
1286  // The alignment specifier can only be 16 or omitted.
1287  let ParserMatchClass = AddrMode6dupAlign16AsmOperand;
1288}
1289
1290// Special version of addrmode6 to handle 32-bit alignment encoding for VLD-dup
1291// instruction and checking the alignment value.
1292def AddrMode6dupAlign32AsmOperand : AsmOperandClass {
1293  let Name = "DupAlignedMemory32";
1294  let DiagnosticString = "alignment must be 32 or omitted";
1295}
1296def addrmode6dupalign32 : AddrMode6DupAlign {
1297  // The alignment specifier can only be 32 or omitted.
1298  let ParserMatchClass = AddrMode6dupAlign32AsmOperand;
1299}
1300
1301// Special version of addrmode6 to handle 64-bit alignment encoding for VLD
1302// instructions and checking the alignment value.
1303def AddrMode6dupAlign64AsmOperand : AsmOperandClass {
1304  let Name = "DupAlignedMemory64";
1305  let DiagnosticString = "alignment must be 64 or omitted";
1306}
1307def addrmode6dupalign64 : AddrMode6DupAlign {
1308  // The alignment specifier can only be 64 or omitted.
1309  let ParserMatchClass = AddrMode6dupAlign64AsmOperand;
1310}
1311
1312// Special version of addrmode6 to handle 64-bit or 128-bit alignment encoding
1313// for VLD instructions and checking the alignment value.
1314def AddrMode6dupAlign64or128AsmOperand : AsmOperandClass {
1315  let Name = "DupAlignedMemory64or128";
1316  let DiagnosticString = "alignment must be 64, 128 or omitted";
1317}
1318def addrmode6dupalign64or128 : AddrMode6DupAlign {
1319  // The alignment specifier can only be 64, 128 or omitted.
1320  let ParserMatchClass = AddrMode6dupAlign64or128AsmOperand;
1321}
1322
1323// addrmodepc := pc + reg
1324//
1325def addrmodepc : MemOperand,
1326                 ComplexPattern<i32, 2, "SelectAddrModePC", []> {
1327  let PrintMethod = "printAddrModePCOperand";
1328  let MIOperandInfo = (ops GPR, i32imm);
1329}
1330
1331// addr_offset_none := reg
1332//
1333def MemNoOffsetAsmOperand : AsmOperandClass { let Name = "MemNoOffset"; }
1334def addr_offset_none : MemOperand,
1335                       ComplexPattern<i32, 1, "SelectAddrOffsetNone", []> {
1336  let PrintMethod = "printAddrMode7Operand";
1337  let DecoderMethod = "DecodeAddrMode7Operand";
1338  let ParserMatchClass = MemNoOffsetAsmOperand;
1339  let MIOperandInfo = (ops GPR:$base);
1340}
1341
1342// t_addr_offset_none := reg [r0-r7]
1343def MemNoOffsetTAsmOperand : AsmOperandClass { let Name = "MemNoOffsetT"; }
1344def t_addr_offset_none : MemOperand {
1345  let PrintMethod = "printAddrMode7Operand";
1346  let DecoderMethod = "DecodetGPRRegisterClass";
1347  let ParserMatchClass = MemNoOffsetTAsmOperand;
1348  let MIOperandInfo = (ops tGPR:$base);
1349}
1350
1351def nohash_imm : Operand<i32> {
1352  let PrintMethod = "printNoHashImmediate";
1353}
1354
1355def CoprocNumAsmOperand : AsmOperandClass {
1356  let Name = "CoprocNum";
1357  let ParserMethod = "parseCoprocNumOperand";
1358}
1359def p_imm : Operand<i32> {
1360  let PrintMethod = "printPImmediate";
1361  let ParserMatchClass = CoprocNumAsmOperand;
1362  let DecoderMethod = "DecodeCoprocessor";
1363}
1364
1365def CoprocRegAsmOperand : AsmOperandClass {
1366  let Name = "CoprocReg";
1367  let ParserMethod = "parseCoprocRegOperand";
1368}
1369def c_imm : Operand<i32> {
1370  let PrintMethod = "printCImmediate";
1371  let ParserMatchClass = CoprocRegAsmOperand;
1372}
1373def CoprocOptionAsmOperand : AsmOperandClass {
1374  let Name = "CoprocOption";
1375  let ParserMethod = "parseCoprocOptionOperand";
1376}
1377def coproc_option_imm : Operand<i32> {
1378  let PrintMethod = "printCoprocOptionImm";
1379  let ParserMatchClass = CoprocOptionAsmOperand;
1380}
1381
1382//===----------------------------------------------------------------------===//
1383
1384include "ARMInstrFormats.td"
1385
1386//===----------------------------------------------------------------------===//
1387// Multiclass helpers...
1388//
1389
1390/// AsI1_bin_irs - Defines a set of (op r, {mod_imm|r|so_reg}) patterns for a
1391/// binop that produces a value.
1392let TwoOperandAliasConstraint = "$Rn = $Rd" in
1393multiclass AsI1_bin_irs<bits<4> opcod, string opc,
1394                     InstrItinClass iii, InstrItinClass iir, InstrItinClass iis,
1395                     SDPatternOperator opnode, bit Commutable = 0> {
1396  // The register-immediate version is re-materializable. This is useful
1397  // in particular for taking the address of a local.
1398  let isReMaterializable = 1 in {
1399  def ri : AsI1<opcod, (outs GPR:$Rd), (ins GPR:$Rn, mod_imm:$imm), DPFrm,
1400               iii, opc, "\t$Rd, $Rn, $imm",
1401               [(set GPR:$Rd, (opnode GPR:$Rn, mod_imm:$imm))]>,
1402           Sched<[WriteALU, ReadALU]> {
1403    bits<4> Rd;
1404    bits<4> Rn;
1405    bits<12> imm;
1406    let Inst{25} = 1;
1407    let Inst{19-16} = Rn;
1408    let Inst{15-12} = Rd;
1409    let Inst{11-0} = imm;
1410  }
1411  }
1412  def rr : AsI1<opcod, (outs GPR:$Rd), (ins GPR:$Rn, GPR:$Rm), DPFrm,
1413               iir, opc, "\t$Rd, $Rn, $Rm",
1414               [(set GPR:$Rd, (opnode GPR:$Rn, GPR:$Rm))]>,
1415           Sched<[WriteALU, ReadALU, ReadALU]> {
1416    bits<4> Rd;
1417    bits<4> Rn;
1418    bits<4> Rm;
1419    let Inst{25} = 0;
1420    let isCommutable = Commutable;
1421    let Inst{19-16} = Rn;
1422    let Inst{15-12} = Rd;
1423    let Inst{11-4} = 0b00000000;
1424    let Inst{3-0} = Rm;
1425  }
1426
1427  def rsi : AsI1<opcod, (outs GPR:$Rd),
1428               (ins GPR:$Rn, so_reg_imm:$shift), DPSoRegImmFrm,
1429               iis, opc, "\t$Rd, $Rn, $shift",
1430               [(set GPR:$Rd, (opnode GPR:$Rn, so_reg_imm:$shift))]>,
1431            Sched<[WriteALUsi, ReadALU]> {
1432    bits<4> Rd;
1433    bits<4> Rn;
1434    bits<12> shift;
1435    let Inst{25} = 0;
1436    let Inst{19-16} = Rn;
1437    let Inst{15-12} = Rd;
1438    let Inst{11-5} = shift{11-5};
1439    let Inst{4} = 0;
1440    let Inst{3-0} = shift{3-0};
1441  }
1442
1443  def rsr : AsI1<opcod, (outs GPR:$Rd),
1444               (ins GPR:$Rn, so_reg_reg:$shift), DPSoRegRegFrm,
1445               iis, opc, "\t$Rd, $Rn, $shift",
1446               [(set GPR:$Rd, (opnode GPR:$Rn, so_reg_reg:$shift))]>,
1447            Sched<[WriteALUsr, ReadALUsr]> {
1448    bits<4> Rd;
1449    bits<4> Rn;
1450    bits<12> shift;
1451    let Inst{25} = 0;
1452    let Inst{19-16} = Rn;
1453    let Inst{15-12} = Rd;
1454    let Inst{11-8} = shift{11-8};
1455    let Inst{7} = 0;
1456    let Inst{6-5} = shift{6-5};
1457    let Inst{4} = 1;
1458    let Inst{3-0} = shift{3-0};
1459  }
1460}
1461
1462/// AsI1_rbin_irs - Same as AsI1_bin_irs except the order of operands are
1463/// reversed.  The 'rr' form is only defined for the disassembler; for codegen
1464/// it is equivalent to the AsI1_bin_irs counterpart.
1465let TwoOperandAliasConstraint = "$Rn = $Rd" in
1466multiclass AsI1_rbin_irs<bits<4> opcod, string opc,
1467                     InstrItinClass iii, InstrItinClass iir, InstrItinClass iis,
1468                     SDNode opnode, bit Commutable = 0> {
1469  // The register-immediate version is re-materializable. This is useful
1470  // in particular for taking the address of a local.
1471  let isReMaterializable = 1 in {
1472  def ri : AsI1<opcod, (outs GPR:$Rd), (ins GPR:$Rn, mod_imm:$imm), DPFrm,
1473               iii, opc, "\t$Rd, $Rn, $imm",
1474               [(set GPR:$Rd, (opnode mod_imm:$imm, GPR:$Rn))]>,
1475           Sched<[WriteALU, ReadALU]> {
1476    bits<4> Rd;
1477    bits<4> Rn;
1478    bits<12> imm;
1479    let Inst{25} = 1;
1480    let Inst{19-16} = Rn;
1481    let Inst{15-12} = Rd;
1482    let Inst{11-0} = imm;
1483  }
1484  }
1485  def rr : AsI1<opcod, (outs GPR:$Rd), (ins GPR:$Rn, GPR:$Rm), DPFrm,
1486               iir, opc, "\t$Rd, $Rn, $Rm",
1487               [/* pattern left blank */]>,
1488           Sched<[WriteALU, ReadALU, ReadALU]> {
1489    bits<4> Rd;
1490    bits<4> Rn;
1491    bits<4> Rm;
1492    let Inst{11-4} = 0b00000000;
1493    let Inst{25} = 0;
1494    let Inst{3-0} = Rm;
1495    let Inst{15-12} = Rd;
1496    let Inst{19-16} = Rn;
1497  }
1498
1499  def rsi : AsI1<opcod, (outs GPR:$Rd),
1500               (ins GPR:$Rn, so_reg_imm:$shift), DPSoRegImmFrm,
1501               iis, opc, "\t$Rd, $Rn, $shift",
1502               [(set GPR:$Rd, (opnode so_reg_imm:$shift, GPR:$Rn))]>,
1503            Sched<[WriteALUsi, ReadALU]> {
1504    bits<4> Rd;
1505    bits<4> Rn;
1506    bits<12> shift;
1507    let Inst{25} = 0;
1508    let Inst{19-16} = Rn;
1509    let Inst{15-12} = Rd;
1510    let Inst{11-5} = shift{11-5};
1511    let Inst{4} = 0;
1512    let Inst{3-0} = shift{3-0};
1513  }
1514
1515  def rsr : AsI1<opcod, (outs GPR:$Rd),
1516               (ins GPR:$Rn, so_reg_reg:$shift), DPSoRegRegFrm,
1517               iis, opc, "\t$Rd, $Rn, $shift",
1518               [(set GPR:$Rd, (opnode so_reg_reg:$shift, GPR:$Rn))]>,
1519            Sched<[WriteALUsr, ReadALUsr]> {
1520    bits<4> Rd;
1521    bits<4> Rn;
1522    bits<12> shift;
1523    let Inst{25} = 0;
1524    let Inst{19-16} = Rn;
1525    let Inst{15-12} = Rd;
1526    let Inst{11-8} = shift{11-8};
1527    let Inst{7} = 0;
1528    let Inst{6-5} = shift{6-5};
1529    let Inst{4} = 1;
1530    let Inst{3-0} = shift{3-0};
1531  }
1532}
1533
1534/// AsI1_bin_s_irs - Same as AsI1_bin_irs except it sets the 's' bit by default.
1535///
1536/// These opcodes will be converted to the real non-S opcodes by
1537/// AdjustInstrPostInstrSelection after giving them an optional CPSR operand.
1538let hasPostISelHook = 1, Defs = [CPSR] in {
1539multiclass AsI1_bin_s_irs<InstrItinClass iii, InstrItinClass iir,
1540                          InstrItinClass iis, SDNode opnode,
1541                          bit Commutable = 0> {
1542  def ri : ARMPseudoInst<(outs GPR:$Rd), (ins GPR:$Rn, mod_imm:$imm, pred:$p),
1543                         4, iii,
1544                         [(set GPR:$Rd, CPSR, (opnode GPR:$Rn, mod_imm:$imm))]>,
1545                         Sched<[WriteALU, ReadALU]>;
1546
1547  def rr : ARMPseudoInst<(outs GPR:$Rd), (ins GPR:$Rn, GPR:$Rm, pred:$p),
1548                         4, iir,
1549                         [(set GPR:$Rd, CPSR, (opnode GPR:$Rn, GPR:$Rm))]>,
1550                         Sched<[WriteALU, ReadALU, ReadALU]> {
1551    let isCommutable = Commutable;
1552  }
1553  def rsi : ARMPseudoInst<(outs GPR:$Rd),
1554                          (ins GPR:$Rn, so_reg_imm:$shift, pred:$p),
1555                          4, iis,
1556                          [(set GPR:$Rd, CPSR, (opnode GPR:$Rn,
1557                                                so_reg_imm:$shift))]>,
1558                          Sched<[WriteALUsi, ReadALU]>;
1559
1560  def rsr : ARMPseudoInst<(outs GPR:$Rd),
1561                          (ins GPR:$Rn, so_reg_reg:$shift, pred:$p),
1562                          4, iis,
1563                          [(set GPR:$Rd, CPSR, (opnode GPR:$Rn,
1564                                                so_reg_reg:$shift))]>,
1565                          Sched<[WriteALUSsr, ReadALUsr]>;
1566}
1567}
1568
1569/// AsI1_rbin_s_is - Same as AsI1_bin_s_irs, except selection DAG
1570/// operands are reversed.
1571let hasPostISelHook = 1, Defs = [CPSR] in {
1572multiclass AsI1_rbin_s_is<InstrItinClass iii, InstrItinClass iir,
1573                          InstrItinClass iis, SDNode opnode,
1574                          bit Commutable = 0> {
1575  def ri : ARMPseudoInst<(outs GPR:$Rd), (ins GPR:$Rn, mod_imm:$imm, pred:$p),
1576                         4, iii,
1577                         [(set GPR:$Rd, CPSR, (opnode mod_imm:$imm, GPR:$Rn))]>,
1578           Sched<[WriteALU, ReadALU]>;
1579
1580  def rsi : ARMPseudoInst<(outs GPR:$Rd),
1581                          (ins GPR:$Rn, so_reg_imm:$shift, pred:$p),
1582                          4, iis,
1583                          [(set GPR:$Rd, CPSR, (opnode so_reg_imm:$shift,
1584                                             GPR:$Rn))]>,
1585            Sched<[WriteALUsi, ReadALU]>;
1586
1587  def rsr : ARMPseudoInst<(outs GPR:$Rd),
1588                          (ins GPR:$Rn, so_reg_reg:$shift, pred:$p),
1589                          4, iis,
1590                          [(set GPR:$Rd, CPSR, (opnode so_reg_reg:$shift,
1591                                             GPR:$Rn))]>,
1592            Sched<[WriteALUSsr, ReadALUsr]>;
1593}
1594}
1595
1596/// AI1_cmp_irs - Defines a set of (op r, {mod_imm|r|so_reg}) cmp / test
1597/// patterns. Similar to AsI1_bin_irs except the instruction does not produce
1598/// a explicit result, only implicitly set CPSR.
1599let isCompare = 1, Defs = [CPSR] in {
1600multiclass AI1_cmp_irs<bits<4> opcod, string opc,
1601                     InstrItinClass iii, InstrItinClass iir, InstrItinClass iis,
1602                     SDPatternOperator opnode, bit Commutable = 0,
1603                     string rrDecoderMethod = ""> {
1604  def ri : AI1<opcod, (outs), (ins GPR:$Rn, mod_imm:$imm), DPFrm, iii,
1605               opc, "\t$Rn, $imm",
1606               [(opnode GPR:$Rn, mod_imm:$imm)]>,
1607           Sched<[WriteCMP, ReadALU]> {
1608    bits<4> Rn;
1609    bits<12> imm;
1610    let Inst{25} = 1;
1611    let Inst{20} = 1;
1612    let Inst{19-16} = Rn;
1613    let Inst{15-12} = 0b0000;
1614    let Inst{11-0} = imm;
1615
1616    let Unpredictable{15-12} = 0b1111;
1617  }
1618  def rr : AI1<opcod, (outs), (ins GPR:$Rn, GPR:$Rm), DPFrm, iir,
1619               opc, "\t$Rn, $Rm",
1620               [(opnode GPR:$Rn, GPR:$Rm)]>,
1621           Sched<[WriteCMP, ReadALU, ReadALU]> {
1622    bits<4> Rn;
1623    bits<4> Rm;
1624    let isCommutable = Commutable;
1625    let Inst{25} = 0;
1626    let Inst{20} = 1;
1627    let Inst{19-16} = Rn;
1628    let Inst{15-12} = 0b0000;
1629    let Inst{11-4} = 0b00000000;
1630    let Inst{3-0} = Rm;
1631    let DecoderMethod = rrDecoderMethod;
1632
1633    let Unpredictable{15-12} = 0b1111;
1634  }
1635  def rsi : AI1<opcod, (outs),
1636               (ins GPR:$Rn, so_reg_imm:$shift), DPSoRegImmFrm, iis,
1637               opc, "\t$Rn, $shift",
1638               [(opnode GPR:$Rn, so_reg_imm:$shift)]>,
1639            Sched<[WriteCMPsi, ReadALU]> {
1640    bits<4> Rn;
1641    bits<12> shift;
1642    let Inst{25} = 0;
1643    let Inst{20} = 1;
1644    let Inst{19-16} = Rn;
1645    let Inst{15-12} = 0b0000;
1646    let Inst{11-5} = shift{11-5};
1647    let Inst{4} = 0;
1648    let Inst{3-0} = shift{3-0};
1649
1650    let Unpredictable{15-12} = 0b1111;
1651  }
1652  def rsr : AI1<opcod, (outs),
1653               (ins GPRnopc:$Rn, so_reg_reg:$shift), DPSoRegRegFrm, iis,
1654               opc, "\t$Rn, $shift",
1655               [(opnode GPRnopc:$Rn, so_reg_reg:$shift)]>,
1656            Sched<[WriteCMPsr, ReadALU]> {
1657    bits<4> Rn;
1658    bits<12> shift;
1659    let Inst{25} = 0;
1660    let Inst{20} = 1;
1661    let Inst{19-16} = Rn;
1662    let Inst{15-12} = 0b0000;
1663    let Inst{11-8} = shift{11-8};
1664    let Inst{7} = 0;
1665    let Inst{6-5} = shift{6-5};
1666    let Inst{4} = 1;
1667    let Inst{3-0} = shift{3-0};
1668
1669    let Unpredictable{15-12} = 0b1111;
1670  }
1671
1672}
1673}
1674
1675/// AI_ext_rrot - A unary operation with two forms: one whose operand is a
1676/// register and one whose operand is a register rotated by 8/16/24.
1677/// FIXME: Remove the 'r' variant. Its rot_imm is zero.
1678class AI_ext_rrot<bits<8> opcod, string opc, PatFrag opnode>
1679  : AExtI<opcod, (outs GPRnopc:$Rd), (ins GPRnopc:$Rm, rot_imm:$rot),
1680          IIC_iEXTr, opc, "\t$Rd, $Rm$rot",
1681          [(set GPRnopc:$Rd, (opnode (rotr GPRnopc:$Rm, rot_imm:$rot)))]>,
1682       Requires<[IsARM, HasV6]>, Sched<[WriteALUsi]> {
1683  bits<4> Rd;
1684  bits<4> Rm;
1685  bits<2> rot;
1686  let Inst{19-16} = 0b1111;
1687  let Inst{15-12} = Rd;
1688  let Inst{11-10} = rot;
1689  let Inst{3-0}   = Rm;
1690}
1691
1692class AI_ext_rrot_np<bits<8> opcod, string opc>
1693  : AExtI<opcod, (outs GPRnopc:$Rd), (ins GPRnopc:$Rm, rot_imm:$rot),
1694          IIC_iEXTr, opc, "\t$Rd, $Rm$rot", []>,
1695       Requires<[IsARM, HasV6]>, Sched<[WriteALUsi]> {
1696  bits<2> rot;
1697  let Inst{19-16} = 0b1111;
1698  let Inst{11-10} = rot;
1699 }
1700
1701/// AI_exta_rrot - A binary operation with two forms: one whose operand is a
1702/// register and one whose operand is a register rotated by 8/16/24.
1703class AI_exta_rrot<bits<8> opcod, string opc, PatFrag opnode>
1704  : AExtI<opcod, (outs GPRnopc:$Rd), (ins GPR:$Rn, GPRnopc:$Rm, rot_imm:$rot),
1705          IIC_iEXTAr, opc, "\t$Rd, $Rn, $Rm$rot",
1706          [(set GPRnopc:$Rd, (opnode GPR:$Rn,
1707                                     (rotr GPRnopc:$Rm, rot_imm:$rot)))]>,
1708        Requires<[IsARM, HasV6]>, Sched<[WriteALUsr]> {
1709  bits<4> Rd;
1710  bits<4> Rm;
1711  bits<4> Rn;
1712  bits<2> rot;
1713  let Inst{19-16} = Rn;
1714  let Inst{15-12} = Rd;
1715  let Inst{11-10} = rot;
1716  let Inst{9-4}   = 0b000111;
1717  let Inst{3-0}   = Rm;
1718}
1719
1720class AI_exta_rrot_np<bits<8> opcod, string opc>
1721  : AExtI<opcod, (outs GPRnopc:$Rd), (ins GPR:$Rn, GPRnopc:$Rm, rot_imm:$rot),
1722          IIC_iEXTAr, opc, "\t$Rd, $Rn, $Rm$rot", []>,
1723       Requires<[IsARM, HasV6]>, Sched<[WriteALUsr]> {
1724  bits<4> Rn;
1725  bits<2> rot;
1726  let Inst{19-16} = Rn;
1727  let Inst{11-10} = rot;
1728}
1729
1730/// AI1_adde_sube_irs - Define instructions and patterns for adde and sube.
1731let TwoOperandAliasConstraint = "$Rn = $Rd" in
1732multiclass AI1_adde_sube_irs<bits<4> opcod, string opc, SDNode opnode,
1733                             bit Commutable = 0> {
1734  let hasPostISelHook = 1, Defs = [CPSR], Uses = [CPSR] in {
1735  def ri : AsI1<opcod, (outs GPR:$Rd), (ins GPR:$Rn, mod_imm:$imm),
1736                DPFrm, IIC_iALUi, opc, "\t$Rd, $Rn, $imm",
1737               [(set GPR:$Rd, CPSR, (opnode GPR:$Rn, mod_imm:$imm, CPSR))]>,
1738               Requires<[IsARM]>,
1739           Sched<[WriteALU, ReadALU]> {
1740    bits<4> Rd;
1741    bits<4> Rn;
1742    bits<12> imm;
1743    let Inst{25} = 1;
1744    let Inst{15-12} = Rd;
1745    let Inst{19-16} = Rn;
1746    let Inst{11-0} = imm;
1747  }
1748  def rr : AsI1<opcod, (outs GPR:$Rd), (ins GPR:$Rn, GPR:$Rm),
1749                DPFrm, IIC_iALUr, opc, "\t$Rd, $Rn, $Rm",
1750               [(set GPR:$Rd, CPSR, (opnode GPR:$Rn, GPR:$Rm, CPSR))]>,
1751               Requires<[IsARM]>,
1752           Sched<[WriteALU, ReadALU, ReadALU]> {
1753    bits<4> Rd;
1754    bits<4> Rn;
1755    bits<4> Rm;
1756    let Inst{11-4} = 0b00000000;
1757    let Inst{25} = 0;
1758    let isCommutable = Commutable;
1759    let Inst{3-0} = Rm;
1760    let Inst{15-12} = Rd;
1761    let Inst{19-16} = Rn;
1762  }
1763  def rsi : AsI1<opcod, (outs GPR:$Rd),
1764                (ins GPR:$Rn, so_reg_imm:$shift),
1765                DPSoRegImmFrm, IIC_iALUsr, opc, "\t$Rd, $Rn, $shift",
1766              [(set GPR:$Rd, CPSR, (opnode GPR:$Rn, so_reg_imm:$shift, CPSR))]>,
1767               Requires<[IsARM]>,
1768            Sched<[WriteALUsi, ReadALU]> {
1769    bits<4> Rd;
1770    bits<4> Rn;
1771    bits<12> shift;
1772    let Inst{25} = 0;
1773    let Inst{19-16} = Rn;
1774    let Inst{15-12} = Rd;
1775    let Inst{11-5} = shift{11-5};
1776    let Inst{4} = 0;
1777    let Inst{3-0} = shift{3-0};
1778  }
1779  def rsr : AsI1<opcod, (outs GPRnopc:$Rd),
1780                (ins GPRnopc:$Rn, so_reg_reg:$shift),
1781                DPSoRegRegFrm, IIC_iALUsr, opc, "\t$Rd, $Rn, $shift",
1782              [(set GPRnopc:$Rd, CPSR,
1783                    (opnode GPRnopc:$Rn, so_reg_reg:$shift, CPSR))]>,
1784               Requires<[IsARM]>,
1785            Sched<[WriteALUsr, ReadALUsr]> {
1786    bits<4> Rd;
1787    bits<4> Rn;
1788    bits<12> shift;
1789    let Inst{25} = 0;
1790    let Inst{19-16} = Rn;
1791    let Inst{15-12} = Rd;
1792    let Inst{11-8} = shift{11-8};
1793    let Inst{7} = 0;
1794    let Inst{6-5} = shift{6-5};
1795    let Inst{4} = 1;
1796    let Inst{3-0} = shift{3-0};
1797  }
1798  }
1799}
1800
1801/// AI1_rsc_irs - Define instructions and patterns for rsc
1802let TwoOperandAliasConstraint = "$Rn = $Rd" in
1803multiclass AI1_rsc_irs<bits<4> opcod, string opc, SDNode opnode> {
1804  let hasPostISelHook = 1, Defs = [CPSR], Uses = [CPSR] in {
1805  def ri : AsI1<opcod, (outs GPR:$Rd), (ins GPR:$Rn, mod_imm:$imm),
1806                DPFrm, IIC_iALUi, opc, "\t$Rd, $Rn, $imm",
1807               [(set GPR:$Rd, CPSR, (opnode mod_imm:$imm, GPR:$Rn, CPSR))]>,
1808               Requires<[IsARM]>,
1809           Sched<[WriteALU, ReadALU]> {
1810    bits<4> Rd;
1811    bits<4> Rn;
1812    bits<12> imm;
1813    let Inst{25} = 1;
1814    let Inst{15-12} = Rd;
1815    let Inst{19-16} = Rn;
1816    let Inst{11-0} = imm;
1817  }
1818  def rr : AsI1<opcod, (outs GPR:$Rd), (ins GPR:$Rn, GPR:$Rm),
1819                DPFrm, IIC_iALUr, opc, "\t$Rd, $Rn, $Rm",
1820               [/* pattern left blank */]>,
1821           Sched<[WriteALU, ReadALU, ReadALU]> {
1822    bits<4> Rd;
1823    bits<4> Rn;
1824    bits<4> Rm;
1825    let Inst{11-4} = 0b00000000;
1826    let Inst{25} = 0;
1827    let Inst{3-0} = Rm;
1828    let Inst{15-12} = Rd;
1829    let Inst{19-16} = Rn;
1830  }
1831  def rsi : AsI1<opcod, (outs GPR:$Rd), (ins GPR:$Rn, so_reg_imm:$shift),
1832                DPSoRegImmFrm, IIC_iALUsr, opc, "\t$Rd, $Rn, $shift",
1833              [(set GPR:$Rd, CPSR, (opnode so_reg_imm:$shift, GPR:$Rn, CPSR))]>,
1834               Requires<[IsARM]>,
1835            Sched<[WriteALUsi, ReadALU]> {
1836    bits<4> Rd;
1837    bits<4> Rn;
1838    bits<12> shift;
1839    let Inst{25} = 0;
1840    let Inst{19-16} = Rn;
1841    let Inst{15-12} = Rd;
1842    let Inst{11-5} = shift{11-5};
1843    let Inst{4} = 0;
1844    let Inst{3-0} = shift{3-0};
1845  }
1846  def rsr : AsI1<opcod, (outs GPR:$Rd), (ins GPR:$Rn, so_reg_reg:$shift),
1847                DPSoRegRegFrm, IIC_iALUsr, opc, "\t$Rd, $Rn, $shift",
1848              [(set GPR:$Rd, CPSR, (opnode so_reg_reg:$shift, GPR:$Rn, CPSR))]>,
1849               Requires<[IsARM]>,
1850            Sched<[WriteALUsr, ReadALUsr]> {
1851    bits<4> Rd;
1852    bits<4> Rn;
1853    bits<12> shift;
1854    let Inst{25} = 0;
1855    let Inst{19-16} = Rn;
1856    let Inst{15-12} = Rd;
1857    let Inst{11-8} = shift{11-8};
1858    let Inst{7} = 0;
1859    let Inst{6-5} = shift{6-5};
1860    let Inst{4} = 1;
1861    let Inst{3-0} = shift{3-0};
1862  }
1863  }
1864}
1865
1866let canFoldAsLoad = 1, isReMaterializable = 1 in {
1867multiclass AI_ldr1<bit isByte, string opc, InstrItinClass iii,
1868           InstrItinClass iir, PatFrag opnode> {
1869  // Note: We use the complex addrmode_imm12 rather than just an input
1870  // GPR and a constrained immediate so that we can use this to match
1871  // frame index references and avoid matching constant pool references.
1872  def i12: AI2ldst<0b010, 1, isByte, (outs GPR:$Rt), (ins addrmode_imm12:$addr),
1873                   AddrMode_i12, LdFrm, iii, opc, "\t$Rt, $addr",
1874                  [(set GPR:$Rt, (opnode addrmode_imm12:$addr))]> {
1875    bits<4>  Rt;
1876    bits<17> addr;
1877    let Inst{23}    = addr{12};     // U (add = ('U' == 1))
1878    let Inst{19-16} = addr{16-13};  // Rn
1879    let Inst{15-12} = Rt;
1880    let Inst{11-0}  = addr{11-0};   // imm12
1881  }
1882  def rs : AI2ldst<0b011, 1, isByte, (outs GPR:$Rt), (ins ldst_so_reg:$shift),
1883                  AddrModeNone, LdFrm, iir, opc, "\t$Rt, $shift",
1884                 [(set GPR:$Rt, (opnode ldst_so_reg:$shift))]> {
1885    bits<4>  Rt;
1886    bits<17> shift;
1887    let shift{4}    = 0;            // Inst{4} = 0
1888    let Inst{23}    = shift{12};    // U (add = ('U' == 1))
1889    let Inst{19-16} = shift{16-13}; // Rn
1890    let Inst{15-12} = Rt;
1891    let Inst{11-0}  = shift{11-0};
1892  }
1893}
1894}
1895
1896let canFoldAsLoad = 1, isReMaterializable = 1 in {
1897multiclass AI_ldr1nopc<bit isByte, string opc, InstrItinClass iii,
1898           InstrItinClass iir, PatFrag opnode> {
1899  // Note: We use the complex addrmode_imm12 rather than just an input
1900  // GPR and a constrained immediate so that we can use this to match
1901  // frame index references and avoid matching constant pool references.
1902  def i12: AI2ldst<0b010, 1, isByte, (outs GPRnopc:$Rt),
1903                   (ins addrmode_imm12:$addr),
1904                   AddrMode_i12, LdFrm, iii, opc, "\t$Rt, $addr",
1905                   [(set GPRnopc:$Rt, (opnode addrmode_imm12:$addr))]> {
1906    bits<4>  Rt;
1907    bits<17> addr;
1908    let Inst{23}    = addr{12};     // U (add = ('U' == 1))
1909    let Inst{19-16} = addr{16-13};  // Rn
1910    let Inst{15-12} = Rt;
1911    let Inst{11-0}  = addr{11-0};   // imm12
1912  }
1913  def rs : AI2ldst<0b011, 1, isByte, (outs GPRnopc:$Rt),
1914                   (ins ldst_so_reg:$shift),
1915                   AddrModeNone, LdFrm, iir, opc, "\t$Rt, $shift",
1916                   [(set GPRnopc:$Rt, (opnode ldst_so_reg:$shift))]> {
1917    bits<4>  Rt;
1918    bits<17> shift;
1919    let shift{4}    = 0;            // Inst{4} = 0
1920    let Inst{23}    = shift{12};    // U (add = ('U' == 1))
1921    let Inst{19-16} = shift{16-13}; // Rn
1922    let Inst{15-12} = Rt;
1923    let Inst{11-0}  = shift{11-0};
1924  }
1925}
1926}
1927
1928
1929multiclass AI_str1<bit isByte, string opc, InstrItinClass iii,
1930           InstrItinClass iir, PatFrag opnode> {
1931  // Note: We use the complex addrmode_imm12 rather than just an input
1932  // GPR and a constrained immediate so that we can use this to match
1933  // frame index references and avoid matching constant pool references.
1934  def i12 : AI2ldst<0b010, 0, isByte, (outs),
1935                   (ins GPR:$Rt, addrmode_imm12:$addr),
1936                   AddrMode_i12, StFrm, iii, opc, "\t$Rt, $addr",
1937                  [(opnode GPR:$Rt, addrmode_imm12:$addr)]> {
1938    bits<4> Rt;
1939    bits<17> addr;
1940    let Inst{23}    = addr{12};     // U (add = ('U' == 1))
1941    let Inst{19-16} = addr{16-13};  // Rn
1942    let Inst{15-12} = Rt;
1943    let Inst{11-0}  = addr{11-0};   // imm12
1944  }
1945  def rs : AI2ldst<0b011, 0, isByte, (outs), (ins GPR:$Rt, ldst_so_reg:$shift),
1946                  AddrModeNone, StFrm, iir, opc, "\t$Rt, $shift",
1947                 [(opnode GPR:$Rt, ldst_so_reg:$shift)]> {
1948    bits<4> Rt;
1949    bits<17> shift;
1950    let shift{4}    = 0;            // Inst{4} = 0
1951    let Inst{23}    = shift{12};    // U (add = ('U' == 1))
1952    let Inst{19-16} = shift{16-13}; // Rn
1953    let Inst{15-12} = Rt;
1954    let Inst{11-0}  = shift{11-0};
1955  }
1956}
1957
1958multiclass AI_str1nopc<bit isByte, string opc, InstrItinClass iii,
1959           InstrItinClass iir, PatFrag opnode> {
1960  // Note: We use the complex addrmode_imm12 rather than just an input
1961  // GPR and a constrained immediate so that we can use this to match
1962  // frame index references and avoid matching constant pool references.
1963  def i12 : AI2ldst<0b010, 0, isByte, (outs),
1964                   (ins GPRnopc:$Rt, addrmode_imm12:$addr),
1965                   AddrMode_i12, StFrm, iii, opc, "\t$Rt, $addr",
1966                  [(opnode GPRnopc:$Rt, addrmode_imm12:$addr)]> {
1967    bits<4> Rt;
1968    bits<17> addr;
1969    let Inst{23}    = addr{12};     // U (add = ('U' == 1))
1970    let Inst{19-16} = addr{16-13};  // Rn
1971    let Inst{15-12} = Rt;
1972    let Inst{11-0}  = addr{11-0};   // imm12
1973  }
1974  def rs : AI2ldst<0b011, 0, isByte, (outs),
1975                   (ins GPRnopc:$Rt, ldst_so_reg:$shift),
1976                   AddrModeNone, StFrm, iir, opc, "\t$Rt, $shift",
1977                   [(opnode GPRnopc:$Rt, ldst_so_reg:$shift)]> {
1978    bits<4> Rt;
1979    bits<17> shift;
1980    let shift{4}    = 0;            // Inst{4} = 0
1981    let Inst{23}    = shift{12};    // U (add = ('U' == 1))
1982    let Inst{19-16} = shift{16-13}; // Rn
1983    let Inst{15-12} = Rt;
1984    let Inst{11-0}  = shift{11-0};
1985  }
1986}
1987
1988
1989//===----------------------------------------------------------------------===//
1990// Instructions
1991//===----------------------------------------------------------------------===//
1992
1993//===----------------------------------------------------------------------===//
1994//  Miscellaneous Instructions.
1995//
1996
1997/// CONSTPOOL_ENTRY - This instruction represents a floating constant pool in
1998/// the function.  The first operand is the ID# for this instruction, the second
1999/// is the index into the MachineConstantPool that this is, the third is the
2000/// size in bytes of this constant pool entry.
2001let hasSideEffects = 0, isNotDuplicable = 1, hasNoSchedulingInfo = 1 in
2002def CONSTPOOL_ENTRY :
2003PseudoInst<(outs), (ins cpinst_operand:$instid, cpinst_operand:$cpidx,
2004                    i32imm:$size), NoItinerary, []>;
2005
2006/// A jumptable consisting of direct 32-bit addresses of the destination basic
2007/// blocks (either absolute, or relative to the start of the jump-table in PIC
2008/// mode). Used mostly in ARM and Thumb-1 modes.
2009def JUMPTABLE_ADDRS :
2010PseudoInst<(outs), (ins cpinst_operand:$instid, cpinst_operand:$cpidx,
2011                        i32imm:$size), NoItinerary, []>;
2012
2013/// A jumptable consisting of 32-bit jump instructions. Used for Thumb-2 tables
2014/// that cannot be optimised to use TBB or TBH.
2015def JUMPTABLE_INSTS :
2016PseudoInst<(outs), (ins cpinst_operand:$instid, cpinst_operand:$cpidx,
2017                        i32imm:$size), NoItinerary, []>;
2018
2019/// A jumptable consisting of 8-bit unsigned integers representing offsets from
2020/// a TBB instruction.
2021def JUMPTABLE_TBB :
2022PseudoInst<(outs), (ins cpinst_operand:$instid, cpinst_operand:$cpidx,
2023                        i32imm:$size), NoItinerary, []>;
2024
2025/// A jumptable consisting of 16-bit unsigned integers representing offsets from
2026/// a TBH instruction.
2027def JUMPTABLE_TBH :
2028PseudoInst<(outs), (ins cpinst_operand:$instid, cpinst_operand:$cpidx,
2029                        i32imm:$size), NoItinerary, []>;
2030
2031
2032// FIXME: Marking these as hasSideEffects is necessary to prevent machine DCE
2033// from removing one half of the matched pairs. That breaks PEI, which assumes
2034// these will always be in pairs, and asserts if it finds otherwise. Better way?
2035let Defs = [SP], Uses = [SP], hasSideEffects = 1 in {
2036def ADJCALLSTACKUP :
2037PseudoInst<(outs), (ins i32imm:$amt1, i32imm:$amt2, pred:$p), NoItinerary,
2038           [(ARMcallseq_end timm:$amt1, timm:$amt2)]>;
2039
2040def ADJCALLSTACKDOWN :
2041PseudoInst<(outs), (ins i32imm:$amt, i32imm:$amt2, pred:$p), NoItinerary,
2042           [(ARMcallseq_start timm:$amt, timm:$amt2)]>;
2043}
2044
2045def HINT : AI<(outs), (ins imm0_239:$imm), MiscFrm, NoItinerary,
2046              "hint", "\t$imm", [(int_arm_hint imm0_239:$imm)]>,
2047           Requires<[IsARM, HasV6]> {
2048  bits<8> imm;
2049  let Inst{27-8} = 0b00110010000011110000;
2050  let Inst{7-0} = imm;
2051  let DecoderMethod = "DecodeHINTInstruction";
2052}
2053
2054def : InstAlias<"nop$p", (HINT 0, pred:$p)>, Requires<[IsARM, HasV6K]>;
2055def : InstAlias<"yield$p", (HINT 1, pred:$p)>, Requires<[IsARM, HasV6K]>;
2056def : InstAlias<"wfe$p", (HINT 2, pred:$p)>, Requires<[IsARM, HasV6K]>;
2057def : InstAlias<"wfi$p", (HINT 3, pred:$p)>, Requires<[IsARM, HasV6K]>;
2058def : InstAlias<"sev$p", (HINT 4, pred:$p)>, Requires<[IsARM, HasV6K]>;
2059def : InstAlias<"sevl$p", (HINT 5, pred:$p)>, Requires<[IsARM, HasV8]>;
2060def : InstAlias<"esb$p", (HINT 16, pred:$p)>, Requires<[IsARM, HasRAS]>;
2061def : InstAlias<"csdb$p", (HINT 20, pred:$p)>, Requires<[IsARM, HasV6K]>;
2062
2063def SEL : AI<(outs GPR:$Rd), (ins GPR:$Rn, GPR:$Rm), DPFrm, NoItinerary, "sel",
2064             "\t$Rd, $Rn, $Rm",
2065             [(set GPR:$Rd, (int_arm_sel GPR:$Rn, GPR:$Rm))]>,
2066             Requires<[IsARM, HasV6]> {
2067  bits<4> Rd;
2068  bits<4> Rn;
2069  bits<4> Rm;
2070  let Inst{3-0} = Rm;
2071  let Inst{15-12} = Rd;
2072  let Inst{19-16} = Rn;
2073  let Inst{27-20} = 0b01101000;
2074  let Inst{7-4} = 0b1011;
2075  let Inst{11-8} = 0b1111;
2076  let Unpredictable{11-8} = 0b1111;
2077}
2078
2079// The 16-bit operand $val can be used by a debugger to store more information
2080// about the breakpoint.
2081def BKPT : AInoP<(outs), (ins imm0_65535:$val), MiscFrm, NoItinerary,
2082                 "bkpt", "\t$val", []>, Requires<[IsARM]> {
2083  bits<16> val;
2084  let Inst{3-0} = val{3-0};
2085  let Inst{19-8} = val{15-4};
2086  let Inst{27-20} = 0b00010010;
2087  let Inst{31-28} = 0xe; // AL
2088  let Inst{7-4} = 0b0111;
2089}
2090// default immediate for breakpoint mnemonic
2091def : InstAlias<"bkpt", (BKPT 0), 0>, Requires<[IsARM]>;
2092
2093def HLT : AInoP<(outs), (ins imm0_65535:$val), MiscFrm, NoItinerary,
2094                 "hlt", "\t$val", []>, Requires<[IsARM, HasV8]> {
2095  bits<16> val;
2096  let Inst{3-0} = val{3-0};
2097  let Inst{19-8} = val{15-4};
2098  let Inst{27-20} = 0b00010000;
2099  let Inst{31-28} = 0xe; // AL
2100  let Inst{7-4} = 0b0111;
2101}
2102
2103// Change Processor State
2104// FIXME: We should use InstAlias to handle the optional operands.
2105class CPS<dag iops, string asm_ops>
2106  : AXI<(outs), iops, MiscFrm, NoItinerary, !strconcat("cps", asm_ops),
2107        []>, Requires<[IsARM]> {
2108  bits<2> imod;
2109  bits<3> iflags;
2110  bits<5> mode;
2111  bit M;
2112
2113  let Inst{31-28} = 0b1111;
2114  let Inst{27-20} = 0b00010000;
2115  let Inst{19-18} = imod;
2116  let Inst{17}    = M; // Enabled if mode is set;
2117  let Inst{16-9}  = 0b00000000;
2118  let Inst{8-6}   = iflags;
2119  let Inst{5}     = 0;
2120  let Inst{4-0}   = mode;
2121}
2122
2123let DecoderMethod = "DecodeCPSInstruction" in {
2124let M = 1 in
2125  def CPS3p : CPS<(ins imod_op:$imod, iflags_op:$iflags, imm0_31:$mode),
2126                  "$imod\t$iflags, $mode">;
2127let mode = 0, M = 0 in
2128  def CPS2p : CPS<(ins imod_op:$imod, iflags_op:$iflags), "$imod\t$iflags">;
2129
2130let imod = 0, iflags = 0, M = 1 in
2131  def CPS1p : CPS<(ins imm0_31:$mode), "\t$mode">;
2132}
2133
2134// Preload signals the memory system of possible future data/instruction access.
2135multiclass APreLoad<bits<1> read, bits<1> data, string opc> {
2136
2137  def i12 : AXIM<(outs), (ins addrmode_imm12:$addr), AddrMode_i12, MiscFrm,
2138                IIC_Preload, !strconcat(opc, "\t$addr"),
2139                [(ARMPreload addrmode_imm12:$addr, (i32 read), (i32 data))]>,
2140                Sched<[WritePreLd]> {
2141    bits<4> Rt;
2142    bits<17> addr;
2143    let Inst{31-26} = 0b111101;
2144    let Inst{25} = 0; // 0 for immediate form
2145    let Inst{24} = data;
2146    let Inst{23} = addr{12};        // U (add = ('U' == 1))
2147    let Inst{22} = read;
2148    let Inst{21-20} = 0b01;
2149    let Inst{19-16} = addr{16-13};  // Rn
2150    let Inst{15-12} = 0b1111;
2151    let Inst{11-0}  = addr{11-0};   // imm12
2152  }
2153
2154  def rs : AXI<(outs), (ins ldst_so_reg:$shift), MiscFrm, IIC_Preload,
2155               !strconcat(opc, "\t$shift"),
2156               [(ARMPreload ldst_so_reg:$shift, (i32 read), (i32 data))]>,
2157               Sched<[WritePreLd]> {
2158    bits<17> shift;
2159    let Inst{31-26} = 0b111101;
2160    let Inst{25} = 1; // 1 for register form
2161    let Inst{24} = data;
2162    let Inst{23} = shift{12};    // U (add = ('U' == 1))
2163    let Inst{22} = read;
2164    let Inst{21-20} = 0b01;
2165    let Inst{19-16} = shift{16-13}; // Rn
2166    let Inst{15-12} = 0b1111;
2167    let Inst{11-0}  = shift{11-0};
2168    let Inst{4} = 0;
2169  }
2170}
2171
2172defm PLD  : APreLoad<1, 1, "pld">,  Requires<[IsARM]>;
2173defm PLDW : APreLoad<0, 1, "pldw">, Requires<[IsARM,HasV7,HasMP]>;
2174defm PLI  : APreLoad<1, 0, "pli">,  Requires<[IsARM,HasV7]>;
2175
2176def SETEND : AXI<(outs), (ins setend_op:$end), MiscFrm, NoItinerary,
2177                 "setend\t$end", []>, Requires<[IsARM]>, Deprecated<HasV8Ops> {
2178  bits<1> end;
2179  let Inst{31-10} = 0b1111000100000001000000;
2180  let Inst{9} = end;
2181  let Inst{8-0} = 0;
2182}
2183
2184def DBG : AI<(outs), (ins imm0_15:$opt), MiscFrm, NoItinerary, "dbg", "\t$opt",
2185             [(int_arm_dbg imm0_15:$opt)]>, Requires<[IsARM, HasV7]> {
2186  bits<4> opt;
2187  let Inst{27-4} = 0b001100100000111100001111;
2188  let Inst{3-0} = opt;
2189}
2190
2191// A8.8.247  UDF - Undefined (Encoding A1)
2192def UDF : AInoP<(outs), (ins imm0_65535:$imm16), MiscFrm, NoItinerary,
2193                "udf", "\t$imm16", [(int_arm_undefined imm0_65535:$imm16)]> {
2194  bits<16> imm16;
2195  let Inst{31-28} = 0b1110; // AL
2196  let Inst{27-25} = 0b011;
2197  let Inst{24-20} = 0b11111;
2198  let Inst{19-8} = imm16{15-4};
2199  let Inst{7-4} = 0b1111;
2200  let Inst{3-0} = imm16{3-0};
2201}
2202
2203/*
2204 * A5.4 Permanently UNDEFINED instructions.
2205 *
2206 * For most targets use UDF #65006, for which the OS will generate SIGTRAP.
2207 * Other UDF encodings generate SIGILL.
2208 *
2209 * NaCl's OS instead chooses an ARM UDF encoding that's also a UDF in Thumb.
2210 * Encoding A1:
2211 *  1110 0111 1111 iiii iiii iiii 1111 iiii
2212 * Encoding T1:
2213 *  1101 1110 iiii iiii
2214 * It uses the following encoding:
2215 *  1110 0111 1111 1110 1101 1110 1111 0000
2216 *  - In ARM: UDF #60896;
2217 *  - In Thumb: UDF #254 followed by a branch-to-self.
2218 */
2219let isBarrier = 1, isTerminator = 1 in
2220def TRAPNaCl : AXI<(outs), (ins), MiscFrm, NoItinerary,
2221               "trap", [(trap)]>,
2222           Requires<[IsARM,UseNaClTrap]> {
2223  let Inst = 0xe7fedef0;
2224}
2225let isBarrier = 1, isTerminator = 1 in
2226def TRAP : AXI<(outs), (ins), MiscFrm, NoItinerary,
2227               "trap", [(trap)]>,
2228           Requires<[IsARM,DontUseNaClTrap]> {
2229  let Inst = 0xe7ffdefe;
2230}
2231
2232def : Pat<(debugtrap), (BKPT 0)>, Requires<[IsARM, HasV5T]>;
2233def : Pat<(debugtrap), (UDF 254)>, Requires<[IsARM, NoV5T]>;
2234
2235// Address computation and loads and stores in PIC mode.
2236let isNotDuplicable = 1 in {
2237def PICADD  : ARMPseudoInst<(outs GPR:$dst), (ins GPR:$a, pclabel:$cp, pred:$p),
2238                            4, IIC_iALUr,
2239                            [(set GPR:$dst, (ARMpic_add GPR:$a, imm:$cp))]>,
2240                            Sched<[WriteALU, ReadALU]>;
2241
2242let AddedComplexity = 10 in {
2243def PICLDR  : ARMPseudoInst<(outs GPR:$dst), (ins addrmodepc:$addr, pred:$p),
2244                            4, IIC_iLoad_r,
2245                            [(set GPR:$dst, (load addrmodepc:$addr))]>;
2246
2247def PICLDRH : ARMPseudoInst<(outs GPR:$Rt), (ins addrmodepc:$addr, pred:$p),
2248                            4, IIC_iLoad_bh_r,
2249                            [(set GPR:$Rt, (zextloadi16 addrmodepc:$addr))]>;
2250
2251def PICLDRB : ARMPseudoInst<(outs GPR:$Rt), (ins addrmodepc:$addr, pred:$p),
2252                            4, IIC_iLoad_bh_r,
2253                            [(set GPR:$Rt, (zextloadi8 addrmodepc:$addr))]>;
2254
2255def PICLDRSH : ARMPseudoInst<(outs GPR:$Rt), (ins addrmodepc:$addr, pred:$p),
2256                            4, IIC_iLoad_bh_r,
2257                            [(set GPR:$Rt, (sextloadi16 addrmodepc:$addr))]>;
2258
2259def PICLDRSB : ARMPseudoInst<(outs GPR:$Rt), (ins addrmodepc:$addr, pred:$p),
2260                            4, IIC_iLoad_bh_r,
2261                            [(set GPR:$Rt, (sextloadi8 addrmodepc:$addr))]>;
2262}
2263let AddedComplexity = 10 in {
2264def PICSTR  : ARMPseudoInst<(outs), (ins GPR:$src, addrmodepc:$addr, pred:$p),
2265      4, IIC_iStore_r, [(store GPR:$src, addrmodepc:$addr)]>;
2266
2267def PICSTRH : ARMPseudoInst<(outs), (ins GPR:$src, addrmodepc:$addr, pred:$p),
2268      4, IIC_iStore_bh_r, [(truncstorei16 GPR:$src,
2269                                                   addrmodepc:$addr)]>;
2270
2271def PICSTRB : ARMPseudoInst<(outs), (ins GPR:$src, addrmodepc:$addr, pred:$p),
2272      4, IIC_iStore_bh_r, [(truncstorei8 GPR:$src, addrmodepc:$addr)]>;
2273}
2274} // isNotDuplicable = 1
2275
2276
2277// LEApcrel - Load a pc-relative address into a register without offending the
2278// assembler.
2279let hasSideEffects = 0, isReMaterializable = 1 in
2280// The 'adr' mnemonic encodes differently if the label is before or after
2281// the instruction. The {24-21} opcode bits are set by the fixup, as we don't
2282// know until then which form of the instruction will be used.
2283def ADR : AI1<{0,?,?,0}, (outs GPR:$Rd), (ins adrlabel:$label),
2284                 MiscFrm, IIC_iALUi, "adr", "\t$Rd, $label", []>,
2285                 Sched<[WriteALU, ReadALU]> {
2286  bits<4> Rd;
2287  bits<14> label;
2288  let Inst{27-25} = 0b001;
2289  let Inst{24} = 0;
2290  let Inst{23-22} = label{13-12};
2291  let Inst{21} = 0;
2292  let Inst{20} = 0;
2293  let Inst{19-16} = 0b1111;
2294  let Inst{15-12} = Rd;
2295  let Inst{11-0} = label{11-0};
2296}
2297
2298let hasSideEffects = 1 in {
2299def LEApcrel : ARMPseudoInst<(outs GPR:$Rd), (ins i32imm:$label, pred:$p),
2300                    4, IIC_iALUi, []>, Sched<[WriteALU, ReadALU]>;
2301
2302def LEApcrelJT : ARMPseudoInst<(outs GPR:$Rd),
2303                      (ins i32imm:$label, pred:$p),
2304                      4, IIC_iALUi, []>, Sched<[WriteALU, ReadALU]>;
2305}
2306
2307//===----------------------------------------------------------------------===//
2308//  Control Flow Instructions.
2309//
2310
2311let isReturn = 1, isTerminator = 1, isBarrier = 1 in {
2312  // ARMV4T and above
2313  def BX_RET : AI<(outs), (ins), BrMiscFrm, IIC_Br,
2314                  "bx", "\tlr", [(ARMretflag)]>,
2315               Requires<[IsARM, HasV4T]>, Sched<[WriteBr]> {
2316    let Inst{27-0}  = 0b0001001011111111111100011110;
2317  }
2318
2319  // ARMV4 only
2320  def MOVPCLR : AI<(outs), (ins), BrMiscFrm, IIC_Br,
2321                  "mov", "\tpc, lr", [(ARMretflag)]>,
2322               Requires<[IsARM, NoV4T]>, Sched<[WriteBr]> {
2323    let Inst{27-0} = 0b0001101000001111000000001110;
2324  }
2325
2326  // Exception return: N.b. doesn't set CPSR as far as we're concerned (it sets
2327  // the user-space one).
2328  def SUBS_PC_LR : ARMPseudoInst<(outs), (ins i32imm:$offset, pred:$p),
2329                                 4, IIC_Br,
2330                                 [(ARMintretflag imm:$offset)]>;
2331}
2332
2333// Indirect branches
2334let isBranch = 1, isTerminator = 1, isBarrier = 1, isIndirectBranch = 1 in {
2335  // ARMV4T and above
2336  def BX : AXI<(outs), (ins GPR:$dst), BrMiscFrm, IIC_Br, "bx\t$dst",
2337                  [(brind GPR:$dst)]>,
2338              Requires<[IsARM, HasV4T]>, Sched<[WriteBr]> {
2339    bits<4> dst;
2340    let Inst{31-4} = 0b1110000100101111111111110001;
2341    let Inst{3-0}  = dst;
2342  }
2343
2344  def BX_pred : AI<(outs), (ins GPR:$dst), BrMiscFrm, IIC_Br,
2345                  "bx", "\t$dst", [/* pattern left blank */]>,
2346              Requires<[IsARM, HasV4T]>, Sched<[WriteBr]> {
2347    bits<4> dst;
2348    let Inst{27-4} = 0b000100101111111111110001;
2349    let Inst{3-0}  = dst;
2350  }
2351}
2352
2353// SP is marked as a use to prevent stack-pointer assignments that appear
2354// immediately before calls from potentially appearing dead.
2355let isCall = 1,
2356  // FIXME:  Do we really need a non-predicated version? If so, it should
2357  // at least be a pseudo instruction expanding to the predicated version
2358  // at MC lowering time.
2359  Defs = [LR], Uses = [SP] in {
2360  def BL  : ABXI<0b1011, (outs), (ins arm_bl_target:$func),
2361                IIC_Br, "bl\t$func",
2362                [(ARMcall tglobaladdr:$func)]>,
2363            Requires<[IsARM]>, Sched<[WriteBrL]> {
2364    let Inst{31-28} = 0b1110;
2365    bits<24> func;
2366    let Inst{23-0} = func;
2367    let DecoderMethod = "DecodeBranchImmInstruction";
2368  }
2369
2370  def BL_pred : ABI<0b1011, (outs), (ins arm_bl_target:$func),
2371                   IIC_Br, "bl", "\t$func",
2372                   [(ARMcall_pred tglobaladdr:$func)]>,
2373                Requires<[IsARM]>, Sched<[WriteBrL]> {
2374    bits<24> func;
2375    let Inst{23-0} = func;
2376    let DecoderMethod = "DecodeBranchImmInstruction";
2377  }
2378
2379  // ARMv5T and above
2380  def BLX : AXI<(outs), (ins GPR:$func), BrMiscFrm,
2381                IIC_Br, "blx\t$func",
2382                [(ARMcall GPR:$func)]>,
2383            Requires<[IsARM, HasV5T]>, Sched<[WriteBrL]> {
2384    bits<4> func;
2385    let Inst{31-4} = 0b1110000100101111111111110011;
2386    let Inst{3-0}  = func;
2387  }
2388
2389  def BLX_pred : AI<(outs), (ins GPR:$func), BrMiscFrm,
2390                    IIC_Br, "blx", "\t$func",
2391                    [(ARMcall_pred GPR:$func)]>,
2392                 Requires<[IsARM, HasV5T]>, Sched<[WriteBrL]> {
2393    bits<4> func;
2394    let Inst{27-4} = 0b000100101111111111110011;
2395    let Inst{3-0}  = func;
2396  }
2397
2398  // ARMv4T
2399  // Note: Restrict $func to the tGPR regclass to prevent it being in LR.
2400  def BX_CALL : ARMPseudoInst<(outs), (ins tGPR:$func),
2401                   8, IIC_Br, [(ARMcall_nolink tGPR:$func)]>,
2402                   Requires<[IsARM, HasV4T]>, Sched<[WriteBr]>;
2403
2404  // ARMv4
2405  def BMOVPCRX_CALL : ARMPseudoInst<(outs), (ins tGPR:$func),
2406                   8, IIC_Br, [(ARMcall_nolink tGPR:$func)]>,
2407                   Requires<[IsARM, NoV4T]>, Sched<[WriteBr]>;
2408
2409  // mov lr, pc; b if callee is marked noreturn to avoid confusing the
2410  // return stack predictor.
2411  def BMOVPCB_CALL : ARMPseudoInst<(outs), (ins arm_bl_target:$func),
2412                               8, IIC_Br, [(ARMcall_nolink tglobaladdr:$func)]>,
2413                      Requires<[IsARM]>, Sched<[WriteBr]>;
2414
2415  // push lr before the call
2416  def BL_PUSHLR : ARMPseudoInst<(outs), (ins GPRlr:$ra, arm_bl_target:$func),
2417                  4, IIC_Br,
2418                  []>,
2419             Requires<[IsARM]>, Sched<[WriteBr]>;
2420}
2421
2422let isBranch = 1, isTerminator = 1 in {
2423  // FIXME: should be able to write a pattern for ARMBrcond, but can't use
2424  // a two-value operand where a dag node expects two operands. :(
2425  def Bcc : ABI<0b1010, (outs), (ins arm_br_target:$target),
2426               IIC_Br, "b", "\t$target",
2427               [/*(ARMbrcond bb:$target, imm:$cc, CCR:$ccr)*/]>,
2428               Sched<[WriteBr]>  {
2429    bits<24> target;
2430    let Inst{23-0} = target;
2431    let DecoderMethod = "DecodeBranchImmInstruction";
2432  }
2433
2434  let isBarrier = 1 in {
2435    // B is "predicable" since it's just a Bcc with an 'always' condition.
2436    let isPredicable = 1 in
2437    // FIXME: We shouldn't need this pseudo at all. Just using Bcc directly
2438    // should be sufficient.
2439    // FIXME: Is B really a Barrier? That doesn't seem right.
2440    def B : ARMPseudoExpand<(outs), (ins arm_br_target:$target), 4, IIC_Br,
2441                [(br bb:$target)], (Bcc arm_br_target:$target,
2442                (ops 14, zero_reg))>,
2443                Sched<[WriteBr]>;
2444
2445    let Size = 4, isNotDuplicable = 1, isIndirectBranch = 1 in {
2446    def BR_JTr : ARMPseudoInst<(outs),
2447                      (ins GPR:$target, i32imm:$jt),
2448                      0, IIC_Br,
2449                      [(ARMbrjt GPR:$target, tjumptable:$jt)]>,
2450                      Sched<[WriteBr]>;
2451    def BR_JTm_i12 : ARMPseudoInst<(outs),
2452                     (ins addrmode_imm12:$target, i32imm:$jt),
2453                     0, IIC_Br,
2454                     [(ARMbrjt (i32 (load addrmode_imm12:$target)),
2455                               tjumptable:$jt)]>, Sched<[WriteBrTbl]>;
2456    def BR_JTm_rs : ARMPseudoInst<(outs),
2457                     (ins ldst_so_reg:$target, i32imm:$jt),
2458                     0, IIC_Br,
2459                     [(ARMbrjt (i32 (load ldst_so_reg:$target)),
2460                               tjumptable:$jt)]>, Sched<[WriteBrTbl]>;
2461    def BR_JTadd : ARMPseudoInst<(outs),
2462                   (ins GPR:$target, GPR:$idx, i32imm:$jt),
2463                   0, IIC_Br,
2464                   [(ARMbrjt (add GPR:$target, GPR:$idx), tjumptable:$jt)]>,
2465                   Sched<[WriteBrTbl]>;
2466    } // isNotDuplicable = 1, isIndirectBranch = 1
2467  } // isBarrier = 1
2468
2469}
2470
2471// BLX (immediate)
2472def BLXi : AXI<(outs), (ins arm_blx_target:$target), BrMiscFrm, NoItinerary,
2473               "blx\t$target", []>,
2474           Requires<[IsARM, HasV5T]>, Sched<[WriteBrL]> {
2475  let Inst{31-25} = 0b1111101;
2476  bits<25> target;
2477  let Inst{23-0} = target{24-1};
2478  let Inst{24} = target{0};
2479  let isCall = 1;
2480}
2481
2482// Branch and Exchange Jazelle
2483def BXJ : ABI<0b0001, (outs), (ins GPR:$func), NoItinerary, "bxj", "\t$func",
2484              [/* pattern left blank */]>, Sched<[WriteBr]> {
2485  bits<4> func;
2486  let Inst{23-20} = 0b0010;
2487  let Inst{19-8} = 0xfff;
2488  let Inst{7-4} = 0b0010;
2489  let Inst{3-0} = func;
2490  let isBranch = 1;
2491}
2492
2493// Tail calls.
2494
2495let isCall = 1, isTerminator = 1, isReturn = 1, isBarrier = 1, Uses = [SP] in {
2496  def TCRETURNdi : PseudoInst<(outs), (ins i32imm:$dst), IIC_Br, []>,
2497                   Sched<[WriteBr]>;
2498
2499  def TCRETURNri : PseudoInst<(outs), (ins tcGPR:$dst), IIC_Br, []>,
2500                   Sched<[WriteBr]>;
2501
2502  def TAILJMPd : ARMPseudoExpand<(outs), (ins arm_br_target:$dst),
2503                                 4, IIC_Br, [],
2504                                 (Bcc arm_br_target:$dst, (ops 14, zero_reg))>,
2505                                 Requires<[IsARM]>, Sched<[WriteBr]>;
2506
2507  def TAILJMPr : ARMPseudoExpand<(outs), (ins tcGPR:$dst),
2508                                 4, IIC_Br, [],
2509                                 (BX GPR:$dst)>, Sched<[WriteBr]>,
2510                                 Requires<[IsARM, HasV4T]>;
2511}
2512
2513// Secure Monitor Call is a system instruction.
2514def SMC : ABI<0b0001, (outs), (ins imm0_15:$opt), NoItinerary, "smc", "\t$opt",
2515              []>, Requires<[IsARM, HasTrustZone]> {
2516  bits<4> opt;
2517  let Inst{23-4} = 0b01100000000000000111;
2518  let Inst{3-0} = opt;
2519}
2520def : MnemonicAlias<"smi", "smc">;
2521
2522// Supervisor Call (Software Interrupt)
2523let isCall = 1, Uses = [SP] in {
2524def SVC : ABI<0b1111, (outs), (ins imm24b:$svc), IIC_Br, "svc", "\t$svc", []>,
2525          Sched<[WriteBr]> {
2526  bits<24> svc;
2527  let Inst{23-0} = svc;
2528}
2529}
2530
2531// Store Return State
2532class SRSI<bit wb, string asm>
2533  : XI<(outs), (ins imm0_31:$mode), AddrModeNone, 4, IndexModeNone, BrFrm,
2534       NoItinerary, asm, "", []> {
2535  bits<5> mode;
2536  let Inst{31-28} = 0b1111;
2537  let Inst{27-25} = 0b100;
2538  let Inst{22} = 1;
2539  let Inst{21} = wb;
2540  let Inst{20} = 0;
2541  let Inst{19-16} = 0b1101;  // SP
2542  let Inst{15-5} = 0b00000101000;
2543  let Inst{4-0} = mode;
2544}
2545
2546def SRSDA : SRSI<0, "srsda\tsp, $mode"> {
2547  let Inst{24-23} = 0;
2548}
2549def SRSDA_UPD : SRSI<1, "srsda\tsp!, $mode"> {
2550  let Inst{24-23} = 0;
2551}
2552def SRSDB : SRSI<0, "srsdb\tsp, $mode"> {
2553  let Inst{24-23} = 0b10;
2554}
2555def SRSDB_UPD : SRSI<1, "srsdb\tsp!, $mode"> {
2556  let Inst{24-23} = 0b10;
2557}
2558def SRSIA : SRSI<0, "srsia\tsp, $mode"> {
2559  let Inst{24-23} = 0b01;
2560}
2561def SRSIA_UPD : SRSI<1, "srsia\tsp!, $mode"> {
2562  let Inst{24-23} = 0b01;
2563}
2564def SRSIB : SRSI<0, "srsib\tsp, $mode"> {
2565  let Inst{24-23} = 0b11;
2566}
2567def SRSIB_UPD : SRSI<1, "srsib\tsp!, $mode"> {
2568  let Inst{24-23} = 0b11;
2569}
2570
2571def : ARMInstAlias<"srsda $mode", (SRSDA imm0_31:$mode)>;
2572def : ARMInstAlias<"srsda $mode!", (SRSDA_UPD imm0_31:$mode)>;
2573
2574def : ARMInstAlias<"srsdb $mode", (SRSDB imm0_31:$mode)>;
2575def : ARMInstAlias<"srsdb $mode!", (SRSDB_UPD imm0_31:$mode)>;
2576
2577def : ARMInstAlias<"srsia $mode", (SRSIA imm0_31:$mode)>;
2578def : ARMInstAlias<"srsia $mode!", (SRSIA_UPD imm0_31:$mode)>;
2579
2580def : ARMInstAlias<"srsib $mode", (SRSIB imm0_31:$mode)>;
2581def : ARMInstAlias<"srsib $mode!", (SRSIB_UPD imm0_31:$mode)>;
2582
2583// Return From Exception
2584class RFEI<bit wb, string asm>
2585  : XI<(outs), (ins GPR:$Rn), AddrModeNone, 4, IndexModeNone, BrFrm,
2586       NoItinerary, asm, "", []> {
2587  bits<4> Rn;
2588  let Inst{31-28} = 0b1111;
2589  let Inst{27-25} = 0b100;
2590  let Inst{22} = 0;
2591  let Inst{21} = wb;
2592  let Inst{20} = 1;
2593  let Inst{19-16} = Rn;
2594  let Inst{15-0} = 0xa00;
2595}
2596
2597def RFEDA : RFEI<0, "rfeda\t$Rn"> {
2598  let Inst{24-23} = 0;
2599}
2600def RFEDA_UPD : RFEI<1, "rfeda\t$Rn!"> {
2601  let Inst{24-23} = 0;
2602}
2603def RFEDB : RFEI<0, "rfedb\t$Rn"> {
2604  let Inst{24-23} = 0b10;
2605}
2606def RFEDB_UPD : RFEI<1, "rfedb\t$Rn!"> {
2607  let Inst{24-23} = 0b10;
2608}
2609def RFEIA : RFEI<0, "rfeia\t$Rn"> {
2610  let Inst{24-23} = 0b01;
2611}
2612def RFEIA_UPD : RFEI<1, "rfeia\t$Rn!"> {
2613  let Inst{24-23} = 0b01;
2614}
2615def RFEIB : RFEI<0, "rfeib\t$Rn"> {
2616  let Inst{24-23} = 0b11;
2617}
2618def RFEIB_UPD : RFEI<1, "rfeib\t$Rn!"> {
2619  let Inst{24-23} = 0b11;
2620}
2621
2622// Hypervisor Call is a system instruction
2623let isCall = 1 in {
2624def HVC : AInoP< (outs), (ins imm0_65535:$imm), BrFrm, NoItinerary,
2625                "hvc", "\t$imm", []>,
2626          Requires<[IsARM, HasVirtualization]> {
2627  bits<16> imm;
2628
2629  // Even though HVC isn't predicable, it's encoding includes a condition field.
2630  // The instruction is undefined if the condition field is 0xf otherwise it is
2631  // unpredictable if it isn't condition AL (0xe).
2632  let Inst{31-28} = 0b1110;
2633  let Unpredictable{31-28} = 0b1111;
2634  let Inst{27-24} = 0b0001;
2635  let Inst{23-20} = 0b0100;
2636  let Inst{19-8} = imm{15-4};
2637  let Inst{7-4} = 0b0111;
2638  let Inst{3-0} = imm{3-0};
2639}
2640}
2641
2642// Return from exception in Hypervisor mode.
2643let isReturn = 1, isBarrier = 1, isTerminator = 1, Defs = [PC] in
2644def ERET : ABI<0b0001, (outs), (ins), NoItinerary, "eret", "", []>,
2645    Requires<[IsARM, HasVirtualization]> {
2646    let Inst{23-0} = 0b011000000000000001101110;
2647}
2648
2649//===----------------------------------------------------------------------===//
2650//  Load / Store Instructions.
2651//
2652
2653// Load
2654
2655
2656defm LDR  : AI_ldr1<0, "ldr", IIC_iLoad_r, IIC_iLoad_si, load>;
2657defm LDRB : AI_ldr1nopc<1, "ldrb", IIC_iLoad_bh_r, IIC_iLoad_bh_si,
2658                        zextloadi8>;
2659defm STR  : AI_str1<0, "str", IIC_iStore_r, IIC_iStore_si, store>;
2660defm STRB : AI_str1nopc<1, "strb", IIC_iStore_bh_r, IIC_iStore_bh_si,
2661                        truncstorei8>;
2662
2663// Special LDR for loads from non-pc-relative constpools.
2664let canFoldAsLoad = 1, mayLoad = 1, hasSideEffects = 0,
2665    isReMaterializable = 1, isCodeGenOnly = 1 in
2666def LDRcp : AI2ldst<0b010, 1, 0, (outs GPR:$Rt), (ins addrmode_imm12:$addr),
2667                 AddrMode_i12, LdFrm, IIC_iLoad_r, "ldr", "\t$Rt, $addr",
2668                 []> {
2669  bits<4> Rt;
2670  bits<17> addr;
2671  let Inst{23}    = addr{12};     // U (add = ('U' == 1))
2672  let Inst{19-16} = 0b1111;
2673  let Inst{15-12} = Rt;
2674  let Inst{11-0}  = addr{11-0};   // imm12
2675}
2676
2677// Loads with zero extension
2678def LDRH  : AI3ld<0b1011, 1, (outs GPR:$Rt), (ins addrmode3:$addr), LdMiscFrm,
2679                  IIC_iLoad_bh_r, "ldrh", "\t$Rt, $addr",
2680                  [(set GPR:$Rt, (zextloadi16 addrmode3:$addr))]>;
2681
2682// Loads with sign extension
2683def LDRSH : AI3ld<0b1111, 1, (outs GPR:$Rt), (ins addrmode3:$addr), LdMiscFrm,
2684                   IIC_iLoad_bh_r, "ldrsh", "\t$Rt, $addr",
2685                   [(set GPR:$Rt, (sextloadi16 addrmode3:$addr))]>;
2686
2687def LDRSB : AI3ld<0b1101, 1, (outs GPR:$Rt), (ins addrmode3:$addr), LdMiscFrm,
2688                   IIC_iLoad_bh_r, "ldrsb", "\t$Rt, $addr",
2689                   [(set GPR:$Rt, (sextloadi8 addrmode3:$addr))]>;
2690
2691let mayLoad = 1, hasSideEffects = 0, hasExtraDefRegAllocReq = 1 in {
2692  // Load doubleword
2693  def LDRD : AI3ld<0b1101, 0, (outs GPR:$Rt, GPR:$Rt2), (ins addrmode3:$addr),
2694                   LdMiscFrm, IIC_iLoad_d_r, "ldrd", "\t$Rt, $Rt2, $addr", []>,
2695             Requires<[IsARM, HasV5TE]>;
2696}
2697
2698def LDA : AIldracq<0b00, (outs GPR:$Rt), (ins addr_offset_none:$addr),
2699                    NoItinerary, "lda", "\t$Rt, $addr", []>;
2700def LDAB : AIldracq<0b10, (outs GPR:$Rt), (ins addr_offset_none:$addr),
2701                    NoItinerary, "ldab", "\t$Rt, $addr", []>;
2702def LDAH : AIldracq<0b11, (outs GPR:$Rt), (ins addr_offset_none:$addr),
2703                    NoItinerary, "ldah", "\t$Rt, $addr", []>;
2704
2705// Indexed loads
2706multiclass AI2_ldridx<bit isByte, string opc,
2707                      InstrItinClass iii, InstrItinClass iir> {
2708  def _PRE_IMM  : AI2ldstidx<1, isByte, 1, (outs GPR:$Rt, GPR:$Rn_wb),
2709                      (ins addrmode_imm12_pre:$addr), IndexModePre, LdFrm, iii,
2710                      opc, "\t$Rt, $addr!", "$addr.base = $Rn_wb", []> {
2711    bits<17> addr;
2712    let Inst{25} = 0;
2713    let Inst{23} = addr{12};
2714    let Inst{19-16} = addr{16-13};
2715    let Inst{11-0} = addr{11-0};
2716    let DecoderMethod = "DecodeLDRPreImm";
2717  }
2718
2719  def _PRE_REG  : AI2ldstidx<1, isByte, 1, (outs GPR:$Rt, GPR:$Rn_wb),
2720                      (ins ldst_so_reg:$addr), IndexModePre, LdFrm, iir,
2721                      opc, "\t$Rt, $addr!", "$addr.base = $Rn_wb", []> {
2722    bits<17> addr;
2723    let Inst{25} = 1;
2724    let Inst{23} = addr{12};
2725    let Inst{19-16} = addr{16-13};
2726    let Inst{11-0} = addr{11-0};
2727    let Inst{4} = 0;
2728    let DecoderMethod = "DecodeLDRPreReg";
2729  }
2730
2731  def _POST_REG : AI2ldstidx<1, isByte, 0, (outs GPR:$Rt, GPR:$Rn_wb),
2732                       (ins addr_offset_none:$addr, am2offset_reg:$offset),
2733                       IndexModePost, LdFrm, iir,
2734                       opc, "\t$Rt, $addr, $offset",
2735                       "$addr.base = $Rn_wb", []> {
2736     // {12}     isAdd
2737     // {11-0}   imm12/Rm
2738     bits<14> offset;
2739     bits<4> addr;
2740     let Inst{25} = 1;
2741     let Inst{23} = offset{12};
2742     let Inst{19-16} = addr;
2743     let Inst{11-0} = offset{11-0};
2744     let Inst{4} = 0;
2745
2746    let DecoderMethod = "DecodeAddrMode2IdxInstruction";
2747   }
2748
2749   def _POST_IMM : AI2ldstidx<1, isByte, 0, (outs GPR:$Rt, GPR:$Rn_wb),
2750                       (ins addr_offset_none:$addr, am2offset_imm:$offset),
2751                      IndexModePost, LdFrm, iii,
2752                      opc, "\t$Rt, $addr, $offset",
2753                      "$addr.base = $Rn_wb", []> {
2754    // {12}     isAdd
2755    // {11-0}   imm12/Rm
2756    bits<14> offset;
2757    bits<4> addr;
2758    let Inst{25} = 0;
2759    let Inst{23} = offset{12};
2760    let Inst{19-16} = addr;
2761    let Inst{11-0} = offset{11-0};
2762
2763    let DecoderMethod = "DecodeAddrMode2IdxInstruction";
2764  }
2765
2766}
2767
2768let mayLoad = 1, hasSideEffects = 0 in {
2769// FIXME: for LDR_PRE_REG etc. the itineray should be either IIC_iLoad_ru or
2770// IIC_iLoad_siu depending on whether it the offset register is shifted.
2771defm LDR  : AI2_ldridx<0, "ldr", IIC_iLoad_iu, IIC_iLoad_ru>;
2772defm LDRB : AI2_ldridx<1, "ldrb", IIC_iLoad_bh_iu, IIC_iLoad_bh_ru>;
2773}
2774
2775multiclass AI3_ldridx<bits<4> op, string opc, InstrItinClass itin> {
2776  def _PRE  : AI3ldstidx<op, 1, 1, (outs GPR:$Rt, GPR:$Rn_wb),
2777                        (ins addrmode3_pre:$addr), IndexModePre,
2778                        LdMiscFrm, itin,
2779                        opc, "\t$Rt, $addr!", "$addr.base = $Rn_wb", []> {
2780    bits<14> addr;
2781    let Inst{23}    = addr{8};      // U bit
2782    let Inst{22}    = addr{13};     // 1 == imm8, 0 == Rm
2783    let Inst{19-16} = addr{12-9};   // Rn
2784    let Inst{11-8}  = addr{7-4};    // imm7_4/zero
2785    let Inst{3-0}   = addr{3-0};    // imm3_0/Rm
2786    let DecoderMethod = "DecodeAddrMode3Instruction";
2787  }
2788  def _POST : AI3ldstidx<op, 1, 0, (outs GPR:$Rt, GPR:$Rn_wb),
2789                        (ins addr_offset_none:$addr, am3offset:$offset),
2790                        IndexModePost, LdMiscFrm, itin,
2791                        opc, "\t$Rt, $addr, $offset", "$addr.base = $Rn_wb",
2792                        []> {
2793    bits<10> offset;
2794    bits<4> addr;
2795    let Inst{23}    = offset{8};      // U bit
2796    let Inst{22}    = offset{9};      // 1 == imm8, 0 == Rm
2797    let Inst{19-16} = addr;
2798    let Inst{11-8}  = offset{7-4};    // imm7_4/zero
2799    let Inst{3-0}   = offset{3-0};    // imm3_0/Rm
2800    let DecoderMethod = "DecodeAddrMode3Instruction";
2801  }
2802}
2803
2804let mayLoad = 1, hasSideEffects = 0 in {
2805defm LDRH  : AI3_ldridx<0b1011, "ldrh", IIC_iLoad_bh_ru>;
2806defm LDRSH : AI3_ldridx<0b1111, "ldrsh", IIC_iLoad_bh_ru>;
2807defm LDRSB : AI3_ldridx<0b1101, "ldrsb", IIC_iLoad_bh_ru>;
2808let hasExtraDefRegAllocReq = 1 in {
2809def LDRD_PRE : AI3ldstidx<0b1101, 0, 1, (outs GPR:$Rt, GPR:$Rt2, GPR:$Rn_wb),
2810                          (ins addrmode3_pre:$addr), IndexModePre,
2811                          LdMiscFrm, IIC_iLoad_d_ru,
2812                          "ldrd", "\t$Rt, $Rt2, $addr!",
2813                          "$addr.base = $Rn_wb", []> {
2814  bits<14> addr;
2815  let Inst{23}    = addr{8};      // U bit
2816  let Inst{22}    = addr{13};     // 1 == imm8, 0 == Rm
2817  let Inst{19-16} = addr{12-9};   // Rn
2818  let Inst{11-8}  = addr{7-4};    // imm7_4/zero
2819  let Inst{3-0}   = addr{3-0};    // imm3_0/Rm
2820  let DecoderMethod = "DecodeAddrMode3Instruction";
2821}
2822def LDRD_POST: AI3ldstidx<0b1101, 0, 0, (outs GPR:$Rt, GPR:$Rt2, GPR:$Rn_wb),
2823                          (ins addr_offset_none:$addr, am3offset:$offset),
2824                          IndexModePost, LdMiscFrm, IIC_iLoad_d_ru,
2825                          "ldrd", "\t$Rt, $Rt2, $addr, $offset",
2826                          "$addr.base = $Rn_wb", []> {
2827  bits<10> offset;
2828  bits<4> addr;
2829  let Inst{23}    = offset{8};      // U bit
2830  let Inst{22}    = offset{9};      // 1 == imm8, 0 == Rm
2831  let Inst{19-16} = addr;
2832  let Inst{11-8}  = offset{7-4};    // imm7_4/zero
2833  let Inst{3-0}   = offset{3-0};    // imm3_0/Rm
2834  let DecoderMethod = "DecodeAddrMode3Instruction";
2835}
2836} // hasExtraDefRegAllocReq = 1
2837} // mayLoad = 1, hasSideEffects = 0
2838
2839// LDRT, LDRBT, LDRSBT, LDRHT, LDRSHT.
2840let mayLoad = 1, hasSideEffects = 0 in {
2841def LDRT_POST_REG : AI2ldstidx<1, 0, 0, (outs GPR:$Rt, GPR:$Rn_wb),
2842                    (ins addr_offset_none:$addr, am2offset_reg:$offset),
2843                    IndexModePost, LdFrm, IIC_iLoad_ru,
2844                    "ldrt", "\t$Rt, $addr, $offset",
2845                    "$addr.base = $Rn_wb", []> {
2846  // {12}     isAdd
2847  // {11-0}   imm12/Rm
2848  bits<14> offset;
2849  bits<4> addr;
2850  let Inst{25} = 1;
2851  let Inst{23} = offset{12};
2852  let Inst{21} = 1; // overwrite
2853  let Inst{19-16} = addr;
2854  let Inst{11-5} = offset{11-5};
2855  let Inst{4} = 0;
2856  let Inst{3-0} = offset{3-0};
2857  let DecoderMethod = "DecodeAddrMode2IdxInstruction";
2858}
2859
2860def LDRT_POST_IMM
2861  : AI2ldstidx<1, 0, 0, (outs GPR:$Rt, GPR:$Rn_wb),
2862               (ins addr_offset_none:$addr, am2offset_imm:$offset),
2863               IndexModePost, LdFrm, IIC_iLoad_ru,
2864               "ldrt", "\t$Rt, $addr, $offset", "$addr.base = $Rn_wb", []> {
2865  // {12}     isAdd
2866  // {11-0}   imm12/Rm
2867  bits<14> offset;
2868  bits<4> addr;
2869  let Inst{25} = 0;
2870  let Inst{23} = offset{12};
2871  let Inst{21} = 1; // overwrite
2872  let Inst{19-16} = addr;
2873  let Inst{11-0} = offset{11-0};
2874  let DecoderMethod = "DecodeAddrMode2IdxInstruction";
2875}
2876
2877def LDRBT_POST_REG : AI2ldstidx<1, 1, 0, (outs GPR:$Rt, GPR:$Rn_wb),
2878                     (ins addr_offset_none:$addr, am2offset_reg:$offset),
2879                     IndexModePost, LdFrm, IIC_iLoad_bh_ru,
2880                     "ldrbt", "\t$Rt, $addr, $offset",
2881                     "$addr.base = $Rn_wb", []> {
2882  // {12}     isAdd
2883  // {11-0}   imm12/Rm
2884  bits<14> offset;
2885  bits<4> addr;
2886  let Inst{25} = 1;
2887  let Inst{23} = offset{12};
2888  let Inst{21} = 1; // overwrite
2889  let Inst{19-16} = addr;
2890  let Inst{11-5} = offset{11-5};
2891  let Inst{4} = 0;
2892  let Inst{3-0} = offset{3-0};
2893  let DecoderMethod = "DecodeAddrMode2IdxInstruction";
2894}
2895
2896def LDRBT_POST_IMM
2897  : AI2ldstidx<1, 1, 0, (outs GPR:$Rt, GPR:$Rn_wb),
2898               (ins addr_offset_none:$addr, am2offset_imm:$offset),
2899               IndexModePost, LdFrm, IIC_iLoad_bh_ru,
2900               "ldrbt", "\t$Rt, $addr, $offset", "$addr.base = $Rn_wb", []> {
2901  // {12}     isAdd
2902  // {11-0}   imm12/Rm
2903  bits<14> offset;
2904  bits<4> addr;
2905  let Inst{25} = 0;
2906  let Inst{23} = offset{12};
2907  let Inst{21} = 1; // overwrite
2908  let Inst{19-16} = addr;
2909  let Inst{11-0} = offset{11-0};
2910  let DecoderMethod = "DecodeAddrMode2IdxInstruction";
2911}
2912
2913multiclass AI3ldrT<bits<4> op, string opc> {
2914  def i : AI3ldstidxT<op, 1, (outs GPR:$Rt, GPR:$base_wb),
2915                      (ins addr_offset_none:$addr, postidx_imm8:$offset),
2916                      IndexModePost, LdMiscFrm, IIC_iLoad_bh_ru, opc,
2917                      "\t$Rt, $addr, $offset", "$addr.base = $base_wb", []> {
2918    bits<9> offset;
2919    let Inst{23} = offset{8};
2920    let Inst{22} = 1;
2921    let Inst{11-8} = offset{7-4};
2922    let Inst{3-0} = offset{3-0};
2923  }
2924  def r : AI3ldstidxT<op, 1, (outs GPRnopc:$Rt, GPRnopc:$base_wb),
2925                      (ins addr_offset_none:$addr, postidx_reg:$Rm),
2926                      IndexModePost, LdMiscFrm, IIC_iLoad_bh_ru, opc,
2927                      "\t$Rt, $addr, $Rm", "$addr.base = $base_wb", []> {
2928    bits<5> Rm;
2929    let Inst{23} = Rm{4};
2930    let Inst{22} = 0;
2931    let Inst{11-8} = 0;
2932    let Unpredictable{11-8} = 0b1111;
2933    let Inst{3-0} = Rm{3-0};
2934    let DecoderMethod = "DecodeLDR";
2935  }
2936}
2937
2938defm LDRSBT : AI3ldrT<0b1101, "ldrsbt">;
2939defm LDRHT  : AI3ldrT<0b1011, "ldrht">;
2940defm LDRSHT : AI3ldrT<0b1111, "ldrsht">;
2941}
2942
2943def LDRT_POST
2944  : ARMAsmPseudo<"ldrt${q} $Rt, $addr", (ins addr_offset_none:$addr, pred:$q),
2945                 (outs GPR:$Rt)>;
2946
2947def LDRBT_POST
2948  : ARMAsmPseudo<"ldrbt${q} $Rt, $addr", (ins addr_offset_none:$addr, pred:$q),
2949                 (outs GPR:$Rt)>;
2950
2951// Pseudo instruction ldr Rt, =immediate
2952def LDRConstPool
2953  : ARMAsmPseudo<"ldr${q} $Rt, $immediate",
2954                 (ins const_pool_asm_imm:$immediate, pred:$q),
2955                 (outs GPR:$Rt)>;
2956
2957// Store
2958
2959// Stores with truncate
2960def STRH : AI3str<0b1011, (outs), (ins GPR:$Rt, addrmode3:$addr), StMiscFrm,
2961               IIC_iStore_bh_r, "strh", "\t$Rt, $addr",
2962               [(truncstorei16 GPR:$Rt, addrmode3:$addr)]>;
2963
2964// Store doubleword
2965let mayStore = 1, hasSideEffects = 0, hasExtraSrcRegAllocReq = 1 in {
2966  def STRD : AI3str<0b1111, (outs), (ins GPR:$Rt, GPR:$Rt2, addrmode3:$addr),
2967                    StMiscFrm, IIC_iStore_d_r, "strd", "\t$Rt, $Rt2, $addr", []>,
2968             Requires<[IsARM, HasV5TE]> {
2969    let Inst{21} = 0;
2970  }
2971}
2972
2973// Indexed stores
2974multiclass AI2_stridx<bit isByte, string opc,
2975                      InstrItinClass iii, InstrItinClass iir> {
2976  def _PRE_IMM : AI2ldstidx<0, isByte, 1, (outs GPR:$Rn_wb),
2977                            (ins GPR:$Rt, addrmode_imm12_pre:$addr), IndexModePre,
2978                            StFrm, iii,
2979                            opc, "\t$Rt, $addr!",
2980                            "$addr.base = $Rn_wb,@earlyclobber $Rn_wb", []> {
2981    bits<17> addr;
2982    let Inst{25} = 0;
2983    let Inst{23}    = addr{12};     // U (add = ('U' == 1))
2984    let Inst{19-16} = addr{16-13};  // Rn
2985    let Inst{11-0}  = addr{11-0};   // imm12
2986    let DecoderMethod = "DecodeSTRPreImm";
2987  }
2988
2989  def _PRE_REG  : AI2ldstidx<0, isByte, 1, (outs GPR:$Rn_wb),
2990                      (ins GPR:$Rt, ldst_so_reg:$addr),
2991                      IndexModePre, StFrm, iir,
2992                      opc, "\t$Rt, $addr!",
2993                      "$addr.base = $Rn_wb,@earlyclobber $Rn_wb", []> {
2994    bits<17> addr;
2995    let Inst{25} = 1;
2996    let Inst{23}    = addr{12};    // U (add = ('U' == 1))
2997    let Inst{19-16} = addr{16-13}; // Rn
2998    let Inst{11-0}  = addr{11-0};
2999    let Inst{4}     = 0;           // Inst{4} = 0
3000    let DecoderMethod = "DecodeSTRPreReg";
3001  }
3002  def _POST_REG : AI2ldstidx<0, isByte, 0, (outs GPR:$Rn_wb),
3003                (ins GPR:$Rt, addr_offset_none:$addr, am2offset_reg:$offset),
3004                IndexModePost, StFrm, iir,
3005                opc, "\t$Rt, $addr, $offset",
3006                "$addr.base = $Rn_wb,@earlyclobber $Rn_wb", []> {
3007     // {12}     isAdd
3008     // {11-0}   imm12/Rm
3009     bits<14> offset;
3010     bits<4> addr;
3011     let Inst{25} = 1;
3012     let Inst{23} = offset{12};
3013     let Inst{19-16} = addr;
3014     let Inst{11-0} = offset{11-0};
3015     let Inst{4} = 0;
3016
3017    let DecoderMethod = "DecodeAddrMode2IdxInstruction";
3018   }
3019
3020   def _POST_IMM : AI2ldstidx<0, isByte, 0, (outs GPR:$Rn_wb),
3021                (ins GPR:$Rt, addr_offset_none:$addr, am2offset_imm:$offset),
3022                IndexModePost, StFrm, iii,
3023                opc, "\t$Rt, $addr, $offset",
3024                "$addr.base = $Rn_wb,@earlyclobber $Rn_wb", []> {
3025    // {12}     isAdd
3026    // {11-0}   imm12/Rm
3027    bits<14> offset;
3028    bits<4> addr;
3029    let Inst{25} = 0;
3030    let Inst{23} = offset{12};
3031    let Inst{19-16} = addr;
3032    let Inst{11-0} = offset{11-0};
3033
3034    let DecoderMethod = "DecodeAddrMode2IdxInstruction";
3035  }
3036}
3037
3038let mayStore = 1, hasSideEffects = 0 in {
3039// FIXME: for STR_PRE_REG etc. the itineray should be either IIC_iStore_ru or
3040// IIC_iStore_siu depending on whether it the offset register is shifted.
3041defm STR  : AI2_stridx<0, "str", IIC_iStore_iu, IIC_iStore_ru>;
3042defm STRB : AI2_stridx<1, "strb", IIC_iStore_bh_iu, IIC_iStore_bh_ru>;
3043}
3044
3045def : ARMPat<(post_store GPR:$Rt, addr_offset_none:$addr,
3046                         am2offset_reg:$offset),
3047             (STR_POST_REG GPR:$Rt, addr_offset_none:$addr,
3048                           am2offset_reg:$offset)>;
3049def : ARMPat<(post_store GPR:$Rt, addr_offset_none:$addr,
3050                         am2offset_imm:$offset),
3051             (STR_POST_IMM GPR:$Rt, addr_offset_none:$addr,
3052                           am2offset_imm:$offset)>;
3053def : ARMPat<(post_truncsti8 GPR:$Rt, addr_offset_none:$addr,
3054                             am2offset_reg:$offset),
3055             (STRB_POST_REG GPR:$Rt, addr_offset_none:$addr,
3056                            am2offset_reg:$offset)>;
3057def : ARMPat<(post_truncsti8 GPR:$Rt, addr_offset_none:$addr,
3058                             am2offset_imm:$offset),
3059             (STRB_POST_IMM GPR:$Rt, addr_offset_none:$addr,
3060                            am2offset_imm:$offset)>;
3061
3062// Pseudo-instructions for pattern matching the pre-indexed stores. We can't
3063// put the patterns on the instruction definitions directly as ISel wants
3064// the address base and offset to be separate operands, not a single
3065// complex operand like we represent the instructions themselves. The
3066// pseudos map between the two.
3067let usesCustomInserter = 1,
3068    Constraints = "$Rn = $Rn_wb,@earlyclobber $Rn_wb" in {
3069def STRi_preidx: ARMPseudoInst<(outs GPR:$Rn_wb),
3070               (ins GPR:$Rt, GPR:$Rn, am2offset_imm:$offset, pred:$p),
3071               4, IIC_iStore_ru,
3072            [(set GPR:$Rn_wb,
3073                  (pre_store GPR:$Rt, GPR:$Rn, am2offset_imm:$offset))]>;
3074def STRr_preidx: ARMPseudoInst<(outs GPR:$Rn_wb),
3075               (ins GPR:$Rt, GPR:$Rn, am2offset_reg:$offset, pred:$p),
3076               4, IIC_iStore_ru,
3077            [(set GPR:$Rn_wb,
3078                  (pre_store GPR:$Rt, GPR:$Rn, am2offset_reg:$offset))]>;
3079def STRBi_preidx: ARMPseudoInst<(outs GPR:$Rn_wb),
3080               (ins GPR:$Rt, GPR:$Rn, am2offset_imm:$offset, pred:$p),
3081               4, IIC_iStore_ru,
3082            [(set GPR:$Rn_wb,
3083                  (pre_truncsti8 GPR:$Rt, GPR:$Rn, am2offset_imm:$offset))]>;
3084def STRBr_preidx: ARMPseudoInst<(outs GPR:$Rn_wb),
3085               (ins GPR:$Rt, GPR:$Rn, am2offset_reg:$offset, pred:$p),
3086               4, IIC_iStore_ru,
3087            [(set GPR:$Rn_wb,
3088                  (pre_truncsti8 GPR:$Rt, GPR:$Rn, am2offset_reg:$offset))]>;
3089def STRH_preidx: ARMPseudoInst<(outs GPR:$Rn_wb),
3090               (ins GPR:$Rt, GPR:$Rn, am3offset:$offset, pred:$p),
3091               4, IIC_iStore_ru,
3092            [(set GPR:$Rn_wb,
3093                  (pre_truncsti16 GPR:$Rt, GPR:$Rn, am3offset:$offset))]>;
3094}
3095
3096
3097
3098def STRH_PRE  : AI3ldstidx<0b1011, 0, 1, (outs GPR:$Rn_wb),
3099                           (ins GPR:$Rt, addrmode3_pre:$addr), IndexModePre,
3100                           StMiscFrm, IIC_iStore_bh_ru,
3101                           "strh", "\t$Rt, $addr!",
3102                           "$addr.base = $Rn_wb,@earlyclobber $Rn_wb", []> {
3103  bits<14> addr;
3104  let Inst{23}    = addr{8};      // U bit
3105  let Inst{22}    = addr{13};     // 1 == imm8, 0 == Rm
3106  let Inst{19-16} = addr{12-9};   // Rn
3107  let Inst{11-8}  = addr{7-4};    // imm7_4/zero
3108  let Inst{3-0}   = addr{3-0};    // imm3_0/Rm
3109  let DecoderMethod = "DecodeAddrMode3Instruction";
3110}
3111
3112def STRH_POST : AI3ldstidx<0b1011, 0, 0, (outs GPR:$Rn_wb),
3113                       (ins GPR:$Rt, addr_offset_none:$addr, am3offset:$offset),
3114                       IndexModePost, StMiscFrm, IIC_iStore_bh_ru,
3115                       "strh", "\t$Rt, $addr, $offset",
3116                       "$addr.base = $Rn_wb,@earlyclobber $Rn_wb",
3117                   [(set GPR:$Rn_wb, (post_truncsti16 GPR:$Rt,
3118                                                      addr_offset_none:$addr,
3119                                                      am3offset:$offset))]> {
3120  bits<10> offset;
3121  bits<4> addr;
3122  let Inst{23}    = offset{8};      // U bit
3123  let Inst{22}    = offset{9};      // 1 == imm8, 0 == Rm
3124  let Inst{19-16} = addr;
3125  let Inst{11-8}  = offset{7-4};    // imm7_4/zero
3126  let Inst{3-0}   = offset{3-0};    // imm3_0/Rm
3127  let DecoderMethod = "DecodeAddrMode3Instruction";
3128}
3129
3130let mayStore = 1, hasSideEffects = 0, hasExtraSrcRegAllocReq = 1 in {
3131def STRD_PRE : AI3ldstidx<0b1111, 0, 1, (outs GPR:$Rn_wb),
3132                          (ins GPR:$Rt, GPR:$Rt2, addrmode3_pre:$addr),
3133                          IndexModePre, StMiscFrm, IIC_iStore_d_ru,
3134                          "strd", "\t$Rt, $Rt2, $addr!",
3135                          "$addr.base = $Rn_wb", []> {
3136  bits<14> addr;
3137  let Inst{23}    = addr{8};      // U bit
3138  let Inst{22}    = addr{13};     // 1 == imm8, 0 == Rm
3139  let Inst{19-16} = addr{12-9};   // Rn
3140  let Inst{11-8}  = addr{7-4};    // imm7_4/zero
3141  let Inst{3-0}   = addr{3-0};    // imm3_0/Rm
3142  let DecoderMethod = "DecodeAddrMode3Instruction";
3143}
3144
3145def STRD_POST: AI3ldstidx<0b1111, 0, 0, (outs GPR:$Rn_wb),
3146                          (ins GPR:$Rt, GPR:$Rt2, addr_offset_none:$addr,
3147                               am3offset:$offset),
3148                          IndexModePost, StMiscFrm, IIC_iStore_d_ru,
3149                          "strd", "\t$Rt, $Rt2, $addr, $offset",
3150                          "$addr.base = $Rn_wb", []> {
3151  bits<10> offset;
3152  bits<4> addr;
3153  let Inst{23}    = offset{8};      // U bit
3154  let Inst{22}    = offset{9};      // 1 == imm8, 0 == Rm
3155  let Inst{19-16} = addr;
3156  let Inst{11-8}  = offset{7-4};    // imm7_4/zero
3157  let Inst{3-0}   = offset{3-0};    // imm3_0/Rm
3158  let DecoderMethod = "DecodeAddrMode3Instruction";
3159}
3160} // mayStore = 1, hasSideEffects = 0, hasExtraSrcRegAllocReq = 1
3161
3162// STRT, STRBT, and STRHT
3163
3164def STRBT_POST_REG : AI2ldstidx<0, 1, 0, (outs GPR:$Rn_wb),
3165                   (ins GPR:$Rt, addr_offset_none:$addr, am2offset_reg:$offset),
3166                   IndexModePost, StFrm, IIC_iStore_bh_ru,
3167                   "strbt", "\t$Rt, $addr, $offset",
3168                   "$addr.base = $Rn_wb", []> {
3169  // {12}     isAdd
3170  // {11-0}   imm12/Rm
3171  bits<14> offset;
3172  bits<4> addr;
3173  let Inst{25} = 1;
3174  let Inst{23} = offset{12};
3175  let Inst{21} = 1; // overwrite
3176  let Inst{19-16} = addr;
3177  let Inst{11-5} = offset{11-5};
3178  let Inst{4} = 0;
3179  let Inst{3-0} = offset{3-0};
3180  let DecoderMethod = "DecodeAddrMode2IdxInstruction";
3181}
3182
3183def STRBT_POST_IMM
3184  : AI2ldstidx<0, 1, 0, (outs GPR:$Rn_wb),
3185               (ins GPR:$Rt, addr_offset_none:$addr, am2offset_imm:$offset),
3186               IndexModePost, StFrm, IIC_iStore_bh_ru,
3187               "strbt", "\t$Rt, $addr, $offset", "$addr.base = $Rn_wb", []> {
3188  // {12}     isAdd
3189  // {11-0}   imm12/Rm
3190  bits<14> offset;
3191  bits<4> addr;
3192  let Inst{25} = 0;
3193  let Inst{23} = offset{12};
3194  let Inst{21} = 1; // overwrite
3195  let Inst{19-16} = addr;
3196  let Inst{11-0} = offset{11-0};
3197  let DecoderMethod = "DecodeAddrMode2IdxInstruction";
3198}
3199
3200def STRBT_POST
3201  : ARMAsmPseudo<"strbt${q} $Rt, $addr",
3202                 (ins GPR:$Rt, addr_offset_none:$addr, pred:$q)>;
3203
3204let mayStore = 1, hasSideEffects = 0 in {
3205def STRT_POST_REG : AI2ldstidx<0, 0, 0, (outs GPR:$Rn_wb),
3206                   (ins GPR:$Rt, addr_offset_none:$addr, am2offset_reg:$offset),
3207                   IndexModePost, StFrm, IIC_iStore_ru,
3208                   "strt", "\t$Rt, $addr, $offset",
3209                   "$addr.base = $Rn_wb", []> {
3210  // {12}     isAdd
3211  // {11-0}   imm12/Rm
3212  bits<14> offset;
3213  bits<4> addr;
3214  let Inst{25} = 1;
3215  let Inst{23} = offset{12};
3216  let Inst{21} = 1; // overwrite
3217  let Inst{19-16} = addr;
3218  let Inst{11-5} = offset{11-5};
3219  let Inst{4} = 0;
3220  let Inst{3-0} = offset{3-0};
3221  let DecoderMethod = "DecodeAddrMode2IdxInstruction";
3222}
3223
3224def STRT_POST_IMM
3225  : AI2ldstidx<0, 0, 0, (outs GPR:$Rn_wb),
3226               (ins GPR:$Rt, addr_offset_none:$addr, am2offset_imm:$offset),
3227               IndexModePost, StFrm, IIC_iStore_ru,
3228               "strt", "\t$Rt, $addr, $offset", "$addr.base = $Rn_wb", []> {
3229  // {12}     isAdd
3230  // {11-0}   imm12/Rm
3231  bits<14> offset;
3232  bits<4> addr;
3233  let Inst{25} = 0;
3234  let Inst{23} = offset{12};
3235  let Inst{21} = 1; // overwrite
3236  let Inst{19-16} = addr;
3237  let Inst{11-0} = offset{11-0};
3238  let DecoderMethod = "DecodeAddrMode2IdxInstruction";
3239}
3240}
3241
3242def STRT_POST
3243  : ARMAsmPseudo<"strt${q} $Rt, $addr",
3244                 (ins GPR:$Rt, addr_offset_none:$addr, pred:$q)>;
3245
3246multiclass AI3strT<bits<4> op, string opc> {
3247  def i : AI3ldstidxT<op, 0, (outs GPR:$base_wb),
3248                    (ins GPR:$Rt, addr_offset_none:$addr, postidx_imm8:$offset),
3249                    IndexModePost, StMiscFrm, IIC_iStore_bh_ru, opc,
3250                    "\t$Rt, $addr, $offset", "$addr.base = $base_wb", []> {
3251    bits<9> offset;
3252    let Inst{23} = offset{8};
3253    let Inst{22} = 1;
3254    let Inst{11-8} = offset{7-4};
3255    let Inst{3-0} = offset{3-0};
3256  }
3257  def r : AI3ldstidxT<op, 0, (outs GPR:$base_wb),
3258                      (ins GPR:$Rt, addr_offset_none:$addr, postidx_reg:$Rm),
3259                      IndexModePost, StMiscFrm, IIC_iStore_bh_ru, opc,
3260                      "\t$Rt, $addr, $Rm", "$addr.base = $base_wb", []> {
3261    bits<5> Rm;
3262    let Inst{23} = Rm{4};
3263    let Inst{22} = 0;
3264    let Inst{11-8} = 0;
3265    let Inst{3-0} = Rm{3-0};
3266  }
3267}
3268
3269
3270defm STRHT : AI3strT<0b1011, "strht">;
3271
3272def STL : AIstrrel<0b00, (outs), (ins GPR:$Rt, addr_offset_none:$addr),
3273                   NoItinerary, "stl", "\t$Rt, $addr", []>;
3274def STLB : AIstrrel<0b10, (outs), (ins GPR:$Rt, addr_offset_none:$addr),
3275                    NoItinerary, "stlb", "\t$Rt, $addr", []>;
3276def STLH : AIstrrel<0b11, (outs), (ins GPR:$Rt, addr_offset_none:$addr),
3277                    NoItinerary, "stlh", "\t$Rt, $addr", []>;
3278
3279//===----------------------------------------------------------------------===//
3280//  Load / store multiple Instructions.
3281//
3282
3283multiclass arm_ldst_mult<string asm, string sfx, bit L_bit, bit P_bit, Format f,
3284                         InstrItinClass itin, InstrItinClass itin_upd> {
3285  // IA is the default, so no need for an explicit suffix on the
3286  // mnemonic here. Without it is the canonical spelling.
3287  def IA :
3288    AXI4<(outs), (ins GPR:$Rn, pred:$p, reglist:$regs, variable_ops),
3289         IndexModeNone, f, itin,
3290         !strconcat(asm, "${p}\t$Rn, $regs", sfx), "", []> {
3291    let Inst{24-23} = 0b01;       // Increment After
3292    let Inst{22}    = P_bit;
3293    let Inst{21}    = 0;          // No writeback
3294    let Inst{20}    = L_bit;
3295  }
3296  def IA_UPD :
3297    AXI4<(outs GPR:$wb), (ins GPR:$Rn, pred:$p, reglist:$regs, variable_ops),
3298         IndexModeUpd, f, itin_upd,
3299         !strconcat(asm, "${p}\t$Rn!, $regs", sfx), "$Rn = $wb", []> {
3300    let Inst{24-23} = 0b01;       // Increment After
3301    let Inst{22}    = P_bit;
3302    let Inst{21}    = 1;          // Writeback
3303    let Inst{20}    = L_bit;
3304
3305    let DecoderMethod = "DecodeMemMultipleWritebackInstruction";
3306  }
3307  def DA :
3308    AXI4<(outs), (ins GPR:$Rn, pred:$p, reglist:$regs, variable_ops),
3309         IndexModeNone, f, itin,
3310         !strconcat(asm, "da${p}\t$Rn, $regs", sfx), "", []> {
3311    let Inst{24-23} = 0b00;       // Decrement After
3312    let Inst{22}    = P_bit;
3313    let Inst{21}    = 0;          // No writeback
3314    let Inst{20}    = L_bit;
3315  }
3316  def DA_UPD :
3317    AXI4<(outs GPR:$wb), (ins GPR:$Rn, pred:$p, reglist:$regs, variable_ops),
3318         IndexModeUpd, f, itin_upd,
3319         !strconcat(asm, "da${p}\t$Rn!, $regs", sfx), "$Rn = $wb", []> {
3320    let Inst{24-23} = 0b00;       // Decrement After
3321    let Inst{22}    = P_bit;
3322    let Inst{21}    = 1;          // Writeback
3323    let Inst{20}    = L_bit;
3324
3325    let DecoderMethod = "DecodeMemMultipleWritebackInstruction";
3326  }
3327  def DB :
3328    AXI4<(outs), (ins GPR:$Rn, pred:$p, reglist:$regs, variable_ops),
3329         IndexModeNone, f, itin,
3330         !strconcat(asm, "db${p}\t$Rn, $regs", sfx), "", []> {
3331    let Inst{24-23} = 0b10;       // Decrement Before
3332    let Inst{22}    = P_bit;
3333    let Inst{21}    = 0;          // No writeback
3334    let Inst{20}    = L_bit;
3335  }
3336  def DB_UPD :
3337    AXI4<(outs GPR:$wb), (ins GPR:$Rn, pred:$p, reglist:$regs, variable_ops),
3338         IndexModeUpd, f, itin_upd,
3339         !strconcat(asm, "db${p}\t$Rn!, $regs", sfx), "$Rn = $wb", []> {
3340    let Inst{24-23} = 0b10;       // Decrement Before
3341    let Inst{22}    = P_bit;
3342    let Inst{21}    = 1;          // Writeback
3343    let Inst{20}    = L_bit;
3344
3345    let DecoderMethod = "DecodeMemMultipleWritebackInstruction";
3346  }
3347  def IB :
3348    AXI4<(outs), (ins GPR:$Rn, pred:$p, reglist:$regs, variable_ops),
3349         IndexModeNone, f, itin,
3350         !strconcat(asm, "ib${p}\t$Rn, $regs", sfx), "", []> {
3351    let Inst{24-23} = 0b11;       // Increment Before
3352    let Inst{22}    = P_bit;
3353    let Inst{21}    = 0;          // No writeback
3354    let Inst{20}    = L_bit;
3355  }
3356  def IB_UPD :
3357    AXI4<(outs GPR:$wb), (ins GPR:$Rn, pred:$p, reglist:$regs, variable_ops),
3358         IndexModeUpd, f, itin_upd,
3359         !strconcat(asm, "ib${p}\t$Rn!, $regs", sfx), "$Rn = $wb", []> {
3360    let Inst{24-23} = 0b11;       // Increment Before
3361    let Inst{22}    = P_bit;
3362    let Inst{21}    = 1;          // Writeback
3363    let Inst{20}    = L_bit;
3364
3365    let DecoderMethod = "DecodeMemMultipleWritebackInstruction";
3366  }
3367}
3368
3369let hasSideEffects = 0 in {
3370
3371let mayLoad = 1, hasExtraDefRegAllocReq = 1, variadicOpsAreDefs = 1 in
3372defm LDM : arm_ldst_mult<"ldm", "", 1, 0, LdStMulFrm, IIC_iLoad_m,
3373                         IIC_iLoad_mu>, ComplexDeprecationPredicate<"ARMLoad">;
3374
3375let mayStore = 1, hasExtraSrcRegAllocReq = 1 in
3376defm STM : arm_ldst_mult<"stm", "", 0, 0, LdStMulFrm, IIC_iStore_m,
3377                         IIC_iStore_mu>,
3378           ComplexDeprecationPredicate<"ARMStore">;
3379
3380} // hasSideEffects
3381
3382// FIXME: remove when we have a way to marking a MI with these properties.
3383// FIXME: Should pc be an implicit operand like PICADD, etc?
3384let isReturn = 1, isTerminator = 1, isBarrier = 1, mayLoad = 1,
3385    hasExtraDefRegAllocReq = 1, isCodeGenOnly = 1 in
3386def LDMIA_RET : ARMPseudoExpand<(outs GPR:$wb), (ins GPR:$Rn, pred:$p,
3387                                                 reglist:$regs, variable_ops),
3388                     4, IIC_iLoad_mBr, [],
3389                     (LDMIA_UPD GPR:$wb, GPR:$Rn, pred:$p, reglist:$regs)>,
3390      RegConstraint<"$Rn = $wb">;
3391
3392let mayLoad = 1, hasExtraDefRegAllocReq = 1 in
3393defm sysLDM : arm_ldst_mult<"ldm", " ^", 1, 1, LdStMulFrm, IIC_iLoad_m,
3394                               IIC_iLoad_mu>;
3395
3396let mayStore = 1, hasExtraSrcRegAllocReq = 1 in
3397defm sysSTM : arm_ldst_mult<"stm", " ^", 0, 1, LdStMulFrm, IIC_iStore_m,
3398                               IIC_iStore_mu>;
3399
3400
3401
3402//===----------------------------------------------------------------------===//
3403//  Move Instructions.
3404//
3405
3406let hasSideEffects = 0, isMoveReg = 1 in
3407def MOVr : AsI1<0b1101, (outs GPR:$Rd), (ins GPR:$Rm), DPFrm, IIC_iMOVr,
3408                "mov", "\t$Rd, $Rm", []>, UnaryDP, Sched<[WriteALU]> {
3409  bits<4> Rd;
3410  bits<4> Rm;
3411
3412  let Inst{19-16} = 0b0000;
3413  let Inst{11-4} = 0b00000000;
3414  let Inst{25} = 0;
3415  let Inst{3-0} = Rm;
3416  let Inst{15-12} = Rd;
3417}
3418
3419// A version for the smaller set of tail call registers.
3420let hasSideEffects = 0 in
3421def MOVr_TC : AsI1<0b1101, (outs tcGPR:$Rd), (ins tcGPR:$Rm), DPFrm,
3422                IIC_iMOVr, "mov", "\t$Rd, $Rm", []>, UnaryDP, Sched<[WriteALU]> {
3423  bits<4> Rd;
3424  bits<4> Rm;
3425
3426  let Inst{11-4} = 0b00000000;
3427  let Inst{25} = 0;
3428  let Inst{3-0} = Rm;
3429  let Inst{15-12} = Rd;
3430}
3431
3432def MOVsr : AsI1<0b1101, (outs GPRnopc:$Rd), (ins shift_so_reg_reg:$src),
3433                DPSoRegRegFrm, IIC_iMOVsr,
3434                "mov", "\t$Rd, $src",
3435                [(set GPRnopc:$Rd, shift_so_reg_reg:$src)]>, UnaryDP,
3436                Sched<[WriteALU]> {
3437  bits<4> Rd;
3438  bits<12> src;
3439  let Inst{15-12} = Rd;
3440  let Inst{19-16} = 0b0000;
3441  let Inst{11-8} = src{11-8};
3442  let Inst{7} = 0;
3443  let Inst{6-5} = src{6-5};
3444  let Inst{4} = 1;
3445  let Inst{3-0} = src{3-0};
3446  let Inst{25} = 0;
3447}
3448
3449def MOVsi : AsI1<0b1101, (outs GPR:$Rd), (ins shift_so_reg_imm:$src),
3450                DPSoRegImmFrm, IIC_iMOVsr,
3451                "mov", "\t$Rd, $src", [(set GPR:$Rd, shift_so_reg_imm:$src)]>,
3452                UnaryDP, Sched<[WriteALU]> {
3453  bits<4> Rd;
3454  bits<12> src;
3455  let Inst{15-12} = Rd;
3456  let Inst{19-16} = 0b0000;
3457  let Inst{11-5} = src{11-5};
3458  let Inst{4} = 0;
3459  let Inst{3-0} = src{3-0};
3460  let Inst{25} = 0;
3461}
3462
3463let isReMaterializable = 1, isAsCheapAsAMove = 1, isMoveImm = 1 in
3464def MOVi : AsI1<0b1101, (outs GPR:$Rd), (ins mod_imm:$imm), DPFrm, IIC_iMOVi,
3465                "mov", "\t$Rd, $imm", [(set GPR:$Rd, mod_imm:$imm)]>, UnaryDP,
3466                Sched<[WriteALU]> {
3467  bits<4> Rd;
3468  bits<12> imm;
3469  let Inst{25} = 1;
3470  let Inst{15-12} = Rd;
3471  let Inst{19-16} = 0b0000;
3472  let Inst{11-0} = imm;
3473}
3474
3475let isReMaterializable = 1, isAsCheapAsAMove = 1, isMoveImm = 1 in
3476def MOVi16 : AI1<0b1000, (outs GPR:$Rd), (ins imm0_65535_expr:$imm),
3477                 DPFrm, IIC_iMOVi,
3478                 "movw", "\t$Rd, $imm",
3479                 [(set GPR:$Rd, imm0_65535:$imm)]>,
3480                 Requires<[IsARM, HasV6T2]>, UnaryDP, Sched<[WriteALU]> {
3481  bits<4> Rd;
3482  bits<16> imm;
3483  let Inst{15-12} = Rd;
3484  let Inst{11-0}  = imm{11-0};
3485  let Inst{19-16} = imm{15-12};
3486  let Inst{20} = 0;
3487  let Inst{25} = 1;
3488  let DecoderMethod = "DecodeArmMOVTWInstruction";
3489}
3490
3491def : InstAlias<"mov${p} $Rd, $imm",
3492                (MOVi16 GPR:$Rd, imm0_65535_expr:$imm, pred:$p), 0>,
3493        Requires<[IsARM, HasV6T2]>;
3494
3495def MOVi16_ga_pcrel : PseudoInst<(outs GPR:$Rd),
3496                                (ins i32imm:$addr, pclabel:$id), IIC_iMOVi, []>,
3497                      Sched<[WriteALU]>;
3498
3499let Constraints = "$src = $Rd" in {
3500def MOVTi16 : AI1<0b1010, (outs GPRnopc:$Rd),
3501                  (ins GPR:$src, imm0_65535_expr:$imm),
3502                  DPFrm, IIC_iMOVi,
3503                  "movt", "\t$Rd, $imm",
3504                  [(set GPRnopc:$Rd,
3505                        (or (and GPR:$src, 0xffff),
3506                            lo16AllZero:$imm))]>, UnaryDP,
3507                  Requires<[IsARM, HasV6T2]>, Sched<[WriteALU]> {
3508  bits<4> Rd;
3509  bits<16> imm;
3510  let Inst{15-12} = Rd;
3511  let Inst{11-0}  = imm{11-0};
3512  let Inst{19-16} = imm{15-12};
3513  let Inst{20} = 0;
3514  let Inst{25} = 1;
3515  let DecoderMethod = "DecodeArmMOVTWInstruction";
3516}
3517
3518def MOVTi16_ga_pcrel : PseudoInst<(outs GPR:$Rd),
3519                      (ins GPR:$src, i32imm:$addr, pclabel:$id), IIC_iMOVi, []>,
3520                      Sched<[WriteALU]>;
3521
3522} // Constraints
3523
3524def : ARMPat<(or GPR:$src, 0xffff0000), (MOVTi16 GPR:$src, 0xffff)>,
3525      Requires<[IsARM, HasV6T2]>;
3526
3527let Uses = [CPSR] in
3528def RRX: PseudoInst<(outs GPR:$Rd), (ins GPR:$Rm), IIC_iMOVsi,
3529                    [(set GPR:$Rd, (ARMrrx GPR:$Rm))]>, UnaryDP,
3530                    Requires<[IsARM]>, Sched<[WriteALU]>;
3531
3532// These aren't really mov instructions, but we have to define them this way
3533// due to flag operands.
3534
3535let Defs = [CPSR] in {
3536def MOVsrl_flag : PseudoInst<(outs GPR:$dst), (ins GPR:$src), IIC_iMOVsi,
3537                      [(set GPR:$dst, (ARMsrl_flag GPR:$src))]>, UnaryDP,
3538                      Sched<[WriteALU]>, Requires<[IsARM]>;
3539def MOVsra_flag : PseudoInst<(outs GPR:$dst), (ins GPR:$src), IIC_iMOVsi,
3540                      [(set GPR:$dst, (ARMsra_flag GPR:$src))]>, UnaryDP,
3541                      Sched<[WriteALU]>, Requires<[IsARM]>;
3542}
3543
3544//===----------------------------------------------------------------------===//
3545//  Extend Instructions.
3546//
3547
3548// Sign extenders
3549
3550def SXTB  : AI_ext_rrot<0b01101010,
3551                         "sxtb", UnOpFrag<(sext_inreg node:$Src, i8)>>;
3552def SXTH  : AI_ext_rrot<0b01101011,
3553                         "sxth", UnOpFrag<(sext_inreg node:$Src, i16)>>;
3554
3555def SXTAB : AI_exta_rrot<0b01101010,
3556               "sxtab", BinOpFrag<(add node:$LHS, (sext_inreg node:$RHS, i8))>>;
3557def SXTAH : AI_exta_rrot<0b01101011,
3558               "sxtah", BinOpFrag<(add node:$LHS, (sext_inreg node:$RHS,i16))>>;
3559
3560def : ARMV6Pat<(add rGPR:$Rn, (sext_inreg (srl rGPR:$Rm, rot_imm:$rot), i8)),
3561               (SXTAB rGPR:$Rn, rGPR:$Rm, rot_imm:$rot)>;
3562def : ARMV6Pat<(add rGPR:$Rn, (sext_inreg (srl rGPR:$Rm, imm8_or_16:$rot),
3563                                          i16)),
3564               (SXTAH rGPR:$Rn, rGPR:$Rm, rot_imm:$rot)>;
3565
3566def SXTB16  : AI_ext_rrot_np<0b01101000, "sxtb16">;
3567def : ARMV6Pat<(int_arm_sxtb16 GPR:$Src),
3568               (SXTB16 GPR:$Src, 0)>;
3569def : ARMV6Pat<(int_arm_sxtb16 (rotr GPR:$Src, rot_imm:$rot)),
3570               (SXTB16 GPR:$Src, rot_imm:$rot)>;
3571
3572def SXTAB16 : AI_exta_rrot_np<0b01101000, "sxtab16">;
3573def : ARMV6Pat<(int_arm_sxtab16 GPR:$LHS, GPR:$RHS),
3574               (SXTAB16 GPR:$LHS, GPR:$RHS, 0)>;
3575def : ARMV6Pat<(int_arm_sxtab16 GPR:$LHS, (rotr GPR:$RHS, rot_imm:$rot)),
3576               (SXTAB16 GPR:$LHS, GPR:$RHS, rot_imm:$rot)>;
3577
3578// Zero extenders
3579
3580let AddedComplexity = 16 in {
3581def UXTB   : AI_ext_rrot<0b01101110,
3582                          "uxtb"  , UnOpFrag<(and node:$Src, 0x000000FF)>>;
3583def UXTH   : AI_ext_rrot<0b01101111,
3584                          "uxth"  , UnOpFrag<(and node:$Src, 0x0000FFFF)>>;
3585def UXTB16 : AI_ext_rrot<0b01101100,
3586                          "uxtb16", UnOpFrag<(and node:$Src, 0x00FF00FF)>>;
3587
3588// FIXME: This pattern incorrectly assumes the shl operator is a rotate.
3589//        The transformation should probably be done as a combiner action
3590//        instead so we can include a check for masking back in the upper
3591//        eight bits of the source into the lower eight bits of the result.
3592//def : ARMV6Pat<(and (shl GPR:$Src, (i32 8)), 0xFF00FF),
3593//               (UXTB16r_rot GPR:$Src, 3)>;
3594def : ARMV6Pat<(and (srl GPR:$Src, (i32 8)), 0xFF00FF),
3595               (UXTB16 GPR:$Src, 1)>;
3596def : ARMV6Pat<(int_arm_uxtb16 GPR:$Src),
3597               (UXTB16 GPR:$Src, 0)>;
3598def : ARMV6Pat<(int_arm_uxtb16 (rotr GPR:$Src, rot_imm:$rot)),
3599               (UXTB16 GPR:$Src, rot_imm:$rot)>;
3600
3601def UXTAB : AI_exta_rrot<0b01101110, "uxtab",
3602                        BinOpFrag<(add node:$LHS, (and node:$RHS, 0x00FF))>>;
3603def UXTAH : AI_exta_rrot<0b01101111, "uxtah",
3604                        BinOpFrag<(add node:$LHS, (and node:$RHS, 0xFFFF))>>;
3605
3606def : ARMV6Pat<(add rGPR:$Rn, (and (srl rGPR:$Rm, rot_imm:$rot), 0xFF)),
3607               (UXTAB rGPR:$Rn, rGPR:$Rm, rot_imm:$rot)>;
3608def : ARMV6Pat<(add rGPR:$Rn, (and (srl rGPR:$Rm, imm8_or_16:$rot), 0xFFFF)),
3609               (UXTAH rGPR:$Rn, rGPR:$Rm, rot_imm:$rot)>;
3610}
3611
3612// This isn't safe in general, the add is two 16-bit units, not a 32-bit add.
3613def UXTAB16 : AI_exta_rrot_np<0b01101100, "uxtab16">;
3614def : ARMV6Pat<(int_arm_uxtab16 GPR:$LHS, GPR:$RHS),
3615               (UXTAB16 GPR:$LHS, GPR:$RHS, 0)>;
3616def : ARMV6Pat<(int_arm_uxtab16 GPR:$LHS, (rotr GPR:$RHS, rot_imm:$rot)),
3617               (UXTAB16 GPR:$LHS, GPR:$RHS, rot_imm:$rot)>;
3618
3619
3620def SBFX  : I<(outs GPRnopc:$Rd),
3621              (ins GPRnopc:$Rn, imm0_31:$lsb, imm1_32:$width),
3622               AddrMode1, 4, IndexModeNone, DPFrm, IIC_iUNAsi,
3623               "sbfx", "\t$Rd, $Rn, $lsb, $width", "", []>,
3624               Requires<[IsARM, HasV6T2]> {
3625  bits<4> Rd;
3626  bits<4> Rn;
3627  bits<5> lsb;
3628  bits<5> width;
3629  let Inst{27-21} = 0b0111101;
3630  let Inst{6-4}   = 0b101;
3631  let Inst{20-16} = width;
3632  let Inst{15-12} = Rd;
3633  let Inst{11-7}  = lsb;
3634  let Inst{3-0}   = Rn;
3635}
3636
3637def UBFX  : I<(outs GPRnopc:$Rd),
3638              (ins GPRnopc:$Rn, imm0_31:$lsb, imm1_32:$width),
3639               AddrMode1, 4, IndexModeNone, DPFrm, IIC_iUNAsi,
3640               "ubfx", "\t$Rd, $Rn, $lsb, $width", "", []>,
3641               Requires<[IsARM, HasV6T2]> {
3642  bits<4> Rd;
3643  bits<4> Rn;
3644  bits<5> lsb;
3645  bits<5> width;
3646  let Inst{27-21} = 0b0111111;
3647  let Inst{6-4}   = 0b101;
3648  let Inst{20-16} = width;
3649  let Inst{15-12} = Rd;
3650  let Inst{11-7}  = lsb;
3651  let Inst{3-0}   = Rn;
3652}
3653
3654//===----------------------------------------------------------------------===//
3655//  Arithmetic Instructions.
3656//
3657
3658let isAdd = 1 in
3659defm ADD  : AsI1_bin_irs<0b0100, "add",
3660                         IIC_iALUi, IIC_iALUr, IIC_iALUsr, add, 1>;
3661defm SUB  : AsI1_bin_irs<0b0010, "sub",
3662                         IIC_iALUi, IIC_iALUr, IIC_iALUsr, sub>;
3663
3664// ADD and SUB with 's' bit set.
3665//
3666// Currently, ADDS/SUBS are pseudo opcodes that exist only in the
3667// selection DAG. They are "lowered" to real ADD/SUB opcodes by
3668// AdjustInstrPostInstrSelection where we determine whether or not to
3669// set the "s" bit based on CPSR liveness.
3670//
3671// FIXME: Eliminate ADDS/SUBS pseudo opcodes after adding tablegen
3672// support for an optional CPSR definition that corresponds to the DAG
3673// node's second value. We can then eliminate the implicit def of CPSR.
3674let isAdd = 1 in
3675defm ADDS : AsI1_bin_s_irs<IIC_iALUi, IIC_iALUr, IIC_iALUsr, ARMaddc, 1>;
3676defm SUBS : AsI1_bin_s_irs<IIC_iALUi, IIC_iALUr, IIC_iALUsr, ARMsubc>;
3677
3678def : ARMPat<(ARMsubs GPR:$Rn, mod_imm:$imm), (SUBSri $Rn, mod_imm:$imm)>;
3679def : ARMPat<(ARMsubs GPR:$Rn, GPR:$Rm), (SUBSrr $Rn, $Rm)>;
3680def : ARMPat<(ARMsubs GPR:$Rn, so_reg_imm:$shift),
3681             (SUBSrsi $Rn, so_reg_imm:$shift)>;
3682def : ARMPat<(ARMsubs GPR:$Rn, so_reg_reg:$shift),
3683             (SUBSrsr $Rn, so_reg_reg:$shift)>;
3684
3685
3686let isAdd = 1 in
3687defm ADC : AI1_adde_sube_irs<0b0101, "adc", ARMadde, 1>;
3688defm SBC : AI1_adde_sube_irs<0b0110, "sbc", ARMsube>;
3689
3690defm RSB  : AsI1_rbin_irs<0b0011, "rsb",
3691                          IIC_iALUi, IIC_iALUr, IIC_iALUsr,
3692                          sub>;
3693
3694// FIXME: Eliminate them if we can write def : Pat patterns which defines
3695// CPSR and the implicit def of CPSR is not needed.
3696defm RSBS : AsI1_rbin_s_is<IIC_iALUi, IIC_iALUr, IIC_iALUsr, ARMsubc>;
3697
3698defm RSC : AI1_rsc_irs<0b0111, "rsc", ARMsube>;
3699
3700// (sub X, imm) gets canonicalized to (add X, -imm).  Match this form.
3701// The assume-no-carry-in form uses the negation of the input since add/sub
3702// assume opposite meanings of the carry flag (i.e., carry == !borrow).
3703// See the definition of AddWithCarry() in the ARM ARM A2.2.1 for the gory
3704// details.
3705def : ARMPat<(add     GPR:$src, mod_imm_neg:$imm),
3706             (SUBri   GPR:$src, mod_imm_neg:$imm)>;
3707def : ARMPat<(ARMaddc GPR:$src, mod_imm_neg:$imm),
3708             (SUBSri  GPR:$src, mod_imm_neg:$imm)>;
3709
3710def : ARMPat<(add     GPR:$src, imm0_65535_neg:$imm),
3711             (SUBrr   GPR:$src, (MOVi16 (imm_neg_XFORM imm:$imm)))>,
3712             Requires<[IsARM, HasV6T2]>;
3713def : ARMPat<(ARMaddc GPR:$src, imm0_65535_neg:$imm),
3714             (SUBSrr  GPR:$src, (MOVi16 (imm_neg_XFORM imm:$imm)))>,
3715             Requires<[IsARM, HasV6T2]>;
3716
3717// The with-carry-in form matches bitwise not instead of the negation.
3718// Effectively, the inverse interpretation of the carry flag already accounts
3719// for part of the negation.
3720def : ARMPat<(ARMadde GPR:$src, mod_imm_not:$imm, CPSR),
3721             (SBCri   GPR:$src, mod_imm_not:$imm)>;
3722def : ARMPat<(ARMadde GPR:$src, imm0_65535_neg:$imm, CPSR),
3723             (SBCrr   GPR:$src, (MOVi16 (imm_not_XFORM imm:$imm)))>,
3724             Requires<[IsARM, HasV6T2]>;
3725
3726// Note: These are implemented in C++ code, because they have to generate
3727// ADD/SUBrs instructions, which use a complex pattern that a xform function
3728// cannot produce.
3729// (mul X, 2^n+1) -> (add (X << n), X)
3730// (mul X, 2^n-1) -> (rsb X, (X << n))
3731
3732// ARM Arithmetic Instruction
3733// GPR:$dst = GPR:$a op GPR:$b
3734class AAI<bits<8> op27_20, bits<8> op11_4, string opc,
3735          list<dag> pattern = [],
3736          dag iops = (ins GPRnopc:$Rn, GPRnopc:$Rm),
3737          string asm = "\t$Rd, $Rn, $Rm">
3738  : AI<(outs GPRnopc:$Rd), iops, DPFrm, IIC_iALUr, opc, asm, pattern>,
3739    Sched<[WriteALU, ReadALU, ReadALU]> {
3740  bits<4> Rn;
3741  bits<4> Rd;
3742  bits<4> Rm;
3743  let Inst{27-20} = op27_20;
3744  let Inst{11-4} = op11_4;
3745  let Inst{19-16} = Rn;
3746  let Inst{15-12} = Rd;
3747  let Inst{3-0}   = Rm;
3748
3749  let Unpredictable{11-8} = 0b1111;
3750}
3751
3752// Wrappers around the AAI class
3753class AAIRevOpr<bits<8> op27_20, bits<8> op11_4, string opc,
3754                list<dag> pattern = []>
3755  : AAI<op27_20, op11_4, opc,
3756        pattern,
3757        (ins GPRnopc:$Rm, GPRnopc:$Rn),
3758        "\t$Rd, $Rm, $Rn">;
3759
3760class AAIIntrinsic<bits<8> op27_20, bits<8> op11_4, string opc,
3761                 Intrinsic intrinsic>
3762  : AAI<op27_20, op11_4, opc,
3763        [(set GPRnopc:$Rd, (intrinsic GPRnopc:$Rn, GPRnopc:$Rm))]>;
3764
3765// Saturating add/subtract
3766let hasSideEffects = 1 in {
3767def QADD8   : AAIIntrinsic<0b01100010, 0b11111001, "qadd8", int_arm_qadd8>;
3768def QADD16  : AAIIntrinsic<0b01100010, 0b11110001, "qadd16", int_arm_qadd16>;
3769def QSUB16  : AAIIntrinsic<0b01100010, 0b11110111, "qsub16", int_arm_qsub16>;
3770def QSUB8   : AAIIntrinsic<0b01100010, 0b11111111, "qsub8", int_arm_qsub8>;
3771
3772def QDADD   : AAIRevOpr<0b00010100, 0b00000101, "qdadd",
3773              [(set GPRnopc:$Rd, (int_arm_qadd (int_arm_qadd GPRnopc:$Rm,
3774                                                             GPRnopc:$Rm),
3775                                  GPRnopc:$Rn))]>;
3776def QDSUB   : AAIRevOpr<0b00010110, 0b00000101, "qdsub",
3777              [(set GPRnopc:$Rd, (int_arm_qsub GPRnopc:$Rm,
3778                                  (int_arm_qadd GPRnopc:$Rn, GPRnopc:$Rn)))]>;
3779def QSUB    : AAIRevOpr<0b00010010, 0b00000101, "qsub",
3780              [(set GPRnopc:$Rd, (int_arm_qsub GPRnopc:$Rm, GPRnopc:$Rn))]>;
3781let DecoderMethod = "DecodeQADDInstruction" in
3782  def QADD    : AAIRevOpr<0b00010000, 0b00000101, "qadd",
3783                [(set GPRnopc:$Rd, (int_arm_qadd GPRnopc:$Rm, GPRnopc:$Rn))]>;
3784}
3785
3786def : ARMV5TEPat<(saddsat GPR:$a, GPR:$b),
3787                 (QADD GPR:$a, GPR:$b)>;
3788def : ARMV5TEPat<(ssubsat GPR:$a, GPR:$b),
3789                 (QSUB GPR:$a, GPR:$b)>;
3790def : ARMV5TEPat<(saddsat(saddsat rGPR:$Rm, rGPR:$Rm), rGPR:$Rn),
3791                 (QDADD rGPR:$Rm, rGPR:$Rn)>;
3792def : ARMV5TEPat<(ssubsat rGPR:$Rm, (saddsat rGPR:$Rn, rGPR:$Rn)),
3793                 (QDSUB rGPR:$Rm, rGPR:$Rn)>;
3794def : ARMV6Pat<(ARMqadd8b rGPR:$Rm, rGPR:$Rn),
3795               (QADD8 rGPR:$Rm, rGPR:$Rn)>;
3796def : ARMV6Pat<(ARMqsub8b rGPR:$Rm, rGPR:$Rn),
3797               (QSUB8 rGPR:$Rm, rGPR:$Rn)>;
3798def : ARMV6Pat<(ARMqadd16b rGPR:$Rm, rGPR:$Rn),
3799               (QADD16 rGPR:$Rm, rGPR:$Rn)>;
3800def : ARMV6Pat<(ARMqsub16b rGPR:$Rm, rGPR:$Rn),
3801               (QSUB16 rGPR:$Rm, rGPR:$Rn)>;
3802
3803def UQADD16 : AAIIntrinsic<0b01100110, 0b11110001, "uqadd16", int_arm_uqadd16>;
3804def UQADD8  : AAIIntrinsic<0b01100110, 0b11111001, "uqadd8", int_arm_uqadd8>;
3805def UQSUB16 : AAIIntrinsic<0b01100110, 0b11110111, "uqsub16", int_arm_uqsub16>;
3806def UQSUB8  : AAIIntrinsic<0b01100110, 0b11111111, "uqsub8", int_arm_uqsub8>;
3807def QASX    : AAIIntrinsic<0b01100010, 0b11110011, "qasx", int_arm_qasx>;
3808def QSAX    : AAIIntrinsic<0b01100010, 0b11110101, "qsax", int_arm_qsax>;
3809def UQASX   : AAIIntrinsic<0b01100110, 0b11110011, "uqasx", int_arm_uqasx>;
3810def UQSAX   : AAIIntrinsic<0b01100110, 0b11110101, "uqsax", int_arm_uqsax>;
3811
3812// Signed/Unsigned add/subtract
3813
3814def SASX   : AAIIntrinsic<0b01100001, 0b11110011, "sasx", int_arm_sasx>;
3815def SADD16 : AAIIntrinsic<0b01100001, 0b11110001, "sadd16", int_arm_sadd16>;
3816def SADD8  : AAIIntrinsic<0b01100001, 0b11111001, "sadd8", int_arm_sadd8>;
3817def SSAX   : AAIIntrinsic<0b01100001, 0b11110101, "ssax", int_arm_ssax>;
3818def SSUB16 : AAIIntrinsic<0b01100001, 0b11110111, "ssub16", int_arm_ssub16>;
3819def SSUB8  : AAIIntrinsic<0b01100001, 0b11111111, "ssub8", int_arm_ssub8>;
3820def UASX   : AAIIntrinsic<0b01100101, 0b11110011, "uasx", int_arm_uasx>;
3821def UADD16 : AAIIntrinsic<0b01100101, 0b11110001, "uadd16", int_arm_uadd16>;
3822def UADD8  : AAIIntrinsic<0b01100101, 0b11111001, "uadd8", int_arm_uadd8>;
3823def USAX   : AAIIntrinsic<0b01100101, 0b11110101, "usax", int_arm_usax>;
3824def USUB16 : AAIIntrinsic<0b01100101, 0b11110111, "usub16", int_arm_usub16>;
3825def USUB8  : AAIIntrinsic<0b01100101, 0b11111111, "usub8", int_arm_usub8>;
3826
3827// Signed/Unsigned halving add/subtract
3828
3829def SHASX   : AAIIntrinsic<0b01100011, 0b11110011, "shasx", int_arm_shasx>;
3830def SHADD16 : AAIIntrinsic<0b01100011, 0b11110001, "shadd16", int_arm_shadd16>;
3831def SHADD8  : AAIIntrinsic<0b01100011, 0b11111001, "shadd8", int_arm_shadd8>;
3832def SHSAX   : AAIIntrinsic<0b01100011, 0b11110101, "shsax", int_arm_shsax>;
3833def SHSUB16 : AAIIntrinsic<0b01100011, 0b11110111, "shsub16", int_arm_shsub16>;
3834def SHSUB8  : AAIIntrinsic<0b01100011, 0b11111111, "shsub8", int_arm_shsub8>;
3835def UHASX   : AAIIntrinsic<0b01100111, 0b11110011, "uhasx", int_arm_uhasx>;
3836def UHADD16 : AAIIntrinsic<0b01100111, 0b11110001, "uhadd16", int_arm_uhadd16>;
3837def UHADD8  : AAIIntrinsic<0b01100111, 0b11111001, "uhadd8", int_arm_uhadd8>;
3838def UHSAX   : AAIIntrinsic<0b01100111, 0b11110101, "uhsax", int_arm_uhsax>;
3839def UHSUB16 : AAIIntrinsic<0b01100111, 0b11110111, "uhsub16", int_arm_uhsub16>;
3840def UHSUB8  : AAIIntrinsic<0b01100111, 0b11111111, "uhsub8", int_arm_uhsub8>;
3841
3842// Unsigned Sum of Absolute Differences [and Accumulate].
3843
3844def USAD8  : AI<(outs GPR:$Rd), (ins GPR:$Rn, GPR:$Rm),
3845                MulFrm /* for convenience */, NoItinerary, "usad8",
3846                "\t$Rd, $Rn, $Rm",
3847             [(set GPR:$Rd, (int_arm_usad8 GPR:$Rn, GPR:$Rm))]>,
3848             Requires<[IsARM, HasV6]>, Sched<[WriteALU, ReadALU, ReadALU]> {
3849  bits<4> Rd;
3850  bits<4> Rn;
3851  bits<4> Rm;
3852  let Inst{27-20} = 0b01111000;
3853  let Inst{15-12} = 0b1111;
3854  let Inst{7-4} = 0b0001;
3855  let Inst{19-16} = Rd;
3856  let Inst{11-8} = Rm;
3857  let Inst{3-0} = Rn;
3858}
3859def USADA8 : AI<(outs GPR:$Rd), (ins GPR:$Rn, GPR:$Rm, GPR:$Ra),
3860                MulFrm /* for convenience */, NoItinerary, "usada8",
3861                "\t$Rd, $Rn, $Rm, $Ra",
3862             [(set GPR:$Rd, (int_arm_usada8 GPR:$Rn, GPR:$Rm, GPR:$Ra))]>,
3863             Requires<[IsARM, HasV6]>, Sched<[WriteALU, ReadALU, ReadALU]>{
3864  bits<4> Rd;
3865  bits<4> Rn;
3866  bits<4> Rm;
3867  bits<4> Ra;
3868  let Inst{27-20} = 0b01111000;
3869  let Inst{7-4} = 0b0001;
3870  let Inst{19-16} = Rd;
3871  let Inst{15-12} = Ra;
3872  let Inst{11-8} = Rm;
3873  let Inst{3-0} = Rn;
3874}
3875
3876// Signed/Unsigned saturate
3877def SSAT : AI<(outs GPRnopc:$Rd),
3878              (ins imm1_32:$sat_imm, GPRnopc:$Rn, shift_imm:$sh),
3879              SatFrm, NoItinerary, "ssat", "\t$Rd, $sat_imm, $Rn$sh", []>,
3880              Requires<[IsARM,HasV6]>{
3881  bits<4> Rd;
3882  bits<5> sat_imm;
3883  bits<4> Rn;
3884  bits<8> sh;
3885  let Inst{27-21} = 0b0110101;
3886  let Inst{5-4} = 0b01;
3887  let Inst{20-16} = sat_imm;
3888  let Inst{15-12} = Rd;
3889  let Inst{11-7} = sh{4-0};
3890  let Inst{6} = sh{5};
3891  let Inst{3-0} = Rn;
3892}
3893
3894def SSAT16 : AI<(outs GPRnopc:$Rd),
3895                (ins imm1_16:$sat_imm, GPRnopc:$Rn), SatFrm,
3896                NoItinerary, "ssat16", "\t$Rd, $sat_imm, $Rn", []>,
3897                Requires<[IsARM,HasV6]>{
3898  bits<4> Rd;
3899  bits<4> sat_imm;
3900  bits<4> Rn;
3901  let Inst{27-20} = 0b01101010;
3902  let Inst{11-4} = 0b11110011;
3903  let Inst{15-12} = Rd;
3904  let Inst{19-16} = sat_imm;
3905  let Inst{3-0} = Rn;
3906}
3907
3908def USAT : AI<(outs GPRnopc:$Rd),
3909              (ins imm0_31:$sat_imm, GPRnopc:$Rn, shift_imm:$sh),
3910              SatFrm, NoItinerary, "usat", "\t$Rd, $sat_imm, $Rn$sh", []>,
3911              Requires<[IsARM,HasV6]> {
3912  bits<4> Rd;
3913  bits<5> sat_imm;
3914  bits<4> Rn;
3915  bits<8> sh;
3916  let Inst{27-21} = 0b0110111;
3917  let Inst{5-4} = 0b01;
3918  let Inst{15-12} = Rd;
3919  let Inst{11-7} = sh{4-0};
3920  let Inst{6} = sh{5};
3921  let Inst{20-16} = sat_imm;
3922  let Inst{3-0} = Rn;
3923}
3924
3925def USAT16 : AI<(outs GPRnopc:$Rd),
3926                (ins imm0_15:$sat_imm, GPRnopc:$Rn), SatFrm,
3927                NoItinerary, "usat16", "\t$Rd, $sat_imm, $Rn", []>,
3928                Requires<[IsARM,HasV6]>{
3929  bits<4> Rd;
3930  bits<4> sat_imm;
3931  bits<4> Rn;
3932  let Inst{27-20} = 0b01101110;
3933  let Inst{11-4} = 0b11110011;
3934  let Inst{15-12} = Rd;
3935  let Inst{19-16} = sat_imm;
3936  let Inst{3-0} = Rn;
3937}
3938
3939def : ARMV6Pat<(int_arm_ssat GPRnopc:$a, imm1_32:$pos),
3940               (SSAT imm1_32:$pos, GPRnopc:$a, 0)>;
3941def : ARMV6Pat<(int_arm_usat GPRnopc:$a, imm0_31:$pos),
3942               (USAT imm0_31:$pos, GPRnopc:$a, 0)>;
3943def : ARMPat<(ARMssatnoshift GPRnopc:$Rn, imm0_31:$imm),
3944             (SSAT imm0_31:$imm, GPRnopc:$Rn, 0)>;
3945def : ARMPat<(ARMusatnoshift GPRnopc:$Rn, imm0_31:$imm),
3946             (USAT imm0_31:$imm, GPRnopc:$Rn, 0)>;
3947def : ARMV6Pat<(int_arm_ssat16 GPRnopc:$a, imm1_16:$pos),
3948               (SSAT16 imm1_16:$pos, GPRnopc:$a)>;
3949def : ARMV6Pat<(int_arm_usat16 GPRnopc:$a, imm0_15:$pos),
3950               (USAT16 imm0_15:$pos, GPRnopc:$a)>;
3951
3952//===----------------------------------------------------------------------===//
3953//  Bitwise Instructions.
3954//
3955
3956defm AND   : AsI1_bin_irs<0b0000, "and",
3957                          IIC_iBITi, IIC_iBITr, IIC_iBITsr, and, 1>;
3958defm ORR   : AsI1_bin_irs<0b1100, "orr",
3959                          IIC_iBITi, IIC_iBITr, IIC_iBITsr, or, 1>;
3960defm EOR   : AsI1_bin_irs<0b0001, "eor",
3961                          IIC_iBITi, IIC_iBITr, IIC_iBITsr, xor, 1>;
3962defm BIC   : AsI1_bin_irs<0b1110, "bic",
3963                          IIC_iBITi, IIC_iBITr, IIC_iBITsr,
3964                          BinOpFrag<(and node:$LHS, (not node:$RHS))>>;
3965
3966// FIXME: bf_inv_mask_imm should be two operands, the lsb and the msb, just
3967// like in the actual instruction encoding. The complexity of mapping the mask
3968// to the lsb/msb pair should be handled by ISel, not encapsulated in the
3969// instruction description.
3970def BFC    : I<(outs GPR:$Rd), (ins GPR:$src, bf_inv_mask_imm:$imm),
3971               AddrMode1, 4, IndexModeNone, DPFrm, IIC_iUNAsi,
3972               "bfc", "\t$Rd, $imm", "$src = $Rd",
3973               [(set GPR:$Rd, (and GPR:$src, bf_inv_mask_imm:$imm))]>,
3974               Requires<[IsARM, HasV6T2]> {
3975  bits<4> Rd;
3976  bits<10> imm;
3977  let Inst{27-21} = 0b0111110;
3978  let Inst{6-0}   = 0b0011111;
3979  let Inst{15-12} = Rd;
3980  let Inst{11-7}  = imm{4-0}; // lsb
3981  let Inst{20-16} = imm{9-5}; // msb
3982}
3983
3984// A8.6.18  BFI - Bitfield insert (Encoding A1)
3985def BFI:I<(outs GPRnopc:$Rd), (ins GPRnopc:$src, GPR:$Rn, bf_inv_mask_imm:$imm),
3986          AddrMode1, 4, IndexModeNone, DPFrm, IIC_iUNAsi,
3987          "bfi", "\t$Rd, $Rn, $imm", "$src = $Rd",
3988          [(set GPRnopc:$Rd, (ARMbfi GPRnopc:$src, GPR:$Rn,
3989                           bf_inv_mask_imm:$imm))]>,
3990          Requires<[IsARM, HasV6T2]> {
3991  bits<4> Rd;
3992  bits<4> Rn;
3993  bits<10> imm;
3994  let Inst{27-21} = 0b0111110;
3995  let Inst{6-4}   = 0b001; // Rn: Inst{3-0} != 15
3996  let Inst{15-12} = Rd;
3997  let Inst{11-7}  = imm{4-0}; // lsb
3998  let Inst{20-16} = imm{9-5}; // width
3999  let Inst{3-0}   = Rn;
4000}
4001
4002def  MVNr  : AsI1<0b1111, (outs GPR:$Rd), (ins GPR:$Rm), DPFrm, IIC_iMVNr,
4003                  "mvn", "\t$Rd, $Rm",
4004                  [(set GPR:$Rd, (not GPR:$Rm))]>, UnaryDP, Sched<[WriteALU]> {
4005  bits<4> Rd;
4006  bits<4> Rm;
4007  let Inst{25} = 0;
4008  let Inst{19-16} = 0b0000;
4009  let Inst{11-4} = 0b00000000;
4010  let Inst{15-12} = Rd;
4011  let Inst{3-0} = Rm;
4012
4013  let Unpredictable{19-16} = 0b1111;
4014}
4015def  MVNsi  : AsI1<0b1111, (outs GPR:$Rd), (ins so_reg_imm:$shift),
4016                  DPSoRegImmFrm, IIC_iMVNsr, "mvn", "\t$Rd, $shift",
4017                  [(set GPR:$Rd, (not so_reg_imm:$shift))]>, UnaryDP,
4018                  Sched<[WriteALU]> {
4019  bits<4> Rd;
4020  bits<12> shift;
4021  let Inst{25} = 0;
4022  let Inst{19-16} = 0b0000;
4023  let Inst{15-12} = Rd;
4024  let Inst{11-5} = shift{11-5};
4025  let Inst{4} = 0;
4026  let Inst{3-0} = shift{3-0};
4027
4028  let Unpredictable{19-16} = 0b1111;
4029}
4030def  MVNsr  : AsI1<0b1111, (outs GPRnopc:$Rd), (ins so_reg_reg:$shift),
4031                  DPSoRegRegFrm, IIC_iMVNsr, "mvn", "\t$Rd, $shift",
4032                  [(set GPRnopc:$Rd, (not so_reg_reg:$shift))]>, UnaryDP,
4033                  Sched<[WriteALU]> {
4034  bits<4> Rd;
4035  bits<12> shift;
4036  let Inst{25} = 0;
4037  let Inst{19-16} = 0b0000;
4038  let Inst{15-12} = Rd;
4039  let Inst{11-8} = shift{11-8};
4040  let Inst{7} = 0;
4041  let Inst{6-5} = shift{6-5};
4042  let Inst{4} = 1;
4043  let Inst{3-0} = shift{3-0};
4044
4045  let Unpredictable{19-16} = 0b1111;
4046}
4047let isReMaterializable = 1, isAsCheapAsAMove = 1, isMoveImm = 1 in
4048def  MVNi  : AsI1<0b1111, (outs GPR:$Rd), (ins mod_imm:$imm), DPFrm,
4049                  IIC_iMVNi, "mvn", "\t$Rd, $imm",
4050                  [(set GPR:$Rd, mod_imm_not:$imm)]>,UnaryDP, Sched<[WriteALU]> {
4051  bits<4> Rd;
4052  bits<12> imm;
4053  let Inst{25} = 1;
4054  let Inst{19-16} = 0b0000;
4055  let Inst{15-12} = Rd;
4056  let Inst{11-0} = imm;
4057}
4058
4059let AddedComplexity = 1 in
4060def : ARMPat<(and   GPR:$src, mod_imm_not:$imm),
4061             (BICri GPR:$src, mod_imm_not:$imm)>;
4062
4063//===----------------------------------------------------------------------===//
4064//  Multiply Instructions.
4065//
4066class AsMul1I32<bits<7> opcod, dag oops, dag iops, InstrItinClass itin,
4067             string opc, string asm, list<dag> pattern>
4068  : AsMul1I<opcod, oops, iops, itin, opc, asm, pattern> {
4069  bits<4> Rd;
4070  bits<4> Rm;
4071  bits<4> Rn;
4072  let Inst{19-16} = Rd;
4073  let Inst{11-8}  = Rm;
4074  let Inst{3-0}   = Rn;
4075}
4076class AsMul1I64<bits<7> opcod, dag oops, dag iops, InstrItinClass itin,
4077             string opc, string asm, list<dag> pattern>
4078  : AsMul1I<opcod, oops, iops, itin, opc, asm, pattern> {
4079  bits<4> RdLo;
4080  bits<4> RdHi;
4081  bits<4> Rm;
4082  bits<4> Rn;
4083  let Inst{19-16} = RdHi;
4084  let Inst{15-12} = RdLo;
4085  let Inst{11-8}  = Rm;
4086  let Inst{3-0}   = Rn;
4087}
4088class AsMla1I64<bits<7> opcod, dag oops, dag iops, InstrItinClass itin,
4089             string opc, string asm, list<dag> pattern>
4090  : AsMul1I<opcod, oops, iops, itin, opc, asm, pattern> {
4091  bits<4> RdLo;
4092  bits<4> RdHi;
4093  bits<4> Rm;
4094  bits<4> Rn;
4095  let Inst{19-16} = RdHi;
4096  let Inst{15-12} = RdLo;
4097  let Inst{11-8}  = Rm;
4098  let Inst{3-0}   = Rn;
4099}
4100
4101// FIXME: The v5 pseudos are only necessary for the additional Constraint
4102//        property. Remove them when it's possible to add those properties
4103//        on an individual MachineInstr, not just an instruction description.
4104let isCommutable = 1, TwoOperandAliasConstraint = "$Rn = $Rd" in {
4105def MUL : AsMul1I32<0b0000000, (outs GPRnopc:$Rd),
4106                    (ins GPRnopc:$Rn, GPRnopc:$Rm),
4107                    IIC_iMUL32, "mul", "\t$Rd, $Rn, $Rm",
4108                  [(set GPRnopc:$Rd, (mul GPRnopc:$Rn, GPRnopc:$Rm))]>,
4109                  Requires<[IsARM, HasV6]>,
4110         Sched<[WriteMUL32, ReadMUL, ReadMUL]> {
4111  let Inst{15-12} = 0b0000;
4112  let Unpredictable{15-12} = 0b1111;
4113}
4114
4115let Constraints = "@earlyclobber $Rd" in
4116def MULv5: ARMPseudoExpand<(outs GPRnopc:$Rd), (ins GPRnopc:$Rn, GPRnopc:$Rm,
4117                                                    pred:$p, cc_out:$s),
4118                           4, IIC_iMUL32,
4119               [(set GPRnopc:$Rd, (mul GPRnopc:$Rn, GPRnopc:$Rm))],
4120               (MUL GPRnopc:$Rd, GPRnopc:$Rn, GPRnopc:$Rm, pred:$p, cc_out:$s)>,
4121               Requires<[IsARM, NoV6, UseMulOps]>,
4122           Sched<[WriteMUL32, ReadMUL, ReadMUL]>;
4123}
4124
4125def MLA  : AsMul1I32<0b0000001, (outs GPRnopc:$Rd),
4126                     (ins GPRnopc:$Rn, GPRnopc:$Rm, GPRnopc:$Ra),
4127                     IIC_iMAC32, "mla", "\t$Rd, $Rn, $Rm, $Ra",
4128        [(set GPRnopc:$Rd, (add (mul GPRnopc:$Rn, GPRnopc:$Rm), GPRnopc:$Ra))]>,
4129                     Requires<[IsARM, HasV6, UseMulOps]>,
4130        Sched<[WriteMAC32, ReadMUL, ReadMUL, ReadMAC]> {
4131  bits<4> Ra;
4132  let Inst{15-12} = Ra;
4133}
4134
4135let Constraints = "@earlyclobber $Rd" in
4136def MLAv5: ARMPseudoExpand<(outs GPRnopc:$Rd),
4137                           (ins GPRnopc:$Rn, GPRnopc:$Rm, GPRnopc:$Ra,
4138                            pred:$p, cc_out:$s), 4, IIC_iMAC32,
4139         [(set GPRnopc:$Rd, (add (mul GPRnopc:$Rn, GPRnopc:$Rm), GPRnopc:$Ra))],
4140  (MLA GPRnopc:$Rd, GPRnopc:$Rn, GPRnopc:$Rm, GPRnopc:$Ra, pred:$p, cc_out:$s)>,
4141                           Requires<[IsARM, NoV6]>,
4142           Sched<[WriteMAC32, ReadMUL, ReadMUL, ReadMAC]>;
4143
4144def MLS  : AMul1I<0b0000011, (outs GPR:$Rd), (ins GPR:$Rn, GPR:$Rm, GPR:$Ra),
4145                   IIC_iMAC32, "mls", "\t$Rd, $Rn, $Rm, $Ra",
4146                   [(set GPR:$Rd, (sub GPR:$Ra, (mul GPR:$Rn, GPR:$Rm)))]>,
4147                   Requires<[IsARM, HasV6T2, UseMulOps]>,
4148          Sched<[WriteMAC32, ReadMUL, ReadMUL, ReadMAC]> {
4149  bits<4> Rd;
4150  bits<4> Rm;
4151  bits<4> Rn;
4152  bits<4> Ra;
4153  let Inst{19-16} = Rd;
4154  let Inst{15-12} = Ra;
4155  let Inst{11-8}  = Rm;
4156  let Inst{3-0}   = Rn;
4157}
4158
4159// Extra precision multiplies with low / high results
4160let hasSideEffects = 0 in {
4161let isCommutable = 1 in {
4162def SMULL : AsMul1I64<0b0000110, (outs GPR:$RdLo, GPR:$RdHi),
4163                                 (ins GPR:$Rn, GPR:$Rm), IIC_iMUL64,
4164                    "smull", "\t$RdLo, $RdHi, $Rn, $Rm",
4165                    [(set GPR:$RdLo, GPR:$RdHi,
4166                          (smullohi GPR:$Rn, GPR:$Rm))]>,
4167                    Requires<[IsARM, HasV6]>,
4168           Sched<[WriteMUL64Lo, WriteMUL64Hi, ReadMUL, ReadMUL]>;
4169
4170def UMULL : AsMul1I64<0b0000100, (outs GPR:$RdLo, GPR:$RdHi),
4171                                 (ins GPR:$Rn, GPR:$Rm), IIC_iMUL64,
4172                    "umull", "\t$RdLo, $RdHi, $Rn, $Rm",
4173                    [(set GPR:$RdLo, GPR:$RdHi,
4174                          (umullohi GPR:$Rn, GPR:$Rm))]>,
4175                    Requires<[IsARM, HasV6]>,
4176           Sched<[WriteMAC64Lo, WriteMAC64Hi, ReadMUL, ReadMUL]>;
4177
4178let Constraints = "@earlyclobber $RdLo,@earlyclobber $RdHi" in {
4179def SMULLv5 : ARMPseudoExpand<(outs GPR:$RdLo, GPR:$RdHi),
4180                            (ins GPR:$Rn, GPR:$Rm, pred:$p, cc_out:$s),
4181                            4, IIC_iMUL64,
4182                            [(set GPR:$RdLo, GPR:$RdHi,
4183                                  (smullohi GPR:$Rn, GPR:$Rm))],
4184          (SMULL GPR:$RdLo, GPR:$RdHi, GPR:$Rn, GPR:$Rm, pred:$p, cc_out:$s)>,
4185                           Requires<[IsARM, NoV6]>,
4186              Sched<[WriteMUL64Lo, WriteMUL64Hi, ReadMUL, ReadMUL]>;
4187
4188def UMULLv5 : ARMPseudoExpand<(outs GPR:$RdLo, GPR:$RdHi),
4189                            (ins GPR:$Rn, GPR:$Rm, pred:$p, cc_out:$s),
4190                            4, IIC_iMUL64,
4191                            [(set GPR:$RdLo, GPR:$RdHi,
4192                                  (umullohi GPR:$Rn, GPR:$Rm))],
4193          (UMULL GPR:$RdLo, GPR:$RdHi, GPR:$Rn, GPR:$Rm, pred:$p, cc_out:$s)>,
4194                           Requires<[IsARM, NoV6]>,
4195             Sched<[WriteMUL64Lo, WriteMUL64Hi, ReadMUL, ReadMUL]>;
4196}
4197}
4198
4199// Multiply + accumulate
4200def SMLAL : AsMla1I64<0b0000111, (outs GPR:$RdLo, GPR:$RdHi),
4201                        (ins GPR:$Rn, GPR:$Rm, GPR:$RLo, GPR:$RHi), IIC_iMAC64,
4202                    "smlal", "\t$RdLo, $RdHi, $Rn, $Rm", []>,
4203         RegConstraint<"$RLo = $RdLo, $RHi = $RdHi">, Requires<[IsARM, HasV6]>,
4204           Sched<[WriteMAC64Lo, WriteMAC64Hi, ReadMUL, ReadMUL, ReadMAC, ReadMAC]>;
4205def UMLAL : AsMla1I64<0b0000101, (outs GPR:$RdLo, GPR:$RdHi),
4206                        (ins GPR:$Rn, GPR:$Rm, GPR:$RLo, GPR:$RHi), IIC_iMAC64,
4207                    "umlal", "\t$RdLo, $RdHi, $Rn, $Rm", []>,
4208         RegConstraint<"$RLo = $RdLo, $RHi = $RdHi">, Requires<[IsARM, HasV6]>,
4209            Sched<[WriteMAC64Lo, WriteMAC64Hi, ReadMUL, ReadMUL, ReadMAC, ReadMAC]>;
4210
4211def UMAAL : AMul1I <0b0000010, (outs GPR:$RdLo, GPR:$RdHi),
4212                               (ins GPR:$Rn, GPR:$Rm, GPR:$RLo, GPR:$RHi),
4213                               IIC_iMAC64,
4214                    "umaal", "\t$RdLo, $RdHi, $Rn, $Rm", []>,
4215         RegConstraint<"$RLo = $RdLo, $RHi = $RdHi">, Requires<[IsARM, HasV6]>,
4216            Sched<[WriteMAC64Lo, WriteMAC64Hi, ReadMUL, ReadMUL, ReadMAC, ReadMAC]> {
4217  bits<4> RdLo;
4218  bits<4> RdHi;
4219  bits<4> Rm;
4220  bits<4> Rn;
4221  let Inst{19-16} = RdHi;
4222  let Inst{15-12} = RdLo;
4223  let Inst{11-8}  = Rm;
4224  let Inst{3-0}   = Rn;
4225}
4226
4227let Constraints =
4228    "@earlyclobber $RdLo,@earlyclobber $RdHi,$RLo = $RdLo,$RHi = $RdHi" in {
4229def SMLALv5 : ARMPseudoExpand<(outs GPR:$RdLo, GPR:$RdHi),
4230                (ins GPR:$Rn, GPR:$Rm, GPR:$RLo, GPR:$RHi, pred:$p, cc_out:$s),
4231                              4, IIC_iMAC64, [],
4232             (SMLAL GPR:$RdLo, GPR:$RdHi, GPR:$Rn, GPR:$Rm, GPR:$RLo, GPR:$RHi,
4233                           pred:$p, cc_out:$s)>,
4234                           Requires<[IsARM, NoV6]>,
4235              Sched<[WriteMAC64Lo, WriteMAC64Hi, ReadMUL, ReadMUL, ReadMAC, ReadMAC]>;
4236def UMLALv5 : ARMPseudoExpand<(outs GPR:$RdLo, GPR:$RdHi),
4237                (ins GPR:$Rn, GPR:$Rm, GPR:$RLo, GPR:$RHi, pred:$p, cc_out:$s),
4238                              4, IIC_iMAC64, [],
4239             (UMLAL GPR:$RdLo, GPR:$RdHi, GPR:$Rn, GPR:$Rm, GPR:$RLo, GPR:$RHi,
4240                           pred:$p, cc_out:$s)>,
4241                           Requires<[IsARM, NoV6]>,
4242              Sched<[WriteMAC64Lo, WriteMAC64Hi, ReadMUL, ReadMUL, ReadMAC, ReadMAC]>;
4243}
4244
4245} // hasSideEffects
4246
4247// Most significant word multiply
4248def SMMUL : AMul2I <0b0111010, 0b0001, (outs GPR:$Rd), (ins GPR:$Rn, GPR:$Rm),
4249               IIC_iMUL32, "smmul", "\t$Rd, $Rn, $Rm",
4250               [(set GPR:$Rd, (mulhs GPR:$Rn, GPR:$Rm))]>,
4251            Requires<[IsARM, HasV6]>,
4252            Sched<[WriteMUL32, ReadMUL, ReadMUL]> {
4253  let Inst{15-12} = 0b1111;
4254}
4255
4256def SMMULR : AMul2I <0b0111010, 0b0011, (outs GPR:$Rd), (ins GPR:$Rn, GPR:$Rm),
4257               IIC_iMUL32, "smmulr", "\t$Rd, $Rn, $Rm",
4258               [(set GPR:$Rd, (ARMsmmlar GPR:$Rn, GPR:$Rm, (i32 0)))]>,
4259            Requires<[IsARM, HasV6]>,
4260             Sched<[WriteMUL32, ReadMUL, ReadMUL]>  {
4261  let Inst{15-12} = 0b1111;
4262}
4263
4264def SMMLA : AMul2Ia <0b0111010, 0b0001, (outs GPR:$Rd),
4265               (ins GPR:$Rn, GPR:$Rm, GPR:$Ra),
4266               IIC_iMAC32, "smmla", "\t$Rd, $Rn, $Rm, $Ra",
4267               [(set GPR:$Rd, (add (mulhs GPR:$Rn, GPR:$Rm), GPR:$Ra))]>,
4268            Requires<[IsARM, HasV6, UseMulOps]>,
4269            Sched<[WriteMAC32, ReadMUL, ReadMUL, ReadMAC]>;
4270
4271def SMMLAR : AMul2Ia <0b0111010, 0b0011, (outs GPR:$Rd),
4272               (ins GPR:$Rn, GPR:$Rm, GPR:$Ra),
4273               IIC_iMAC32, "smmlar", "\t$Rd, $Rn, $Rm, $Ra",
4274               [(set GPR:$Rd, (ARMsmmlar GPR:$Rn, GPR:$Rm, GPR:$Ra))]>,
4275            Requires<[IsARM, HasV6]>,
4276             Sched<[WriteMAC32, ReadMUL, ReadMUL, ReadMAC]>;
4277
4278def SMMLS : AMul2Ia <0b0111010, 0b1101, (outs GPR:$Rd),
4279               (ins GPR:$Rn, GPR:$Rm, GPR:$Ra),
4280               IIC_iMAC32, "smmls", "\t$Rd, $Rn, $Rm, $Ra", []>,
4281            Requires<[IsARM, HasV6, UseMulOps]>,
4282            Sched<[WriteMAC32, ReadMUL, ReadMUL, ReadMAC]>;
4283
4284def SMMLSR : AMul2Ia <0b0111010, 0b1111, (outs GPR:$Rd),
4285               (ins GPR:$Rn, GPR:$Rm, GPR:$Ra),
4286               IIC_iMAC32, "smmlsr", "\t$Rd, $Rn, $Rm, $Ra",
4287               [(set GPR:$Rd, (ARMsmmlsr GPR:$Rn, GPR:$Rm, GPR:$Ra))]>,
4288            Requires<[IsARM, HasV6]>,
4289             Sched<[WriteMAC32, ReadMUL, ReadMUL, ReadMAC]>;
4290
4291multiclass AI_smul<string opc> {
4292  def BB : AMulxyI<0b0001011, 0b00, (outs GPR:$Rd), (ins GPR:$Rn, GPR:$Rm),
4293              IIC_iMUL16, !strconcat(opc, "bb"), "\t$Rd, $Rn, $Rm",
4294              [(set GPR:$Rd, (bb_mul GPR:$Rn, GPR:$Rm))]>,
4295           Requires<[IsARM, HasV5TE]>,
4296           Sched<[WriteMUL16, ReadMUL, ReadMUL]>;
4297
4298  def BT : AMulxyI<0b0001011, 0b10, (outs GPR:$Rd), (ins GPR:$Rn, GPR:$Rm),
4299              IIC_iMUL16, !strconcat(opc, "bt"), "\t$Rd, $Rn, $Rm",
4300              [(set GPR:$Rd, (bt_mul GPR:$Rn, GPR:$Rm))]>,
4301           Requires<[IsARM, HasV5TE]>,
4302           Sched<[WriteMUL16, ReadMUL, ReadMUL]>;
4303
4304  def TB : AMulxyI<0b0001011, 0b01, (outs GPR:$Rd), (ins GPR:$Rn, GPR:$Rm),
4305              IIC_iMUL16, !strconcat(opc, "tb"), "\t$Rd, $Rn, $Rm",
4306              [(set GPR:$Rd, (tb_mul GPR:$Rn, GPR:$Rm))]>,
4307           Requires<[IsARM, HasV5TE]>,
4308           Sched<[WriteMUL16, ReadMUL, ReadMUL]>;
4309
4310  def TT : AMulxyI<0b0001011, 0b11, (outs GPR:$Rd), (ins GPR:$Rn, GPR:$Rm),
4311              IIC_iMUL16, !strconcat(opc, "tt"), "\t$Rd, $Rn, $Rm",
4312              [(set GPR:$Rd, (tt_mul GPR:$Rn, GPR:$Rm))]>,
4313            Requires<[IsARM, HasV5TE]>,
4314           Sched<[WriteMUL16, ReadMUL, ReadMUL]>;
4315
4316  def WB : AMulxyI<0b0001001, 0b01, (outs GPR:$Rd), (ins GPR:$Rn, GPR:$Rm),
4317              IIC_iMUL16, !strconcat(opc, "wb"), "\t$Rd, $Rn, $Rm",
4318              [(set GPR:$Rd, (ARMsmulwb GPR:$Rn, GPR:$Rm))]>,
4319           Requires<[IsARM, HasV5TE]>,
4320           Sched<[WriteMUL16, ReadMUL, ReadMUL]>;
4321
4322  def WT : AMulxyI<0b0001001, 0b11, (outs GPR:$Rd), (ins GPR:$Rn, GPR:$Rm),
4323              IIC_iMUL16, !strconcat(opc, "wt"), "\t$Rd, $Rn, $Rm",
4324              [(set GPR:$Rd, (ARMsmulwt GPR:$Rn, GPR:$Rm))]>,
4325            Requires<[IsARM, HasV5TE]>,
4326           Sched<[WriteMUL16, ReadMUL, ReadMUL]>;
4327}
4328
4329
4330multiclass AI_smla<string opc> {
4331  let DecoderMethod = "DecodeSMLAInstruction" in {
4332  def BB : AMulxyIa<0b0001000, 0b00, (outs GPRnopc:$Rd),
4333              (ins GPRnopc:$Rn, GPRnopc:$Rm, GPR:$Ra),
4334              IIC_iMAC16, !strconcat(opc, "bb"), "\t$Rd, $Rn, $Rm, $Ra",
4335              [(set GPRnopc:$Rd, (add GPR:$Ra,
4336                                      (bb_mul GPRnopc:$Rn, GPRnopc:$Rm)))]>,
4337           Requires<[IsARM, HasV5TE, UseMulOps]>,
4338           Sched<[WriteMAC16, ReadMUL, ReadMUL, ReadMAC]>;
4339
4340  def BT : AMulxyIa<0b0001000, 0b10, (outs GPRnopc:$Rd),
4341              (ins GPRnopc:$Rn, GPRnopc:$Rm, GPR:$Ra),
4342              IIC_iMAC16, !strconcat(opc, "bt"), "\t$Rd, $Rn, $Rm, $Ra",
4343              [(set GPRnopc:$Rd, (add GPR:$Ra,
4344                                      (bt_mul GPRnopc:$Rn, GPRnopc:$Rm)))]>,
4345           Requires<[IsARM, HasV5TE, UseMulOps]>,
4346           Sched<[WriteMAC16, ReadMUL, ReadMUL, ReadMAC]>;
4347
4348  def TB : AMulxyIa<0b0001000, 0b01, (outs GPRnopc:$Rd),
4349              (ins GPRnopc:$Rn, GPRnopc:$Rm, GPR:$Ra),
4350              IIC_iMAC16, !strconcat(opc, "tb"), "\t$Rd, $Rn, $Rm, $Ra",
4351              [(set GPRnopc:$Rd, (add GPR:$Ra,
4352                                      (tb_mul GPRnopc:$Rn, GPRnopc:$Rm)))]>,
4353           Requires<[IsARM, HasV5TE, UseMulOps]>,
4354           Sched<[WriteMAC16, ReadMUL, ReadMUL, ReadMAC]>;
4355
4356  def TT : AMulxyIa<0b0001000, 0b11, (outs GPRnopc:$Rd),
4357              (ins GPRnopc:$Rn, GPRnopc:$Rm, GPR:$Ra),
4358              IIC_iMAC16, !strconcat(opc, "tt"), "\t$Rd, $Rn, $Rm, $Ra",
4359             [(set GPRnopc:$Rd, (add GPR:$Ra,
4360                                     (tt_mul GPRnopc:$Rn, GPRnopc:$Rm)))]>,
4361            Requires<[IsARM, HasV5TE, UseMulOps]>,
4362            Sched<[WriteMAC16, ReadMUL, ReadMUL, ReadMAC]>;
4363
4364  def WB : AMulxyIa<0b0001001, 0b00, (outs GPRnopc:$Rd),
4365              (ins GPRnopc:$Rn, GPRnopc:$Rm, GPR:$Ra),
4366              IIC_iMAC16, !strconcat(opc, "wb"), "\t$Rd, $Rn, $Rm, $Ra",
4367              [(set GPRnopc:$Rd,
4368                    (add GPR:$Ra, (ARMsmulwb GPRnopc:$Rn, GPRnopc:$Rm)))]>,
4369           Requires<[IsARM, HasV5TE, UseMulOps]>,
4370           Sched<[WriteMAC16, ReadMUL, ReadMUL, ReadMAC]>;
4371
4372  def WT : AMulxyIa<0b0001001, 0b10, (outs GPRnopc:$Rd),
4373              (ins GPRnopc:$Rn, GPRnopc:$Rm, GPR:$Ra),
4374              IIC_iMAC16, !strconcat(opc, "wt"), "\t$Rd, $Rn, $Rm, $Ra",
4375              [(set GPRnopc:$Rd,
4376                    (add GPR:$Ra, (ARMsmulwt GPRnopc:$Rn, GPRnopc:$Rm)))]>,
4377            Requires<[IsARM, HasV5TE, UseMulOps]>,
4378            Sched<[WriteMAC16, ReadMUL, ReadMUL, ReadMAC]>;
4379  }
4380}
4381
4382defm SMUL : AI_smul<"smul">;
4383defm SMLA : AI_smla<"smla">;
4384
4385// Halfword multiply accumulate long: SMLAL<x><y>.
4386class SMLAL<bits<2> opc1, string asm>
4387 : AMulxyI64<0b0001010, opc1,
4388        (outs GPRnopc:$RdLo, GPRnopc:$RdHi),
4389        (ins GPRnopc:$Rn, GPRnopc:$Rm, GPRnopc:$RLo, GPRnopc:$RHi),
4390        IIC_iMAC64, asm, "\t$RdLo, $RdHi, $Rn, $Rm", []>,
4391        RegConstraint<"$RLo = $RdLo, $RHi = $RdHi">,
4392        Requires<[IsARM, HasV5TE]>,
4393        Sched<[WriteMAC64Lo, WriteMAC64Hi, ReadMUL, ReadMUL, ReadMAC, ReadMAC]>;
4394
4395def SMLALBB : SMLAL<0b00, "smlalbb">;
4396def SMLALBT : SMLAL<0b10, "smlalbt">;
4397def SMLALTB : SMLAL<0b01, "smlaltb">;
4398def SMLALTT : SMLAL<0b11, "smlaltt">;
4399
4400def : ARMV5TEPat<(ARMsmlalbb GPR:$Rn, GPR:$Rm, GPR:$RLo, GPR:$RHi),
4401                 (SMLALBB $Rn, $Rm, $RLo, $RHi)>;
4402def : ARMV5TEPat<(ARMsmlalbt GPR:$Rn, GPR:$Rm, GPR:$RLo, GPR:$RHi),
4403                 (SMLALBT $Rn, $Rm, $RLo, $RHi)>;
4404def : ARMV5TEPat<(ARMsmlaltb GPR:$Rn, GPR:$Rm, GPR:$RLo, GPR:$RHi),
4405                 (SMLALTB $Rn, $Rm, $RLo, $RHi)>;
4406def : ARMV5TEPat<(ARMsmlaltt GPR:$Rn, GPR:$Rm, GPR:$RLo, GPR:$RHi),
4407                 (SMLALTT $Rn, $Rm, $RLo, $RHi)>;
4408
4409// Helper class for AI_smld.
4410class AMulDualIbase<bit long, bit sub, bit swap, dag oops, dag iops,
4411                    InstrItinClass itin, string opc, string asm>
4412  : AI<oops, iops, MulFrm, itin, opc, asm, []>,
4413       Requires<[IsARM, HasV6]> {
4414  bits<4> Rn;
4415  bits<4> Rm;
4416  let Inst{27-23} = 0b01110;
4417  let Inst{22}    = long;
4418  let Inst{21-20} = 0b00;
4419  let Inst{11-8}  = Rm;
4420  let Inst{7}     = 0;
4421  let Inst{6}     = sub;
4422  let Inst{5}     = swap;
4423  let Inst{4}     = 1;
4424  let Inst{3-0}   = Rn;
4425}
4426class AMulDualI<bit long, bit sub, bit swap, dag oops, dag iops,
4427                InstrItinClass itin, string opc, string asm>
4428  : AMulDualIbase<long, sub, swap, oops, iops, itin, opc, asm> {
4429  bits<4> Rd;
4430  let Inst{15-12} = 0b1111;
4431  let Inst{19-16} = Rd;
4432}
4433class AMulDualIa<bit long, bit sub, bit swap, dag oops, dag iops,
4434                InstrItinClass itin, string opc, string asm>
4435  : AMulDualIbase<long, sub, swap, oops, iops, itin, opc, asm> {
4436  bits<4> Ra;
4437  bits<4> Rd;
4438  let Inst{19-16} = Rd;
4439  let Inst{15-12} = Ra;
4440}
4441class AMulDualI64<bit long, bit sub, bit swap, dag oops, dag iops,
4442                  InstrItinClass itin, string opc, string asm>
4443  : AMulDualIbase<long, sub, swap, oops, iops, itin, opc, asm> {
4444  bits<4> RdLo;
4445  bits<4> RdHi;
4446  let Inst{19-16} = RdHi;
4447  let Inst{15-12} = RdLo;
4448}
4449
4450multiclass AI_smld<bit sub, string opc> {
4451
4452  def D : AMulDualIa<0, sub, 0, (outs GPRnopc:$Rd),
4453                  (ins GPRnopc:$Rn, GPRnopc:$Rm, GPR:$Ra),
4454                  NoItinerary, !strconcat(opc, "d"), "\t$Rd, $Rn, $Rm, $Ra">,
4455          Sched<[WriteMAC32, ReadMUL, ReadMUL, ReadMAC]>;
4456
4457  def DX: AMulDualIa<0, sub, 1, (outs GPRnopc:$Rd),
4458                  (ins GPRnopc:$Rn, GPRnopc:$Rm, GPR:$Ra),
4459                  NoItinerary, !strconcat(opc, "dx"), "\t$Rd, $Rn, $Rm, $Ra">,
4460          Sched<[WriteMAC32, ReadMUL, ReadMUL, ReadMAC]>;
4461
4462  def LD: AMulDualI64<1, sub, 0, (outs GPRnopc:$RdLo, GPRnopc:$RdHi),
4463                  (ins GPRnopc:$Rn, GPRnopc:$Rm, GPRnopc:$RLo, GPRnopc:$RHi),
4464                  NoItinerary,
4465                  !strconcat(opc, "ld"), "\t$RdLo, $RdHi, $Rn, $Rm">,
4466                  RegConstraint<"$RLo = $RdLo, $RHi = $RdHi">,
4467          Sched<[WriteMAC64Lo, WriteMAC64Hi, ReadMUL, ReadMUL, ReadMAC, ReadMAC]>;
4468
4469  def LDX : AMulDualI64<1, sub, 1, (outs GPRnopc:$RdLo, GPRnopc:$RdHi),
4470                  (ins GPRnopc:$Rn, GPRnopc:$Rm, GPRnopc:$RLo, GPRnopc:$RHi),
4471                  NoItinerary,
4472                  !strconcat(opc, "ldx"),"\t$RdLo, $RdHi, $Rn, $Rm">,
4473                  RegConstraint<"$RLo = $RdLo, $RHi = $RdHi">,
4474             Sched<[WriteMUL64Lo, WriteMUL64Hi, ReadMUL, ReadMUL]>;
4475}
4476
4477defm SMLA : AI_smld<0, "smla">;
4478defm SMLS : AI_smld<1, "smls">;
4479
4480def : ARMV6Pat<(int_arm_smlad GPRnopc:$Rn, GPRnopc:$Rm, GPR:$Ra),
4481               (SMLAD GPRnopc:$Rn, GPRnopc:$Rm, GPRnopc:$Ra)>;
4482def : ARMV6Pat<(int_arm_smladx GPRnopc:$Rn, GPRnopc:$Rm, GPR:$Ra),
4483               (SMLADX GPRnopc:$Rn, GPRnopc:$Rm, GPRnopc:$Ra)>;
4484def : ARMV6Pat<(int_arm_smlsd GPRnopc:$Rn, GPRnopc:$Rm, GPR:$Ra),
4485               (SMLSD GPRnopc:$Rn, GPRnopc:$Rm, GPRnopc:$Ra)>;
4486def : ARMV6Pat<(int_arm_smlsdx GPRnopc:$Rn, GPRnopc:$Rm, GPR:$Ra),
4487               (SMLSDX GPRnopc:$Rn, GPRnopc:$Rm, GPRnopc:$Ra)>;
4488def : ARMV6Pat<(ARMSmlald GPRnopc:$Rn, GPRnopc:$Rm, GPRnopc:$RLo, GPRnopc:$RHi),
4489               (SMLALD GPRnopc:$Rn, GPRnopc:$Rm, GPRnopc:$RLo, GPRnopc:$RHi)>;
4490def : ARMV6Pat<(ARMSmlaldx GPRnopc:$Rn, GPRnopc:$Rm, GPRnopc:$RLo, GPRnopc:$RHi),
4491               (SMLALDX GPRnopc:$Rn, GPRnopc:$Rm, GPRnopc:$RLo, GPRnopc:$RHi)>;
4492def : ARMV6Pat<(ARMSmlsld GPRnopc:$Rn, GPRnopc:$Rm, GPRnopc:$RLo, GPRnopc:$RHi),
4493               (SMLSLD GPRnopc:$Rn, GPRnopc:$Rm, GPRnopc:$RLo, GPRnopc:$RHi)>;
4494def : ARMV6Pat<(ARMSmlsldx GPRnopc:$Rn, GPRnopc:$Rm, GPRnopc:$RLo, GPRnopc:$RHi),
4495               (SMLSLDX GPRnopc:$Rn, GPRnopc:$Rm, GPRnopc:$RLo, GPRnopc:$RHi)>;
4496
4497multiclass AI_sdml<bit sub, string opc> {
4498
4499  def D:AMulDualI<0, sub, 0, (outs GPRnopc:$Rd), (ins GPRnopc:$Rn, GPRnopc:$Rm),
4500                  NoItinerary, !strconcat(opc, "d"), "\t$Rd, $Rn, $Rm">,
4501        Sched<[WriteMUL32, ReadMUL, ReadMUL]>;
4502  def DX:AMulDualI<0, sub, 1, (outs GPRnopc:$Rd),(ins GPRnopc:$Rn, GPRnopc:$Rm),
4503                  NoItinerary, !strconcat(opc, "dx"), "\t$Rd, $Rn, $Rm">,
4504         Sched<[WriteMUL32, ReadMUL, ReadMUL]>;
4505}
4506
4507defm SMUA : AI_sdml<0, "smua">;
4508defm SMUS : AI_sdml<1, "smus">;
4509
4510def : ARMV6Pat<(int_arm_smuad GPRnopc:$Rn, GPRnopc:$Rm),
4511               (SMUAD GPRnopc:$Rn, GPRnopc:$Rm)>;
4512def : ARMV6Pat<(int_arm_smuadx GPRnopc:$Rn, GPRnopc:$Rm),
4513               (SMUADX GPRnopc:$Rn, GPRnopc:$Rm)>;
4514def : ARMV6Pat<(int_arm_smusd GPRnopc:$Rn, GPRnopc:$Rm),
4515               (SMUSD GPRnopc:$Rn, GPRnopc:$Rm)>;
4516def : ARMV6Pat<(int_arm_smusdx GPRnopc:$Rn, GPRnopc:$Rm),
4517               (SMUSDX GPRnopc:$Rn, GPRnopc:$Rm)>;
4518
4519//===----------------------------------------------------------------------===//
4520//  Division Instructions (ARMv7-A with virtualization extension)
4521//
4522def SDIV : ADivA1I<0b001, (outs GPR:$Rd), (ins GPR:$Rn, GPR:$Rm), IIC_iDIV,
4523                   "sdiv", "\t$Rd, $Rn, $Rm",
4524                   [(set GPR:$Rd, (sdiv GPR:$Rn, GPR:$Rm))]>,
4525           Requires<[IsARM, HasDivideInARM]>,
4526           Sched<[WriteDIV]>;
4527
4528def UDIV : ADivA1I<0b011, (outs GPR:$Rd), (ins GPR:$Rn, GPR:$Rm), IIC_iDIV,
4529                   "udiv", "\t$Rd, $Rn, $Rm",
4530                   [(set GPR:$Rd, (udiv GPR:$Rn, GPR:$Rm))]>,
4531           Requires<[IsARM, HasDivideInARM]>,
4532           Sched<[WriteDIV]>;
4533
4534//===----------------------------------------------------------------------===//
4535//  Misc. Arithmetic Instructions.
4536//
4537
4538def CLZ  : AMiscA1I<0b00010110, 0b0001, (outs GPR:$Rd), (ins GPR:$Rm),
4539              IIC_iUNAr, "clz", "\t$Rd, $Rm",
4540              [(set GPR:$Rd, (ctlz GPR:$Rm))]>, Requires<[IsARM, HasV5T]>,
4541           Sched<[WriteALU]>;
4542
4543def RBIT : AMiscA1I<0b01101111, 0b0011, (outs GPR:$Rd), (ins GPR:$Rm),
4544              IIC_iUNAr, "rbit", "\t$Rd, $Rm",
4545              [(set GPR:$Rd, (bitreverse GPR:$Rm))]>,
4546           Requires<[IsARM, HasV6T2]>,
4547           Sched<[WriteALU]>;
4548
4549def REV  : AMiscA1I<0b01101011, 0b0011, (outs GPR:$Rd), (ins GPR:$Rm),
4550              IIC_iUNAr, "rev", "\t$Rd, $Rm",
4551              [(set GPR:$Rd, (bswap GPR:$Rm))]>, Requires<[IsARM, HasV6]>,
4552           Sched<[WriteALU]>;
4553
4554let AddedComplexity = 5 in
4555def REV16 : AMiscA1I<0b01101011, 0b1011, (outs GPR:$Rd), (ins GPR:$Rm),
4556               IIC_iUNAr, "rev16", "\t$Rd, $Rm",
4557               [(set GPR:$Rd, (rotr (bswap GPR:$Rm), (i32 16)))]>,
4558               Requires<[IsARM, HasV6]>,
4559           Sched<[WriteALU]>;
4560
4561def : ARMV6Pat<(srl (bswap (extloadi16 addrmode3:$addr)), (i32 16)),
4562              (REV16 (LDRH addrmode3:$addr))>;
4563def : ARMV6Pat<(truncstorei16 (srl (bswap GPR:$Rn), (i32 16)), addrmode3:$addr),
4564               (STRH (REV16 GPR:$Rn), addrmode3:$addr)>;
4565
4566let AddedComplexity = 5 in
4567def REVSH : AMiscA1I<0b01101111, 0b1011, (outs GPR:$Rd), (ins GPR:$Rm),
4568               IIC_iUNAr, "revsh", "\t$Rd, $Rm",
4569               [(set GPR:$Rd, (sra (bswap GPR:$Rm), (i32 16)))]>,
4570               Requires<[IsARM, HasV6]>,
4571           Sched<[WriteALU]>;
4572
4573def : ARMV6Pat<(or (sra (shl GPR:$Rm, (i32 24)), (i32 16)),
4574                   (and (srl GPR:$Rm, (i32 8)), 0xFF)),
4575               (REVSH GPR:$Rm)>;
4576
4577def PKHBT : APKHI<0b01101000, 0, (outs GPRnopc:$Rd),
4578                              (ins GPRnopc:$Rn, GPRnopc:$Rm, pkh_lsl_amt:$sh),
4579               IIC_iALUsi, "pkhbt", "\t$Rd, $Rn, $Rm$sh",
4580               [(set GPRnopc:$Rd, (or (and GPRnopc:$Rn, 0xFFFF),
4581                                      (and (shl GPRnopc:$Rm, pkh_lsl_amt:$sh),
4582                                           0xFFFF0000)))]>,
4583               Requires<[IsARM, HasV6]>,
4584           Sched<[WriteALUsi, ReadALU]>;
4585
4586// Alternate cases for PKHBT where identities eliminate some nodes.
4587def : ARMV6Pat<(or (and GPRnopc:$Rn, 0xFFFF), (and GPRnopc:$Rm, 0xFFFF0000)),
4588               (PKHBT GPRnopc:$Rn, GPRnopc:$Rm, 0)>;
4589def : ARMV6Pat<(or (and GPRnopc:$Rn, 0xFFFF), (shl GPRnopc:$Rm, imm16_31:$sh)),
4590               (PKHBT GPRnopc:$Rn, GPRnopc:$Rm, imm16_31:$sh)>;
4591
4592// Note: Shifts of 1-15 bits will be transformed to srl instead of sra and
4593// will match the pattern below.
4594def PKHTB : APKHI<0b01101000, 1, (outs GPRnopc:$Rd),
4595                              (ins GPRnopc:$Rn, GPRnopc:$Rm, pkh_asr_amt:$sh),
4596               IIC_iBITsi, "pkhtb", "\t$Rd, $Rn, $Rm$sh",
4597               [(set GPRnopc:$Rd, (or (and GPRnopc:$Rn, 0xFFFF0000),
4598                                      (and (sra GPRnopc:$Rm, pkh_asr_amt:$sh),
4599                                           0xFFFF)))]>,
4600               Requires<[IsARM, HasV6]>,
4601           Sched<[WriteALUsi, ReadALU]>;
4602
4603// Alternate cases for PKHTB where identities eliminate some nodes.  Note that
4604// a shift amount of 0 is *not legal* here, it is PKHBT instead.
4605// We also can not replace a srl (17..31) by an arithmetic shift we would use in
4606// pkhtb src1, src2, asr (17..31).
4607def : ARMV6Pat<(or (and GPRnopc:$src1, 0xFFFF0000),
4608                   (srl GPRnopc:$src2, imm16:$sh)),
4609               (PKHTB GPRnopc:$src1, GPRnopc:$src2, imm16:$sh)>;
4610def : ARMV6Pat<(or (and GPRnopc:$src1, 0xFFFF0000),
4611                   (sra GPRnopc:$src2, imm16_31:$sh)),
4612               (PKHTB GPRnopc:$src1, GPRnopc:$src2, imm16_31:$sh)>;
4613def : ARMV6Pat<(or (and GPRnopc:$src1, 0xFFFF0000),
4614                   (and (srl GPRnopc:$src2, imm1_15:$sh), 0xFFFF)),
4615               (PKHTB GPRnopc:$src1, GPRnopc:$src2, imm1_15:$sh)>;
4616
4617//===----------------------------------------------------------------------===//
4618// CRC Instructions
4619//
4620// Polynomials:
4621// + CRC32{B,H,W}       0x04C11DB7
4622// + CRC32C{B,H,W}      0x1EDC6F41
4623//
4624
4625class AI_crc32<bit C, bits<2> sz, string suffix, SDPatternOperator builtin>
4626  : AInoP<(outs GPRnopc:$Rd), (ins GPRnopc:$Rn, GPRnopc:$Rm), MiscFrm, NoItinerary,
4627               !strconcat("crc32", suffix), "\t$Rd, $Rn, $Rm",
4628               [(set GPRnopc:$Rd, (builtin GPRnopc:$Rn, GPRnopc:$Rm))]>,
4629               Requires<[IsARM, HasV8, HasCRC]> {
4630  bits<4> Rd;
4631  bits<4> Rn;
4632  bits<4> Rm;
4633
4634  let Inst{31-28} = 0b1110;
4635  let Inst{27-23} = 0b00010;
4636  let Inst{22-21} = sz;
4637  let Inst{20}    = 0;
4638  let Inst{19-16} = Rn;
4639  let Inst{15-12} = Rd;
4640  let Inst{11-10} = 0b00;
4641  let Inst{9}     = C;
4642  let Inst{8}     = 0;
4643  let Inst{7-4}   = 0b0100;
4644  let Inst{3-0}   = Rm;
4645
4646  let Unpredictable{11-8} = 0b1101;
4647}
4648
4649def CRC32B  : AI_crc32<0, 0b00, "b", int_arm_crc32b>;
4650def CRC32CB : AI_crc32<1, 0b00, "cb", int_arm_crc32cb>;
4651def CRC32H  : AI_crc32<0, 0b01, "h", int_arm_crc32h>;
4652def CRC32CH : AI_crc32<1, 0b01, "ch", int_arm_crc32ch>;
4653def CRC32W  : AI_crc32<0, 0b10, "w", int_arm_crc32w>;
4654def CRC32CW : AI_crc32<1, 0b10, "cw", int_arm_crc32cw>;
4655
4656//===----------------------------------------------------------------------===//
4657// ARMv8.1a Privilege Access Never extension
4658//
4659// SETPAN #imm1
4660
4661def SETPAN : AInoP<(outs), (ins imm0_1:$imm), MiscFrm, NoItinerary, "setpan",
4662                "\t$imm", []>, Requires<[IsARM, HasV8, HasV8_1a]> {
4663  bits<1> imm;
4664
4665  let Inst{31-28} = 0b1111;
4666  let Inst{27-20} = 0b00010001;
4667  let Inst{19-16} = 0b0000;
4668  let Inst{15-10} = 0b000000;
4669  let Inst{9} = imm;
4670  let Inst{8} = 0b0;
4671  let Inst{7-4} = 0b0000;
4672  let Inst{3-0} = 0b0000;
4673
4674  let Unpredictable{19-16} = 0b1111;
4675  let Unpredictable{15-10} = 0b111111;
4676  let Unpredictable{8} = 0b1;
4677  let Unpredictable{3-0} = 0b1111;
4678}
4679
4680//===----------------------------------------------------------------------===//
4681//  Comparison Instructions...
4682//
4683
4684defm CMP  : AI1_cmp_irs<0b1010, "cmp",
4685                        IIC_iCMPi, IIC_iCMPr, IIC_iCMPsr, ARMcmp>;
4686
4687// ARMcmpZ can re-use the above instruction definitions.
4688def : ARMPat<(ARMcmpZ GPR:$src, mod_imm:$imm),
4689             (CMPri   GPR:$src, mod_imm:$imm)>;
4690def : ARMPat<(ARMcmpZ GPR:$src, GPR:$rhs),
4691             (CMPrr   GPR:$src, GPR:$rhs)>;
4692def : ARMPat<(ARMcmpZ GPR:$src, so_reg_imm:$rhs),
4693             (CMPrsi   GPR:$src, so_reg_imm:$rhs)>;
4694def : ARMPat<(ARMcmpZ GPR:$src, so_reg_reg:$rhs),
4695             (CMPrsr   GPR:$src, so_reg_reg:$rhs)>;
4696
4697// CMN register-integer
4698let isCompare = 1, Defs = [CPSR] in {
4699def CMNri : AI1<0b1011, (outs), (ins GPR:$Rn, mod_imm:$imm), DPFrm, IIC_iCMPi,
4700                "cmn", "\t$Rn, $imm",
4701                [(ARMcmn GPR:$Rn, mod_imm:$imm)]>,
4702                Sched<[WriteCMP, ReadALU]> {
4703  bits<4> Rn;
4704  bits<12> imm;
4705  let Inst{25} = 1;
4706  let Inst{20} = 1;
4707  let Inst{19-16} = Rn;
4708  let Inst{15-12} = 0b0000;
4709  let Inst{11-0} = imm;
4710
4711  let Unpredictable{15-12} = 0b1111;
4712}
4713
4714// CMN register-register/shift
4715def CMNzrr : AI1<0b1011, (outs), (ins GPR:$Rn, GPR:$Rm), DPFrm, IIC_iCMPr,
4716                 "cmn", "\t$Rn, $Rm",
4717                 [(BinOpFrag<(ARMcmpZ node:$LHS,(ineg node:$RHS))>
4718                   GPR:$Rn, GPR:$Rm)]>, Sched<[WriteCMP, ReadALU, ReadALU]> {
4719  bits<4> Rn;
4720  bits<4> Rm;
4721  let isCommutable = 1;
4722  let Inst{25} = 0;
4723  let Inst{20} = 1;
4724  let Inst{19-16} = Rn;
4725  let Inst{15-12} = 0b0000;
4726  let Inst{11-4} = 0b00000000;
4727  let Inst{3-0} = Rm;
4728
4729  let Unpredictable{15-12} = 0b1111;
4730}
4731
4732def CMNzrsi : AI1<0b1011, (outs),
4733                  (ins GPR:$Rn, so_reg_imm:$shift), DPSoRegImmFrm, IIC_iCMPsr,
4734                  "cmn", "\t$Rn, $shift",
4735                  [(BinOpFrag<(ARMcmpZ node:$LHS,(ineg node:$RHS))>
4736                    GPR:$Rn, so_reg_imm:$shift)]>,
4737                    Sched<[WriteCMPsi, ReadALU]> {
4738  bits<4> Rn;
4739  bits<12> shift;
4740  let Inst{25} = 0;
4741  let Inst{20} = 1;
4742  let Inst{19-16} = Rn;
4743  let Inst{15-12} = 0b0000;
4744  let Inst{11-5} = shift{11-5};
4745  let Inst{4} = 0;
4746  let Inst{3-0} = shift{3-0};
4747
4748  let Unpredictable{15-12} = 0b1111;
4749}
4750
4751def CMNzrsr : AI1<0b1011, (outs),
4752                  (ins GPRnopc:$Rn, so_reg_reg:$shift), DPSoRegRegFrm, IIC_iCMPsr,
4753                  "cmn", "\t$Rn, $shift",
4754                  [(BinOpFrag<(ARMcmpZ node:$LHS,(ineg node:$RHS))>
4755                    GPRnopc:$Rn, so_reg_reg:$shift)]>,
4756                    Sched<[WriteCMPsr, ReadALU]> {
4757  bits<4> Rn;
4758  bits<12> shift;
4759  let Inst{25} = 0;
4760  let Inst{20} = 1;
4761  let Inst{19-16} = Rn;
4762  let Inst{15-12} = 0b0000;
4763  let Inst{11-8} = shift{11-8};
4764  let Inst{7} = 0;
4765  let Inst{6-5} = shift{6-5};
4766  let Inst{4} = 1;
4767  let Inst{3-0} = shift{3-0};
4768
4769  let Unpredictable{15-12} = 0b1111;
4770}
4771
4772}
4773
4774def : ARMPat<(ARMcmp  GPR:$src, mod_imm_neg:$imm),
4775             (CMNri   GPR:$src, mod_imm_neg:$imm)>;
4776
4777def : ARMPat<(ARMcmpZ GPR:$src, mod_imm_neg:$imm),
4778             (CMNri   GPR:$src, mod_imm_neg:$imm)>;
4779
4780// Note that TST/TEQ don't set all the same flags that CMP does!
4781defm TST  : AI1_cmp_irs<0b1000, "tst",
4782                        IIC_iTSTi, IIC_iTSTr, IIC_iTSTsr,
4783                      BinOpFrag<(ARMcmpZ (and_su node:$LHS, node:$RHS), 0)>, 1,
4784                      "DecodeTSTInstruction">;
4785defm TEQ  : AI1_cmp_irs<0b1001, "teq",
4786                        IIC_iTSTi, IIC_iTSTr, IIC_iTSTsr,
4787                      BinOpFrag<(ARMcmpZ (xor_su node:$LHS, node:$RHS), 0)>, 1>;
4788
4789// Pseudo i64 compares for some floating point compares.
4790let usesCustomInserter = 1, isBranch = 1, isTerminator = 1,
4791    Defs = [CPSR] in {
4792def BCCi64 : PseudoInst<(outs),
4793    (ins i32imm:$cc, GPR:$lhs1, GPR:$lhs2, GPR:$rhs1, GPR:$rhs2, brtarget:$dst),
4794     IIC_Br,
4795    [(ARMBcci64 imm:$cc, GPR:$lhs1, GPR:$lhs2, GPR:$rhs1, GPR:$rhs2, bb:$dst)]>,
4796    Sched<[WriteBr]>;
4797
4798def BCCZi64 : PseudoInst<(outs),
4799     (ins i32imm:$cc, GPR:$lhs1, GPR:$lhs2, brtarget:$dst), IIC_Br,
4800    [(ARMBcci64 imm:$cc, GPR:$lhs1, GPR:$lhs2, 0, 0, bb:$dst)]>,
4801    Sched<[WriteBr]>;
4802} // usesCustomInserter
4803
4804
4805// Conditional moves
4806let hasSideEffects = 0 in {
4807
4808let isCommutable = 1, isSelect = 1 in
4809def MOVCCr : ARMPseudoInst<(outs GPR:$Rd),
4810                           (ins GPR:$false, GPR:$Rm, cmovpred:$p),
4811                           4, IIC_iCMOVr,
4812                           [(set GPR:$Rd, (ARMcmov GPR:$false, GPR:$Rm,
4813                                                   cmovpred:$p))]>,
4814             RegConstraint<"$false = $Rd">, Sched<[WriteALU]>;
4815
4816def MOVCCsi : ARMPseudoInst<(outs GPR:$Rd),
4817                            (ins GPR:$false, so_reg_imm:$shift, cmovpred:$p),
4818                            4, IIC_iCMOVsr,
4819                            [(set GPR:$Rd,
4820                                  (ARMcmov GPR:$false, so_reg_imm:$shift,
4821                                           cmovpred:$p))]>,
4822      RegConstraint<"$false = $Rd">, Sched<[WriteALU]>;
4823def MOVCCsr : ARMPseudoInst<(outs GPR:$Rd),
4824                            (ins GPR:$false, so_reg_reg:$shift, cmovpred:$p),
4825                           4, IIC_iCMOVsr,
4826  [(set GPR:$Rd, (ARMcmov GPR:$false, so_reg_reg:$shift,
4827                            cmovpred:$p))]>,
4828      RegConstraint<"$false = $Rd">, Sched<[WriteALU]>;
4829
4830
4831let isMoveImm = 1 in
4832def MOVCCi16
4833    : ARMPseudoInst<(outs GPR:$Rd),
4834                    (ins GPR:$false, imm0_65535_expr:$imm, cmovpred:$p),
4835                    4, IIC_iMOVi,
4836                    [(set GPR:$Rd, (ARMcmov GPR:$false, imm0_65535:$imm,
4837                                            cmovpred:$p))]>,
4838      RegConstraint<"$false = $Rd">, Requires<[IsARM, HasV6T2]>,
4839      Sched<[WriteALU]>;
4840
4841let isMoveImm = 1 in
4842def MOVCCi : ARMPseudoInst<(outs GPR:$Rd),
4843                           (ins GPR:$false, mod_imm:$imm, cmovpred:$p),
4844                           4, IIC_iCMOVi,
4845                           [(set GPR:$Rd, (ARMcmov GPR:$false, mod_imm:$imm,
4846                                                   cmovpred:$p))]>,
4847      RegConstraint<"$false = $Rd">, Sched<[WriteALU]>;
4848
4849// Two instruction predicate mov immediate.
4850let isMoveImm = 1 in
4851def MOVCCi32imm
4852    : ARMPseudoInst<(outs GPR:$Rd),
4853                    (ins GPR:$false, i32imm:$src, cmovpred:$p),
4854                    8, IIC_iCMOVix2,
4855                    [(set GPR:$Rd, (ARMcmov GPR:$false, imm:$src,
4856                                            cmovpred:$p))]>,
4857      RegConstraint<"$false = $Rd">, Requires<[IsARM, HasV6T2]>;
4858
4859let isMoveImm = 1 in
4860def MVNCCi : ARMPseudoInst<(outs GPR:$Rd),
4861                           (ins GPR:$false, mod_imm:$imm, cmovpred:$p),
4862                           4, IIC_iCMOVi,
4863                           [(set GPR:$Rd, (ARMcmov GPR:$false, mod_imm_not:$imm,
4864                                                   cmovpred:$p))]>,
4865                RegConstraint<"$false = $Rd">, Sched<[WriteALU]>;
4866
4867} // hasSideEffects
4868
4869
4870//===----------------------------------------------------------------------===//
4871// Atomic operations intrinsics
4872//
4873
4874def MemBarrierOptOperand : AsmOperandClass {
4875  let Name = "MemBarrierOpt";
4876  let ParserMethod = "parseMemBarrierOptOperand";
4877}
4878def memb_opt : Operand<i32> {
4879  let PrintMethod = "printMemBOption";
4880  let ParserMatchClass = MemBarrierOptOperand;
4881  let DecoderMethod = "DecodeMemBarrierOption";
4882}
4883
4884def InstSyncBarrierOptOperand : AsmOperandClass {
4885  let Name = "InstSyncBarrierOpt";
4886  let ParserMethod = "parseInstSyncBarrierOptOperand";
4887}
4888def instsyncb_opt : Operand<i32> {
4889  let PrintMethod = "printInstSyncBOption";
4890  let ParserMatchClass = InstSyncBarrierOptOperand;
4891  let DecoderMethod = "DecodeInstSyncBarrierOption";
4892}
4893
4894def TraceSyncBarrierOptOperand : AsmOperandClass {
4895  let Name = "TraceSyncBarrierOpt";
4896  let ParserMethod = "parseTraceSyncBarrierOptOperand";
4897}
4898def tsb_opt : Operand<i32> {
4899  let PrintMethod = "printTraceSyncBOption";
4900  let ParserMatchClass = TraceSyncBarrierOptOperand;
4901}
4902
4903// Memory barriers protect the atomic sequences
4904let hasSideEffects = 1 in {
4905def DMB : AInoP<(outs), (ins memb_opt:$opt), MiscFrm, NoItinerary,
4906                "dmb", "\t$opt", [(int_arm_dmb (i32 imm0_15:$opt))]>,
4907                Requires<[IsARM, HasDB]> {
4908  bits<4> opt;
4909  let Inst{31-4} = 0xf57ff05;
4910  let Inst{3-0} = opt;
4911}
4912
4913def DSB : AInoP<(outs), (ins memb_opt:$opt), MiscFrm, NoItinerary,
4914                "dsb", "\t$opt", [(int_arm_dsb (i32 imm0_15:$opt))]>,
4915                Requires<[IsARM, HasDB]> {
4916  bits<4> opt;
4917  let Inst{31-4} = 0xf57ff04;
4918  let Inst{3-0} = opt;
4919}
4920
4921// ISB has only full system option
4922def ISB : AInoP<(outs), (ins instsyncb_opt:$opt), MiscFrm, NoItinerary,
4923                "isb", "\t$opt", [(int_arm_isb (i32 imm0_15:$opt))]>,
4924                Requires<[IsARM, HasDB]> {
4925  bits<4> opt;
4926  let Inst{31-4} = 0xf57ff06;
4927  let Inst{3-0} = opt;
4928}
4929
4930let hasNoSchedulingInfo = 1 in
4931def TSB : AInoP<(outs), (ins tsb_opt:$opt), MiscFrm, NoItinerary,
4932                "tsb", "\t$opt", []>, Requires<[IsARM, HasV8_4a]> {
4933  let Inst{31-0} = 0xe320f012;
4934}
4935
4936}
4937
4938// Armv8.5-A speculation barrier
4939def SB : AInoP<(outs), (ins), MiscFrm, NoItinerary, "sb", "", []>,
4940         Requires<[IsARM, HasSB]>, Sched<[]> {
4941  let Inst{31-0} = 0xf57ff070;
4942  let Unpredictable = 0x000fff0f;
4943  let hasSideEffects = 1;
4944}
4945
4946let usesCustomInserter = 1, Defs = [CPSR], hasNoSchedulingInfo = 1 in {
4947  // Pseudo instruction that combines movs + predicated rsbmi
4948  // to implement integer ABS
4949  def ABS : ARMPseudoInst<(outs GPR:$dst), (ins GPR:$src), 8, NoItinerary, []>;
4950}
4951
4952let usesCustomInserter = 1, Defs = [CPSR], hasNoSchedulingInfo = 1 in {
4953    def COPY_STRUCT_BYVAL_I32 : PseudoInst<
4954      (outs), (ins GPR:$dst, GPR:$src, i32imm:$size, i32imm:$alignment),
4955      NoItinerary,
4956      [(ARMcopystructbyval GPR:$dst, GPR:$src, imm:$size, imm:$alignment)]>;
4957}
4958
4959let hasPostISelHook = 1, Constraints = "$newdst = $dst, $newsrc = $src" in {
4960    // %newsrc, %newdst = MEMCPY %dst, %src, N, ...N scratch regs...
4961    // Copies N registers worth of memory from address %src to address %dst
4962    // and returns the incremented addresses.  N scratch register will
4963    // be attached for the copy to use.
4964    def MEMCPY : PseudoInst<
4965      (outs GPR:$newdst, GPR:$newsrc),
4966      (ins GPR:$dst, GPR:$src, i32imm:$nreg, variable_ops),
4967      NoItinerary,
4968      [(set GPR:$newdst, GPR:$newsrc,
4969            (ARMmemcopy GPR:$dst, GPR:$src, imm:$nreg))]>;
4970}
4971
4972def ldrex_1 : PatFrag<(ops node:$ptr), (int_arm_ldrex node:$ptr), [{
4973  return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i8;
4974}]>;
4975
4976def ldrex_2 : PatFrag<(ops node:$ptr), (int_arm_ldrex node:$ptr), [{
4977  return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i16;
4978}]>;
4979
4980def ldrex_4 : PatFrag<(ops node:$ptr), (int_arm_ldrex node:$ptr), [{
4981  return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i32;
4982}]>;
4983
4984def strex_1 : PatFrag<(ops node:$val, node:$ptr),
4985                      (int_arm_strex node:$val, node:$ptr), [{
4986  return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i8;
4987}]>;
4988
4989def strex_2 : PatFrag<(ops node:$val, node:$ptr),
4990                      (int_arm_strex node:$val, node:$ptr), [{
4991  return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i16;
4992}]>;
4993
4994def strex_4 : PatFrag<(ops node:$val, node:$ptr),
4995                      (int_arm_strex node:$val, node:$ptr), [{
4996  return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i32;
4997}]>;
4998
4999def ldaex_1 : PatFrag<(ops node:$ptr), (int_arm_ldaex node:$ptr), [{
5000  return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i8;
5001}]>;
5002
5003def ldaex_2 : PatFrag<(ops node:$ptr), (int_arm_ldaex node:$ptr), [{
5004  return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i16;
5005}]>;
5006
5007def ldaex_4 : PatFrag<(ops node:$ptr), (int_arm_ldaex node:$ptr), [{
5008  return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i32;
5009}]>;
5010
5011def stlex_1 : PatFrag<(ops node:$val, node:$ptr),
5012                      (int_arm_stlex node:$val, node:$ptr), [{
5013  return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i8;
5014}]>;
5015
5016def stlex_2 : PatFrag<(ops node:$val, node:$ptr),
5017                      (int_arm_stlex node:$val, node:$ptr), [{
5018  return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i16;
5019}]>;
5020
5021def stlex_4 : PatFrag<(ops node:$val, node:$ptr),
5022                      (int_arm_stlex node:$val, node:$ptr), [{
5023  return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i32;
5024}]>;
5025
5026let mayLoad = 1 in {
5027def LDREXB : AIldrex<0b10, (outs GPR:$Rt), (ins addr_offset_none:$addr),
5028                     NoItinerary, "ldrexb", "\t$Rt, $addr",
5029                     [(set GPR:$Rt, (ldrex_1 addr_offset_none:$addr))]>;
5030def LDREXH : AIldrex<0b11, (outs GPR:$Rt), (ins addr_offset_none:$addr),
5031                     NoItinerary, "ldrexh", "\t$Rt, $addr",
5032                     [(set GPR:$Rt, (ldrex_2 addr_offset_none:$addr))]>;
5033def LDREX  : AIldrex<0b00, (outs GPR:$Rt), (ins addr_offset_none:$addr),
5034                     NoItinerary, "ldrex", "\t$Rt, $addr",
5035                     [(set GPR:$Rt, (ldrex_4 addr_offset_none:$addr))]>;
5036let hasExtraDefRegAllocReq = 1 in
5037def LDREXD : AIldrex<0b01, (outs GPRPairOp:$Rt),(ins addr_offset_none:$addr),
5038                      NoItinerary, "ldrexd", "\t$Rt, $addr", []> {
5039  let DecoderMethod = "DecodeDoubleRegLoad";
5040}
5041
5042def LDAEXB : AIldaex<0b10, (outs GPR:$Rt), (ins addr_offset_none:$addr),
5043                     NoItinerary, "ldaexb", "\t$Rt, $addr",
5044                     [(set GPR:$Rt, (ldaex_1 addr_offset_none:$addr))]>;
5045def LDAEXH : AIldaex<0b11, (outs GPR:$Rt), (ins addr_offset_none:$addr),
5046                     NoItinerary, "ldaexh", "\t$Rt, $addr",
5047                    [(set GPR:$Rt, (ldaex_2 addr_offset_none:$addr))]>;
5048def LDAEX  : AIldaex<0b00, (outs GPR:$Rt), (ins addr_offset_none:$addr),
5049                     NoItinerary, "ldaex", "\t$Rt, $addr",
5050                    [(set GPR:$Rt, (ldaex_4 addr_offset_none:$addr))]>;
5051let hasExtraDefRegAllocReq = 1 in
5052def LDAEXD : AIldaex<0b01, (outs GPRPairOp:$Rt),(ins addr_offset_none:$addr),
5053                      NoItinerary, "ldaexd", "\t$Rt, $addr", []> {
5054  let DecoderMethod = "DecodeDoubleRegLoad";
5055}
5056}
5057
5058let mayStore = 1, Constraints = "@earlyclobber $Rd" in {
5059def STREXB: AIstrex<0b10, (outs GPR:$Rd), (ins GPR:$Rt, addr_offset_none:$addr),
5060                    NoItinerary, "strexb", "\t$Rd, $Rt, $addr",
5061                    [(set GPR:$Rd, (strex_1 GPR:$Rt,
5062                                            addr_offset_none:$addr))]>;
5063def STREXH: AIstrex<0b11, (outs GPR:$Rd), (ins GPR:$Rt, addr_offset_none:$addr),
5064                    NoItinerary, "strexh", "\t$Rd, $Rt, $addr",
5065                    [(set GPR:$Rd, (strex_2 GPR:$Rt,
5066                                            addr_offset_none:$addr))]>;
5067def STREX : AIstrex<0b00, (outs GPR:$Rd), (ins GPR:$Rt, addr_offset_none:$addr),
5068                    NoItinerary, "strex", "\t$Rd, $Rt, $addr",
5069                    [(set GPR:$Rd, (strex_4 GPR:$Rt,
5070                                            addr_offset_none:$addr))]>;
5071let hasExtraSrcRegAllocReq = 1 in
5072def STREXD : AIstrex<0b01, (outs GPR:$Rd),
5073                    (ins GPRPairOp:$Rt, addr_offset_none:$addr),
5074                    NoItinerary, "strexd", "\t$Rd, $Rt, $addr", []> {
5075  let DecoderMethod = "DecodeDoubleRegStore";
5076}
5077def STLEXB: AIstlex<0b10, (outs GPR:$Rd), (ins GPR:$Rt, addr_offset_none:$addr),
5078                    NoItinerary, "stlexb", "\t$Rd, $Rt, $addr",
5079                    [(set GPR:$Rd,
5080                          (stlex_1 GPR:$Rt, addr_offset_none:$addr))]>;
5081def STLEXH: AIstlex<0b11, (outs GPR:$Rd), (ins GPR:$Rt, addr_offset_none:$addr),
5082                    NoItinerary, "stlexh", "\t$Rd, $Rt, $addr",
5083                    [(set GPR:$Rd,
5084                          (stlex_2 GPR:$Rt, addr_offset_none:$addr))]>;
5085def STLEX : AIstlex<0b00, (outs GPR:$Rd), (ins GPR:$Rt, addr_offset_none:$addr),
5086                    NoItinerary, "stlex", "\t$Rd, $Rt, $addr",
5087                    [(set GPR:$Rd,
5088                          (stlex_4 GPR:$Rt, addr_offset_none:$addr))]>;
5089let hasExtraSrcRegAllocReq = 1 in
5090def STLEXD : AIstlex<0b01, (outs GPR:$Rd),
5091                    (ins GPRPairOp:$Rt, addr_offset_none:$addr),
5092                    NoItinerary, "stlexd", "\t$Rd, $Rt, $addr", []> {
5093  let DecoderMethod = "DecodeDoubleRegStore";
5094}
5095}
5096
5097def CLREX : AXI<(outs), (ins), MiscFrm, NoItinerary, "clrex",
5098                [(int_arm_clrex)]>,
5099            Requires<[IsARM, HasV6K]>  {
5100  let Inst{31-0} = 0b11110101011111111111000000011111;
5101}
5102
5103def : ARMPat<(strex_1 (and GPR:$Rt, 0xff), addr_offset_none:$addr),
5104             (STREXB GPR:$Rt, addr_offset_none:$addr)>;
5105def : ARMPat<(strex_2 (and GPR:$Rt, 0xffff), addr_offset_none:$addr),
5106             (STREXH GPR:$Rt, addr_offset_none:$addr)>;
5107
5108def : ARMPat<(stlex_1 (and GPR:$Rt, 0xff), addr_offset_none:$addr),
5109             (STLEXB GPR:$Rt, addr_offset_none:$addr)>;
5110def : ARMPat<(stlex_2 (and GPR:$Rt, 0xffff), addr_offset_none:$addr),
5111             (STLEXH GPR:$Rt, addr_offset_none:$addr)>;
5112
5113class acquiring_load<PatFrag base>
5114  : PatFrag<(ops node:$ptr), (base node:$ptr), [{
5115  AtomicOrdering Ordering = cast<AtomicSDNode>(N)->getOrdering();
5116  return isAcquireOrStronger(Ordering);
5117}]>;
5118
5119def atomic_load_acquire_8  : acquiring_load<atomic_load_8>;
5120def atomic_load_acquire_16 : acquiring_load<atomic_load_16>;
5121def atomic_load_acquire_32 : acquiring_load<atomic_load_32>;
5122
5123class releasing_store<PatFrag base>
5124  : PatFrag<(ops node:$ptr, node:$val), (base node:$ptr, node:$val), [{
5125  AtomicOrdering Ordering = cast<AtomicSDNode>(N)->getOrdering();
5126  return isReleaseOrStronger(Ordering);
5127}]>;
5128
5129def atomic_store_release_8  : releasing_store<atomic_store_8>;
5130def atomic_store_release_16 : releasing_store<atomic_store_16>;
5131def atomic_store_release_32 : releasing_store<atomic_store_32>;
5132
5133let AddedComplexity = 8 in {
5134  def : ARMPat<(atomic_load_acquire_8 addr_offset_none:$addr),  (LDAB addr_offset_none:$addr)>;
5135  def : ARMPat<(atomic_load_acquire_16 addr_offset_none:$addr), (LDAH addr_offset_none:$addr)>;
5136  def : ARMPat<(atomic_load_acquire_32 addr_offset_none:$addr), (LDA  addr_offset_none:$addr)>;
5137  def : ARMPat<(atomic_store_release_8 addr_offset_none:$addr, GPR:$val),  (STLB GPR:$val, addr_offset_none:$addr)>;
5138  def : ARMPat<(atomic_store_release_16 addr_offset_none:$addr, GPR:$val), (STLH GPR:$val, addr_offset_none:$addr)>;
5139  def : ARMPat<(atomic_store_release_32 addr_offset_none:$addr, GPR:$val), (STL  GPR:$val, addr_offset_none:$addr)>;
5140}
5141
5142// SWP/SWPB are deprecated in V6/V7 and optional in v7VE.
5143// FIXME Use InstAlias to generate LDREX/STREX pairs instead.
5144let mayLoad = 1, mayStore = 1 in {
5145def SWP : AIswp<0, (outs GPRnopc:$Rt),
5146                (ins GPRnopc:$Rt2, addr_offset_none:$addr), "swp", []>,
5147                Requires<[IsARM,PreV8]>;
5148def SWPB: AIswp<1, (outs GPRnopc:$Rt),
5149                (ins GPRnopc:$Rt2, addr_offset_none:$addr), "swpb", []>,
5150                Requires<[IsARM,PreV8]>;
5151}
5152
5153//===----------------------------------------------------------------------===//
5154// Coprocessor Instructions.
5155//
5156
5157def CDP : ABI<0b1110, (outs), (ins p_imm:$cop, imm0_15:$opc1,
5158            c_imm:$CRd, c_imm:$CRn, c_imm:$CRm, imm0_7:$opc2),
5159            NoItinerary, "cdp", "\t$cop, $opc1, $CRd, $CRn, $CRm, $opc2",
5160            [(int_arm_cdp timm:$cop, timm:$opc1, timm:$CRd, timm:$CRn,
5161                          timm:$CRm, timm:$opc2)]>,
5162            Requires<[IsARM,PreV8]> {
5163  bits<4> opc1;
5164  bits<4> CRn;
5165  bits<4> CRd;
5166  bits<4> cop;
5167  bits<3> opc2;
5168  bits<4> CRm;
5169
5170  let Inst{3-0}   = CRm;
5171  let Inst{4}     = 0;
5172  let Inst{7-5}   = opc2;
5173  let Inst{11-8}  = cop;
5174  let Inst{15-12} = CRd;
5175  let Inst{19-16} = CRn;
5176  let Inst{23-20} = opc1;
5177
5178  let DecoderNamespace = "CoProc";
5179}
5180
5181def CDP2 : ABXI<0b1110, (outs), (ins p_imm:$cop, imm0_15:$opc1,
5182               c_imm:$CRd, c_imm:$CRn, c_imm:$CRm, imm0_7:$opc2),
5183               NoItinerary, "cdp2\t$cop, $opc1, $CRd, $CRn, $CRm, $opc2",
5184               [(int_arm_cdp2 timm:$cop, timm:$opc1, timm:$CRd, timm:$CRn,
5185                              timm:$CRm, timm:$opc2)]>,
5186               Requires<[IsARM,PreV8]> {
5187  let Inst{31-28} = 0b1111;
5188  bits<4> opc1;
5189  bits<4> CRn;
5190  bits<4> CRd;
5191  bits<4> cop;
5192  bits<3> opc2;
5193  bits<4> CRm;
5194
5195  let Inst{3-0}   = CRm;
5196  let Inst{4}     = 0;
5197  let Inst{7-5}   = opc2;
5198  let Inst{11-8}  = cop;
5199  let Inst{15-12} = CRd;
5200  let Inst{19-16} = CRn;
5201  let Inst{23-20} = opc1;
5202
5203  let DecoderNamespace = "CoProc";
5204}
5205
5206class ACI<dag oops, dag iops, string opc, string asm,
5207            list<dag> pattern, IndexMode im = IndexModeNone>
5208  : I<oops, iops, AddrModeNone, 4, im, BrFrm, NoItinerary,
5209      opc, asm, "", pattern> {
5210  let Inst{27-25} = 0b110;
5211}
5212class ACInoP<dag oops, dag iops, string opc, string asm,
5213          list<dag> pattern, IndexMode im = IndexModeNone>
5214  : InoP<oops, iops, AddrModeNone, 4, im, BrFrm, NoItinerary,
5215         opc, asm, "", pattern> {
5216  let Inst{31-28} = 0b1111;
5217  let Inst{27-25} = 0b110;
5218}
5219
5220let DecoderNamespace = "CoProc" in {
5221multiclass LdStCop<bit load, bit Dbit, string asm, list<dag> pattern> {
5222  def _OFFSET : ACI<(outs), (ins p_imm:$cop, c_imm:$CRd, addrmode5:$addr),
5223                    asm, "\t$cop, $CRd, $addr", pattern> {
5224    bits<13> addr;
5225    bits<4> cop;
5226    bits<4> CRd;
5227    let Inst{24} = 1; // P = 1
5228    let Inst{23} = addr{8};
5229    let Inst{22} = Dbit;
5230    let Inst{21} = 0; // W = 0
5231    let Inst{20} = load;
5232    let Inst{19-16} = addr{12-9};
5233    let Inst{15-12} = CRd;
5234    let Inst{11-8} = cop;
5235    let Inst{7-0} = addr{7-0};
5236    let DecoderMethod = "DecodeCopMemInstruction";
5237  }
5238  def _PRE : ACI<(outs), (ins p_imm:$cop, c_imm:$CRd, addrmode5_pre:$addr),
5239                 asm, "\t$cop, $CRd, $addr!", [], IndexModePre> {
5240    bits<13> addr;
5241    bits<4> cop;
5242    bits<4> CRd;
5243    let Inst{24} = 1; // P = 1
5244    let Inst{23} = addr{8};
5245    let Inst{22} = Dbit;
5246    let Inst{21} = 1; // W = 1
5247    let Inst{20} = load;
5248    let Inst{19-16} = addr{12-9};
5249    let Inst{15-12} = CRd;
5250    let Inst{11-8} = cop;
5251    let Inst{7-0} = addr{7-0};
5252    let DecoderMethod = "DecodeCopMemInstruction";
5253  }
5254  def _POST: ACI<(outs), (ins p_imm:$cop, c_imm:$CRd, addr_offset_none:$addr,
5255                              postidx_imm8s4:$offset),
5256                 asm, "\t$cop, $CRd, $addr, $offset", [], IndexModePost> {
5257    bits<9> offset;
5258    bits<4> addr;
5259    bits<4> cop;
5260    bits<4> CRd;
5261    let Inst{24} = 0; // P = 0
5262    let Inst{23} = offset{8};
5263    let Inst{22} = Dbit;
5264    let Inst{21} = 1; // W = 1
5265    let Inst{20} = load;
5266    let Inst{19-16} = addr;
5267    let Inst{15-12} = CRd;
5268    let Inst{11-8} = cop;
5269    let Inst{7-0} = offset{7-0};
5270    let DecoderMethod = "DecodeCopMemInstruction";
5271  }
5272  def _OPTION : ACI<(outs),
5273                    (ins p_imm:$cop, c_imm:$CRd, addr_offset_none:$addr,
5274                         coproc_option_imm:$option),
5275      asm, "\t$cop, $CRd, $addr, $option", []> {
5276    bits<8> option;
5277    bits<4> addr;
5278    bits<4> cop;
5279    bits<4> CRd;
5280    let Inst{24} = 0; // P = 0
5281    let Inst{23} = 1; // U = 1
5282    let Inst{22} = Dbit;
5283    let Inst{21} = 0; // W = 0
5284    let Inst{20} = load;
5285    let Inst{19-16} = addr;
5286    let Inst{15-12} = CRd;
5287    let Inst{11-8} = cop;
5288    let Inst{7-0} = option;
5289    let DecoderMethod = "DecodeCopMemInstruction";
5290  }
5291}
5292multiclass LdSt2Cop<bit load, bit Dbit, string asm, list<dag> pattern> {
5293  def _OFFSET : ACInoP<(outs), (ins p_imm:$cop, c_imm:$CRd, addrmode5:$addr),
5294                       asm, "\t$cop, $CRd, $addr", pattern> {
5295    bits<13> addr;
5296    bits<4> cop;
5297    bits<4> CRd;
5298    let Inst{24} = 1; // P = 1
5299    let Inst{23} = addr{8};
5300    let Inst{22} = Dbit;
5301    let Inst{21} = 0; // W = 0
5302    let Inst{20} = load;
5303    let Inst{19-16} = addr{12-9};
5304    let Inst{15-12} = CRd;
5305    let Inst{11-8} = cop;
5306    let Inst{7-0} = addr{7-0};
5307    let DecoderMethod = "DecodeCopMemInstruction";
5308  }
5309  def _PRE : ACInoP<(outs), (ins p_imm:$cop, c_imm:$CRd, addrmode5_pre:$addr),
5310                    asm, "\t$cop, $CRd, $addr!", [], IndexModePre> {
5311    bits<13> addr;
5312    bits<4> cop;
5313    bits<4> CRd;
5314    let Inst{24} = 1; // P = 1
5315    let Inst{23} = addr{8};
5316    let Inst{22} = Dbit;
5317    let Inst{21} = 1; // W = 1
5318    let Inst{20} = load;
5319    let Inst{19-16} = addr{12-9};
5320    let Inst{15-12} = CRd;
5321    let Inst{11-8} = cop;
5322    let Inst{7-0} = addr{7-0};
5323    let DecoderMethod = "DecodeCopMemInstruction";
5324  }
5325  def _POST: ACInoP<(outs), (ins p_imm:$cop, c_imm:$CRd, addr_offset_none:$addr,
5326                                 postidx_imm8s4:$offset),
5327                 asm, "\t$cop, $CRd, $addr, $offset", [], IndexModePost> {
5328    bits<9> offset;
5329    bits<4> addr;
5330    bits<4> cop;
5331    bits<4> CRd;
5332    let Inst{24} = 0; // P = 0
5333    let Inst{23} = offset{8};
5334    let Inst{22} = Dbit;
5335    let Inst{21} = 1; // W = 1
5336    let Inst{20} = load;
5337    let Inst{19-16} = addr;
5338    let Inst{15-12} = CRd;
5339    let Inst{11-8} = cop;
5340    let Inst{7-0} = offset{7-0};
5341    let DecoderMethod = "DecodeCopMemInstruction";
5342  }
5343  def _OPTION : ACInoP<(outs),
5344                       (ins p_imm:$cop, c_imm:$CRd, addr_offset_none:$addr,
5345                            coproc_option_imm:$option),
5346      asm, "\t$cop, $CRd, $addr, $option", []> {
5347    bits<8> option;
5348    bits<4> addr;
5349    bits<4> cop;
5350    bits<4> CRd;
5351    let Inst{24} = 0; // P = 0
5352    let Inst{23} = 1; // U = 1
5353    let Inst{22} = Dbit;
5354    let Inst{21} = 0; // W = 0
5355    let Inst{20} = load;
5356    let Inst{19-16} = addr;
5357    let Inst{15-12} = CRd;
5358    let Inst{11-8} = cop;
5359    let Inst{7-0} = option;
5360    let DecoderMethod = "DecodeCopMemInstruction";
5361  }
5362}
5363
5364defm LDC   : LdStCop <1, 0, "ldc", [(int_arm_ldc timm:$cop, timm:$CRd, addrmode5:$addr)]>;
5365defm LDCL  : LdStCop <1, 1, "ldcl", [(int_arm_ldcl timm:$cop, timm:$CRd, addrmode5:$addr)]>;
5366defm LDC2  : LdSt2Cop<1, 0, "ldc2", [(int_arm_ldc2 timm:$cop, timm:$CRd, addrmode5:$addr)]>, Requires<[IsARM,PreV8]>;
5367defm LDC2L : LdSt2Cop<1, 1, "ldc2l", [(int_arm_ldc2l timm:$cop, timm:$CRd, addrmode5:$addr)]>, Requires<[IsARM,PreV8]>;
5368
5369defm STC   : LdStCop <0, 0, "stc", [(int_arm_stc timm:$cop, timm:$CRd, addrmode5:$addr)]>;
5370defm STCL  : LdStCop <0, 1, "stcl", [(int_arm_stcl timm:$cop, timm:$CRd, addrmode5:$addr)]>;
5371defm STC2  : LdSt2Cop<0, 0, "stc2", [(int_arm_stc2 timm:$cop, timm:$CRd, addrmode5:$addr)]>, Requires<[IsARM,PreV8]>;
5372defm STC2L : LdSt2Cop<0, 1, "stc2l", [(int_arm_stc2l timm:$cop, timm:$CRd, addrmode5:$addr)]>, Requires<[IsARM,PreV8]>;
5373
5374} // DecoderNamespace = "CoProc"
5375
5376//===----------------------------------------------------------------------===//
5377// Move between coprocessor and ARM core register.
5378//
5379
5380class MovRCopro<string opc, bit direction, dag oops, dag iops,
5381                list<dag> pattern>
5382  : ABI<0b1110, oops, iops, NoItinerary, opc,
5383        "\t$cop, $opc1, $Rt, $CRn, $CRm, $opc2", pattern> {
5384  let Inst{20} = direction;
5385  let Inst{4} = 1;
5386
5387  bits<4> Rt;
5388  bits<4> cop;
5389  bits<3> opc1;
5390  bits<3> opc2;
5391  bits<4> CRm;
5392  bits<4> CRn;
5393
5394  let Inst{15-12} = Rt;
5395  let Inst{11-8}  = cop;
5396  let Inst{23-21} = opc1;
5397  let Inst{7-5}   = opc2;
5398  let Inst{3-0}   = CRm;
5399  let Inst{19-16} = CRn;
5400
5401  let DecoderNamespace = "CoProc";
5402}
5403
5404def MCR : MovRCopro<"mcr", 0 /* from ARM core register to coprocessor */,
5405                    (outs),
5406                    (ins p_imm:$cop, imm0_7:$opc1, GPR:$Rt, c_imm:$CRn,
5407                         c_imm:$CRm, imm0_7:$opc2),
5408                    [(int_arm_mcr timm:$cop, timm:$opc1, GPR:$Rt, timm:$CRn,
5409                                  timm:$CRm, timm:$opc2)]>,
5410                    ComplexDeprecationPredicate<"MCR">;
5411def : ARMInstAlias<"mcr${p} $cop, $opc1, $Rt, $CRn, $CRm",
5412                   (MCR p_imm:$cop, imm0_7:$opc1, GPR:$Rt, c_imm:$CRn,
5413                        c_imm:$CRm, 0, pred:$p)>;
5414def MRC : MovRCopro<"mrc", 1 /* from coprocessor to ARM core register */,
5415                    (outs GPRwithAPSR:$Rt),
5416                    (ins p_imm:$cop, imm0_7:$opc1, c_imm:$CRn, c_imm:$CRm,
5417                         imm0_7:$opc2), []>;
5418def : ARMInstAlias<"mrc${p} $cop, $opc1, $Rt, $CRn, $CRm",
5419                   (MRC GPRwithAPSR:$Rt, p_imm:$cop, imm0_7:$opc1, c_imm:$CRn,
5420                        c_imm:$CRm, 0, pred:$p)>;
5421
5422def : ARMPat<(int_arm_mrc timm:$cop, timm:$opc1, timm:$CRn, timm:$CRm, timm:$opc2),
5423             (MRC p_imm:$cop, imm0_7:$opc1, c_imm:$CRn, c_imm:$CRm, imm0_7:$opc2)>;
5424
5425class MovRCopro2<string opc, bit direction, dag oops, dag iops,
5426                 list<dag> pattern>
5427  : ABXI<0b1110, oops, iops, NoItinerary,
5428         !strconcat(opc, "\t$cop, $opc1, $Rt, $CRn, $CRm, $opc2"), pattern> {
5429  let Inst{31-24} = 0b11111110;
5430  let Inst{20} = direction;
5431  let Inst{4} = 1;
5432
5433  bits<4> Rt;
5434  bits<4> cop;
5435  bits<3> opc1;
5436  bits<3> opc2;
5437  bits<4> CRm;
5438  bits<4> CRn;
5439
5440  let Inst{15-12} = Rt;
5441  let Inst{11-8}  = cop;
5442  let Inst{23-21} = opc1;
5443  let Inst{7-5}   = opc2;
5444  let Inst{3-0}   = CRm;
5445  let Inst{19-16} = CRn;
5446
5447  let DecoderNamespace = "CoProc";
5448}
5449
5450def MCR2 : MovRCopro2<"mcr2", 0 /* from ARM core register to coprocessor */,
5451                      (outs),
5452                      (ins p_imm:$cop, imm0_7:$opc1, GPR:$Rt, c_imm:$CRn,
5453                           c_imm:$CRm, imm0_7:$opc2),
5454                      [(int_arm_mcr2 timm:$cop, timm:$opc1, GPR:$Rt, timm:$CRn,
5455                                     timm:$CRm, timm:$opc2)]>,
5456                      Requires<[IsARM,PreV8]>;
5457def : ARMInstAlias<"mcr2 $cop, $opc1, $Rt, $CRn, $CRm",
5458                   (MCR2 p_imm:$cop, imm0_7:$opc1, GPR:$Rt, c_imm:$CRn,
5459                         c_imm:$CRm, 0)>;
5460def MRC2 : MovRCopro2<"mrc2", 1 /* from coprocessor to ARM core register */,
5461                      (outs GPRwithAPSR:$Rt),
5462                      (ins p_imm:$cop, imm0_7:$opc1, c_imm:$CRn, c_imm:$CRm,
5463                           imm0_7:$opc2), []>,
5464                      Requires<[IsARM,PreV8]>;
5465def : ARMInstAlias<"mrc2 $cop, $opc1, $Rt, $CRn, $CRm",
5466                   (MRC2 GPRwithAPSR:$Rt, p_imm:$cop, imm0_7:$opc1, c_imm:$CRn,
5467                         c_imm:$CRm, 0)>;
5468
5469def : ARMV5TPat<(int_arm_mrc2 timm:$cop, timm:$opc1, timm:$CRn,
5470                              timm:$CRm, timm:$opc2),
5471                (MRC2 p_imm:$cop, imm0_7:$opc1, c_imm:$CRn, c_imm:$CRm, imm0_7:$opc2)>;
5472
5473class MovRRCopro<string opc, bit direction, dag oops, dag iops, list<dag>
5474                 pattern = []>
5475  : ABI<0b1100, oops, iops, NoItinerary, opc, "\t$cop, $opc1, $Rt, $Rt2, $CRm",
5476        pattern> {
5477
5478  let Inst{23-21} = 0b010;
5479  let Inst{20} = direction;
5480
5481  bits<4> Rt;
5482  bits<4> Rt2;
5483  bits<4> cop;
5484  bits<4> opc1;
5485  bits<4> CRm;
5486
5487  let Inst{15-12} = Rt;
5488  let Inst{19-16} = Rt2;
5489  let Inst{11-8}  = cop;
5490  let Inst{7-4}   = opc1;
5491  let Inst{3-0}   = CRm;
5492}
5493
5494def MCRR : MovRRCopro<"mcrr", 0 /* from ARM core register to coprocessor */,
5495                      (outs), (ins p_imm:$cop, imm0_15:$opc1, GPRnopc:$Rt,
5496                      GPRnopc:$Rt2, c_imm:$CRm),
5497                      [(int_arm_mcrr timm:$cop, timm:$opc1, GPRnopc:$Rt,
5498                                     GPRnopc:$Rt2, timm:$CRm)]>;
5499def MRRC : MovRRCopro<"mrrc", 1 /* from coprocessor to ARM core register */,
5500                      (outs GPRnopc:$Rt, GPRnopc:$Rt2),
5501                      (ins p_imm:$cop, imm0_15:$opc1, c_imm:$CRm), []>;
5502
5503class MovRRCopro2<string opc, bit direction, dag oops, dag iops,
5504                  list<dag> pattern = []>
5505  : ABXI<0b1100, oops, iops, NoItinerary,
5506         !strconcat(opc, "\t$cop, $opc1, $Rt, $Rt2, $CRm"), pattern>,
5507    Requires<[IsARM,PreV8]> {
5508  let Inst{31-28} = 0b1111;
5509  let Inst{23-21} = 0b010;
5510  let Inst{20} = direction;
5511
5512  bits<4> Rt;
5513  bits<4> Rt2;
5514  bits<4> cop;
5515  bits<4> opc1;
5516  bits<4> CRm;
5517
5518  let Inst{15-12} = Rt;
5519  let Inst{19-16} = Rt2;
5520  let Inst{11-8}  = cop;
5521  let Inst{7-4}   = opc1;
5522  let Inst{3-0}   = CRm;
5523
5524  let DecoderMethod = "DecoderForMRRC2AndMCRR2";
5525}
5526
5527def MCRR2 : MovRRCopro2<"mcrr2", 0 /* from ARM core register to coprocessor */,
5528                        (outs), (ins p_imm:$cop, imm0_15:$opc1, GPRnopc:$Rt,
5529                        GPRnopc:$Rt2, c_imm:$CRm),
5530                        [(int_arm_mcrr2 timm:$cop, timm:$opc1, GPRnopc:$Rt,
5531                                        GPRnopc:$Rt2, timm:$CRm)]>;
5532
5533def MRRC2 : MovRRCopro2<"mrrc2", 1 /* from coprocessor to ARM core register */,
5534                       (outs GPRnopc:$Rt, GPRnopc:$Rt2),
5535                       (ins p_imm:$cop, imm0_15:$opc1, c_imm:$CRm), []>;
5536
5537//===----------------------------------------------------------------------===//
5538// Move between special register and ARM core register
5539//
5540
5541// Move to ARM core register from Special Register
5542def MRS : ABI<0b0001, (outs GPRnopc:$Rd), (ins), NoItinerary,
5543              "mrs", "\t$Rd, apsr", []> {
5544  bits<4> Rd;
5545  let Inst{23-16} = 0b00001111;
5546  let Unpredictable{19-17} = 0b111;
5547
5548  let Inst{15-12} = Rd;
5549
5550  let Inst{11-0} = 0b000000000000;
5551  let Unpredictable{11-0} = 0b110100001111;
5552}
5553
5554def : InstAlias<"mrs${p} $Rd, cpsr", (MRS GPRnopc:$Rd, pred:$p), 0>,
5555         Requires<[IsARM]>;
5556
5557// The MRSsys instruction is the MRS instruction from the ARM ARM,
5558// section B9.3.9, with the R bit set to 1.
5559def MRSsys : ABI<0b0001, (outs GPRnopc:$Rd), (ins), NoItinerary,
5560                 "mrs", "\t$Rd, spsr", []> {
5561  bits<4> Rd;
5562  let Inst{23-16} = 0b01001111;
5563  let Unpredictable{19-16} = 0b1111;
5564
5565  let Inst{15-12} = Rd;
5566
5567  let Inst{11-0} = 0b000000000000;
5568  let Unpredictable{11-0} = 0b110100001111;
5569}
5570
5571// However, the MRS (banked register) system instruction (ARMv7VE) *does* have a
5572// separate encoding (distinguished by bit 5.
5573def MRSbanked : ABI<0b0001, (outs GPRnopc:$Rd), (ins banked_reg:$banked),
5574                    NoItinerary, "mrs", "\t$Rd, $banked", []>,
5575                Requires<[IsARM, HasVirtualization]> {
5576  bits<6> banked;
5577  bits<4> Rd;
5578
5579  let Inst{23} = 0;
5580  let Inst{22} = banked{5}; // R bit
5581  let Inst{21-20} = 0b00;
5582  let Inst{19-16} = banked{3-0};
5583  let Inst{15-12} = Rd;
5584  let Inst{11-9} = 0b001;
5585  let Inst{8} = banked{4};
5586  let Inst{7-0} = 0b00000000;
5587}
5588
5589// Move from ARM core register to Special Register
5590//
5591// No need to have both system and application versions of MSR (immediate) or
5592// MSR (register), the encodings are the same and the assembly parser has no way
5593// to distinguish between them. The mask operand contains the special register
5594// (R Bit) in bit 4 and bits 3-0 contains the mask with the fields to be
5595// accessed in the special register.
5596let Defs = [CPSR] in
5597def MSR : ABI<0b0001, (outs), (ins msr_mask:$mask, GPR:$Rn), NoItinerary,
5598              "msr", "\t$mask, $Rn", []> {
5599  bits<5> mask;
5600  bits<4> Rn;
5601
5602  let Inst{23} = 0;
5603  let Inst{22} = mask{4}; // R bit
5604  let Inst{21-20} = 0b10;
5605  let Inst{19-16} = mask{3-0};
5606  let Inst{15-12} = 0b1111;
5607  let Inst{11-4} = 0b00000000;
5608  let Inst{3-0} = Rn;
5609}
5610
5611let Defs = [CPSR] in
5612def MSRi : ABI<0b0011, (outs), (ins msr_mask:$mask,  mod_imm:$imm), NoItinerary,
5613               "msr", "\t$mask, $imm", []> {
5614  bits<5> mask;
5615  bits<12> imm;
5616
5617  let Inst{23} = 0;
5618  let Inst{22} = mask{4}; // R bit
5619  let Inst{21-20} = 0b10;
5620  let Inst{19-16} = mask{3-0};
5621  let Inst{15-12} = 0b1111;
5622  let Inst{11-0} = imm;
5623}
5624
5625// However, the MSR (banked register) system instruction (ARMv7VE) *does* have a
5626// separate encoding (distinguished by bit 5.
5627def MSRbanked : ABI<0b0001, (outs), (ins banked_reg:$banked, GPRnopc:$Rn),
5628                    NoItinerary, "msr", "\t$banked, $Rn", []>,
5629                Requires<[IsARM, HasVirtualization]> {
5630  bits<6> banked;
5631  bits<4> Rn;
5632
5633  let Inst{23} = 0;
5634  let Inst{22} = banked{5}; // R bit
5635  let Inst{21-20} = 0b10;
5636  let Inst{19-16} = banked{3-0};
5637  let Inst{15-12} = 0b1111;
5638  let Inst{11-9} = 0b001;
5639  let Inst{8} = banked{4};
5640  let Inst{7-4} = 0b0000;
5641  let Inst{3-0} = Rn;
5642}
5643
5644// Dynamic stack allocation yields a _chkstk for Windows targets.  These calls
5645// are needed to probe the stack when allocating more than
5646// 4k bytes in one go. Touching the stack at 4K increments is necessary to
5647// ensure that the guard pages used by the OS virtual memory manager are
5648// allocated in correct sequence.
5649// The main point of having separate instruction are extra unmodelled effects
5650// (compared to ordinary calls) like stack pointer change.
5651
5652def win__chkstk : SDNode<"ARMISD::WIN__CHKSTK", SDTNone,
5653                      [SDNPHasChain, SDNPSideEffect]>;
5654let usesCustomInserter = 1, Uses = [R4], Defs = [R4, SP], hasNoSchedulingInfo = 1 in
5655  def WIN__CHKSTK : PseudoInst<(outs), (ins), NoItinerary, [(win__chkstk)]>;
5656
5657def win__dbzchk : SDNode<"ARMISD::WIN__DBZCHK", SDT_WIN__DBZCHK,
5658                         [SDNPHasChain, SDNPSideEffect, SDNPOutGlue]>;
5659let usesCustomInserter = 1, Defs = [CPSR], hasNoSchedulingInfo = 1 in
5660  def WIN__DBZCHK : PseudoInst<(outs), (ins tGPR:$divisor), NoItinerary,
5661                               [(win__dbzchk tGPR:$divisor)]>;
5662
5663//===----------------------------------------------------------------------===//
5664// TLS Instructions
5665//
5666
5667// __aeabi_read_tp preserves the registers r1-r3.
5668// This is a pseudo inst so that we can get the encoding right,
5669// complete with fixup for the aeabi_read_tp function.
5670// TPsoft is valid for ARM mode only, in case of Thumb mode a tTPsoft pattern
5671// is defined in "ARMInstrThumb.td".
5672let isCall = 1,
5673  Defs = [R0, R12, LR, CPSR], Uses = [SP] in {
5674  def TPsoft : ARMPseudoInst<(outs), (ins), 4, IIC_Br,
5675               [(set R0, ARMthread_pointer)]>, Sched<[WriteBr]>,
5676               Requires<[IsARM, IsReadTPSoft]>;
5677}
5678
5679// Reading thread pointer from coprocessor register
5680def : ARMPat<(ARMthread_pointer), (MRC 15, 0, 13, 0, 3)>,
5681      Requires<[IsARM, IsReadTPHard]>;
5682
5683//===----------------------------------------------------------------------===//
5684// SJLJ Exception handling intrinsics
5685//   eh_sjlj_setjmp() is an instruction sequence to store the return
5686//   address and save #0 in R0 for the non-longjmp case.
5687//   Since by its nature we may be coming from some other function to get
5688//   here, and we're using the stack frame for the containing function to
5689//   save/restore registers, we can't keep anything live in regs across
5690//   the eh_sjlj_setjmp(), else it will almost certainly have been tromped upon
5691//   when we get here from a longjmp(). We force everything out of registers
5692//   except for our own input by listing the relevant registers in Defs. By
5693//   doing so, we also cause the prologue/epilogue code to actively preserve
5694//   all of the callee-saved resgisters, which is exactly what we want.
5695//   A constant value is passed in $val, and we use the location as a scratch.
5696//
5697// These are pseudo-instructions and are lowered to individual MC-insts, so
5698// no encoding information is necessary.
5699let Defs =
5700  [ R0,  R1,  R2,  R3,  R4,  R5,  R6,  R7,  R8,  R9,  R10, R11, R12, LR, CPSR,
5701    Q0, Q1, Q2, Q3, Q4, Q5, Q6, Q7, Q8, Q9, Q10, Q11, Q12, Q13, Q14, Q15 ],
5702  hasSideEffects = 1, isBarrier = 1, usesCustomInserter = 1 in {
5703  def Int_eh_sjlj_setjmp : PseudoInst<(outs), (ins GPR:$src, GPR:$val),
5704                               NoItinerary,
5705                         [(set R0, (ARMeh_sjlj_setjmp GPR:$src, GPR:$val))]>,
5706                           Requires<[IsARM, HasVFP2]>;
5707}
5708
5709let Defs =
5710  [ R0,  R1,  R2,  R3,  R4,  R5,  R6,  R7,  R8,  R9,  R10, R11, R12, LR, CPSR ],
5711  hasSideEffects = 1, isBarrier = 1, usesCustomInserter = 1 in {
5712  def Int_eh_sjlj_setjmp_nofp : PseudoInst<(outs), (ins GPR:$src, GPR:$val),
5713                                   NoItinerary,
5714                         [(set R0, (ARMeh_sjlj_setjmp GPR:$src, GPR:$val))]>,
5715                                Requires<[IsARM, NoVFP]>;
5716}
5717
5718// FIXME: Non-IOS version(s)
5719let isBarrier = 1, hasSideEffects = 1, isTerminator = 1,
5720    Defs = [ R7, LR, SP ] in {
5721def Int_eh_sjlj_longjmp : PseudoInst<(outs), (ins GPR:$src, GPR:$scratch),
5722                             NoItinerary,
5723                         [(ARMeh_sjlj_longjmp GPR:$src, GPR:$scratch)]>,
5724                                Requires<[IsARM]>;
5725}
5726
5727let isBarrier = 1, hasSideEffects = 1, usesCustomInserter = 1 in
5728def Int_eh_sjlj_setup_dispatch : PseudoInst<(outs), (ins), NoItinerary,
5729            [(ARMeh_sjlj_setup_dispatch)]>;
5730
5731// eh.sjlj.dispatchsetup pseudo-instruction.
5732// This pseudo is used for both ARM and Thumb. Any differences are handled when
5733// the pseudo is expanded (which happens before any passes that need the
5734// instruction size).
5735let isBarrier = 1 in
5736def Int_eh_sjlj_dispatchsetup : PseudoInst<(outs), (ins), NoItinerary, []>;
5737
5738
5739//===----------------------------------------------------------------------===//
5740// Non-Instruction Patterns
5741//
5742
5743// ARMv4 indirect branch using (MOVr PC, dst)
5744let isBranch = 1, isTerminator = 1, isBarrier = 1, isIndirectBranch = 1 in
5745  def MOVPCRX : ARMPseudoExpand<(outs), (ins GPR:$dst),
5746                    4, IIC_Br, [(brind GPR:$dst)],
5747                    (MOVr PC, GPR:$dst, (ops 14, zero_reg), zero_reg)>,
5748                  Requires<[IsARM, NoV4T]>, Sched<[WriteBr]>;
5749
5750let isCall = 1, isTerminator = 1, isReturn = 1, isBarrier = 1, Uses = [SP] in
5751  def TAILJMPr4 : ARMPseudoExpand<(outs), (ins GPR:$dst),
5752                    4, IIC_Br, [],
5753                    (MOVr PC, GPR:$dst, (ops 14, zero_reg), zero_reg)>,
5754                  Requires<[IsARM, NoV4T]>, Sched<[WriteBr]>;
5755
5756// Large immediate handling.
5757
5758// 32-bit immediate using two piece mod_imms or movw + movt.
5759// This is a single pseudo instruction, the benefit is that it can be remat'd
5760// as a single unit instead of having to handle reg inputs.
5761// FIXME: Remove this when we can do generalized remat.
5762let isReMaterializable = 1, isMoveImm = 1 in
5763def MOVi32imm : PseudoInst<(outs GPR:$dst), (ins i32imm:$src), IIC_iMOVix2,
5764                           [(set GPR:$dst, (arm_i32imm:$src))]>,
5765                           Requires<[IsARM]>;
5766
5767def LDRLIT_ga_abs : PseudoInst<(outs GPR:$dst), (ins i32imm:$src), IIC_iLoad_i,
5768                               [(set GPR:$dst, (ARMWrapper tglobaladdr:$src))]>,
5769                    Requires<[IsARM, DontUseMovt]>;
5770
5771// Pseudo instruction that combines movw + movt + add pc (if PIC).
5772// It also makes it possible to rematerialize the instructions.
5773// FIXME: Remove this when we can do generalized remat and when machine licm
5774// can properly the instructions.
5775let isReMaterializable = 1 in {
5776def MOV_ga_pcrel : PseudoInst<(outs GPR:$dst), (ins i32imm:$addr),
5777                              IIC_iMOVix2addpc,
5778                        [(set GPR:$dst, (ARMWrapperPIC tglobaladdr:$addr))]>,
5779                        Requires<[IsARM, UseMovtInPic]>;
5780
5781def LDRLIT_ga_pcrel : PseudoInst<(outs GPR:$dst), (ins i32imm:$addr),
5782                                 IIC_iLoadiALU,
5783                                 [(set GPR:$dst,
5784                                       (ARMWrapperPIC tglobaladdr:$addr))]>,
5785                      Requires<[IsARM, DontUseMovtInPic]>;
5786
5787let AddedComplexity = 10 in
5788def LDRLIT_ga_pcrel_ldr : PseudoInst<(outs GPR:$dst), (ins i32imm:$addr),
5789                              NoItinerary,
5790                              [(set GPR:$dst,
5791                                    (load (ARMWrapperPIC tglobaladdr:$addr)))]>,
5792                          Requires<[IsARM, DontUseMovtInPic]>;
5793
5794let AddedComplexity = 10 in
5795def MOV_ga_pcrel_ldr : PseudoInst<(outs GPR:$dst), (ins i32imm:$addr),
5796                                IIC_iMOVix2ld,
5797                    [(set GPR:$dst, (load (ARMWrapperPIC tglobaladdr:$addr)))]>,
5798                    Requires<[IsARM, UseMovtInPic]>;
5799} // isReMaterializable
5800
5801// The many different faces of TLS access.
5802def : ARMPat<(ARMWrapper tglobaltlsaddr :$dst),
5803             (MOVi32imm tglobaltlsaddr :$dst)>,
5804      Requires<[IsARM, UseMovt]>;
5805
5806def : Pat<(ARMWrapper tglobaltlsaddr:$src),
5807          (LDRLIT_ga_abs tglobaltlsaddr:$src)>,
5808      Requires<[IsARM, DontUseMovt]>;
5809
5810def : Pat<(ARMWrapperPIC tglobaltlsaddr:$addr),
5811          (MOV_ga_pcrel tglobaltlsaddr:$addr)>, Requires<[IsARM, UseMovtInPic]>;
5812
5813def : Pat<(ARMWrapperPIC tglobaltlsaddr:$addr),
5814          (LDRLIT_ga_pcrel tglobaltlsaddr:$addr)>,
5815      Requires<[IsARM, DontUseMovtInPic]>;
5816let AddedComplexity = 10 in
5817def : Pat<(load (ARMWrapperPIC tglobaltlsaddr:$addr)),
5818          (MOV_ga_pcrel_ldr tglobaltlsaddr:$addr)>,
5819      Requires<[IsARM, UseMovtInPic]>;
5820
5821
5822// ConstantPool, GlobalAddress, and JumpTable
5823def : ARMPat<(ARMWrapper  tconstpool  :$dst), (LEApcrel tconstpool  :$dst)>;
5824def : ARMPat<(ARMWrapper  tglobaladdr :$dst), (MOVi32imm tglobaladdr :$dst)>,
5825            Requires<[IsARM, UseMovt]>;
5826def : ARMPat<(ARMWrapper texternalsym :$dst), (MOVi32imm texternalsym :$dst)>,
5827            Requires<[IsARM, UseMovt]>;
5828def : ARMPat<(ARMWrapperJT tjumptable:$dst),
5829             (LEApcrelJT tjumptable:$dst)>;
5830
5831// TODO: add,sub,and, 3-instr forms?
5832
5833// Tail calls. These patterns also apply to Thumb mode.
5834def : Pat<(ARMtcret tcGPR:$dst), (TCRETURNri tcGPR:$dst)>;
5835def : Pat<(ARMtcret (i32 tglobaladdr:$dst)), (TCRETURNdi texternalsym:$dst)>;
5836def : Pat<(ARMtcret (i32 texternalsym:$dst)), (TCRETURNdi texternalsym:$dst)>;
5837
5838// Direct calls
5839def : ARMPat<(ARMcall texternalsym:$func), (BL texternalsym:$func)>;
5840def : ARMPat<(ARMcall_nolink texternalsym:$func),
5841             (BMOVPCB_CALL texternalsym:$func)>;
5842
5843// zextload i1 -> zextload i8
5844def : ARMPat<(zextloadi1 addrmode_imm12:$addr), (LDRBi12 addrmode_imm12:$addr)>;
5845def : ARMPat<(zextloadi1 ldst_so_reg:$addr),    (LDRBrs ldst_so_reg:$addr)>;
5846
5847// extload -> zextload
5848def : ARMPat<(extloadi1 addrmode_imm12:$addr),  (LDRBi12 addrmode_imm12:$addr)>;
5849def : ARMPat<(extloadi1 ldst_so_reg:$addr),     (LDRBrs ldst_so_reg:$addr)>;
5850def : ARMPat<(extloadi8 addrmode_imm12:$addr),  (LDRBi12 addrmode_imm12:$addr)>;
5851def : ARMPat<(extloadi8 ldst_so_reg:$addr),     (LDRBrs ldst_so_reg:$addr)>;
5852
5853def : ARMPat<(extloadi16 addrmode3:$addr),  (LDRH addrmode3:$addr)>;
5854
5855def : ARMPat<(extloadi8  addrmodepc:$addr), (PICLDRB addrmodepc:$addr)>;
5856def : ARMPat<(extloadi16 addrmodepc:$addr), (PICLDRH addrmodepc:$addr)>;
5857
5858// smul* and smla*
5859def : ARMV5TEPat<(mul sext_16_node:$a, sext_16_node:$b),
5860                 (SMULBB GPR:$a, GPR:$b)>;
5861def : ARMV5TEPat<(mul sext_16_node:$a, (sext_bottom_16 GPR:$b)),
5862                 (SMULBB GPR:$a, GPR:$b)>;
5863def : ARMV5TEPat<(mul sext_16_node:$a, (sext_top_16 GPR:$b)),
5864                 (SMULBT GPR:$a, GPR:$b)>;
5865def : ARMV5TEPat<(mul (sext_top_16 GPR:$a), sext_16_node:$b),
5866                 (SMULTB GPR:$a, GPR:$b)>;
5867def : ARMV5MOPat<(add GPR:$acc, (mul sext_16_node:$a, sext_16_node:$b)),
5868                 (SMLABB GPR:$a, GPR:$b, GPR:$acc)>;
5869def : ARMV5MOPat<(add GPR:$acc, (mul sext_16_node:$a, (sext_bottom_16 GPR:$b))),
5870                 (SMLABB GPR:$a, GPR:$b, GPR:$acc)>;
5871def : ARMV5MOPat<(add GPR:$acc, (mul sext_16_node:$a, (sext_top_16 GPR:$b))),
5872                 (SMLABT GPR:$a, GPR:$b, GPR:$acc)>;
5873def : ARMV5MOPat<(add GPR:$acc, (mul (sext_top_16 GPR:$a), sext_16_node:$b)),
5874                 (SMLATB GPR:$a, GPR:$b, GPR:$acc)>;
5875
5876def : ARMV5TEPat<(int_arm_smulbb GPR:$a, GPR:$b),
5877                 (SMULBB GPR:$a, GPR:$b)>;
5878def : ARMV5TEPat<(int_arm_smulbt GPR:$a, GPR:$b),
5879                 (SMULBT GPR:$a, GPR:$b)>;
5880def : ARMV5TEPat<(int_arm_smultb GPR:$a, GPR:$b),
5881                 (SMULTB GPR:$a, GPR:$b)>;
5882def : ARMV5TEPat<(int_arm_smultt GPR:$a, GPR:$b),
5883                 (SMULTT GPR:$a, GPR:$b)>;
5884def : ARMV5TEPat<(int_arm_smulwb GPR:$a, GPR:$b),
5885                 (SMULWB GPR:$a, GPR:$b)>;
5886def : ARMV5TEPat<(int_arm_smulwt GPR:$a, GPR:$b),
5887                 (SMULWT GPR:$a, GPR:$b)>;
5888
5889def : ARMV5TEPat<(int_arm_smlabb GPR:$a, GPR:$b, GPR:$acc),
5890                 (SMLABB GPR:$a, GPR:$b, GPR:$acc)>;
5891def : ARMV5TEPat<(int_arm_smlabt GPR:$a, GPR:$b, GPR:$acc),
5892                 (SMLABT GPR:$a, GPR:$b, GPR:$acc)>;
5893def : ARMV5TEPat<(int_arm_smlatb GPR:$a, GPR:$b, GPR:$acc),
5894                 (SMLATB GPR:$a, GPR:$b, GPR:$acc)>;
5895def : ARMV5TEPat<(int_arm_smlatt GPR:$a, GPR:$b, GPR:$acc),
5896                 (SMLATT GPR:$a, GPR:$b, GPR:$acc)>;
5897def : ARMV5TEPat<(int_arm_smlawb GPR:$a, GPR:$b, GPR:$acc),
5898                 (SMLAWB GPR:$a, GPR:$b, GPR:$acc)>;
5899def : ARMV5TEPat<(int_arm_smlawt GPR:$a, GPR:$b, GPR:$acc),
5900                 (SMLAWT GPR:$a, GPR:$b, GPR:$acc)>;
5901
5902// Pre-v7 uses MCR for synchronization barriers.
5903def : ARMPat<(ARMMemBarrierMCR GPR:$zero), (MCR 15, 0, GPR:$zero, 7, 10, 5)>,
5904         Requires<[IsARM, HasV6]>;
5905
5906// SXT/UXT with no rotate
5907let AddedComplexity = 16 in {
5908def : ARMV6Pat<(and GPR:$Src, 0x000000FF), (UXTB GPR:$Src, 0)>;
5909def : ARMV6Pat<(and GPR:$Src, 0x0000FFFF), (UXTH GPR:$Src, 0)>;
5910def : ARMV6Pat<(and GPR:$Src, 0x00FF00FF), (UXTB16 GPR:$Src, 0)>;
5911def : ARMV6Pat<(add GPR:$Rn, (and GPR:$Rm, 0x00FF)),
5912               (UXTAB GPR:$Rn, GPR:$Rm, 0)>;
5913def : ARMV6Pat<(add GPR:$Rn, (and GPR:$Rm, 0xFFFF)),
5914               (UXTAH GPR:$Rn, GPR:$Rm, 0)>;
5915}
5916
5917def : ARMV6Pat<(sext_inreg GPR:$Src, i8),  (SXTB GPR:$Src, 0)>;
5918def : ARMV6Pat<(sext_inreg GPR:$Src, i16), (SXTH GPR:$Src, 0)>;
5919
5920def : ARMV6Pat<(add GPR:$Rn, (sext_inreg GPRnopc:$Rm, i8)),
5921               (SXTAB GPR:$Rn, GPRnopc:$Rm, 0)>;
5922def : ARMV6Pat<(add GPR:$Rn, (sext_inreg GPRnopc:$Rm, i16)),
5923               (SXTAH GPR:$Rn, GPRnopc:$Rm, 0)>;
5924
5925// Atomic load/store patterns
5926def : ARMPat<(atomic_load_8 ldst_so_reg:$src),
5927             (LDRBrs ldst_so_reg:$src)>;
5928def : ARMPat<(atomic_load_8 addrmode_imm12:$src),
5929             (LDRBi12 addrmode_imm12:$src)>;
5930def : ARMPat<(atomic_load_16 addrmode3:$src),
5931             (LDRH addrmode3:$src)>;
5932def : ARMPat<(atomic_load_32 ldst_so_reg:$src),
5933             (LDRrs ldst_so_reg:$src)>;
5934def : ARMPat<(atomic_load_32 addrmode_imm12:$src),
5935             (LDRi12 addrmode_imm12:$src)>;
5936def : ARMPat<(atomic_store_8 ldst_so_reg:$ptr, GPR:$val),
5937             (STRBrs GPR:$val, ldst_so_reg:$ptr)>;
5938def : ARMPat<(atomic_store_8 addrmode_imm12:$ptr, GPR:$val),
5939             (STRBi12 GPR:$val, addrmode_imm12:$ptr)>;
5940def : ARMPat<(atomic_store_16 addrmode3:$ptr, GPR:$val),
5941             (STRH GPR:$val, addrmode3:$ptr)>;
5942def : ARMPat<(atomic_store_32 ldst_so_reg:$ptr, GPR:$val),
5943             (STRrs GPR:$val, ldst_so_reg:$ptr)>;
5944def : ARMPat<(atomic_store_32 addrmode_imm12:$ptr, GPR:$val),
5945             (STRi12 GPR:$val, addrmode_imm12:$ptr)>;
5946
5947
5948//===----------------------------------------------------------------------===//
5949// Thumb Support
5950//
5951
5952include "ARMInstrThumb.td"
5953
5954//===----------------------------------------------------------------------===//
5955// Thumb2 Support
5956//
5957
5958include "ARMInstrThumb2.td"
5959
5960//===----------------------------------------------------------------------===//
5961// Floating Point Support
5962//
5963
5964include "ARMInstrVFP.td"
5965
5966//===----------------------------------------------------------------------===//
5967// Advanced SIMD (NEON) Support
5968//
5969
5970include "ARMInstrNEON.td"
5971
5972//===----------------------------------------------------------------------===//
5973// MVE Support
5974//
5975
5976include "ARMInstrMVE.td"
5977
5978//===----------------------------------------------------------------------===//
5979// Assembler aliases
5980//
5981
5982// Memory barriers
5983def : InstAlias<"dmb", (DMB 0xf), 0>, Requires<[IsARM, HasDB]>;
5984def : InstAlias<"dsb", (DSB 0xf), 0>, Requires<[IsARM, HasDB]>;
5985def : InstAlias<"ssbb", (DSB 0x0), 1>, Requires<[IsARM, HasDB]>;
5986def : InstAlias<"pssbb", (DSB 0x4), 1>, Requires<[IsARM, HasDB]>;
5987def : InstAlias<"isb", (ISB 0xf), 0>, Requires<[IsARM, HasDB]>;
5988// Armv8-R 'Data Full Barrier'
5989def : InstAlias<"dfb", (DSB 0xc), 1>, Requires<[IsARM, HasDFB]>;
5990
5991// System instructions
5992def : MnemonicAlias<"swi", "svc">;
5993
5994// Load / Store Multiple
5995def : MnemonicAlias<"ldmfd", "ldm">;
5996def : MnemonicAlias<"ldmia", "ldm">;
5997def : MnemonicAlias<"ldmea", "ldmdb">;
5998def : MnemonicAlias<"stmfd", "stmdb">;
5999def : MnemonicAlias<"stmia", "stm">;
6000def : MnemonicAlias<"stmea", "stm">;
6001
6002// PKHBT/PKHTB with default shift amount. PKHTB is equivalent to PKHBT with the
6003// input operands swapped when the shift amount is zero (i.e., unspecified).
6004def : InstAlias<"pkhbt${p} $Rd, $Rn, $Rm",
6005                (PKHBT GPRnopc:$Rd, GPRnopc:$Rn, GPRnopc:$Rm, 0, pred:$p), 0>,
6006        Requires<[IsARM, HasV6]>;
6007def : InstAlias<"pkhtb${p} $Rd, $Rn, $Rm",
6008                (PKHBT GPRnopc:$Rd, GPRnopc:$Rm, GPRnopc:$Rn, 0, pred:$p), 0>,
6009        Requires<[IsARM, HasV6]>;
6010
6011// PUSH/POP aliases for STM/LDM
6012def : ARMInstAlias<"push${p} $regs", (STMDB_UPD SP, pred:$p, reglist:$regs)>;
6013def : ARMInstAlias<"pop${p} $regs", (LDMIA_UPD SP, pred:$p, reglist:$regs)>;
6014
6015// SSAT/USAT optional shift operand.
6016def : ARMInstAlias<"ssat${p} $Rd, $sat_imm, $Rn",
6017                (SSAT GPRnopc:$Rd, imm1_32:$sat_imm, GPRnopc:$Rn, 0, pred:$p)>;
6018def : ARMInstAlias<"usat${p} $Rd, $sat_imm, $Rn",
6019                (USAT GPRnopc:$Rd, imm0_31:$sat_imm, GPRnopc:$Rn, 0, pred:$p)>;
6020
6021
6022// Extend instruction optional rotate operand.
6023def : ARMInstAlias<"sxtab${p} $Rd, $Rn, $Rm",
6024                (SXTAB GPRnopc:$Rd, GPR:$Rn, GPRnopc:$Rm, 0, pred:$p)>;
6025def : ARMInstAlias<"sxtah${p} $Rd, $Rn, $Rm",
6026                (SXTAH GPRnopc:$Rd, GPR:$Rn, GPRnopc:$Rm, 0, pred:$p)>;
6027def : ARMInstAlias<"sxtab16${p} $Rd, $Rn, $Rm",
6028                (SXTAB16 GPRnopc:$Rd, GPR:$Rn, GPRnopc:$Rm, 0, pred:$p)>;
6029def : ARMInstAlias<"sxtb${p} $Rd, $Rm",
6030                (SXTB GPRnopc:$Rd, GPRnopc:$Rm, 0, pred:$p)>;
6031def : ARMInstAlias<"sxtb16${p} $Rd, $Rm",
6032                (SXTB16 GPRnopc:$Rd, GPRnopc:$Rm, 0, pred:$p)>;
6033def : ARMInstAlias<"sxth${p} $Rd, $Rm",
6034                (SXTH GPRnopc:$Rd, GPRnopc:$Rm, 0, pred:$p)>;
6035
6036def : ARMInstAlias<"uxtab${p} $Rd, $Rn, $Rm",
6037                (UXTAB GPRnopc:$Rd, GPR:$Rn, GPRnopc:$Rm, 0, pred:$p)>;
6038def : ARMInstAlias<"uxtah${p} $Rd, $Rn, $Rm",
6039                (UXTAH GPRnopc:$Rd, GPR:$Rn, GPRnopc:$Rm, 0, pred:$p)>;
6040def : ARMInstAlias<"uxtab16${p} $Rd, $Rn, $Rm",
6041                (UXTAB16 GPRnopc:$Rd, GPR:$Rn, GPRnopc:$Rm, 0, pred:$p)>;
6042def : ARMInstAlias<"uxtb${p} $Rd, $Rm",
6043                (UXTB GPRnopc:$Rd, GPRnopc:$Rm, 0, pred:$p)>;
6044def : ARMInstAlias<"uxtb16${p} $Rd, $Rm",
6045                (UXTB16 GPRnopc:$Rd, GPRnopc:$Rm, 0, pred:$p)>;
6046def : ARMInstAlias<"uxth${p} $Rd, $Rm",
6047                (UXTH GPRnopc:$Rd, GPRnopc:$Rm, 0, pred:$p)>;
6048
6049
6050// RFE aliases
6051def : MnemonicAlias<"rfefa", "rfeda">;
6052def : MnemonicAlias<"rfeea", "rfedb">;
6053def : MnemonicAlias<"rfefd", "rfeia">;
6054def : MnemonicAlias<"rfeed", "rfeib">;
6055def : MnemonicAlias<"rfe", "rfeia">;
6056
6057// SRS aliases
6058def : MnemonicAlias<"srsfa", "srsib">;
6059def : MnemonicAlias<"srsea", "srsia">;
6060def : MnemonicAlias<"srsfd", "srsdb">;
6061def : MnemonicAlias<"srsed", "srsda">;
6062def : MnemonicAlias<"srs", "srsia">;
6063
6064// QSAX == QSUBADDX
6065def : MnemonicAlias<"qsubaddx", "qsax">;
6066// SASX == SADDSUBX
6067def : MnemonicAlias<"saddsubx", "sasx">;
6068// SHASX == SHADDSUBX
6069def : MnemonicAlias<"shaddsubx", "shasx">;
6070// SHSAX == SHSUBADDX
6071def : MnemonicAlias<"shsubaddx", "shsax">;
6072// SSAX == SSUBADDX
6073def : MnemonicAlias<"ssubaddx", "ssax">;
6074// UASX == UADDSUBX
6075def : MnemonicAlias<"uaddsubx", "uasx">;
6076// UHASX == UHADDSUBX
6077def : MnemonicAlias<"uhaddsubx", "uhasx">;
6078// UHSAX == UHSUBADDX
6079def : MnemonicAlias<"uhsubaddx", "uhsax">;
6080// UQASX == UQADDSUBX
6081def : MnemonicAlias<"uqaddsubx", "uqasx">;
6082// UQSAX == UQSUBADDX
6083def : MnemonicAlias<"uqsubaddx", "uqsax">;
6084// USAX == USUBADDX
6085def : MnemonicAlias<"usubaddx", "usax">;
6086
6087// "mov Rd, mod_imm_not" can be handled via "mvn" in assembly, just like
6088// for isel.
6089def : ARMInstSubst<"mov${s}${p} $Rd, $imm",
6090                   (MVNi rGPR:$Rd, mod_imm_not:$imm, pred:$p, cc_out:$s)>;
6091def : ARMInstSubst<"mvn${s}${p} $Rd, $imm",
6092                   (MOVi rGPR:$Rd, mod_imm_not:$imm, pred:$p, cc_out:$s)>;
6093// Same for AND <--> BIC
6094def : ARMInstSubst<"bic${s}${p} $Rd, $Rn, $imm",
6095                   (ANDri GPR:$Rd, GPR:$Rn, mod_imm_not:$imm,
6096                          pred:$p, cc_out:$s)>;
6097def : ARMInstSubst<"bic${s}${p} $Rdn, $imm",
6098                   (ANDri GPR:$Rdn, GPR:$Rdn, mod_imm_not:$imm,
6099                          pred:$p, cc_out:$s)>;
6100def : ARMInstSubst<"and${s}${p} $Rd, $Rn, $imm",
6101                   (BICri GPR:$Rd, GPR:$Rn, mod_imm_not:$imm,
6102                          pred:$p, cc_out:$s)>;
6103def : ARMInstSubst<"and${s}${p} $Rdn, $imm",
6104                   (BICri GPR:$Rdn, GPR:$Rdn, mod_imm_not:$imm,
6105                          pred:$p, cc_out:$s)>;
6106
6107// Likewise, "add Rd, mod_imm_neg" -> sub
6108def : ARMInstSubst<"add${s}${p} $Rd, $Rn, $imm",
6109                 (SUBri GPR:$Rd, GPR:$Rn, mod_imm_neg:$imm, pred:$p, cc_out:$s)>;
6110def : ARMInstSubst<"add${s}${p} $Rd, $imm",
6111                 (SUBri GPR:$Rd, GPR:$Rd, mod_imm_neg:$imm, pred:$p, cc_out:$s)>;
6112// Likewise, "sub Rd, mod_imm_neg" -> add
6113def : ARMInstSubst<"sub${s}${p} $Rd, $Rn, $imm",
6114                 (ADDri GPR:$Rd, GPR:$Rn, mod_imm_neg:$imm, pred:$p, cc_out:$s)>;
6115def : ARMInstSubst<"sub${s}${p} $Rd, $imm",
6116                 (ADDri GPR:$Rd, GPR:$Rd, mod_imm_neg:$imm, pred:$p, cc_out:$s)>;
6117
6118
6119def : ARMInstSubst<"adc${s}${p} $Rd, $Rn, $imm",
6120                 (SBCri GPR:$Rd, GPR:$Rn, mod_imm_not:$imm, pred:$p, cc_out:$s)>;
6121def : ARMInstSubst<"adc${s}${p} $Rdn, $imm",
6122                 (SBCri GPR:$Rdn, GPR:$Rdn, mod_imm_not:$imm, pred:$p, cc_out:$s)>;
6123def : ARMInstSubst<"sbc${s}${p} $Rd, $Rn, $imm",
6124                 (ADCri GPR:$Rd, GPR:$Rn, mod_imm_not:$imm, pred:$p, cc_out:$s)>;
6125def : ARMInstSubst<"sbc${s}${p} $Rdn, $imm",
6126                 (ADCri GPR:$Rdn, GPR:$Rdn, mod_imm_not:$imm, pred:$p, cc_out:$s)>;
6127
6128// Same for CMP <--> CMN via mod_imm_neg
6129def : ARMInstSubst<"cmp${p} $Rd, $imm",
6130                   (CMNri rGPR:$Rd, mod_imm_neg:$imm, pred:$p)>;
6131def : ARMInstSubst<"cmn${p} $Rd, $imm",
6132                   (CMPri rGPR:$Rd, mod_imm_neg:$imm, pred:$p)>;
6133
6134// The shifter forms of the MOV instruction are aliased to the ASR, LSL,
6135// LSR, ROR, and RRX instructions.
6136// FIXME: We need C++ parser hooks to map the alias to the MOV
6137//        encoding. It seems we should be able to do that sort of thing
6138//        in tblgen, but it could get ugly.
6139let TwoOperandAliasConstraint = "$Rm = $Rd" in {
6140def ASRi : ARMAsmPseudo<"asr${s}${p} $Rd, $Rm, $imm",
6141                        (ins GPR:$Rd, GPR:$Rm, imm0_32:$imm, pred:$p,
6142                             cc_out:$s)>;
6143def LSRi : ARMAsmPseudo<"lsr${s}${p} $Rd, $Rm, $imm",
6144                        (ins GPR:$Rd, GPR:$Rm, imm0_32:$imm, pred:$p,
6145                             cc_out:$s)>;
6146def LSLi : ARMAsmPseudo<"lsl${s}${p} $Rd, $Rm, $imm",
6147                        (ins GPR:$Rd, GPR:$Rm, imm0_31:$imm, pred:$p,
6148                             cc_out:$s)>;
6149def RORi : ARMAsmPseudo<"ror${s}${p} $Rd, $Rm, $imm",
6150                        (ins GPR:$Rd, GPR:$Rm, imm0_31:$imm, pred:$p,
6151                             cc_out:$s)>;
6152}
6153def RRXi : ARMAsmPseudo<"rrx${s}${p} $Rd, $Rm",
6154                        (ins GPR:$Rd, GPR:$Rm, pred:$p, cc_out:$s)>;
6155let TwoOperandAliasConstraint = "$Rn = $Rd" in {
6156def ASRr : ARMAsmPseudo<"asr${s}${p} $Rd, $Rn, $Rm",
6157                        (ins GPRnopc:$Rd, GPRnopc:$Rn, GPRnopc:$Rm, pred:$p,
6158                             cc_out:$s)>;
6159def LSRr : ARMAsmPseudo<"lsr${s}${p} $Rd, $Rn, $Rm",
6160                        (ins GPRnopc:$Rd, GPRnopc:$Rn, GPRnopc:$Rm, pred:$p,
6161                             cc_out:$s)>;
6162def LSLr : ARMAsmPseudo<"lsl${s}${p} $Rd, $Rn, $Rm",
6163                        (ins GPRnopc:$Rd, GPRnopc:$Rn, GPRnopc:$Rm, pred:$p,
6164                             cc_out:$s)>;
6165def RORr : ARMAsmPseudo<"ror${s}${p} $Rd, $Rn, $Rm",
6166                        (ins GPRnopc:$Rd, GPRnopc:$Rn, GPRnopc:$Rm, pred:$p,
6167                             cc_out:$s)>;
6168}
6169
6170// "neg" is and alias for "rsb rd, rn, #0"
6171def : ARMInstAlias<"neg${s}${p} $Rd, $Rm",
6172                   (RSBri GPR:$Rd, GPR:$Rm, 0, pred:$p, cc_out:$s)>;
6173
6174// Pre-v6, 'mov r0, r0' was used as a NOP encoding.
6175def : InstAlias<"nop${p}", (MOVr R0, R0, pred:$p, zero_reg)>,
6176         Requires<[IsARM, NoV6]>;
6177
6178// MUL/UMLAL/SMLAL/UMULL/SMULL are available on all arches, but
6179// the instruction definitions need difference constraints pre-v6.
6180// Use these aliases for the assembly parsing on pre-v6.
6181def : InstAlias<"mul${s}${p} $Rd, $Rn, $Rm",
6182            (MUL GPRnopc:$Rd, GPRnopc:$Rn, GPRnopc:$Rm, pred:$p, cc_out:$s), 0>,
6183         Requires<[IsARM, NoV6]>;
6184def : InstAlias<"mla${s}${p} $Rd, $Rn, $Rm, $Ra",
6185            (MLA GPRnopc:$Rd, GPRnopc:$Rn, GPRnopc:$Rm, GPRnopc:$Ra,
6186             pred:$p, cc_out:$s), 0>,
6187         Requires<[IsARM, NoV6]>;
6188def : InstAlias<"smlal${s}${p} $RdLo, $RdHi, $Rn, $Rm",
6189            (SMLAL GPR:$RdLo, GPR:$RdHi, GPR:$Rn, GPR:$Rm, pred:$p, cc_out:$s), 0>,
6190         Requires<[IsARM, NoV6]>;
6191def : InstAlias<"umlal${s}${p} $RdLo, $RdHi, $Rn, $Rm",
6192            (UMLAL GPR:$RdLo, GPR:$RdHi, GPR:$Rn, GPR:$Rm, pred:$p, cc_out:$s), 0>,
6193         Requires<[IsARM, NoV6]>;
6194def : InstAlias<"smull${s}${p} $RdLo, $RdHi, $Rn, $Rm",
6195            (SMULL GPR:$RdLo, GPR:$RdHi, GPR:$Rn, GPR:$Rm, pred:$p, cc_out:$s), 0>,
6196         Requires<[IsARM, NoV6]>;
6197def : InstAlias<"umull${s}${p} $RdLo, $RdHi, $Rn, $Rm",
6198            (UMULL GPR:$RdLo, GPR:$RdHi, GPR:$Rn, GPR:$Rm, pred:$p, cc_out:$s), 0>,
6199         Requires<[IsARM, NoV6]>;
6200
6201// 'it' blocks in ARM mode just validate the predicates. The IT itself
6202// is discarded.
6203def ITasm : ARMAsmPseudo<"it$mask $cc", (ins it_pred:$cc, it_mask:$mask)>,
6204         ComplexDeprecationPredicate<"IT">;
6205
6206let mayLoad = 1, mayStore =1, hasSideEffects = 1, hasNoSchedulingInfo = 1 in
6207def SPACE : PseudoInst<(outs GPR:$Rd), (ins i32imm:$size, GPR:$Rn),
6208                       NoItinerary,
6209                       [(set GPR:$Rd, (int_arm_space timm:$size, GPR:$Rn))]>;
6210
6211//===----------------------------------
6212// Atomic cmpxchg for -O0
6213//===----------------------------------
6214
6215// The fast register allocator used during -O0 inserts spills to cover any VRegs
6216// live across basic block boundaries. When this happens between an LDXR and an
6217// STXR it can clear the exclusive monitor, causing all cmpxchg attempts to
6218// fail.
6219
6220// Unfortunately, this means we have to have an alternative (expanded
6221// post-regalloc) path for -O0 compilations. Fortunately this path can be
6222// significantly more naive than the standard expansion: we conservatively
6223// assume seq_cst, strong cmpxchg and omit clrex on failure.
6224
6225let Constraints = "@earlyclobber $Rd,@earlyclobber $temp",
6226    mayLoad = 1, mayStore = 1 in {
6227def CMP_SWAP_8 : PseudoInst<(outs GPR:$Rd, GPR:$temp),
6228                            (ins GPR:$addr, GPR:$desired, GPR:$new),
6229                            NoItinerary, []>, Sched<[]>;
6230
6231def CMP_SWAP_16 : PseudoInst<(outs GPR:$Rd, GPR:$temp),
6232                             (ins GPR:$addr, GPR:$desired, GPR:$new),
6233                             NoItinerary, []>, Sched<[]>;
6234
6235def CMP_SWAP_32 : PseudoInst<(outs GPR:$Rd, GPR:$temp),
6236                             (ins GPR:$addr, GPR:$desired, GPR:$new),
6237                             NoItinerary, []>, Sched<[]>;
6238
6239def CMP_SWAP_64 : PseudoInst<(outs GPRPair:$Rd, GPR:$temp),
6240                             (ins GPR:$addr, GPRPair:$desired, GPRPair:$new),
6241                             NoItinerary, []>, Sched<[]>;
6242}
6243
6244def CompilerBarrier : PseudoInst<(outs), (ins i32imm:$ordering), NoItinerary,
6245                                 [(atomic_fence timm:$ordering, 0)]> {
6246  let hasSideEffects = 1;
6247  let Size = 0;
6248  let AsmString = "@ COMPILER BARRIER";
6249  let hasNoSchedulingInfo = 1;
6250}
6251