R600Packetizer.cpp revision 360784
1//===----- R600Packetizer.cpp - VLIW packetizer ---------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9/// \file
10/// This pass implements instructions packetization for R600. It unsets isLast
11/// bit of instructions inside a bundle and substitutes src register with
12/// PreviousVector when applicable.
13//
14//===----------------------------------------------------------------------===//
15
16#include "AMDGPU.h"
17#include "AMDGPUSubtarget.h"
18#include "R600InstrInfo.h"
19#include "MCTargetDesc/AMDGPUMCTargetDesc.h"
20#include "llvm/CodeGen/DFAPacketizer.h"
21#include "llvm/CodeGen/MachineDominators.h"
22#include "llvm/CodeGen/MachineFunctionPass.h"
23#include "llvm/CodeGen/MachineLoopInfo.h"
24#include "llvm/CodeGen/Passes.h"
25#include "llvm/CodeGen/ScheduleDAG.h"
26#include "llvm/Support/Debug.h"
27#include "llvm/Support/raw_ostream.h"
28
29using namespace llvm;
30
31#define DEBUG_TYPE "packets"
32
33namespace {
34
35class R600Packetizer : public MachineFunctionPass {
36
37public:
38  static char ID;
39  R600Packetizer() : MachineFunctionPass(ID) {}
40
41  void getAnalysisUsage(AnalysisUsage &AU) const override {
42    AU.setPreservesCFG();
43    AU.addRequired<MachineDominatorTree>();
44    AU.addPreserved<MachineDominatorTree>();
45    AU.addRequired<MachineLoopInfo>();
46    AU.addPreserved<MachineLoopInfo>();
47    MachineFunctionPass::getAnalysisUsage(AU);
48  }
49
50  StringRef getPassName() const override { return "R600 Packetizer"; }
51
52  bool runOnMachineFunction(MachineFunction &Fn) override;
53};
54
55class R600PacketizerList : public VLIWPacketizerList {
56private:
57  const R600InstrInfo *TII;
58  const R600RegisterInfo &TRI;
59  bool VLIW5;
60  bool ConsideredInstUsesAlreadyWrittenVectorElement;
61
62  unsigned getSlot(const MachineInstr &MI) const {
63    return TRI.getHWRegChan(MI.getOperand(0).getReg());
64  }
65
66  /// \returns register to PV chan mapping for bundle/single instructions that
67  /// immediately precedes I.
68  DenseMap<unsigned, unsigned> getPreviousVector(MachineBasicBlock::iterator I)
69      const {
70    DenseMap<unsigned, unsigned> Result;
71    I--;
72    if (!TII->isALUInstr(I->getOpcode()) && !I->isBundle())
73      return Result;
74    MachineBasicBlock::instr_iterator BI = I.getInstrIterator();
75    if (I->isBundle())
76      BI++;
77    int LastDstChan = -1;
78    do {
79      bool isTrans = false;
80      int BISlot = getSlot(*BI);
81      if (LastDstChan >= BISlot)
82        isTrans = true;
83      LastDstChan = BISlot;
84      if (TII->isPredicated(*BI))
85        continue;
86      int OperandIdx = TII->getOperandIdx(BI->getOpcode(), R600::OpName::write);
87      if (OperandIdx > -1 && BI->getOperand(OperandIdx).getImm() == 0)
88        continue;
89      int DstIdx = TII->getOperandIdx(BI->getOpcode(), R600::OpName::dst);
90      if (DstIdx == -1) {
91        continue;
92      }
93      Register Dst = BI->getOperand(DstIdx).getReg();
94      if (isTrans || TII->isTransOnly(*BI)) {
95        Result[Dst] = R600::PS;
96        continue;
97      }
98      if (BI->getOpcode() == R600::DOT4_r600 ||
99          BI->getOpcode() == R600::DOT4_eg) {
100        Result[Dst] = R600::PV_X;
101        continue;
102      }
103      if (Dst == R600::OQAP) {
104        continue;
105      }
106      unsigned PVReg = 0;
107      switch (TRI.getHWRegChan(Dst)) {
108      case 0:
109        PVReg = R600::PV_X;
110        break;
111      case 1:
112        PVReg = R600::PV_Y;
113        break;
114      case 2:
115        PVReg = R600::PV_Z;
116        break;
117      case 3:
118        PVReg = R600::PV_W;
119        break;
120      default:
121        llvm_unreachable("Invalid Chan");
122      }
123      Result[Dst] = PVReg;
124    } while ((++BI)->isBundledWithPred());
125    return Result;
126  }
127
128  void substitutePV(MachineInstr &MI, const DenseMap<unsigned, unsigned> &PVs)
129      const {
130    unsigned Ops[] = {
131      R600::OpName::src0,
132      R600::OpName::src1,
133      R600::OpName::src2
134    };
135    for (unsigned i = 0; i < 3; i++) {
136      int OperandIdx = TII->getOperandIdx(MI.getOpcode(), Ops[i]);
137      if (OperandIdx < 0)
138        continue;
139      Register Src = MI.getOperand(OperandIdx).getReg();
140      const DenseMap<unsigned, unsigned>::const_iterator It = PVs.find(Src);
141      if (It != PVs.end())
142        MI.getOperand(OperandIdx).setReg(It->second);
143    }
144  }
145public:
146  // Ctor.
147  R600PacketizerList(MachineFunction &MF, const R600Subtarget &ST,
148                     MachineLoopInfo &MLI)
149      : VLIWPacketizerList(MF, MLI, nullptr),
150        TII(ST.getInstrInfo()),
151        TRI(TII->getRegisterInfo()) {
152    VLIW5 = !ST.hasCaymanISA();
153  }
154
155  // initPacketizerState - initialize some internal flags.
156  void initPacketizerState() override {
157    ConsideredInstUsesAlreadyWrittenVectorElement = false;
158  }
159
160  // ignorePseudoInstruction - Ignore bundling of pseudo instructions.
161  bool ignorePseudoInstruction(const MachineInstr &MI,
162                               const MachineBasicBlock *MBB) override {
163    return false;
164  }
165
166  // isSoloInstruction - return true if instruction MI can not be packetized
167  // with any other instruction, which means that MI itself is a packet.
168  bool isSoloInstruction(const MachineInstr &MI) override {
169    if (TII->isVector(MI))
170      return true;
171    if (!TII->isALUInstr(MI.getOpcode()))
172      return true;
173    if (MI.getOpcode() == R600::GROUP_BARRIER)
174      return true;
175    // XXX: This can be removed once the packetizer properly handles all the
176    // LDS instruction group restrictions.
177    return TII->isLDSInstr(MI.getOpcode());
178  }
179
180  // isLegalToPacketizeTogether - Is it legal to packetize SUI and SUJ
181  // together.
182  bool isLegalToPacketizeTogether(SUnit *SUI, SUnit *SUJ) override {
183    MachineInstr *MII = SUI->getInstr(), *MIJ = SUJ->getInstr();
184    if (getSlot(*MII) == getSlot(*MIJ))
185      ConsideredInstUsesAlreadyWrittenVectorElement = true;
186    // Does MII and MIJ share the same pred_sel ?
187    int OpI = TII->getOperandIdx(MII->getOpcode(), R600::OpName::pred_sel),
188        OpJ = TII->getOperandIdx(MIJ->getOpcode(), R600::OpName::pred_sel);
189    Register PredI = (OpI > -1)?MII->getOperand(OpI).getReg() : Register(),
190      PredJ = (OpJ > -1)?MIJ->getOperand(OpJ).getReg() : Register();
191    if (PredI != PredJ)
192      return false;
193    if (SUJ->isSucc(SUI)) {
194      for (unsigned i = 0, e = SUJ->Succs.size(); i < e; ++i) {
195        const SDep &Dep = SUJ->Succs[i];
196        if (Dep.getSUnit() != SUI)
197          continue;
198        if (Dep.getKind() == SDep::Anti)
199          continue;
200        if (Dep.getKind() == SDep::Output)
201          if (MII->getOperand(0).getReg() != MIJ->getOperand(0).getReg())
202            continue;
203        return false;
204      }
205    }
206
207    bool ARDef =
208        TII->definesAddressRegister(*MII) || TII->definesAddressRegister(*MIJ);
209    bool ARUse =
210        TII->usesAddressRegister(*MII) || TII->usesAddressRegister(*MIJ);
211
212    return !ARDef || !ARUse;
213  }
214
215  // isLegalToPruneDependencies - Is it legal to prune dependece between SUI
216  // and SUJ.
217  bool isLegalToPruneDependencies(SUnit *SUI, SUnit *SUJ) override {
218    return false;
219  }
220
221  void setIsLastBit(MachineInstr *MI, unsigned Bit) const {
222    unsigned LastOp = TII->getOperandIdx(MI->getOpcode(), R600::OpName::last);
223    MI->getOperand(LastOp).setImm(Bit);
224  }
225
226  bool isBundlableWithCurrentPMI(MachineInstr &MI,
227                                 const DenseMap<unsigned, unsigned> &PV,
228                                 std::vector<R600InstrInfo::BankSwizzle> &BS,
229                                 bool &isTransSlot) {
230    isTransSlot = TII->isTransOnly(MI);
231    assert (!isTransSlot || VLIW5);
232
233    // Is the dst reg sequence legal ?
234    if (!isTransSlot && !CurrentPacketMIs.empty()) {
235      if (getSlot(MI) <= getSlot(*CurrentPacketMIs.back())) {
236        if (ConsideredInstUsesAlreadyWrittenVectorElement &&
237            !TII->isVectorOnly(MI) && VLIW5) {
238          isTransSlot = true;
239          LLVM_DEBUG({
240            dbgs() << "Considering as Trans Inst :";
241            MI.dump();
242          });
243        }
244        else
245          return false;
246      }
247    }
248
249    // Are the Constants limitations met ?
250    CurrentPacketMIs.push_back(&MI);
251    if (!TII->fitsConstReadLimitations(CurrentPacketMIs)) {
252      LLVM_DEBUG({
253        dbgs() << "Couldn't pack :\n";
254        MI.dump();
255        dbgs() << "with the following packets :\n";
256        for (unsigned i = 0, e = CurrentPacketMIs.size() - 1; i < e; i++) {
257          CurrentPacketMIs[i]->dump();
258          dbgs() << "\n";
259        }
260        dbgs() << "because of Consts read limitations\n";
261      });
262      CurrentPacketMIs.pop_back();
263      return false;
264    }
265
266    // Is there a BankSwizzle set that meet Read Port limitations ?
267    if (!TII->fitsReadPortLimitations(CurrentPacketMIs,
268            PV, BS, isTransSlot)) {
269      LLVM_DEBUG({
270        dbgs() << "Couldn't pack :\n";
271        MI.dump();
272        dbgs() << "with the following packets :\n";
273        for (unsigned i = 0, e = CurrentPacketMIs.size() - 1; i < e; i++) {
274          CurrentPacketMIs[i]->dump();
275          dbgs() << "\n";
276        }
277        dbgs() << "because of Read port limitations\n";
278      });
279      CurrentPacketMIs.pop_back();
280      return false;
281    }
282
283    // We cannot read LDS source registers from the Trans slot.
284    if (isTransSlot && TII->readsLDSSrcReg(MI))
285      return false;
286
287    CurrentPacketMIs.pop_back();
288    return true;
289  }
290
291  MachineBasicBlock::iterator addToPacket(MachineInstr &MI) override {
292    MachineBasicBlock::iterator FirstInBundle =
293        CurrentPacketMIs.empty() ? &MI : CurrentPacketMIs.front();
294    const DenseMap<unsigned, unsigned> &PV =
295        getPreviousVector(FirstInBundle);
296    std::vector<R600InstrInfo::BankSwizzle> BS;
297    bool isTransSlot;
298
299    if (isBundlableWithCurrentPMI(MI, PV, BS, isTransSlot)) {
300      for (unsigned i = 0, e = CurrentPacketMIs.size(); i < e; i++) {
301        MachineInstr *MI = CurrentPacketMIs[i];
302        unsigned Op = TII->getOperandIdx(MI->getOpcode(),
303            R600::OpName::bank_swizzle);
304        MI->getOperand(Op).setImm(BS[i]);
305      }
306      unsigned Op =
307          TII->getOperandIdx(MI.getOpcode(), R600::OpName::bank_swizzle);
308      MI.getOperand(Op).setImm(BS.back());
309      if (!CurrentPacketMIs.empty())
310        setIsLastBit(CurrentPacketMIs.back(), 0);
311      substitutePV(MI, PV);
312      MachineBasicBlock::iterator It = VLIWPacketizerList::addToPacket(MI);
313      if (isTransSlot) {
314        endPacket(std::next(It)->getParent(), std::next(It));
315      }
316      return It;
317    }
318    endPacket(MI.getParent(), MI);
319    if (TII->isTransOnly(MI))
320      return MI;
321    return VLIWPacketizerList::addToPacket(MI);
322  }
323};
324
325bool R600Packetizer::runOnMachineFunction(MachineFunction &Fn) {
326  const R600Subtarget &ST = Fn.getSubtarget<R600Subtarget>();
327  const R600InstrInfo *TII = ST.getInstrInfo();
328
329  MachineLoopInfo &MLI = getAnalysis<MachineLoopInfo>();
330
331  // Instantiate the packetizer.
332  R600PacketizerList Packetizer(Fn, ST, MLI);
333
334  // DFA state table should not be empty.
335  assert(Packetizer.getResourceTracker() && "Empty DFA table!");
336  assert(Packetizer.getResourceTracker()->getInstrItins());
337
338  if (Packetizer.getResourceTracker()->getInstrItins()->isEmpty())
339    return false;
340
341  //
342  // Loop over all basic blocks and remove KILL pseudo-instructions
343  // These instructions confuse the dependence analysis. Consider:
344  // D0 = ...   (Insn 0)
345  // R0 = KILL R0, D0 (Insn 1)
346  // R0 = ... (Insn 2)
347  // Here, Insn 1 will result in the dependence graph not emitting an output
348  // dependence between Insn 0 and Insn 2. This can lead to incorrect
349  // packetization
350  //
351  for (MachineFunction::iterator MBB = Fn.begin(), MBBe = Fn.end();
352       MBB != MBBe; ++MBB) {
353    MachineBasicBlock::iterator End = MBB->end();
354    MachineBasicBlock::iterator MI = MBB->begin();
355    while (MI != End) {
356      if (MI->isKill() || MI->getOpcode() == R600::IMPLICIT_DEF ||
357          (MI->getOpcode() == R600::CF_ALU && !MI->getOperand(8).getImm())) {
358        MachineBasicBlock::iterator DeleteMI = MI;
359        ++MI;
360        MBB->erase(DeleteMI);
361        End = MBB->end();
362        continue;
363      }
364      ++MI;
365    }
366  }
367
368  // Loop over all of the basic blocks.
369  for (MachineFunction::iterator MBB = Fn.begin(), MBBe = Fn.end();
370       MBB != MBBe; ++MBB) {
371    // Find scheduling regions and schedule / packetize each region.
372    unsigned RemainingCount = MBB->size();
373    for(MachineBasicBlock::iterator RegionEnd = MBB->end();
374        RegionEnd != MBB->begin();) {
375      // The next region starts above the previous region. Look backward in the
376      // instruction stream until we find the nearest boundary.
377      MachineBasicBlock::iterator I = RegionEnd;
378      for(;I != MBB->begin(); --I, --RemainingCount) {
379        if (TII->isSchedulingBoundary(*std::prev(I), &*MBB, Fn))
380          break;
381      }
382      I = MBB->begin();
383
384      // Skip empty scheduling regions.
385      if (I == RegionEnd) {
386        RegionEnd = std::prev(RegionEnd);
387        --RemainingCount;
388        continue;
389      }
390      // Skip regions with one instruction.
391      if (I == std::prev(RegionEnd)) {
392        RegionEnd = std::prev(RegionEnd);
393        continue;
394      }
395
396      Packetizer.PacketizeMIs(&*MBB, &*I, RegionEnd);
397      RegionEnd = I;
398    }
399  }
400
401  return true;
402
403}
404
405} // end anonymous namespace
406
407INITIALIZE_PASS_BEGIN(R600Packetizer, DEBUG_TYPE,
408                     "R600 Packetizer", false, false)
409INITIALIZE_PASS_END(R600Packetizer, DEBUG_TYPE,
410                    "R600 Packetizer", false, false)
411
412char R600Packetizer::ID = 0;
413
414char &llvm::R600PacketizerID = R600Packetizer::ID;
415
416llvm::FunctionPass *llvm::createR600Packetizer() {
417  return new R600Packetizer();
418}
419