ARMConstantIslandPass.cpp revision 360784
1//===- ARMConstantIslandPass.cpp - ARM constant islands -------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file contains a pass that splits the constant pool up into 'islands'
10// which are scattered through-out the function.  This is required due to the
11// limited pc-relative displacements that ARM has.
12//
13//===----------------------------------------------------------------------===//
14
15#include "ARM.h"
16#include "ARMBaseInstrInfo.h"
17#include "ARMBasicBlockInfo.h"
18#include "ARMMachineFunctionInfo.h"
19#include "ARMSubtarget.h"
20#include "MCTargetDesc/ARMBaseInfo.h"
21#include "Thumb2InstrInfo.h"
22#include "Utils/ARMBaseInfo.h"
23#include "llvm/ADT/DenseMap.h"
24#include "llvm/ADT/STLExtras.h"
25#include "llvm/ADT/SmallSet.h"
26#include "llvm/ADT/SmallVector.h"
27#include "llvm/ADT/Statistic.h"
28#include "llvm/ADT/StringRef.h"
29#include "llvm/CodeGen/LivePhysRegs.h"
30#include "llvm/CodeGen/MachineBasicBlock.h"
31#include "llvm/CodeGen/MachineConstantPool.h"
32#include "llvm/CodeGen/MachineDominators.h"
33#include "llvm/CodeGen/MachineFunction.h"
34#include "llvm/CodeGen/MachineFunctionPass.h"
35#include "llvm/CodeGen/MachineInstr.h"
36#include "llvm/CodeGen/MachineJumpTableInfo.h"
37#include "llvm/CodeGen/MachineOperand.h"
38#include "llvm/CodeGen/MachineRegisterInfo.h"
39#include "llvm/Config/llvm-config.h"
40#include "llvm/IR/DataLayout.h"
41#include "llvm/IR/DebugLoc.h"
42#include "llvm/MC/MCInstrDesc.h"
43#include "llvm/Pass.h"
44#include "llvm/Support/CommandLine.h"
45#include "llvm/Support/Compiler.h"
46#include "llvm/Support/Debug.h"
47#include "llvm/Support/ErrorHandling.h"
48#include "llvm/Support/Format.h"
49#include "llvm/Support/MathExtras.h"
50#include "llvm/Support/raw_ostream.h"
51#include <algorithm>
52#include <cassert>
53#include <cstdint>
54#include <iterator>
55#include <utility>
56#include <vector>
57
58using namespace llvm;
59
60#define DEBUG_TYPE "arm-cp-islands"
61
62#define ARM_CP_ISLANDS_OPT_NAME \
63  "ARM constant island placement and branch shortening pass"
64STATISTIC(NumCPEs,       "Number of constpool entries");
65STATISTIC(NumSplit,      "Number of uncond branches inserted");
66STATISTIC(NumCBrFixed,   "Number of cond branches fixed");
67STATISTIC(NumUBrFixed,   "Number of uncond branches fixed");
68STATISTIC(NumTBs,        "Number of table branches generated");
69STATISTIC(NumT2CPShrunk, "Number of Thumb2 constantpool instructions shrunk");
70STATISTIC(NumT2BrShrunk, "Number of Thumb2 immediate branches shrunk");
71STATISTIC(NumCBZ,        "Number of CBZ / CBNZ formed");
72STATISTIC(NumJTMoved,    "Number of jump table destination blocks moved");
73STATISTIC(NumJTInserted, "Number of jump table intermediate blocks inserted");
74STATISTIC(NumLEInserted, "Number of LE backwards branches inserted");
75
76static cl::opt<bool>
77AdjustJumpTableBlocks("arm-adjust-jump-tables", cl::Hidden, cl::init(true),
78          cl::desc("Adjust basic block layout to better use TB[BH]"));
79
80static cl::opt<unsigned>
81CPMaxIteration("arm-constant-island-max-iteration", cl::Hidden, cl::init(30),
82          cl::desc("The max number of iteration for converge"));
83
84static cl::opt<bool> SynthesizeThumb1TBB(
85    "arm-synthesize-thumb-1-tbb", cl::Hidden, cl::init(true),
86    cl::desc("Use compressed jump tables in Thumb-1 by synthesizing an "
87             "equivalent to the TBB/TBH instructions"));
88
89namespace {
90
91  /// ARMConstantIslands - Due to limited PC-relative displacements, ARM
92  /// requires constant pool entries to be scattered among the instructions
93  /// inside a function.  To do this, it completely ignores the normal LLVM
94  /// constant pool; instead, it places constants wherever it feels like with
95  /// special instructions.
96  ///
97  /// The terminology used in this pass includes:
98  ///   Islands - Clumps of constants placed in the function.
99  ///   Water   - Potential places where an island could be formed.
100  ///   CPE     - A constant pool entry that has been placed somewhere, which
101  ///             tracks a list of users.
102  class ARMConstantIslands : public MachineFunctionPass {
103    std::unique_ptr<ARMBasicBlockUtils> BBUtils = nullptr;
104
105    /// WaterList - A sorted list of basic blocks where islands could be placed
106    /// (i.e. blocks that don't fall through to the following block, due
107    /// to a return, unreachable, or unconditional branch).
108    std::vector<MachineBasicBlock*> WaterList;
109
110    /// NewWaterList - The subset of WaterList that was created since the
111    /// previous iteration by inserting unconditional branches.
112    SmallSet<MachineBasicBlock*, 4> NewWaterList;
113
114    using water_iterator = std::vector<MachineBasicBlock *>::iterator;
115
116    /// CPUser - One user of a constant pool, keeping the machine instruction
117    /// pointer, the constant pool being referenced, and the max displacement
118    /// allowed from the instruction to the CP.  The HighWaterMark records the
119    /// highest basic block where a new CPEntry can be placed.  To ensure this
120    /// pass terminates, the CP entries are initially placed at the end of the
121    /// function and then move monotonically to lower addresses.  The
122    /// exception to this rule is when the current CP entry for a particular
123    /// CPUser is out of range, but there is another CP entry for the same
124    /// constant value in range.  We want to use the existing in-range CP
125    /// entry, but if it later moves out of range, the search for new water
126    /// should resume where it left off.  The HighWaterMark is used to record
127    /// that point.
128    struct CPUser {
129      MachineInstr *MI;
130      MachineInstr *CPEMI;
131      MachineBasicBlock *HighWaterMark;
132      unsigned MaxDisp;
133      bool NegOk;
134      bool IsSoImm;
135      bool KnownAlignment = false;
136
137      CPUser(MachineInstr *mi, MachineInstr *cpemi, unsigned maxdisp,
138             bool neg, bool soimm)
139        : MI(mi), CPEMI(cpemi), MaxDisp(maxdisp), NegOk(neg), IsSoImm(soimm) {
140        HighWaterMark = CPEMI->getParent();
141      }
142
143      /// getMaxDisp - Returns the maximum displacement supported by MI.
144      /// Correct for unknown alignment.
145      /// Conservatively subtract 2 bytes to handle weird alignment effects.
146      unsigned getMaxDisp() const {
147        return (KnownAlignment ? MaxDisp : MaxDisp - 2) - 2;
148      }
149    };
150
151    /// CPUsers - Keep track of all of the machine instructions that use various
152    /// constant pools and their max displacement.
153    std::vector<CPUser> CPUsers;
154
155    /// CPEntry - One per constant pool entry, keeping the machine instruction
156    /// pointer, the constpool index, and the number of CPUser's which
157    /// reference this entry.
158    struct CPEntry {
159      MachineInstr *CPEMI;
160      unsigned CPI;
161      unsigned RefCount;
162
163      CPEntry(MachineInstr *cpemi, unsigned cpi, unsigned rc = 0)
164        : CPEMI(cpemi), CPI(cpi), RefCount(rc) {}
165    };
166
167    /// CPEntries - Keep track of all of the constant pool entry machine
168    /// instructions. For each original constpool index (i.e. those that existed
169    /// upon entry to this pass), it keeps a vector of entries.  Original
170    /// elements are cloned as we go along; the clones are put in the vector of
171    /// the original element, but have distinct CPIs.
172    ///
173    /// The first half of CPEntries contains generic constants, the second half
174    /// contains jump tables. Use getCombinedIndex on a generic CPEMI to look up
175    /// which vector it will be in here.
176    std::vector<std::vector<CPEntry>> CPEntries;
177
178    /// Maps a JT index to the offset in CPEntries containing copies of that
179    /// table. The equivalent map for a CONSTPOOL_ENTRY is the identity.
180    DenseMap<int, int> JumpTableEntryIndices;
181
182    /// Maps a JT index to the LEA that actually uses the index to calculate its
183    /// base address.
184    DenseMap<int, int> JumpTableUserIndices;
185
186    /// ImmBranch - One per immediate branch, keeping the machine instruction
187    /// pointer, conditional or unconditional, the max displacement,
188    /// and (if isCond is true) the corresponding unconditional branch
189    /// opcode.
190    struct ImmBranch {
191      MachineInstr *MI;
192      unsigned MaxDisp : 31;
193      bool isCond : 1;
194      unsigned UncondBr;
195
196      ImmBranch(MachineInstr *mi, unsigned maxdisp, bool cond, unsigned ubr)
197        : MI(mi), MaxDisp(maxdisp), isCond(cond), UncondBr(ubr) {}
198    };
199
200    /// ImmBranches - Keep track of all the immediate branch instructions.
201    std::vector<ImmBranch> ImmBranches;
202
203    /// PushPopMIs - Keep track of all the Thumb push / pop instructions.
204    SmallVector<MachineInstr*, 4> PushPopMIs;
205
206    /// T2JumpTables - Keep track of all the Thumb2 jumptable instructions.
207    SmallVector<MachineInstr*, 4> T2JumpTables;
208
209    /// HasFarJump - True if any far jump instruction has been emitted during
210    /// the branch fix up pass.
211    bool HasFarJump;
212
213    MachineFunction *MF;
214    MachineConstantPool *MCP;
215    const ARMBaseInstrInfo *TII;
216    const ARMSubtarget *STI;
217    ARMFunctionInfo *AFI;
218    MachineDominatorTree *DT = nullptr;
219    bool isThumb;
220    bool isThumb1;
221    bool isThumb2;
222    bool isPositionIndependentOrROPI;
223
224  public:
225    static char ID;
226
227    ARMConstantIslands() : MachineFunctionPass(ID) {}
228
229    bool runOnMachineFunction(MachineFunction &MF) override;
230
231    void getAnalysisUsage(AnalysisUsage &AU) const override {
232      AU.addRequired<MachineDominatorTree>();
233      MachineFunctionPass::getAnalysisUsage(AU);
234    }
235
236    MachineFunctionProperties getRequiredProperties() const override {
237      return MachineFunctionProperties().set(
238          MachineFunctionProperties::Property::NoVRegs);
239    }
240
241    StringRef getPassName() const override {
242      return ARM_CP_ISLANDS_OPT_NAME;
243    }
244
245  private:
246    void doInitialConstPlacement(std::vector<MachineInstr *> &CPEMIs);
247    void doInitialJumpTablePlacement(std::vector<MachineInstr *> &CPEMIs);
248    bool BBHasFallthrough(MachineBasicBlock *MBB);
249    CPEntry *findConstPoolEntry(unsigned CPI, const MachineInstr *CPEMI);
250    Align getCPEAlign(const MachineInstr *CPEMI);
251    void scanFunctionJumpTables();
252    void initializeFunctionInfo(const std::vector<MachineInstr*> &CPEMIs);
253    MachineBasicBlock *splitBlockBeforeInstr(MachineInstr *MI);
254    void updateForInsertedWaterBlock(MachineBasicBlock *NewBB);
255    bool decrementCPEReferenceCount(unsigned CPI, MachineInstr* CPEMI);
256    unsigned getCombinedIndex(const MachineInstr *CPEMI);
257    int findInRangeCPEntry(CPUser& U, unsigned UserOffset);
258    bool findAvailableWater(CPUser&U, unsigned UserOffset,
259                            water_iterator &WaterIter, bool CloserWater);
260    void createNewWater(unsigned CPUserIndex, unsigned UserOffset,
261                        MachineBasicBlock *&NewMBB);
262    bool handleConstantPoolUser(unsigned CPUserIndex, bool CloserWater);
263    void removeDeadCPEMI(MachineInstr *CPEMI);
264    bool removeUnusedCPEntries();
265    bool isCPEntryInRange(MachineInstr *MI, unsigned UserOffset,
266                          MachineInstr *CPEMI, unsigned Disp, bool NegOk,
267                          bool DoDump = false);
268    bool isWaterInRange(unsigned UserOffset, MachineBasicBlock *Water,
269                        CPUser &U, unsigned &Growth);
270    bool fixupImmediateBr(ImmBranch &Br);
271    bool fixupConditionalBr(ImmBranch &Br);
272    bool fixupUnconditionalBr(ImmBranch &Br);
273    bool undoLRSpillRestore();
274    bool optimizeThumb2Instructions();
275    bool optimizeThumb2Branches();
276    bool reorderThumb2JumpTables();
277    bool preserveBaseRegister(MachineInstr *JumpMI, MachineInstr *LEAMI,
278                              unsigned &DeadSize, bool &CanDeleteLEA,
279                              bool &BaseRegKill);
280    bool optimizeThumb2JumpTables();
281    MachineBasicBlock *adjustJTTargetBlockForward(MachineBasicBlock *BB,
282                                                  MachineBasicBlock *JTBB);
283
284    unsigned getUserOffset(CPUser&) const;
285    void dumpBBs();
286    void verify();
287
288    bool isOffsetInRange(unsigned UserOffset, unsigned TrialOffset,
289                         unsigned Disp, bool NegativeOK, bool IsSoImm = false);
290    bool isOffsetInRange(unsigned UserOffset, unsigned TrialOffset,
291                         const CPUser &U) {
292      return isOffsetInRange(UserOffset, TrialOffset,
293                             U.getMaxDisp(), U.NegOk, U.IsSoImm);
294    }
295  };
296
297} // end anonymous namespace
298
299char ARMConstantIslands::ID = 0;
300
301/// verify - check BBOffsets, BBSizes, alignment of islands
302void ARMConstantIslands::verify() {
303#ifndef NDEBUG
304  BBInfoVector &BBInfo = BBUtils->getBBInfo();
305  assert(std::is_sorted(MF->begin(), MF->end(),
306                        [&BBInfo](const MachineBasicBlock &LHS,
307                                  const MachineBasicBlock &RHS) {
308                          return BBInfo[LHS.getNumber()].postOffset() <
309                                 BBInfo[RHS.getNumber()].postOffset();
310                        }));
311  LLVM_DEBUG(dbgs() << "Verifying " << CPUsers.size() << " CP users.\n");
312  for (unsigned i = 0, e = CPUsers.size(); i != e; ++i) {
313    CPUser &U = CPUsers[i];
314    unsigned UserOffset = getUserOffset(U);
315    // Verify offset using the real max displacement without the safety
316    // adjustment.
317    if (isCPEntryInRange(U.MI, UserOffset, U.CPEMI, U.getMaxDisp()+2, U.NegOk,
318                         /* DoDump = */ true)) {
319      LLVM_DEBUG(dbgs() << "OK\n");
320      continue;
321    }
322    LLVM_DEBUG(dbgs() << "Out of range.\n");
323    dumpBBs();
324    LLVM_DEBUG(MF->dump());
325    llvm_unreachable("Constant pool entry out of range!");
326  }
327#endif
328}
329
330#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
331/// print block size and offset information - debugging
332LLVM_DUMP_METHOD void ARMConstantIslands::dumpBBs() {
333  LLVM_DEBUG({
334    BBInfoVector &BBInfo = BBUtils->getBBInfo();
335    for (unsigned J = 0, E = BBInfo.size(); J !=E; ++J) {
336      const BasicBlockInfo &BBI = BBInfo[J];
337      dbgs() << format("%08x %bb.%u\t", BBI.Offset, J)
338             << " kb=" << unsigned(BBI.KnownBits)
339             << " ua=" << unsigned(BBI.Unalign) << " pa=" << Log2(BBI.PostAlign)
340             << format(" size=%#x\n", BBInfo[J].Size);
341    }
342  });
343}
344#endif
345
346bool ARMConstantIslands::runOnMachineFunction(MachineFunction &mf) {
347  MF = &mf;
348  MCP = mf.getConstantPool();
349  BBUtils = std::unique_ptr<ARMBasicBlockUtils>(new ARMBasicBlockUtils(mf));
350
351  LLVM_DEBUG(dbgs() << "***** ARMConstantIslands: "
352                    << MCP->getConstants().size() << " CP entries, aligned to "
353                    << MCP->getConstantPoolAlignment() << " bytes *****\n");
354
355  STI = &static_cast<const ARMSubtarget &>(MF->getSubtarget());
356  TII = STI->getInstrInfo();
357  isPositionIndependentOrROPI =
358      STI->getTargetLowering()->isPositionIndependent() || STI->isROPI();
359  AFI = MF->getInfo<ARMFunctionInfo>();
360  DT = &getAnalysis<MachineDominatorTree>();
361
362  isThumb = AFI->isThumbFunction();
363  isThumb1 = AFI->isThumb1OnlyFunction();
364  isThumb2 = AFI->isThumb2Function();
365
366  HasFarJump = false;
367  bool GenerateTBB = isThumb2 || (isThumb1 && SynthesizeThumb1TBB);
368
369  // Renumber all of the machine basic blocks in the function, guaranteeing that
370  // the numbers agree with the position of the block in the function.
371  MF->RenumberBlocks();
372
373  // Try to reorder and otherwise adjust the block layout to make good use
374  // of the TB[BH] instructions.
375  bool MadeChange = false;
376  if (GenerateTBB && AdjustJumpTableBlocks) {
377    scanFunctionJumpTables();
378    MadeChange |= reorderThumb2JumpTables();
379    // Data is out of date, so clear it. It'll be re-computed later.
380    T2JumpTables.clear();
381    // Blocks may have shifted around. Keep the numbering up to date.
382    MF->RenumberBlocks();
383  }
384
385  // Perform the initial placement of the constant pool entries.  To start with,
386  // we put them all at the end of the function.
387  std::vector<MachineInstr*> CPEMIs;
388  if (!MCP->isEmpty())
389    doInitialConstPlacement(CPEMIs);
390
391  if (MF->getJumpTableInfo())
392    doInitialJumpTablePlacement(CPEMIs);
393
394  /// The next UID to take is the first unused one.
395  AFI->initPICLabelUId(CPEMIs.size());
396
397  // Do the initial scan of the function, building up information about the
398  // sizes of each block, the location of all the water, and finding all of the
399  // constant pool users.
400  initializeFunctionInfo(CPEMIs);
401  CPEMIs.clear();
402  LLVM_DEBUG(dumpBBs());
403
404  // Functions with jump tables need an alignment of 4 because they use the ADR
405  // instruction, which aligns the PC to 4 bytes before adding an offset.
406  if (!T2JumpTables.empty())
407    MF->ensureAlignment(Align(4));
408
409  /// Remove dead constant pool entries.
410  MadeChange |= removeUnusedCPEntries();
411
412  // Iteratively place constant pool entries and fix up branches until there
413  // is no change.
414  unsigned NoCPIters = 0, NoBRIters = 0;
415  while (true) {
416    LLVM_DEBUG(dbgs() << "Beginning CP iteration #" << NoCPIters << '\n');
417    bool CPChange = false;
418    for (unsigned i = 0, e = CPUsers.size(); i != e; ++i)
419      // For most inputs, it converges in no more than 5 iterations.
420      // If it doesn't end in 10, the input may have huge BB or many CPEs.
421      // In this case, we will try different heuristics.
422      CPChange |= handleConstantPoolUser(i, NoCPIters >= CPMaxIteration / 2);
423    if (CPChange && ++NoCPIters > CPMaxIteration)
424      report_fatal_error("Constant Island pass failed to converge!");
425    LLVM_DEBUG(dumpBBs());
426
427    // Clear NewWaterList now.  If we split a block for branches, it should
428    // appear as "new water" for the next iteration of constant pool placement.
429    NewWaterList.clear();
430
431    LLVM_DEBUG(dbgs() << "Beginning BR iteration #" << NoBRIters << '\n');
432    bool BRChange = false;
433    for (unsigned i = 0, e = ImmBranches.size(); i != e; ++i)
434      BRChange |= fixupImmediateBr(ImmBranches[i]);
435    if (BRChange && ++NoBRIters > 30)
436      report_fatal_error("Branch Fix Up pass failed to converge!");
437    LLVM_DEBUG(dumpBBs());
438
439    if (!CPChange && !BRChange)
440      break;
441    MadeChange = true;
442  }
443
444  // Shrink 32-bit Thumb2 load and store instructions.
445  if (isThumb2 && !STI->prefers32BitThumb())
446    MadeChange |= optimizeThumb2Instructions();
447
448  // Shrink 32-bit branch instructions.
449  if (isThumb && STI->hasV8MBaselineOps())
450    MadeChange |= optimizeThumb2Branches();
451
452  // Optimize jump tables using TBB / TBH.
453  if (GenerateTBB && !STI->genExecuteOnly())
454    MadeChange |= optimizeThumb2JumpTables();
455
456  // After a while, this might be made debug-only, but it is not expensive.
457  verify();
458
459  // If LR has been forced spilled and no far jump (i.e. BL) has been issued,
460  // undo the spill / restore of LR if possible.
461  if (isThumb && !HasFarJump && AFI->isLRSpilledForFarJump())
462    MadeChange |= undoLRSpillRestore();
463
464  // Save the mapping between original and cloned constpool entries.
465  for (unsigned i = 0, e = CPEntries.size(); i != e; ++i) {
466    for (unsigned j = 0, je = CPEntries[i].size(); j != je; ++j) {
467      const CPEntry & CPE = CPEntries[i][j];
468      if (CPE.CPEMI && CPE.CPEMI->getOperand(1).isCPI())
469        AFI->recordCPEClone(i, CPE.CPI);
470    }
471  }
472
473  LLVM_DEBUG(dbgs() << '\n'; dumpBBs());
474
475  BBUtils->clear();
476  WaterList.clear();
477  CPUsers.clear();
478  CPEntries.clear();
479  JumpTableEntryIndices.clear();
480  JumpTableUserIndices.clear();
481  ImmBranches.clear();
482  PushPopMIs.clear();
483  T2JumpTables.clear();
484
485  return MadeChange;
486}
487
488/// Perform the initial placement of the regular constant pool entries.
489/// To start with, we put them all at the end of the function.
490void
491ARMConstantIslands::doInitialConstPlacement(std::vector<MachineInstr*> &CPEMIs) {
492  // Create the basic block to hold the CPE's.
493  MachineBasicBlock *BB = MF->CreateMachineBasicBlock();
494  MF->push_back(BB);
495
496  // MachineConstantPool measures alignment in bytes.
497  const Align MaxAlign(MCP->getConstantPoolAlignment());
498  const unsigned MaxLogAlign = Log2(MaxAlign);
499
500  // Mark the basic block as required by the const-pool.
501  BB->setAlignment(MaxAlign);
502
503  // The function needs to be as aligned as the basic blocks. The linker may
504  // move functions around based on their alignment.
505  MF->ensureAlignment(BB->getAlignment());
506
507  // Order the entries in BB by descending alignment.  That ensures correct
508  // alignment of all entries as long as BB is sufficiently aligned.  Keep
509  // track of the insertion point for each alignment.  We are going to bucket
510  // sort the entries as they are created.
511  SmallVector<MachineBasicBlock::iterator, 8> InsPoint(MaxLogAlign + 1,
512                                                       BB->end());
513
514  // Add all of the constants from the constant pool to the end block, use an
515  // identity mapping of CPI's to CPE's.
516  const std::vector<MachineConstantPoolEntry> &CPs = MCP->getConstants();
517
518  const DataLayout &TD = MF->getDataLayout();
519  for (unsigned i = 0, e = CPs.size(); i != e; ++i) {
520    unsigned Size = TD.getTypeAllocSize(CPs[i].getType());
521    unsigned Align = CPs[i].getAlignment();
522    assert(isPowerOf2_32(Align) && "Invalid alignment");
523    // Verify that all constant pool entries are a multiple of their alignment.
524    // If not, we would have to pad them out so that instructions stay aligned.
525    assert((Size % Align) == 0 && "CP Entry not multiple of 4 bytes!");
526
527    // Insert CONSTPOOL_ENTRY before entries with a smaller alignment.
528    unsigned LogAlign = Log2_32(Align);
529    MachineBasicBlock::iterator InsAt = InsPoint[LogAlign];
530    MachineInstr *CPEMI =
531      BuildMI(*BB, InsAt, DebugLoc(), TII->get(ARM::CONSTPOOL_ENTRY))
532        .addImm(i).addConstantPoolIndex(i).addImm(Size);
533    CPEMIs.push_back(CPEMI);
534
535    // Ensure that future entries with higher alignment get inserted before
536    // CPEMI. This is bucket sort with iterators.
537    for (unsigned a = LogAlign + 1; a <= MaxLogAlign; ++a)
538      if (InsPoint[a] == InsAt)
539        InsPoint[a] = CPEMI;
540
541    // Add a new CPEntry, but no corresponding CPUser yet.
542    CPEntries.emplace_back(1, CPEntry(CPEMI, i));
543    ++NumCPEs;
544    LLVM_DEBUG(dbgs() << "Moved CPI#" << i << " to end of function, size = "
545                      << Size << ", align = " << Align << '\n');
546  }
547  LLVM_DEBUG(BB->dump());
548}
549
550/// Do initial placement of the jump tables. Because Thumb2's TBB and TBH
551/// instructions can be made more efficient if the jump table immediately
552/// follows the instruction, it's best to place them immediately next to their
553/// jumps to begin with. In almost all cases they'll never be moved from that
554/// position.
555void ARMConstantIslands::doInitialJumpTablePlacement(
556    std::vector<MachineInstr *> &CPEMIs) {
557  unsigned i = CPEntries.size();
558  auto MJTI = MF->getJumpTableInfo();
559  const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
560
561  MachineBasicBlock *LastCorrectlyNumberedBB = nullptr;
562  for (MachineBasicBlock &MBB : *MF) {
563    auto MI = MBB.getLastNonDebugInstr();
564    if (MI == MBB.end())
565      continue;
566
567    unsigned JTOpcode;
568    switch (MI->getOpcode()) {
569    default:
570      continue;
571    case ARM::BR_JTadd:
572    case ARM::BR_JTr:
573    case ARM::tBR_JTr:
574    case ARM::BR_JTm_i12:
575    case ARM::BR_JTm_rs:
576      JTOpcode = ARM::JUMPTABLE_ADDRS;
577      break;
578    case ARM::t2BR_JT:
579      JTOpcode = ARM::JUMPTABLE_INSTS;
580      break;
581    case ARM::tTBB_JT:
582    case ARM::t2TBB_JT:
583      JTOpcode = ARM::JUMPTABLE_TBB;
584      break;
585    case ARM::tTBH_JT:
586    case ARM::t2TBH_JT:
587      JTOpcode = ARM::JUMPTABLE_TBH;
588      break;
589    }
590
591    unsigned NumOps = MI->getDesc().getNumOperands();
592    MachineOperand JTOp =
593      MI->getOperand(NumOps - (MI->isPredicable() ? 2 : 1));
594    unsigned JTI = JTOp.getIndex();
595    unsigned Size = JT[JTI].MBBs.size() * sizeof(uint32_t);
596    MachineBasicBlock *JumpTableBB = MF->CreateMachineBasicBlock();
597    MF->insert(std::next(MachineFunction::iterator(MBB)), JumpTableBB);
598    MachineInstr *CPEMI = BuildMI(*JumpTableBB, JumpTableBB->begin(),
599                                  DebugLoc(), TII->get(JTOpcode))
600                              .addImm(i++)
601                              .addJumpTableIndex(JTI)
602                              .addImm(Size);
603    CPEMIs.push_back(CPEMI);
604    CPEntries.emplace_back(1, CPEntry(CPEMI, JTI));
605    JumpTableEntryIndices.insert(std::make_pair(JTI, CPEntries.size() - 1));
606    if (!LastCorrectlyNumberedBB)
607      LastCorrectlyNumberedBB = &MBB;
608  }
609
610  // If we did anything then we need to renumber the subsequent blocks.
611  if (LastCorrectlyNumberedBB)
612    MF->RenumberBlocks(LastCorrectlyNumberedBB);
613}
614
615/// BBHasFallthrough - Return true if the specified basic block can fallthrough
616/// into the block immediately after it.
617bool ARMConstantIslands::BBHasFallthrough(MachineBasicBlock *MBB) {
618  // Get the next machine basic block in the function.
619  MachineFunction::iterator MBBI = MBB->getIterator();
620  // Can't fall off end of function.
621  if (std::next(MBBI) == MBB->getParent()->end())
622    return false;
623
624  MachineBasicBlock *NextBB = &*std::next(MBBI);
625  if (!MBB->isSuccessor(NextBB))
626    return false;
627
628  // Try to analyze the end of the block. A potential fallthrough may already
629  // have an unconditional branch for whatever reason.
630  MachineBasicBlock *TBB, *FBB;
631  SmallVector<MachineOperand, 4> Cond;
632  bool TooDifficult = TII->analyzeBranch(*MBB, TBB, FBB, Cond);
633  return TooDifficult || FBB == nullptr;
634}
635
636/// findConstPoolEntry - Given the constpool index and CONSTPOOL_ENTRY MI,
637/// look up the corresponding CPEntry.
638ARMConstantIslands::CPEntry *
639ARMConstantIslands::findConstPoolEntry(unsigned CPI,
640                                       const MachineInstr *CPEMI) {
641  std::vector<CPEntry> &CPEs = CPEntries[CPI];
642  // Number of entries per constpool index should be small, just do a
643  // linear search.
644  for (unsigned i = 0, e = CPEs.size(); i != e; ++i) {
645    if (CPEs[i].CPEMI == CPEMI)
646      return &CPEs[i];
647  }
648  return nullptr;
649}
650
651/// getCPEAlign - Returns the required alignment of the constant pool entry
652/// represented by CPEMI.
653Align ARMConstantIslands::getCPEAlign(const MachineInstr *CPEMI) {
654  switch (CPEMI->getOpcode()) {
655  case ARM::CONSTPOOL_ENTRY:
656    break;
657  case ARM::JUMPTABLE_TBB:
658    return isThumb1 ? Align(4) : Align(1);
659  case ARM::JUMPTABLE_TBH:
660    return isThumb1 ? Align(4) : Align(2);
661  case ARM::JUMPTABLE_INSTS:
662    return Align(2);
663  case ARM::JUMPTABLE_ADDRS:
664    return Align(4);
665  default:
666    llvm_unreachable("unknown constpool entry kind");
667  }
668
669  unsigned CPI = getCombinedIndex(CPEMI);
670  assert(CPI < MCP->getConstants().size() && "Invalid constant pool index.");
671  return Align(MCP->getConstants()[CPI].getAlignment());
672}
673
674/// scanFunctionJumpTables - Do a scan of the function, building up
675/// information about the sizes of each block and the locations of all
676/// the jump tables.
677void ARMConstantIslands::scanFunctionJumpTables() {
678  for (MachineBasicBlock &MBB : *MF) {
679    for (MachineInstr &I : MBB)
680      if (I.isBranch() &&
681          (I.getOpcode() == ARM::t2BR_JT || I.getOpcode() == ARM::tBR_JTr))
682        T2JumpTables.push_back(&I);
683  }
684}
685
686/// initializeFunctionInfo - Do the initial scan of the function, building up
687/// information about the sizes of each block, the location of all the water,
688/// and finding all of the constant pool users.
689void ARMConstantIslands::
690initializeFunctionInfo(const std::vector<MachineInstr*> &CPEMIs) {
691
692  BBUtils->computeAllBlockSizes();
693  BBInfoVector &BBInfo = BBUtils->getBBInfo();
694  // The known bits of the entry block offset are determined by the function
695  // alignment.
696  BBInfo.front().KnownBits = Log2(MF->getAlignment());
697
698  // Compute block offsets and known bits.
699  BBUtils->adjustBBOffsetsAfter(&MF->front());
700
701  // Now go back through the instructions and build up our data structures.
702  for (MachineBasicBlock &MBB : *MF) {
703    // If this block doesn't fall through into the next MBB, then this is
704    // 'water' that a constant pool island could be placed.
705    if (!BBHasFallthrough(&MBB))
706      WaterList.push_back(&MBB);
707
708    for (MachineInstr &I : MBB) {
709      if (I.isDebugInstr())
710        continue;
711
712      unsigned Opc = I.getOpcode();
713      if (I.isBranch()) {
714        bool isCond = false;
715        unsigned Bits = 0;
716        unsigned Scale = 1;
717        int UOpc = Opc;
718        switch (Opc) {
719        default:
720          continue;  // Ignore other JT branches
721        case ARM::t2BR_JT:
722        case ARM::tBR_JTr:
723          T2JumpTables.push_back(&I);
724          continue;   // Does not get an entry in ImmBranches
725        case ARM::Bcc:
726          isCond = true;
727          UOpc = ARM::B;
728          LLVM_FALLTHROUGH;
729        case ARM::B:
730          Bits = 24;
731          Scale = 4;
732          break;
733        case ARM::tBcc:
734          isCond = true;
735          UOpc = ARM::tB;
736          Bits = 8;
737          Scale = 2;
738          break;
739        case ARM::tB:
740          Bits = 11;
741          Scale = 2;
742          break;
743        case ARM::t2Bcc:
744          isCond = true;
745          UOpc = ARM::t2B;
746          Bits = 20;
747          Scale = 2;
748          break;
749        case ARM::t2B:
750          Bits = 24;
751          Scale = 2;
752          break;
753        }
754
755        // Record this immediate branch.
756        unsigned MaxOffs = ((1 << (Bits-1))-1) * Scale;
757        ImmBranches.push_back(ImmBranch(&I, MaxOffs, isCond, UOpc));
758      }
759
760      if (Opc == ARM::tPUSH || Opc == ARM::tPOP_RET)
761        PushPopMIs.push_back(&I);
762
763      if (Opc == ARM::CONSTPOOL_ENTRY || Opc == ARM::JUMPTABLE_ADDRS ||
764          Opc == ARM::JUMPTABLE_INSTS || Opc == ARM::JUMPTABLE_TBB ||
765          Opc == ARM::JUMPTABLE_TBH)
766        continue;
767
768      // Scan the instructions for constant pool operands.
769      for (unsigned op = 0, e = I.getNumOperands(); op != e; ++op)
770        if (I.getOperand(op).isCPI() || I.getOperand(op).isJTI()) {
771          // We found one.  The addressing mode tells us the max displacement
772          // from the PC that this instruction permits.
773
774          // Basic size info comes from the TSFlags field.
775          unsigned Bits = 0;
776          unsigned Scale = 1;
777          bool NegOk = false;
778          bool IsSoImm = false;
779
780          switch (Opc) {
781          default:
782            llvm_unreachable("Unknown addressing mode for CP reference!");
783
784          // Taking the address of a CP entry.
785          case ARM::LEApcrel:
786          case ARM::LEApcrelJT:
787            // This takes a SoImm, which is 8 bit immediate rotated. We'll
788            // pretend the maximum offset is 255 * 4. Since each instruction
789            // 4 byte wide, this is always correct. We'll check for other
790            // displacements that fits in a SoImm as well.
791            Bits = 8;
792            Scale = 4;
793            NegOk = true;
794            IsSoImm = true;
795            break;
796          case ARM::t2LEApcrel:
797          case ARM::t2LEApcrelJT:
798            Bits = 12;
799            NegOk = true;
800            break;
801          case ARM::tLEApcrel:
802          case ARM::tLEApcrelJT:
803            Bits = 8;
804            Scale = 4;
805            break;
806
807          case ARM::LDRBi12:
808          case ARM::LDRi12:
809          case ARM::LDRcp:
810          case ARM::t2LDRpci:
811          case ARM::t2LDRHpci:
812          case ARM::t2LDRBpci:
813            Bits = 12;  // +-offset_12
814            NegOk = true;
815            break;
816
817          case ARM::tLDRpci:
818            Bits = 8;
819            Scale = 4;  // +(offset_8*4)
820            break;
821
822          case ARM::VLDRD:
823          case ARM::VLDRS:
824            Bits = 8;
825            Scale = 4;  // +-(offset_8*4)
826            NegOk = true;
827            break;
828          case ARM::VLDRH:
829            Bits = 8;
830            Scale = 2;  // +-(offset_8*2)
831            NegOk = true;
832            break;
833          }
834
835          // Remember that this is a user of a CP entry.
836          unsigned CPI = I.getOperand(op).getIndex();
837          if (I.getOperand(op).isJTI()) {
838            JumpTableUserIndices.insert(std::make_pair(CPI, CPUsers.size()));
839            CPI = JumpTableEntryIndices[CPI];
840          }
841
842          MachineInstr *CPEMI = CPEMIs[CPI];
843          unsigned MaxOffs = ((1 << Bits)-1) * Scale;
844          CPUsers.push_back(CPUser(&I, CPEMI, MaxOffs, NegOk, IsSoImm));
845
846          // Increment corresponding CPEntry reference count.
847          CPEntry *CPE = findConstPoolEntry(CPI, CPEMI);
848          assert(CPE && "Cannot find a corresponding CPEntry!");
849          CPE->RefCount++;
850
851          // Instructions can only use one CP entry, don't bother scanning the
852          // rest of the operands.
853          break;
854        }
855    }
856  }
857}
858
859/// CompareMBBNumbers - Little predicate function to sort the WaterList by MBB
860/// ID.
861static bool CompareMBBNumbers(const MachineBasicBlock *LHS,
862                              const MachineBasicBlock *RHS) {
863  return LHS->getNumber() < RHS->getNumber();
864}
865
866/// updateForInsertedWaterBlock - When a block is newly inserted into the
867/// machine function, it upsets all of the block numbers.  Renumber the blocks
868/// and update the arrays that parallel this numbering.
869void ARMConstantIslands::updateForInsertedWaterBlock(MachineBasicBlock *NewBB) {
870  // Renumber the MBB's to keep them consecutive.
871  NewBB->getParent()->RenumberBlocks(NewBB);
872
873  // Insert an entry into BBInfo to align it properly with the (newly
874  // renumbered) block numbers.
875  BBUtils->insert(NewBB->getNumber(), BasicBlockInfo());
876
877  // Next, update WaterList.  Specifically, we need to add NewMBB as having
878  // available water after it.
879  water_iterator IP = llvm::lower_bound(WaterList, NewBB, CompareMBBNumbers);
880  WaterList.insert(IP, NewBB);
881}
882
883/// Split the basic block containing MI into two blocks, which are joined by
884/// an unconditional branch.  Update data structures and renumber blocks to
885/// account for this change and returns the newly created block.
886MachineBasicBlock *ARMConstantIslands::splitBlockBeforeInstr(MachineInstr *MI) {
887  MachineBasicBlock *OrigBB = MI->getParent();
888
889  // Collect liveness information at MI.
890  LivePhysRegs LRs(*MF->getSubtarget().getRegisterInfo());
891  LRs.addLiveOuts(*OrigBB);
892  auto LivenessEnd = ++MachineBasicBlock::iterator(MI).getReverse();
893  for (MachineInstr &LiveMI : make_range(OrigBB->rbegin(), LivenessEnd))
894    LRs.stepBackward(LiveMI);
895
896  // Create a new MBB for the code after the OrigBB.
897  MachineBasicBlock *NewBB =
898    MF->CreateMachineBasicBlock(OrigBB->getBasicBlock());
899  MachineFunction::iterator MBBI = ++OrigBB->getIterator();
900  MF->insert(MBBI, NewBB);
901
902  // Splice the instructions starting with MI over to NewBB.
903  NewBB->splice(NewBB->end(), OrigBB, MI, OrigBB->end());
904
905  // Add an unconditional branch from OrigBB to NewBB.
906  // Note the new unconditional branch is not being recorded.
907  // There doesn't seem to be meaningful DebugInfo available; this doesn't
908  // correspond to anything in the source.
909  unsigned Opc = isThumb ? (isThumb2 ? ARM::t2B : ARM::tB) : ARM::B;
910  if (!isThumb)
911    BuildMI(OrigBB, DebugLoc(), TII->get(Opc)).addMBB(NewBB);
912  else
913    BuildMI(OrigBB, DebugLoc(), TII->get(Opc))
914        .addMBB(NewBB)
915        .add(predOps(ARMCC::AL));
916  ++NumSplit;
917
918  // Update the CFG.  All succs of OrigBB are now succs of NewBB.
919  NewBB->transferSuccessors(OrigBB);
920
921  // OrigBB branches to NewBB.
922  OrigBB->addSuccessor(NewBB);
923
924  // Update live-in information in the new block.
925  MachineRegisterInfo &MRI = MF->getRegInfo();
926  for (MCPhysReg L : LRs)
927    if (!MRI.isReserved(L))
928      NewBB->addLiveIn(L);
929
930  // Update internal data structures to account for the newly inserted MBB.
931  // This is almost the same as updateForInsertedWaterBlock, except that
932  // the Water goes after OrigBB, not NewBB.
933  MF->RenumberBlocks(NewBB);
934
935  // Insert an entry into BBInfo to align it properly with the (newly
936  // renumbered) block numbers.
937  BBUtils->insert(NewBB->getNumber(), BasicBlockInfo());
938
939  // Next, update WaterList.  Specifically, we need to add OrigMBB as having
940  // available water after it (but not if it's already there, which happens
941  // when splitting before a conditional branch that is followed by an
942  // unconditional branch - in that case we want to insert NewBB).
943  water_iterator IP = llvm::lower_bound(WaterList, OrigBB, CompareMBBNumbers);
944  MachineBasicBlock* WaterBB = *IP;
945  if (WaterBB == OrigBB)
946    WaterList.insert(std::next(IP), NewBB);
947  else
948    WaterList.insert(IP, OrigBB);
949  NewWaterList.insert(OrigBB);
950
951  // Figure out how large the OrigBB is.  As the first half of the original
952  // block, it cannot contain a tablejump.  The size includes
953  // the new jump we added.  (It should be possible to do this without
954  // recounting everything, but it's very confusing, and this is rarely
955  // executed.)
956  BBUtils->computeBlockSize(OrigBB);
957
958  // Figure out how large the NewMBB is.  As the second half of the original
959  // block, it may contain a tablejump.
960  BBUtils->computeBlockSize(NewBB);
961
962  // All BBOffsets following these blocks must be modified.
963  BBUtils->adjustBBOffsetsAfter(OrigBB);
964
965  return NewBB;
966}
967
968/// getUserOffset - Compute the offset of U.MI as seen by the hardware
969/// displacement computation.  Update U.KnownAlignment to match its current
970/// basic block location.
971unsigned ARMConstantIslands::getUserOffset(CPUser &U) const {
972  unsigned UserOffset = BBUtils->getOffsetOf(U.MI);
973
974  SmallVectorImpl<BasicBlockInfo> &BBInfo = BBUtils->getBBInfo();
975  const BasicBlockInfo &BBI = BBInfo[U.MI->getParent()->getNumber()];
976  unsigned KnownBits = BBI.internalKnownBits();
977
978  // The value read from PC is offset from the actual instruction address.
979  UserOffset += (isThumb ? 4 : 8);
980
981  // Because of inline assembly, we may not know the alignment (mod 4) of U.MI.
982  // Make sure U.getMaxDisp() returns a constrained range.
983  U.KnownAlignment = (KnownBits >= 2);
984
985  // On Thumb, offsets==2 mod 4 are rounded down by the hardware for
986  // purposes of the displacement computation; compensate for that here.
987  // For unknown alignments, getMaxDisp() constrains the range instead.
988  if (isThumb && U.KnownAlignment)
989    UserOffset &= ~3u;
990
991  return UserOffset;
992}
993
994/// isOffsetInRange - Checks whether UserOffset (the location of a constant pool
995/// reference) is within MaxDisp of TrialOffset (a proposed location of a
996/// constant pool entry).
997/// UserOffset is computed by getUserOffset above to include PC adjustments. If
998/// the mod 4 alignment of UserOffset is not known, the uncertainty must be
999/// subtracted from MaxDisp instead. CPUser::getMaxDisp() does that.
1000bool ARMConstantIslands::isOffsetInRange(unsigned UserOffset,
1001                                         unsigned TrialOffset, unsigned MaxDisp,
1002                                         bool NegativeOK, bool IsSoImm) {
1003  if (UserOffset <= TrialOffset) {
1004    // User before the Trial.
1005    if (TrialOffset - UserOffset <= MaxDisp)
1006      return true;
1007    // FIXME: Make use full range of soimm values.
1008  } else if (NegativeOK) {
1009    if (UserOffset - TrialOffset <= MaxDisp)
1010      return true;
1011    // FIXME: Make use full range of soimm values.
1012  }
1013  return false;
1014}
1015
1016/// isWaterInRange - Returns true if a CPE placed after the specified
1017/// Water (a basic block) will be in range for the specific MI.
1018///
1019/// Compute how much the function will grow by inserting a CPE after Water.
1020bool ARMConstantIslands::isWaterInRange(unsigned UserOffset,
1021                                        MachineBasicBlock* Water, CPUser &U,
1022                                        unsigned &Growth) {
1023  BBInfoVector &BBInfo = BBUtils->getBBInfo();
1024  const Align CPEAlign = getCPEAlign(U.CPEMI);
1025  const unsigned CPEOffset = BBInfo[Water->getNumber()].postOffset(CPEAlign);
1026  unsigned NextBlockOffset;
1027  Align NextBlockAlignment;
1028  MachineFunction::const_iterator NextBlock = Water->getIterator();
1029  if (++NextBlock == MF->end()) {
1030    NextBlockOffset = BBInfo[Water->getNumber()].postOffset();
1031  } else {
1032    NextBlockOffset = BBInfo[NextBlock->getNumber()].Offset;
1033    NextBlockAlignment = NextBlock->getAlignment();
1034  }
1035  unsigned Size = U.CPEMI->getOperand(2).getImm();
1036  unsigned CPEEnd = CPEOffset + Size;
1037
1038  // The CPE may be able to hide in the alignment padding before the next
1039  // block. It may also cause more padding to be required if it is more aligned
1040  // that the next block.
1041  if (CPEEnd > NextBlockOffset) {
1042    Growth = CPEEnd - NextBlockOffset;
1043    // Compute the padding that would go at the end of the CPE to align the next
1044    // block.
1045    Growth += offsetToAlignment(CPEEnd, NextBlockAlignment);
1046
1047    // If the CPE is to be inserted before the instruction, that will raise
1048    // the offset of the instruction. Also account for unknown alignment padding
1049    // in blocks between CPE and the user.
1050    if (CPEOffset < UserOffset)
1051      UserOffset += Growth + UnknownPadding(MF->getAlignment(), Log2(CPEAlign));
1052  } else
1053    // CPE fits in existing padding.
1054    Growth = 0;
1055
1056  return isOffsetInRange(UserOffset, CPEOffset, U);
1057}
1058
1059/// isCPEntryInRange - Returns true if the distance between specific MI and
1060/// specific ConstPool entry instruction can fit in MI's displacement field.
1061bool ARMConstantIslands::isCPEntryInRange(MachineInstr *MI, unsigned UserOffset,
1062                                      MachineInstr *CPEMI, unsigned MaxDisp,
1063                                      bool NegOk, bool DoDump) {
1064  unsigned CPEOffset = BBUtils->getOffsetOf(CPEMI);
1065
1066  if (DoDump) {
1067    LLVM_DEBUG({
1068        BBInfoVector &BBInfo = BBUtils->getBBInfo();
1069      unsigned Block = MI->getParent()->getNumber();
1070      const BasicBlockInfo &BBI = BBInfo[Block];
1071      dbgs() << "User of CPE#" << CPEMI->getOperand(0).getImm()
1072             << " max delta=" << MaxDisp
1073             << format(" insn address=%#x", UserOffset) << " in "
1074             << printMBBReference(*MI->getParent()) << ": "
1075             << format("%#x-%x\t", BBI.Offset, BBI.postOffset()) << *MI
1076             << format("CPE address=%#x offset=%+d: ", CPEOffset,
1077                       int(CPEOffset - UserOffset));
1078    });
1079  }
1080
1081  return isOffsetInRange(UserOffset, CPEOffset, MaxDisp, NegOk);
1082}
1083
1084#ifndef NDEBUG
1085/// BBIsJumpedOver - Return true of the specified basic block's only predecessor
1086/// unconditionally branches to its only successor.
1087static bool BBIsJumpedOver(MachineBasicBlock *MBB) {
1088  if (MBB->pred_size() != 1 || MBB->succ_size() != 1)
1089    return false;
1090
1091  MachineBasicBlock *Succ = *MBB->succ_begin();
1092  MachineBasicBlock *Pred = *MBB->pred_begin();
1093  MachineInstr *PredMI = &Pred->back();
1094  if (PredMI->getOpcode() == ARM::B || PredMI->getOpcode() == ARM::tB
1095      || PredMI->getOpcode() == ARM::t2B)
1096    return PredMI->getOperand(0).getMBB() == Succ;
1097  return false;
1098}
1099#endif // NDEBUG
1100
1101/// decrementCPEReferenceCount - find the constant pool entry with index CPI
1102/// and instruction CPEMI, and decrement its refcount.  If the refcount
1103/// becomes 0 remove the entry and instruction.  Returns true if we removed
1104/// the entry, false if we didn't.
1105bool ARMConstantIslands::decrementCPEReferenceCount(unsigned CPI,
1106                                                    MachineInstr *CPEMI) {
1107  // Find the old entry. Eliminate it if it is no longer used.
1108  CPEntry *CPE = findConstPoolEntry(CPI, CPEMI);
1109  assert(CPE && "Unexpected!");
1110  if (--CPE->RefCount == 0) {
1111    removeDeadCPEMI(CPEMI);
1112    CPE->CPEMI = nullptr;
1113    --NumCPEs;
1114    return true;
1115  }
1116  return false;
1117}
1118
1119unsigned ARMConstantIslands::getCombinedIndex(const MachineInstr *CPEMI) {
1120  if (CPEMI->getOperand(1).isCPI())
1121    return CPEMI->getOperand(1).getIndex();
1122
1123  return JumpTableEntryIndices[CPEMI->getOperand(1).getIndex()];
1124}
1125
1126/// LookForCPEntryInRange - see if the currently referenced CPE is in range;
1127/// if not, see if an in-range clone of the CPE is in range, and if so,
1128/// change the data structures so the user references the clone.  Returns:
1129/// 0 = no existing entry found
1130/// 1 = entry found, and there were no code insertions or deletions
1131/// 2 = entry found, and there were code insertions or deletions
1132int ARMConstantIslands::findInRangeCPEntry(CPUser& U, unsigned UserOffset) {
1133  MachineInstr *UserMI = U.MI;
1134  MachineInstr *CPEMI  = U.CPEMI;
1135
1136  // Check to see if the CPE is already in-range.
1137  if (isCPEntryInRange(UserMI, UserOffset, CPEMI, U.getMaxDisp(), U.NegOk,
1138                       true)) {
1139    LLVM_DEBUG(dbgs() << "In range\n");
1140    return 1;
1141  }
1142
1143  // No.  Look for previously created clones of the CPE that are in range.
1144  unsigned CPI = getCombinedIndex(CPEMI);
1145  std::vector<CPEntry> &CPEs = CPEntries[CPI];
1146  for (unsigned i = 0, e = CPEs.size(); i != e; ++i) {
1147    // We already tried this one
1148    if (CPEs[i].CPEMI == CPEMI)
1149      continue;
1150    // Removing CPEs can leave empty entries, skip
1151    if (CPEs[i].CPEMI == nullptr)
1152      continue;
1153    if (isCPEntryInRange(UserMI, UserOffset, CPEs[i].CPEMI, U.getMaxDisp(),
1154                     U.NegOk)) {
1155      LLVM_DEBUG(dbgs() << "Replacing CPE#" << CPI << " with CPE#"
1156                        << CPEs[i].CPI << "\n");
1157      // Point the CPUser node to the replacement
1158      U.CPEMI = CPEs[i].CPEMI;
1159      // Change the CPI in the instruction operand to refer to the clone.
1160      for (unsigned j = 0, e = UserMI->getNumOperands(); j != e; ++j)
1161        if (UserMI->getOperand(j).isCPI()) {
1162          UserMI->getOperand(j).setIndex(CPEs[i].CPI);
1163          break;
1164        }
1165      // Adjust the refcount of the clone...
1166      CPEs[i].RefCount++;
1167      // ...and the original.  If we didn't remove the old entry, none of the
1168      // addresses changed, so we don't need another pass.
1169      return decrementCPEReferenceCount(CPI, CPEMI) ? 2 : 1;
1170    }
1171  }
1172  return 0;
1173}
1174
1175/// getUnconditionalBrDisp - Returns the maximum displacement that can fit in
1176/// the specific unconditional branch instruction.
1177static inline unsigned getUnconditionalBrDisp(int Opc) {
1178  switch (Opc) {
1179  case ARM::tB:
1180    return ((1<<10)-1)*2;
1181  case ARM::t2B:
1182    return ((1<<23)-1)*2;
1183  default:
1184    break;
1185  }
1186
1187  return ((1<<23)-1)*4;
1188}
1189
1190/// findAvailableWater - Look for an existing entry in the WaterList in which
1191/// we can place the CPE referenced from U so it's within range of U's MI.
1192/// Returns true if found, false if not.  If it returns true, WaterIter
1193/// is set to the WaterList entry.  For Thumb, prefer water that will not
1194/// introduce padding to water that will.  To ensure that this pass
1195/// terminates, the CPE location for a particular CPUser is only allowed to
1196/// move to a lower address, so search backward from the end of the list and
1197/// prefer the first water that is in range.
1198bool ARMConstantIslands::findAvailableWater(CPUser &U, unsigned UserOffset,
1199                                            water_iterator &WaterIter,
1200                                            bool CloserWater) {
1201  if (WaterList.empty())
1202    return false;
1203
1204  unsigned BestGrowth = ~0u;
1205  // The nearest water without splitting the UserBB is right after it.
1206  // If the distance is still large (we have a big BB), then we need to split it
1207  // if we don't converge after certain iterations. This helps the following
1208  // situation to converge:
1209  //   BB0:
1210  //      Big BB
1211  //   BB1:
1212  //      Constant Pool
1213  // When a CP access is out of range, BB0 may be used as water. However,
1214  // inserting islands between BB0 and BB1 makes other accesses out of range.
1215  MachineBasicBlock *UserBB = U.MI->getParent();
1216  BBInfoVector &BBInfo = BBUtils->getBBInfo();
1217  const Align CPEAlign = getCPEAlign(U.CPEMI);
1218  unsigned MinNoSplitDisp = BBInfo[UserBB->getNumber()].postOffset(CPEAlign);
1219  if (CloserWater && MinNoSplitDisp > U.getMaxDisp() / 2)
1220    return false;
1221  for (water_iterator IP = std::prev(WaterList.end()), B = WaterList.begin();;
1222       --IP) {
1223    MachineBasicBlock* WaterBB = *IP;
1224    // Check if water is in range and is either at a lower address than the
1225    // current "high water mark" or a new water block that was created since
1226    // the previous iteration by inserting an unconditional branch.  In the
1227    // latter case, we want to allow resetting the high water mark back to
1228    // this new water since we haven't seen it before.  Inserting branches
1229    // should be relatively uncommon and when it does happen, we want to be
1230    // sure to take advantage of it for all the CPEs near that block, so that
1231    // we don't insert more branches than necessary.
1232    // When CloserWater is true, we try to find the lowest address after (or
1233    // equal to) user MI's BB no matter of padding growth.
1234    unsigned Growth;
1235    if (isWaterInRange(UserOffset, WaterBB, U, Growth) &&
1236        (WaterBB->getNumber() < U.HighWaterMark->getNumber() ||
1237         NewWaterList.count(WaterBB) || WaterBB == U.MI->getParent()) &&
1238        Growth < BestGrowth) {
1239      // This is the least amount of required padding seen so far.
1240      BestGrowth = Growth;
1241      WaterIter = IP;
1242      LLVM_DEBUG(dbgs() << "Found water after " << printMBBReference(*WaterBB)
1243                        << " Growth=" << Growth << '\n');
1244
1245      if (CloserWater && WaterBB == U.MI->getParent())
1246        return true;
1247      // Keep looking unless it is perfect and we're not looking for the lowest
1248      // possible address.
1249      if (!CloserWater && BestGrowth == 0)
1250        return true;
1251    }
1252    if (IP == B)
1253      break;
1254  }
1255  return BestGrowth != ~0u;
1256}
1257
1258/// createNewWater - No existing WaterList entry will work for
1259/// CPUsers[CPUserIndex], so create a place to put the CPE.  The end of the
1260/// block is used if in range, and the conditional branch munged so control
1261/// flow is correct.  Otherwise the block is split to create a hole with an
1262/// unconditional branch around it.  In either case NewMBB is set to a
1263/// block following which the new island can be inserted (the WaterList
1264/// is not adjusted).
1265void ARMConstantIslands::createNewWater(unsigned CPUserIndex,
1266                                        unsigned UserOffset,
1267                                        MachineBasicBlock *&NewMBB) {
1268  CPUser &U = CPUsers[CPUserIndex];
1269  MachineInstr *UserMI = U.MI;
1270  MachineInstr *CPEMI  = U.CPEMI;
1271  const Align CPEAlign = getCPEAlign(CPEMI);
1272  MachineBasicBlock *UserMBB = UserMI->getParent();
1273  BBInfoVector &BBInfo = BBUtils->getBBInfo();
1274  const BasicBlockInfo &UserBBI = BBInfo[UserMBB->getNumber()];
1275
1276  // If the block does not end in an unconditional branch already, and if the
1277  // end of the block is within range, make new water there.  (The addition
1278  // below is for the unconditional branch we will be adding: 4 bytes on ARM +
1279  // Thumb2, 2 on Thumb1.
1280  if (BBHasFallthrough(UserMBB)) {
1281    // Size of branch to insert.
1282    unsigned Delta = isThumb1 ? 2 : 4;
1283    // Compute the offset where the CPE will begin.
1284    unsigned CPEOffset = UserBBI.postOffset(CPEAlign) + Delta;
1285
1286    if (isOffsetInRange(UserOffset, CPEOffset, U)) {
1287      LLVM_DEBUG(dbgs() << "Split at end of " << printMBBReference(*UserMBB)
1288                        << format(", expected CPE offset %#x\n", CPEOffset));
1289      NewMBB = &*++UserMBB->getIterator();
1290      // Add an unconditional branch from UserMBB to fallthrough block.  Record
1291      // it for branch lengthening; this new branch will not get out of range,
1292      // but if the preceding conditional branch is out of range, the targets
1293      // will be exchanged, and the altered branch may be out of range, so the
1294      // machinery has to know about it.
1295      int UncondBr = isThumb ? ((isThumb2) ? ARM::t2B : ARM::tB) : ARM::B;
1296      if (!isThumb)
1297        BuildMI(UserMBB, DebugLoc(), TII->get(UncondBr)).addMBB(NewMBB);
1298      else
1299        BuildMI(UserMBB, DebugLoc(), TII->get(UncondBr))
1300            .addMBB(NewMBB)
1301            .add(predOps(ARMCC::AL));
1302      unsigned MaxDisp = getUnconditionalBrDisp(UncondBr);
1303      ImmBranches.push_back(ImmBranch(&UserMBB->back(),
1304                                      MaxDisp, false, UncondBr));
1305      BBUtils->computeBlockSize(UserMBB);
1306      BBUtils->adjustBBOffsetsAfter(UserMBB);
1307      return;
1308    }
1309  }
1310
1311  // What a big block.  Find a place within the block to split it.  This is a
1312  // little tricky on Thumb1 since instructions are 2 bytes and constant pool
1313  // entries are 4 bytes: if instruction I references island CPE, and
1314  // instruction I+1 references CPE', it will not work well to put CPE as far
1315  // forward as possible, since then CPE' cannot immediately follow it (that
1316  // location is 2 bytes farther away from I+1 than CPE was from I) and we'd
1317  // need to create a new island.  So, we make a first guess, then walk through
1318  // the instructions between the one currently being looked at and the
1319  // possible insertion point, and make sure any other instructions that
1320  // reference CPEs will be able to use the same island area; if not, we back
1321  // up the insertion point.
1322
1323  // Try to split the block so it's fully aligned.  Compute the latest split
1324  // point where we can add a 4-byte branch instruction, and then align to
1325  // Align which is the largest possible alignment in the function.
1326  const Align Align = MF->getAlignment();
1327  assert(Align >= CPEAlign && "Over-aligned constant pool entry");
1328  unsigned KnownBits = UserBBI.internalKnownBits();
1329  unsigned UPad = UnknownPadding(Align, KnownBits);
1330  unsigned BaseInsertOffset = UserOffset + U.getMaxDisp() - UPad;
1331  LLVM_DEBUG(dbgs() << format("Split in middle of big block before %#x",
1332                              BaseInsertOffset));
1333
1334  // The 4 in the following is for the unconditional branch we'll be inserting
1335  // (allows for long branch on Thumb1).  Alignment of the island is handled
1336  // inside isOffsetInRange.
1337  BaseInsertOffset -= 4;
1338
1339  LLVM_DEBUG(dbgs() << format(", adjusted to %#x", BaseInsertOffset)
1340                    << " la=" << Log2(Align) << " kb=" << KnownBits
1341                    << " up=" << UPad << '\n');
1342
1343  // This could point off the end of the block if we've already got constant
1344  // pool entries following this block; only the last one is in the water list.
1345  // Back past any possible branches (allow for a conditional and a maximally
1346  // long unconditional).
1347  if (BaseInsertOffset + 8 >= UserBBI.postOffset()) {
1348    // Ensure BaseInsertOffset is larger than the offset of the instruction
1349    // following UserMI so that the loop which searches for the split point
1350    // iterates at least once.
1351    BaseInsertOffset =
1352        std::max(UserBBI.postOffset() - UPad - 8,
1353                 UserOffset + TII->getInstSizeInBytes(*UserMI) + 1);
1354    // If the CP is referenced(ie, UserOffset) is in first four instructions
1355    // after IT, this recalculated BaseInsertOffset could be in the middle of
1356    // an IT block. If it is, change the BaseInsertOffset to just after the
1357    // IT block. This still make the CP Entry is in range becuase of the
1358    // following reasons.
1359    //   1. The initial BaseseInsertOffset calculated is (UserOffset +
1360    //   U.getMaxDisp() - UPad).
1361    //   2. An IT block is only at most 4 instructions plus the "it" itself (18
1362    //   bytes).
1363    //   3. All the relevant instructions support much larger Maximum
1364    //   displacement.
1365    MachineBasicBlock::iterator I = UserMI;
1366    ++I;
1367    for (unsigned Offset = UserOffset + TII->getInstSizeInBytes(*UserMI),
1368                  PredReg = 0;
1369         I->getOpcode() != ARM::t2IT &&
1370         getITInstrPredicate(*I, PredReg) != ARMCC::AL;
1371         Offset += TII->getInstSizeInBytes(*I), I = std::next(I)) {
1372      BaseInsertOffset =
1373          std::max(BaseInsertOffset, Offset + TII->getInstSizeInBytes(*I) + 1);
1374      assert(I != UserMBB->end() && "Fell off end of block");
1375    }
1376    LLVM_DEBUG(dbgs() << format("Move inside block: %#x\n", BaseInsertOffset));
1377  }
1378  unsigned EndInsertOffset = BaseInsertOffset + 4 + UPad +
1379    CPEMI->getOperand(2).getImm();
1380  MachineBasicBlock::iterator MI = UserMI;
1381  ++MI;
1382  unsigned CPUIndex = CPUserIndex+1;
1383  unsigned NumCPUsers = CPUsers.size();
1384  MachineInstr *LastIT = nullptr;
1385  for (unsigned Offset = UserOffset + TII->getInstSizeInBytes(*UserMI);
1386       Offset < BaseInsertOffset;
1387       Offset += TII->getInstSizeInBytes(*MI), MI = std::next(MI)) {
1388    assert(MI != UserMBB->end() && "Fell off end of block");
1389    if (CPUIndex < NumCPUsers && CPUsers[CPUIndex].MI == &*MI) {
1390      CPUser &U = CPUsers[CPUIndex];
1391      if (!isOffsetInRange(Offset, EndInsertOffset, U)) {
1392        // Shift intertion point by one unit of alignment so it is within reach.
1393        BaseInsertOffset -= Align.value();
1394        EndInsertOffset -= Align.value();
1395      }
1396      // This is overly conservative, as we don't account for CPEMIs being
1397      // reused within the block, but it doesn't matter much.  Also assume CPEs
1398      // are added in order with alignment padding.  We may eventually be able
1399      // to pack the aligned CPEs better.
1400      EndInsertOffset += U.CPEMI->getOperand(2).getImm();
1401      CPUIndex++;
1402    }
1403
1404    // Remember the last IT instruction.
1405    if (MI->getOpcode() == ARM::t2IT)
1406      LastIT = &*MI;
1407  }
1408
1409  --MI;
1410
1411  // Avoid splitting an IT block.
1412  if (LastIT) {
1413    unsigned PredReg = 0;
1414    ARMCC::CondCodes CC = getITInstrPredicate(*MI, PredReg);
1415    if (CC != ARMCC::AL)
1416      MI = LastIT;
1417  }
1418
1419  // Avoid splitting a MOVW+MOVT pair with a relocation on Windows.
1420  // On Windows, this instruction pair is covered by one single
1421  // IMAGE_REL_ARM_MOV32T relocation which covers both instructions. If a
1422  // constant island is injected inbetween them, the relocation will clobber
1423  // the instruction and fail to update the MOVT instruction.
1424  // (These instructions are bundled up until right before the ConstantIslands
1425  // pass.)
1426  if (STI->isTargetWindows() && isThumb && MI->getOpcode() == ARM::t2MOVTi16 &&
1427      (MI->getOperand(2).getTargetFlags() & ARMII::MO_OPTION_MASK) ==
1428          ARMII::MO_HI16) {
1429    --MI;
1430    assert(MI->getOpcode() == ARM::t2MOVi16 &&
1431           (MI->getOperand(1).getTargetFlags() & ARMII::MO_OPTION_MASK) ==
1432               ARMII::MO_LO16);
1433  }
1434
1435  // We really must not split an IT block.
1436#ifndef NDEBUG
1437  unsigned PredReg;
1438  assert(!isThumb || getITInstrPredicate(*MI, PredReg) == ARMCC::AL);
1439#endif
1440  NewMBB = splitBlockBeforeInstr(&*MI);
1441}
1442
1443/// handleConstantPoolUser - Analyze the specified user, checking to see if it
1444/// is out-of-range.  If so, pick up the constant pool value and move it some
1445/// place in-range.  Return true if we changed any addresses (thus must run
1446/// another pass of branch lengthening), false otherwise.
1447bool ARMConstantIslands::handleConstantPoolUser(unsigned CPUserIndex,
1448                                                bool CloserWater) {
1449  CPUser &U = CPUsers[CPUserIndex];
1450  MachineInstr *UserMI = U.MI;
1451  MachineInstr *CPEMI  = U.CPEMI;
1452  unsigned CPI = getCombinedIndex(CPEMI);
1453  unsigned Size = CPEMI->getOperand(2).getImm();
1454  // Compute this only once, it's expensive.
1455  unsigned UserOffset = getUserOffset(U);
1456
1457  // See if the current entry is within range, or there is a clone of it
1458  // in range.
1459  int result = findInRangeCPEntry(U, UserOffset);
1460  if (result==1) return false;
1461  else if (result==2) return true;
1462
1463  // No existing clone of this CPE is within range.
1464  // We will be generating a new clone.  Get a UID for it.
1465  unsigned ID = AFI->createPICLabelUId();
1466
1467  // Look for water where we can place this CPE.
1468  MachineBasicBlock *NewIsland = MF->CreateMachineBasicBlock();
1469  MachineBasicBlock *NewMBB;
1470  water_iterator IP;
1471  if (findAvailableWater(U, UserOffset, IP, CloserWater)) {
1472    LLVM_DEBUG(dbgs() << "Found water in range\n");
1473    MachineBasicBlock *WaterBB = *IP;
1474
1475    // If the original WaterList entry was "new water" on this iteration,
1476    // propagate that to the new island.  This is just keeping NewWaterList
1477    // updated to match the WaterList, which will be updated below.
1478    if (NewWaterList.erase(WaterBB))
1479      NewWaterList.insert(NewIsland);
1480
1481    // The new CPE goes before the following block (NewMBB).
1482    NewMBB = &*++WaterBB->getIterator();
1483  } else {
1484    // No water found.
1485    LLVM_DEBUG(dbgs() << "No water found\n");
1486    createNewWater(CPUserIndex, UserOffset, NewMBB);
1487
1488    // splitBlockBeforeInstr adds to WaterList, which is important when it is
1489    // called while handling branches so that the water will be seen on the
1490    // next iteration for constant pools, but in this context, we don't want
1491    // it.  Check for this so it will be removed from the WaterList.
1492    // Also remove any entry from NewWaterList.
1493    MachineBasicBlock *WaterBB = &*--NewMBB->getIterator();
1494    IP = find(WaterList, WaterBB);
1495    if (IP != WaterList.end())
1496      NewWaterList.erase(WaterBB);
1497
1498    // We are adding new water.  Update NewWaterList.
1499    NewWaterList.insert(NewIsland);
1500  }
1501  // Always align the new block because CP entries can be smaller than 4
1502  // bytes. Be careful not to decrease the existing alignment, e.g. NewMBB may
1503  // be an already aligned constant pool block.
1504  const Align Alignment = isThumb ? Align(2) : Align(4);
1505  if (NewMBB->getAlignment() < Alignment)
1506    NewMBB->setAlignment(Alignment);
1507
1508  // Remove the original WaterList entry; we want subsequent insertions in
1509  // this vicinity to go after the one we're about to insert.  This
1510  // considerably reduces the number of times we have to move the same CPE
1511  // more than once and is also important to ensure the algorithm terminates.
1512  if (IP != WaterList.end())
1513    WaterList.erase(IP);
1514
1515  // Okay, we know we can put an island before NewMBB now, do it!
1516  MF->insert(NewMBB->getIterator(), NewIsland);
1517
1518  // Update internal data structures to account for the newly inserted MBB.
1519  updateForInsertedWaterBlock(NewIsland);
1520
1521  // Now that we have an island to add the CPE to, clone the original CPE and
1522  // add it to the island.
1523  U.HighWaterMark = NewIsland;
1524  U.CPEMI = BuildMI(NewIsland, DebugLoc(), CPEMI->getDesc())
1525                .addImm(ID)
1526                .add(CPEMI->getOperand(1))
1527                .addImm(Size);
1528  CPEntries[CPI].push_back(CPEntry(U.CPEMI, ID, 1));
1529  ++NumCPEs;
1530
1531  // Decrement the old entry, and remove it if refcount becomes 0.
1532  decrementCPEReferenceCount(CPI, CPEMI);
1533
1534  // Mark the basic block as aligned as required by the const-pool entry.
1535  NewIsland->setAlignment(getCPEAlign(U.CPEMI));
1536
1537  // Increase the size of the island block to account for the new entry.
1538  BBUtils->adjustBBSize(NewIsland, Size);
1539  BBUtils->adjustBBOffsetsAfter(&*--NewIsland->getIterator());
1540
1541  // Finally, change the CPI in the instruction operand to be ID.
1542  for (unsigned i = 0, e = UserMI->getNumOperands(); i != e; ++i)
1543    if (UserMI->getOperand(i).isCPI()) {
1544      UserMI->getOperand(i).setIndex(ID);
1545      break;
1546    }
1547
1548  LLVM_DEBUG(
1549      dbgs() << "  Moved CPE to #" << ID << " CPI=" << CPI
1550             << format(" offset=%#x\n",
1551                       BBUtils->getBBInfo()[NewIsland->getNumber()].Offset));
1552
1553  return true;
1554}
1555
1556/// removeDeadCPEMI - Remove a dead constant pool entry instruction. Update
1557/// sizes and offsets of impacted basic blocks.
1558void ARMConstantIslands::removeDeadCPEMI(MachineInstr *CPEMI) {
1559  MachineBasicBlock *CPEBB = CPEMI->getParent();
1560  unsigned Size = CPEMI->getOperand(2).getImm();
1561  CPEMI->eraseFromParent();
1562  BBInfoVector &BBInfo = BBUtils->getBBInfo();
1563  BBUtils->adjustBBSize(CPEBB, -Size);
1564  // All succeeding offsets have the current size value added in, fix this.
1565  if (CPEBB->empty()) {
1566    BBInfo[CPEBB->getNumber()].Size = 0;
1567
1568    // This block no longer needs to be aligned.
1569    CPEBB->setAlignment(Align::None());
1570  } else {
1571    // Entries are sorted by descending alignment, so realign from the front.
1572    CPEBB->setAlignment(getCPEAlign(&*CPEBB->begin()));
1573  }
1574
1575  BBUtils->adjustBBOffsetsAfter(CPEBB);
1576  // An island has only one predecessor BB and one successor BB. Check if
1577  // this BB's predecessor jumps directly to this BB's successor. This
1578  // shouldn't happen currently.
1579  assert(!BBIsJumpedOver(CPEBB) && "How did this happen?");
1580  // FIXME: remove the empty blocks after all the work is done?
1581}
1582
1583/// removeUnusedCPEntries - Remove constant pool entries whose refcounts
1584/// are zero.
1585bool ARMConstantIslands::removeUnusedCPEntries() {
1586  unsigned MadeChange = false;
1587  for (unsigned i = 0, e = CPEntries.size(); i != e; ++i) {
1588      std::vector<CPEntry> &CPEs = CPEntries[i];
1589      for (unsigned j = 0, ee = CPEs.size(); j != ee; ++j) {
1590        if (CPEs[j].RefCount == 0 && CPEs[j].CPEMI) {
1591          removeDeadCPEMI(CPEs[j].CPEMI);
1592          CPEs[j].CPEMI = nullptr;
1593          MadeChange = true;
1594        }
1595      }
1596  }
1597  return MadeChange;
1598}
1599
1600
1601/// fixupImmediateBr - Fix up an immediate branch whose destination is too far
1602/// away to fit in its displacement field.
1603bool ARMConstantIslands::fixupImmediateBr(ImmBranch &Br) {
1604  MachineInstr *MI = Br.MI;
1605  MachineBasicBlock *DestBB = MI->getOperand(0).getMBB();
1606
1607  // Check to see if the DestBB is already in-range.
1608  if (BBUtils->isBBInRange(MI, DestBB, Br.MaxDisp))
1609    return false;
1610
1611  if (!Br.isCond)
1612    return fixupUnconditionalBr(Br);
1613  return fixupConditionalBr(Br);
1614}
1615
1616/// fixupUnconditionalBr - Fix up an unconditional branch whose destination is
1617/// too far away to fit in its displacement field. If the LR register has been
1618/// spilled in the epilogue, then we can use BL to implement a far jump.
1619/// Otherwise, add an intermediate branch instruction to a branch.
1620bool
1621ARMConstantIslands::fixupUnconditionalBr(ImmBranch &Br) {
1622  MachineInstr *MI = Br.MI;
1623  MachineBasicBlock *MBB = MI->getParent();
1624  if (!isThumb1)
1625    llvm_unreachable("fixupUnconditionalBr is Thumb1 only!");
1626
1627  if (!AFI->isLRSpilled())
1628    report_fatal_error("underestimated function size");
1629
1630  // Use BL to implement far jump.
1631  Br.MaxDisp = (1 << 21) * 2;
1632  MI->setDesc(TII->get(ARM::tBfar));
1633  BBInfoVector &BBInfo = BBUtils->getBBInfo();
1634  BBInfo[MBB->getNumber()].Size += 2;
1635  BBUtils->adjustBBOffsetsAfter(MBB);
1636  HasFarJump = true;
1637  ++NumUBrFixed;
1638
1639  LLVM_DEBUG(dbgs() << "  Changed B to long jump " << *MI);
1640
1641  return true;
1642}
1643
1644/// fixupConditionalBr - Fix up a conditional branch whose destination is too
1645/// far away to fit in its displacement field. It is converted to an inverse
1646/// conditional branch + an unconditional branch to the destination.
1647bool
1648ARMConstantIslands::fixupConditionalBr(ImmBranch &Br) {
1649  MachineInstr *MI = Br.MI;
1650  MachineBasicBlock *DestBB = MI->getOperand(0).getMBB();
1651
1652  // Add an unconditional branch to the destination and invert the branch
1653  // condition to jump over it:
1654  // blt L1
1655  // =>
1656  // bge L2
1657  // b   L1
1658  // L2:
1659  ARMCC::CondCodes CC = (ARMCC::CondCodes)MI->getOperand(1).getImm();
1660  CC = ARMCC::getOppositeCondition(CC);
1661  Register CCReg = MI->getOperand(2).getReg();
1662
1663  // If the branch is at the end of its MBB and that has a fall-through block,
1664  // direct the updated conditional branch to the fall-through block. Otherwise,
1665  // split the MBB before the next instruction.
1666  MachineBasicBlock *MBB = MI->getParent();
1667  MachineInstr *BMI = &MBB->back();
1668  bool NeedSplit = (BMI != MI) || !BBHasFallthrough(MBB);
1669
1670  ++NumCBrFixed;
1671  if (BMI != MI) {
1672    if (std::next(MachineBasicBlock::iterator(MI)) == std::prev(MBB->end()) &&
1673        BMI->getOpcode() == Br.UncondBr) {
1674      // Last MI in the BB is an unconditional branch. Can we simply invert the
1675      // condition and swap destinations:
1676      // beq L1
1677      // b   L2
1678      // =>
1679      // bne L2
1680      // b   L1
1681      MachineBasicBlock *NewDest = BMI->getOperand(0).getMBB();
1682      if (BBUtils->isBBInRange(MI, NewDest, Br.MaxDisp)) {
1683        LLVM_DEBUG(
1684            dbgs() << "  Invert Bcc condition and swap its destination with "
1685                   << *BMI);
1686        BMI->getOperand(0).setMBB(DestBB);
1687        MI->getOperand(0).setMBB(NewDest);
1688        MI->getOperand(1).setImm(CC);
1689        return true;
1690      }
1691    }
1692  }
1693
1694  if (NeedSplit) {
1695    splitBlockBeforeInstr(MI);
1696    // No need for the branch to the next block. We're adding an unconditional
1697    // branch to the destination.
1698    int delta = TII->getInstSizeInBytes(MBB->back());
1699    BBUtils->adjustBBSize(MBB, -delta);
1700    MBB->back().eraseFromParent();
1701
1702    // The conditional successor will be swapped between the BBs after this, so
1703    // update CFG.
1704    MBB->addSuccessor(DestBB);
1705    std::next(MBB->getIterator())->removeSuccessor(DestBB);
1706
1707    // BBInfo[SplitBB].Offset is wrong temporarily, fixed below
1708  }
1709  MachineBasicBlock *NextBB = &*++MBB->getIterator();
1710
1711  LLVM_DEBUG(dbgs() << "  Insert B to " << printMBBReference(*DestBB)
1712                    << " also invert condition and change dest. to "
1713                    << printMBBReference(*NextBB) << "\n");
1714
1715  // Insert a new conditional branch and a new unconditional branch.
1716  // Also update the ImmBranch as well as adding a new entry for the new branch.
1717  BuildMI(MBB, DebugLoc(), TII->get(MI->getOpcode()))
1718    .addMBB(NextBB).addImm(CC).addReg(CCReg);
1719  Br.MI = &MBB->back();
1720  BBUtils->adjustBBSize(MBB, TII->getInstSizeInBytes(MBB->back()));
1721  if (isThumb)
1722    BuildMI(MBB, DebugLoc(), TII->get(Br.UncondBr))
1723        .addMBB(DestBB)
1724        .add(predOps(ARMCC::AL));
1725  else
1726    BuildMI(MBB, DebugLoc(), TII->get(Br.UncondBr)).addMBB(DestBB);
1727  BBUtils->adjustBBSize(MBB, TII->getInstSizeInBytes(MBB->back()));
1728  unsigned MaxDisp = getUnconditionalBrDisp(Br.UncondBr);
1729  ImmBranches.push_back(ImmBranch(&MBB->back(), MaxDisp, false, Br.UncondBr));
1730
1731  // Remove the old conditional branch.  It may or may not still be in MBB.
1732  BBUtils->adjustBBSize(MI->getParent(), -TII->getInstSizeInBytes(*MI));
1733  MI->eraseFromParent();
1734  BBUtils->adjustBBOffsetsAfter(MBB);
1735  return true;
1736}
1737
1738/// undoLRSpillRestore - Remove Thumb push / pop instructions that only spills
1739/// LR / restores LR to pc. FIXME: This is done here because it's only possible
1740/// to do this if tBfar is not used.
1741bool ARMConstantIslands::undoLRSpillRestore() {
1742  bool MadeChange = false;
1743  for (unsigned i = 0, e = PushPopMIs.size(); i != e; ++i) {
1744    MachineInstr *MI = PushPopMIs[i];
1745    // First two operands are predicates.
1746    if (MI->getOpcode() == ARM::tPOP_RET &&
1747        MI->getOperand(2).getReg() == ARM::PC &&
1748        MI->getNumExplicitOperands() == 3) {
1749      // Create the new insn and copy the predicate from the old.
1750      BuildMI(MI->getParent(), MI->getDebugLoc(), TII->get(ARM::tBX_RET))
1751          .add(MI->getOperand(0))
1752          .add(MI->getOperand(1));
1753      MI->eraseFromParent();
1754      MadeChange = true;
1755    } else if (MI->getOpcode() == ARM::tPUSH &&
1756               MI->getOperand(2).getReg() == ARM::LR &&
1757               MI->getNumExplicitOperands() == 3) {
1758      // Just remove the push.
1759      MI->eraseFromParent();
1760      MadeChange = true;
1761    }
1762  }
1763  return MadeChange;
1764}
1765
1766bool ARMConstantIslands::optimizeThumb2Instructions() {
1767  bool MadeChange = false;
1768
1769  // Shrink ADR and LDR from constantpool.
1770  for (unsigned i = 0, e = CPUsers.size(); i != e; ++i) {
1771    CPUser &U = CPUsers[i];
1772    unsigned Opcode = U.MI->getOpcode();
1773    unsigned NewOpc = 0;
1774    unsigned Scale = 1;
1775    unsigned Bits = 0;
1776    switch (Opcode) {
1777    default: break;
1778    case ARM::t2LEApcrel:
1779      if (isARMLowRegister(U.MI->getOperand(0).getReg())) {
1780        NewOpc = ARM::tLEApcrel;
1781        Bits = 8;
1782        Scale = 4;
1783      }
1784      break;
1785    case ARM::t2LDRpci:
1786      if (isARMLowRegister(U.MI->getOperand(0).getReg())) {
1787        NewOpc = ARM::tLDRpci;
1788        Bits = 8;
1789        Scale = 4;
1790      }
1791      break;
1792    }
1793
1794    if (!NewOpc)
1795      continue;
1796
1797    unsigned UserOffset = getUserOffset(U);
1798    unsigned MaxOffs = ((1 << Bits) - 1) * Scale;
1799
1800    // Be conservative with inline asm.
1801    if (!U.KnownAlignment)
1802      MaxOffs -= 2;
1803
1804    // FIXME: Check if offset is multiple of scale if scale is not 4.
1805    if (isCPEntryInRange(U.MI, UserOffset, U.CPEMI, MaxOffs, false, true)) {
1806      LLVM_DEBUG(dbgs() << "Shrink: " << *U.MI);
1807      U.MI->setDesc(TII->get(NewOpc));
1808      MachineBasicBlock *MBB = U.MI->getParent();
1809      BBUtils->adjustBBSize(MBB, -2);
1810      BBUtils->adjustBBOffsetsAfter(MBB);
1811      ++NumT2CPShrunk;
1812      MadeChange = true;
1813    }
1814  }
1815
1816  return MadeChange;
1817}
1818
1819
1820bool ARMConstantIslands::optimizeThumb2Branches() {
1821
1822  auto TryShrinkBranch = [this](ImmBranch &Br) {
1823    unsigned Opcode = Br.MI->getOpcode();
1824    unsigned NewOpc = 0;
1825    unsigned Scale = 1;
1826    unsigned Bits = 0;
1827    switch (Opcode) {
1828    default: break;
1829    case ARM::t2B:
1830      NewOpc = ARM::tB;
1831      Bits = 11;
1832      Scale = 2;
1833      break;
1834    case ARM::t2Bcc:
1835      NewOpc = ARM::tBcc;
1836      Bits = 8;
1837      Scale = 2;
1838      break;
1839    }
1840    if (NewOpc) {
1841      unsigned MaxOffs = ((1 << (Bits-1))-1) * Scale;
1842      MachineBasicBlock *DestBB = Br.MI->getOperand(0).getMBB();
1843      if (BBUtils->isBBInRange(Br.MI, DestBB, MaxOffs)) {
1844        LLVM_DEBUG(dbgs() << "Shrink branch: " << *Br.MI);
1845        Br.MI->setDesc(TII->get(NewOpc));
1846        MachineBasicBlock *MBB = Br.MI->getParent();
1847        BBUtils->adjustBBSize(MBB, -2);
1848        BBUtils->adjustBBOffsetsAfter(MBB);
1849        ++NumT2BrShrunk;
1850        return true;
1851      }
1852    }
1853    return false;
1854  };
1855
1856  struct ImmCompare {
1857    MachineInstr* MI = nullptr;
1858    unsigned NewOpc = 0;
1859  };
1860
1861  auto FindCmpForCBZ = [this](ImmBranch &Br, ImmCompare &ImmCmp,
1862                              MachineBasicBlock *DestBB) {
1863    ImmCmp.MI = nullptr;
1864    ImmCmp.NewOpc = 0;
1865
1866    // If the conditional branch doesn't kill CPSR, then CPSR can be liveout
1867    // so this transformation is not safe.
1868    if (!Br.MI->killsRegister(ARM::CPSR))
1869      return false;
1870
1871    unsigned PredReg = 0;
1872    unsigned NewOpc = 0;
1873    ARMCC::CondCodes Pred = getInstrPredicate(*Br.MI, PredReg);
1874    if (Pred == ARMCC::EQ)
1875      NewOpc = ARM::tCBZ;
1876    else if (Pred == ARMCC::NE)
1877      NewOpc = ARM::tCBNZ;
1878    else
1879      return false;
1880
1881    // Check if the distance is within 126. Subtract starting offset by 2
1882    // because the cmp will be eliminated.
1883    unsigned BrOffset = BBUtils->getOffsetOf(Br.MI) + 4 - 2;
1884    BBInfoVector &BBInfo = BBUtils->getBBInfo();
1885    unsigned DestOffset = BBInfo[DestBB->getNumber()].Offset;
1886    if (BrOffset >= DestOffset || (DestOffset - BrOffset) > 126)
1887      return false;
1888
1889    // Search backwards to find a tCMPi8
1890    auto *TRI = STI->getRegisterInfo();
1891    MachineInstr *CmpMI = findCMPToFoldIntoCBZ(Br.MI, TRI);
1892    if (!CmpMI || CmpMI->getOpcode() != ARM::tCMPi8)
1893      return false;
1894
1895    ImmCmp.MI = CmpMI;
1896    ImmCmp.NewOpc = NewOpc;
1897    return true;
1898  };
1899
1900  auto TryConvertToLE = [this](ImmBranch &Br, ImmCompare &Cmp) {
1901    if (Br.MI->getOpcode() != ARM::t2Bcc || !STI->hasLOB() ||
1902        STI->hasMinSize())
1903      return false;
1904
1905    MachineBasicBlock *MBB = Br.MI->getParent();
1906    MachineBasicBlock *DestBB = Br.MI->getOperand(0).getMBB();
1907    if (BBUtils->getOffsetOf(MBB) < BBUtils->getOffsetOf(DestBB) ||
1908        !BBUtils->isBBInRange(Br.MI, DestBB, 4094))
1909      return false;
1910
1911    if (!DT->dominates(DestBB, MBB))
1912      return false;
1913
1914    // We queried for the CBN?Z opcode based upon the 'ExitBB', the opposite
1915    // target of Br. So now we need to reverse the condition.
1916    Cmp.NewOpc = Cmp.NewOpc == ARM::tCBZ ? ARM::tCBNZ : ARM::tCBZ;
1917
1918    MachineInstrBuilder MIB = BuildMI(*MBB, Br.MI, Br.MI->getDebugLoc(),
1919                                      TII->get(ARM::t2LE));
1920    // Swapped a t2Bcc for a t2LE, so no need to update the size of the block.
1921    MIB.add(Br.MI->getOperand(0));
1922    Br.MI->eraseFromParent();
1923    Br.MI = MIB;
1924    ++NumLEInserted;
1925    return true;
1926  };
1927
1928  bool MadeChange = false;
1929
1930  // The order in which branches appear in ImmBranches is approximately their
1931  // order within the function body. By visiting later branches first, we reduce
1932  // the distance between earlier forward branches and their targets, making it
1933  // more likely that the cbn?z optimization, which can only apply to forward
1934  // branches, will succeed.
1935  for (ImmBranch &Br : reverse(ImmBranches)) {
1936    MachineBasicBlock *DestBB = Br.MI->getOperand(0).getMBB();
1937    MachineBasicBlock *MBB = Br.MI->getParent();
1938    MachineBasicBlock *ExitBB = &MBB->back() == Br.MI ?
1939      MBB->getFallThrough() :
1940      MBB->back().getOperand(0).getMBB();
1941
1942    ImmCompare Cmp;
1943    if (FindCmpForCBZ(Br, Cmp, ExitBB) && TryConvertToLE(Br, Cmp)) {
1944      DestBB = ExitBB;
1945      MadeChange = true;
1946    } else {
1947      FindCmpForCBZ(Br, Cmp, DestBB);
1948      MadeChange |= TryShrinkBranch(Br);
1949    }
1950
1951    unsigned Opcode = Br.MI->getOpcode();
1952    if ((Opcode != ARM::tBcc && Opcode != ARM::t2LE) || !Cmp.NewOpc)
1953      continue;
1954
1955    Register Reg = Cmp.MI->getOperand(0).getReg();
1956
1957    // Check for Kill flags on Reg. If they are present remove them and set kill
1958    // on the new CBZ.
1959    auto *TRI = STI->getRegisterInfo();
1960    MachineBasicBlock::iterator KillMI = Br.MI;
1961    bool RegKilled = false;
1962    do {
1963      --KillMI;
1964      if (KillMI->killsRegister(Reg, TRI)) {
1965        KillMI->clearRegisterKills(Reg, TRI);
1966        RegKilled = true;
1967        break;
1968      }
1969    } while (KillMI != Cmp.MI);
1970
1971    // Create the new CBZ/CBNZ
1972    LLVM_DEBUG(dbgs() << "Fold: " << *Cmp.MI << " and: " << *Br.MI);
1973    MachineInstr *NewBR =
1974        BuildMI(*MBB, Br.MI, Br.MI->getDebugLoc(), TII->get(Cmp.NewOpc))
1975            .addReg(Reg, getKillRegState(RegKilled))
1976            .addMBB(DestBB, Br.MI->getOperand(0).getTargetFlags());
1977
1978    Cmp.MI->eraseFromParent();
1979
1980    if (Br.MI->getOpcode() == ARM::tBcc) {
1981      Br.MI->eraseFromParent();
1982      Br.MI = NewBR;
1983      BBUtils->adjustBBSize(MBB, -2);
1984    } else if (MBB->back().getOpcode() != ARM::t2LE) {
1985      // An LE has been generated, but it's not the terminator - that is an
1986      // unconditional branch. However, the logic has now been reversed with the
1987      // CBN?Z being the conditional branch and the LE being the unconditional
1988      // branch. So this means we can remove the redundant unconditional branch
1989      // at the end of the block.
1990      MachineInstr *LastMI = &MBB->back();
1991      BBUtils->adjustBBSize(MBB, -LastMI->getDesc().getSize());
1992      LastMI->eraseFromParent();
1993    }
1994    BBUtils->adjustBBOffsetsAfter(MBB);
1995    ++NumCBZ;
1996    MadeChange = true;
1997  }
1998
1999  return MadeChange;
2000}
2001
2002static bool isSimpleIndexCalc(MachineInstr &I, unsigned EntryReg,
2003                              unsigned BaseReg) {
2004  if (I.getOpcode() != ARM::t2ADDrs)
2005    return false;
2006
2007  if (I.getOperand(0).getReg() != EntryReg)
2008    return false;
2009
2010  if (I.getOperand(1).getReg() != BaseReg)
2011    return false;
2012
2013  // FIXME: what about CC and IdxReg?
2014  return true;
2015}
2016
2017/// While trying to form a TBB/TBH instruction, we may (if the table
2018/// doesn't immediately follow the BR_JT) need access to the start of the
2019/// jump-table. We know one instruction that produces such a register; this
2020/// function works out whether that definition can be preserved to the BR_JT,
2021/// possibly by removing an intervening addition (which is usually needed to
2022/// calculate the actual entry to jump to).
2023bool ARMConstantIslands::preserveBaseRegister(MachineInstr *JumpMI,
2024                                              MachineInstr *LEAMI,
2025                                              unsigned &DeadSize,
2026                                              bool &CanDeleteLEA,
2027                                              bool &BaseRegKill) {
2028  if (JumpMI->getParent() != LEAMI->getParent())
2029    return false;
2030
2031  // Now we hope that we have at least these instructions in the basic block:
2032  //     BaseReg = t2LEA ...
2033  //     [...]
2034  //     EntryReg = t2ADDrs BaseReg, ...
2035  //     [...]
2036  //     t2BR_JT EntryReg
2037  //
2038  // We have to be very conservative about what we recognise here though. The
2039  // main perturbing factors to watch out for are:
2040  //    + Spills at any point in the chain: not direct problems but we would
2041  //      expect a blocking Def of the spilled register so in practice what we
2042  //      can do is limited.
2043  //    + EntryReg == BaseReg: this is the one situation we should allow a Def
2044  //      of BaseReg, but only if the t2ADDrs can be removed.
2045  //    + Some instruction other than t2ADDrs computing the entry. Not seen in
2046  //      the wild, but we should be careful.
2047  Register EntryReg = JumpMI->getOperand(0).getReg();
2048  Register BaseReg = LEAMI->getOperand(0).getReg();
2049
2050  CanDeleteLEA = true;
2051  BaseRegKill = false;
2052  MachineInstr *RemovableAdd = nullptr;
2053  MachineBasicBlock::iterator I(LEAMI);
2054  for (++I; &*I != JumpMI; ++I) {
2055    if (isSimpleIndexCalc(*I, EntryReg, BaseReg)) {
2056      RemovableAdd = &*I;
2057      break;
2058    }
2059
2060    for (unsigned K = 0, E = I->getNumOperands(); K != E; ++K) {
2061      const MachineOperand &MO = I->getOperand(K);
2062      if (!MO.isReg() || !MO.getReg())
2063        continue;
2064      if (MO.isDef() && MO.getReg() == BaseReg)
2065        return false;
2066      if (MO.isUse() && MO.getReg() == BaseReg) {
2067        BaseRegKill = BaseRegKill || MO.isKill();
2068        CanDeleteLEA = false;
2069      }
2070    }
2071  }
2072
2073  if (!RemovableAdd)
2074    return true;
2075
2076  // Check the add really is removable, and that nothing else in the block
2077  // clobbers BaseReg.
2078  for (++I; &*I != JumpMI; ++I) {
2079    for (unsigned K = 0, E = I->getNumOperands(); K != E; ++K) {
2080      const MachineOperand &MO = I->getOperand(K);
2081      if (!MO.isReg() || !MO.getReg())
2082        continue;
2083      if (MO.isDef() && MO.getReg() == BaseReg)
2084        return false;
2085      if (MO.isUse() && MO.getReg() == EntryReg)
2086        RemovableAdd = nullptr;
2087    }
2088  }
2089
2090  if (RemovableAdd) {
2091    RemovableAdd->eraseFromParent();
2092    DeadSize += isThumb2 ? 4 : 2;
2093  } else if (BaseReg == EntryReg) {
2094    // The add wasn't removable, but clobbered the base for the TBB. So we can't
2095    // preserve it.
2096    return false;
2097  }
2098
2099  // We reached the end of the block without seeing another definition of
2100  // BaseReg (except, possibly the t2ADDrs, which was removed). BaseReg can be
2101  // used in the TBB/TBH if necessary.
2102  return true;
2103}
2104
2105/// Returns whether CPEMI is the first instruction in the block
2106/// immediately following JTMI (assumed to be a TBB or TBH terminator). If so,
2107/// we can switch the first register to PC and usually remove the address
2108/// calculation that preceded it.
2109static bool jumpTableFollowsTB(MachineInstr *JTMI, MachineInstr *CPEMI) {
2110  MachineFunction::iterator MBB = JTMI->getParent()->getIterator();
2111  MachineFunction *MF = MBB->getParent();
2112  ++MBB;
2113
2114  return MBB != MF->end() && MBB->begin() != MBB->end() &&
2115         &*MBB->begin() == CPEMI;
2116}
2117
2118static void RemoveDeadAddBetweenLEAAndJT(MachineInstr *LEAMI,
2119                                         MachineInstr *JumpMI,
2120                                         unsigned &DeadSize) {
2121  // Remove a dead add between the LEA and JT, which used to compute EntryReg,
2122  // but the JT now uses PC. Finds the last ADD (if any) that def's EntryReg
2123  // and is not clobbered / used.
2124  MachineInstr *RemovableAdd = nullptr;
2125  Register EntryReg = JumpMI->getOperand(0).getReg();
2126
2127  // Find the last ADD to set EntryReg
2128  MachineBasicBlock::iterator I(LEAMI);
2129  for (++I; &*I != JumpMI; ++I) {
2130    if (I->getOpcode() == ARM::t2ADDrs && I->getOperand(0).getReg() == EntryReg)
2131      RemovableAdd = &*I;
2132  }
2133
2134  if (!RemovableAdd)
2135    return;
2136
2137  // Ensure EntryReg is not clobbered or used.
2138  MachineBasicBlock::iterator J(RemovableAdd);
2139  for (++J; &*J != JumpMI; ++J) {
2140    for (unsigned K = 0, E = J->getNumOperands(); K != E; ++K) {
2141      const MachineOperand &MO = J->getOperand(K);
2142      if (!MO.isReg() || !MO.getReg())
2143        continue;
2144      if (MO.isDef() && MO.getReg() == EntryReg)
2145        return;
2146      if (MO.isUse() && MO.getReg() == EntryReg)
2147        return;
2148    }
2149  }
2150
2151  LLVM_DEBUG(dbgs() << "Removing Dead Add: " << *RemovableAdd);
2152  RemovableAdd->eraseFromParent();
2153  DeadSize += 4;
2154}
2155
2156/// optimizeThumb2JumpTables - Use tbb / tbh instructions to generate smaller
2157/// jumptables when it's possible.
2158bool ARMConstantIslands::optimizeThumb2JumpTables() {
2159  bool MadeChange = false;
2160
2161  // FIXME: After the tables are shrunk, can we get rid some of the
2162  // constantpool tables?
2163  MachineJumpTableInfo *MJTI = MF->getJumpTableInfo();
2164  if (!MJTI) return false;
2165
2166  const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
2167  for (unsigned i = 0, e = T2JumpTables.size(); i != e; ++i) {
2168    MachineInstr *MI = T2JumpTables[i];
2169    const MCInstrDesc &MCID = MI->getDesc();
2170    unsigned NumOps = MCID.getNumOperands();
2171    unsigned JTOpIdx = NumOps - (MI->isPredicable() ? 2 : 1);
2172    MachineOperand JTOP = MI->getOperand(JTOpIdx);
2173    unsigned JTI = JTOP.getIndex();
2174    assert(JTI < JT.size());
2175
2176    bool ByteOk = true;
2177    bool HalfWordOk = true;
2178    unsigned JTOffset = BBUtils->getOffsetOf(MI) + 4;
2179    const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs;
2180    BBInfoVector &BBInfo = BBUtils->getBBInfo();
2181    for (unsigned j = 0, ee = JTBBs.size(); j != ee; ++j) {
2182      MachineBasicBlock *MBB = JTBBs[j];
2183      unsigned DstOffset = BBInfo[MBB->getNumber()].Offset;
2184      // Negative offset is not ok. FIXME: We should change BB layout to make
2185      // sure all the branches are forward.
2186      if (ByteOk && (DstOffset - JTOffset) > ((1<<8)-1)*2)
2187        ByteOk = false;
2188      unsigned TBHLimit = ((1<<16)-1)*2;
2189      if (HalfWordOk && (DstOffset - JTOffset) > TBHLimit)
2190        HalfWordOk = false;
2191      if (!ByteOk && !HalfWordOk)
2192        break;
2193    }
2194
2195    if (!ByteOk && !HalfWordOk)
2196      continue;
2197
2198    CPUser &User = CPUsers[JumpTableUserIndices[JTI]];
2199    MachineBasicBlock *MBB = MI->getParent();
2200    if (!MI->getOperand(0).isKill()) // FIXME: needed now?
2201      continue;
2202
2203    unsigned DeadSize = 0;
2204    bool CanDeleteLEA = false;
2205    bool BaseRegKill = false;
2206
2207    unsigned IdxReg = ~0U;
2208    bool IdxRegKill = true;
2209    if (isThumb2) {
2210      IdxReg = MI->getOperand(1).getReg();
2211      IdxRegKill = MI->getOperand(1).isKill();
2212
2213      bool PreservedBaseReg =
2214        preserveBaseRegister(MI, User.MI, DeadSize, CanDeleteLEA, BaseRegKill);
2215      if (!jumpTableFollowsTB(MI, User.CPEMI) && !PreservedBaseReg)
2216        continue;
2217    } else {
2218      // We're in thumb-1 mode, so we must have something like:
2219      //   %idx = tLSLri %idx, 2
2220      //   %base = tLEApcrelJT
2221      //   %t = tLDRr %base, %idx
2222      Register BaseReg = User.MI->getOperand(0).getReg();
2223
2224      if (User.MI->getIterator() == User.MI->getParent()->begin())
2225        continue;
2226      MachineInstr *Shift = User.MI->getPrevNode();
2227      if (Shift->getOpcode() != ARM::tLSLri ||
2228          Shift->getOperand(3).getImm() != 2 ||
2229          !Shift->getOperand(2).isKill())
2230        continue;
2231      IdxReg = Shift->getOperand(2).getReg();
2232      Register ShiftedIdxReg = Shift->getOperand(0).getReg();
2233
2234      // It's important that IdxReg is live until the actual TBB/TBH. Most of
2235      // the range is checked later, but the LEA might still clobber it and not
2236      // actually get removed.
2237      if (BaseReg == IdxReg && !jumpTableFollowsTB(MI, User.CPEMI))
2238        continue;
2239
2240      MachineInstr *Load = User.MI->getNextNode();
2241      if (Load->getOpcode() != ARM::tLDRr)
2242        continue;
2243      if (Load->getOperand(1).getReg() != BaseReg ||
2244          Load->getOperand(2).getReg() != ShiftedIdxReg ||
2245          !Load->getOperand(2).isKill())
2246        continue;
2247
2248      // If we're in PIC mode, there should be another ADD following.
2249      auto *TRI = STI->getRegisterInfo();
2250
2251      // %base cannot be redefined after the load as it will appear before
2252      // TBB/TBH like:
2253      //      %base =
2254      //      %base =
2255      //      tBB %base, %idx
2256      if (registerDefinedBetween(BaseReg, Load->getNextNode(), MBB->end(), TRI))
2257        continue;
2258
2259      if (isPositionIndependentOrROPI) {
2260        MachineInstr *Add = Load->getNextNode();
2261        if (Add->getOpcode() != ARM::tADDrr ||
2262            Add->getOperand(2).getReg() != BaseReg ||
2263            Add->getOperand(3).getReg() != Load->getOperand(0).getReg() ||
2264            !Add->getOperand(3).isKill())
2265          continue;
2266        if (Add->getOperand(0).getReg() != MI->getOperand(0).getReg())
2267          continue;
2268        if (registerDefinedBetween(IdxReg, Add->getNextNode(), MI, TRI))
2269          // IdxReg gets redefined in the middle of the sequence.
2270          continue;
2271        Add->eraseFromParent();
2272        DeadSize += 2;
2273      } else {
2274        if (Load->getOperand(0).getReg() != MI->getOperand(0).getReg())
2275          continue;
2276        if (registerDefinedBetween(IdxReg, Load->getNextNode(), MI, TRI))
2277          // IdxReg gets redefined in the middle of the sequence.
2278          continue;
2279      }
2280
2281      // Now safe to delete the load and lsl. The LEA will be removed later.
2282      CanDeleteLEA = true;
2283      Shift->eraseFromParent();
2284      Load->eraseFromParent();
2285      DeadSize += 4;
2286    }
2287
2288    LLVM_DEBUG(dbgs() << "Shrink JT: " << *MI);
2289    MachineInstr *CPEMI = User.CPEMI;
2290    unsigned Opc = ByteOk ? ARM::t2TBB_JT : ARM::t2TBH_JT;
2291    if (!isThumb2)
2292      Opc = ByteOk ? ARM::tTBB_JT : ARM::tTBH_JT;
2293
2294    MachineBasicBlock::iterator MI_JT = MI;
2295    MachineInstr *NewJTMI =
2296        BuildMI(*MBB, MI_JT, MI->getDebugLoc(), TII->get(Opc))
2297            .addReg(User.MI->getOperand(0).getReg(),
2298                    getKillRegState(BaseRegKill))
2299            .addReg(IdxReg, getKillRegState(IdxRegKill))
2300            .addJumpTableIndex(JTI, JTOP.getTargetFlags())
2301            .addImm(CPEMI->getOperand(0).getImm());
2302    LLVM_DEBUG(dbgs() << printMBBReference(*MBB) << ": " << *NewJTMI);
2303
2304    unsigned JTOpc = ByteOk ? ARM::JUMPTABLE_TBB : ARM::JUMPTABLE_TBH;
2305    CPEMI->setDesc(TII->get(JTOpc));
2306
2307    if (jumpTableFollowsTB(MI, User.CPEMI)) {
2308      NewJTMI->getOperand(0).setReg(ARM::PC);
2309      NewJTMI->getOperand(0).setIsKill(false);
2310
2311      if (CanDeleteLEA) {
2312        if (isThumb2)
2313          RemoveDeadAddBetweenLEAAndJT(User.MI, MI, DeadSize);
2314
2315        User.MI->eraseFromParent();
2316        DeadSize += isThumb2 ? 4 : 2;
2317
2318        // The LEA was eliminated, the TBB instruction becomes the only new user
2319        // of the jump table.
2320        User.MI = NewJTMI;
2321        User.MaxDisp = 4;
2322        User.NegOk = false;
2323        User.IsSoImm = false;
2324        User.KnownAlignment = false;
2325      } else {
2326        // The LEA couldn't be eliminated, so we must add another CPUser to
2327        // record the TBB or TBH use.
2328        int CPEntryIdx = JumpTableEntryIndices[JTI];
2329        auto &CPEs = CPEntries[CPEntryIdx];
2330        auto Entry =
2331            find_if(CPEs, [&](CPEntry &E) { return E.CPEMI == User.CPEMI; });
2332        ++Entry->RefCount;
2333        CPUsers.emplace_back(CPUser(NewJTMI, User.CPEMI, 4, false, false));
2334      }
2335    }
2336
2337    unsigned NewSize = TII->getInstSizeInBytes(*NewJTMI);
2338    unsigned OrigSize = TII->getInstSizeInBytes(*MI);
2339    MI->eraseFromParent();
2340
2341    int Delta = OrigSize - NewSize + DeadSize;
2342    BBInfo[MBB->getNumber()].Size -= Delta;
2343    BBUtils->adjustBBOffsetsAfter(MBB);
2344
2345    ++NumTBs;
2346    MadeChange = true;
2347  }
2348
2349  return MadeChange;
2350}
2351
2352/// reorderThumb2JumpTables - Adjust the function's block layout to ensure that
2353/// jump tables always branch forwards, since that's what tbb and tbh need.
2354bool ARMConstantIslands::reorderThumb2JumpTables() {
2355  bool MadeChange = false;
2356
2357  MachineJumpTableInfo *MJTI = MF->getJumpTableInfo();
2358  if (!MJTI) return false;
2359
2360  const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
2361  for (unsigned i = 0, e = T2JumpTables.size(); i != e; ++i) {
2362    MachineInstr *MI = T2JumpTables[i];
2363    const MCInstrDesc &MCID = MI->getDesc();
2364    unsigned NumOps = MCID.getNumOperands();
2365    unsigned JTOpIdx = NumOps - (MI->isPredicable() ? 2 : 1);
2366    MachineOperand JTOP = MI->getOperand(JTOpIdx);
2367    unsigned JTI = JTOP.getIndex();
2368    assert(JTI < JT.size());
2369
2370    // We prefer if target blocks for the jump table come after the jump
2371    // instruction so we can use TB[BH]. Loop through the target blocks
2372    // and try to adjust them such that that's true.
2373    int JTNumber = MI->getParent()->getNumber();
2374    const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs;
2375    for (unsigned j = 0, ee = JTBBs.size(); j != ee; ++j) {
2376      MachineBasicBlock *MBB = JTBBs[j];
2377      int DTNumber = MBB->getNumber();
2378
2379      if (DTNumber < JTNumber) {
2380        // The destination precedes the switch. Try to move the block forward
2381        // so we have a positive offset.
2382        MachineBasicBlock *NewBB =
2383          adjustJTTargetBlockForward(MBB, MI->getParent());
2384        if (NewBB)
2385          MJTI->ReplaceMBBInJumpTable(JTI, JTBBs[j], NewBB);
2386        MadeChange = true;
2387      }
2388    }
2389  }
2390
2391  return MadeChange;
2392}
2393
2394MachineBasicBlock *ARMConstantIslands::
2395adjustJTTargetBlockForward(MachineBasicBlock *BB, MachineBasicBlock *JTBB) {
2396  // If the destination block is terminated by an unconditional branch,
2397  // try to move it; otherwise, create a new block following the jump
2398  // table that branches back to the actual target. This is a very simple
2399  // heuristic. FIXME: We can definitely improve it.
2400  MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
2401  SmallVector<MachineOperand, 4> Cond;
2402  SmallVector<MachineOperand, 4> CondPrior;
2403  MachineFunction::iterator BBi = BB->getIterator();
2404  MachineFunction::iterator OldPrior = std::prev(BBi);
2405
2406  // If the block terminator isn't analyzable, don't try to move the block
2407  bool B = TII->analyzeBranch(*BB, TBB, FBB, Cond);
2408
2409  // If the block ends in an unconditional branch, move it. The prior block
2410  // has to have an analyzable terminator for us to move this one. Be paranoid
2411  // and make sure we're not trying to move the entry block of the function.
2412  if (!B && Cond.empty() && BB != &MF->front() &&
2413      !TII->analyzeBranch(*OldPrior, TBB, FBB, CondPrior)) {
2414    BB->moveAfter(JTBB);
2415    OldPrior->updateTerminator();
2416    BB->updateTerminator();
2417    // Update numbering to account for the block being moved.
2418    MF->RenumberBlocks();
2419    ++NumJTMoved;
2420    return nullptr;
2421  }
2422
2423  // Create a new MBB for the code after the jump BB.
2424  MachineBasicBlock *NewBB =
2425    MF->CreateMachineBasicBlock(JTBB->getBasicBlock());
2426  MachineFunction::iterator MBBI = ++JTBB->getIterator();
2427  MF->insert(MBBI, NewBB);
2428
2429  // Copy live-in information to new block.
2430  for (const MachineBasicBlock::RegisterMaskPair &RegMaskPair : BB->liveins())
2431    NewBB->addLiveIn(RegMaskPair);
2432
2433  // Add an unconditional branch from NewBB to BB.
2434  // There doesn't seem to be meaningful DebugInfo available; this doesn't
2435  // correspond directly to anything in the source.
2436  if (isThumb2)
2437    BuildMI(NewBB, DebugLoc(), TII->get(ARM::t2B))
2438        .addMBB(BB)
2439        .add(predOps(ARMCC::AL));
2440  else
2441    BuildMI(NewBB, DebugLoc(), TII->get(ARM::tB))
2442        .addMBB(BB)
2443        .add(predOps(ARMCC::AL));
2444
2445  // Update internal data structures to account for the newly inserted MBB.
2446  MF->RenumberBlocks(NewBB);
2447
2448  // Update the CFG.
2449  NewBB->addSuccessor(BB);
2450  JTBB->replaceSuccessor(BB, NewBB);
2451
2452  ++NumJTInserted;
2453  return NewBB;
2454}
2455
2456/// createARMConstantIslandPass - returns an instance of the constpool
2457/// island pass.
2458FunctionPass *llvm::createARMConstantIslandPass() {
2459  return new ARMConstantIslands();
2460}
2461
2462INITIALIZE_PASS(ARMConstantIslands, "arm-cp-islands", ARM_CP_ISLANDS_OPT_NAME,
2463                false, false)
2464