AMDGPURewriteOutArguments.cpp revision 360784
1//===- AMDGPURewriteOutArgumentsPass.cpp - Create struct returns ----------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9/// \file This pass attempts to replace out argument usage with a return of a
10/// struct.
11///
12/// We can support returning a lot of values directly in registers, but
13/// idiomatic C code frequently uses a pointer argument to return a second value
14/// rather than returning a struct by value. GPU stack access is also quite
15/// painful, so we want to avoid that if possible. Passing a stack object
16/// pointer to a function also requires an additional address expansion code
17/// sequence to convert the pointer to be relative to the kernel's scratch wave
18/// offset register since the callee doesn't know what stack frame the incoming
19/// pointer is relative to.
20///
21/// The goal is to try rewriting code that looks like this:
22///
23///  int foo(int a, int b, int* out) {
24///     *out = bar();
25///     return a + b;
26/// }
27///
28/// into something like this:
29///
30///  std::pair<int, int> foo(int a, int b) {
31///     return std::make_pair(a + b, bar());
32/// }
33///
34/// Typically the incoming pointer is a simple alloca for a temporary variable
35/// to use the API, which if replaced with a struct return will be easily SROA'd
36/// out when the stub function we create is inlined
37///
38/// This pass introduces the struct return, but leaves the unused pointer
39/// arguments and introduces a new stub function calling the struct returning
40/// body. DeadArgumentElimination should be run after this to clean these up.
41//
42//===----------------------------------------------------------------------===//
43
44#include "AMDGPU.h"
45#include "Utils/AMDGPUBaseInfo.h"
46#include "llvm/ADT/DenseMap.h"
47#include "llvm/ADT/STLExtras.h"
48#include "llvm/ADT/SmallSet.h"
49#include "llvm/ADT/SmallVector.h"
50#include "llvm/ADT/Statistic.h"
51#include "llvm/Analysis/MemoryDependenceAnalysis.h"
52#include "llvm/Analysis/MemoryLocation.h"
53#include "llvm/IR/Argument.h"
54#include "llvm/IR/Attributes.h"
55#include "llvm/IR/BasicBlock.h"
56#include "llvm/IR/Constants.h"
57#include "llvm/IR/DataLayout.h"
58#include "llvm/IR/DerivedTypes.h"
59#include "llvm/IR/Function.h"
60#include "llvm/IR/IRBuilder.h"
61#include "llvm/IR/Instructions.h"
62#include "llvm/IR/Module.h"
63#include "llvm/IR/Type.h"
64#include "llvm/IR/Use.h"
65#include "llvm/IR/User.h"
66#include "llvm/IR/Value.h"
67#include "llvm/InitializePasses.h"
68#include "llvm/Pass.h"
69#include "llvm/Support/Casting.h"
70#include "llvm/Support/CommandLine.h"
71#include "llvm/Support/Debug.h"
72#include "llvm/Support/raw_ostream.h"
73#include <cassert>
74#include <utility>
75
76#define DEBUG_TYPE "amdgpu-rewrite-out-arguments"
77
78using namespace llvm;
79
80static cl::opt<bool> AnyAddressSpace(
81  "amdgpu-any-address-space-out-arguments",
82  cl::desc("Replace pointer out arguments with "
83           "struct returns for non-private address space"),
84  cl::Hidden,
85  cl::init(false));
86
87static cl::opt<unsigned> MaxNumRetRegs(
88  "amdgpu-max-return-arg-num-regs",
89  cl::desc("Approximately limit number of return registers for replacing out arguments"),
90  cl::Hidden,
91  cl::init(16));
92
93STATISTIC(NumOutArgumentsReplaced,
94          "Number out arguments moved to struct return values");
95STATISTIC(NumOutArgumentFunctionsReplaced,
96          "Number of functions with out arguments moved to struct return values");
97
98namespace {
99
100class AMDGPURewriteOutArguments : public FunctionPass {
101private:
102  const DataLayout *DL = nullptr;
103  MemoryDependenceResults *MDA = nullptr;
104
105  bool checkArgumentUses(Value &Arg) const;
106  bool isOutArgumentCandidate(Argument &Arg) const;
107
108#ifndef NDEBUG
109  bool isVec3ToVec4Shuffle(Type *Ty0, Type* Ty1) const;
110#endif
111
112public:
113  static char ID;
114
115  AMDGPURewriteOutArguments() : FunctionPass(ID) {}
116
117  void getAnalysisUsage(AnalysisUsage &AU) const override {
118    AU.addRequired<MemoryDependenceWrapperPass>();
119    FunctionPass::getAnalysisUsage(AU);
120  }
121
122  bool doInitialization(Module &M) override;
123  bool runOnFunction(Function &F) override;
124};
125
126} // end anonymous namespace
127
128INITIALIZE_PASS_BEGIN(AMDGPURewriteOutArguments, DEBUG_TYPE,
129                      "AMDGPU Rewrite Out Arguments", false, false)
130INITIALIZE_PASS_DEPENDENCY(MemoryDependenceWrapperPass)
131INITIALIZE_PASS_END(AMDGPURewriteOutArguments, DEBUG_TYPE,
132                    "AMDGPU Rewrite Out Arguments", false, false)
133
134char AMDGPURewriteOutArguments::ID = 0;
135
136bool AMDGPURewriteOutArguments::checkArgumentUses(Value &Arg) const {
137  const int MaxUses = 10;
138  int UseCount = 0;
139
140  for (Use &U : Arg.uses()) {
141    StoreInst *SI = dyn_cast<StoreInst>(U.getUser());
142    if (UseCount > MaxUses)
143      return false;
144
145    if (!SI) {
146      auto *BCI = dyn_cast<BitCastInst>(U.getUser());
147      if (!BCI || !BCI->hasOneUse())
148        return false;
149
150      // We don't handle multiple stores currently, so stores to aggregate
151      // pointers aren't worth the trouble since they are canonically split up.
152      Type *DestEltTy = BCI->getType()->getPointerElementType();
153      if (DestEltTy->isAggregateType())
154        return false;
155
156      // We could handle these if we had a convenient way to bitcast between
157      // them.
158      Type *SrcEltTy = Arg.getType()->getPointerElementType();
159      if (SrcEltTy->isArrayTy())
160        return false;
161
162      // Special case handle structs with single members. It is useful to handle
163      // some casts between structs and non-structs, but we can't bitcast
164      // directly between them.  directly bitcast between them.  Blender uses
165      // some casts that look like { <3 x float> }* to <4 x float>*
166      if ((SrcEltTy->isStructTy() && (SrcEltTy->getStructNumElements() != 1)))
167        return false;
168
169      // Clang emits OpenCL 3-vector type accesses with a bitcast to the
170      // equivalent 4-element vector and accesses that, and we're looking for
171      // this pointer cast.
172      if (DL->getTypeAllocSize(SrcEltTy) != DL->getTypeAllocSize(DestEltTy))
173        return false;
174
175      return checkArgumentUses(*BCI);
176    }
177
178    if (!SI->isSimple() ||
179        U.getOperandNo() != StoreInst::getPointerOperandIndex())
180      return false;
181
182    ++UseCount;
183  }
184
185  // Skip unused arguments.
186  return UseCount > 0;
187}
188
189bool AMDGPURewriteOutArguments::isOutArgumentCandidate(Argument &Arg) const {
190  const unsigned MaxOutArgSizeBytes = 4 * MaxNumRetRegs;
191  PointerType *ArgTy = dyn_cast<PointerType>(Arg.getType());
192
193  // TODO: It might be useful for any out arguments, not just privates.
194  if (!ArgTy || (ArgTy->getAddressSpace() != DL->getAllocaAddrSpace() &&
195                 !AnyAddressSpace) ||
196      Arg.hasByValAttr() || Arg.hasStructRetAttr() ||
197      DL->getTypeStoreSize(ArgTy->getPointerElementType()) > MaxOutArgSizeBytes) {
198    return false;
199  }
200
201  return checkArgumentUses(Arg);
202}
203
204bool AMDGPURewriteOutArguments::doInitialization(Module &M) {
205  DL = &M.getDataLayout();
206  return false;
207}
208
209#ifndef NDEBUG
210bool AMDGPURewriteOutArguments::isVec3ToVec4Shuffle(Type *Ty0, Type* Ty1) const {
211  VectorType *VT0 = dyn_cast<VectorType>(Ty0);
212  VectorType *VT1 = dyn_cast<VectorType>(Ty1);
213  if (!VT0 || !VT1)
214    return false;
215
216  if (VT0->getNumElements() != 3 ||
217      VT1->getNumElements() != 4)
218    return false;
219
220  return DL->getTypeSizeInBits(VT0->getElementType()) ==
221         DL->getTypeSizeInBits(VT1->getElementType());
222}
223#endif
224
225bool AMDGPURewriteOutArguments::runOnFunction(Function &F) {
226  if (skipFunction(F))
227    return false;
228
229  // TODO: Could probably handle variadic functions.
230  if (F.isVarArg() || F.hasStructRetAttr() ||
231      AMDGPU::isEntryFunctionCC(F.getCallingConv()))
232    return false;
233
234  MDA = &getAnalysis<MemoryDependenceWrapperPass>().getMemDep();
235
236  unsigned ReturnNumRegs = 0;
237  SmallSet<int, 4> OutArgIndexes;
238  SmallVector<Type *, 4> ReturnTypes;
239  Type *RetTy = F.getReturnType();
240  if (!RetTy->isVoidTy()) {
241    ReturnNumRegs = DL->getTypeStoreSize(RetTy) / 4;
242
243    if (ReturnNumRegs >= MaxNumRetRegs)
244      return false;
245
246    ReturnTypes.push_back(RetTy);
247  }
248
249  SmallVector<Argument *, 4> OutArgs;
250  for (Argument &Arg : F.args()) {
251    if (isOutArgumentCandidate(Arg)) {
252      LLVM_DEBUG(dbgs() << "Found possible out argument " << Arg
253                        << " in function " << F.getName() << '\n');
254      OutArgs.push_back(&Arg);
255    }
256  }
257
258  if (OutArgs.empty())
259    return false;
260
261  using ReplacementVec = SmallVector<std::pair<Argument *, Value *>, 4>;
262
263  DenseMap<ReturnInst *, ReplacementVec> Replacements;
264
265  SmallVector<ReturnInst *, 4> Returns;
266  for (BasicBlock &BB : F) {
267    if (ReturnInst *RI = dyn_cast<ReturnInst>(&BB.back()))
268      Returns.push_back(RI);
269  }
270
271  if (Returns.empty())
272    return false;
273
274  bool Changing;
275
276  do {
277    Changing = false;
278
279    // Keep retrying if we are able to successfully eliminate an argument. This
280    // helps with cases with multiple arguments which may alias, such as in a
281    // sincos implemntation. If we have 2 stores to arguments, on the first
282    // attempt the MDA query will succeed for the second store but not the
283    // first. On the second iteration we've removed that out clobbering argument
284    // (by effectively moving it into another function) and will find the second
285    // argument is OK to move.
286    for (Argument *OutArg : OutArgs) {
287      bool ThisReplaceable = true;
288      SmallVector<std::pair<ReturnInst *, StoreInst *>, 4> ReplaceableStores;
289
290      Type *ArgTy = OutArg->getType()->getPointerElementType();
291
292      // Skip this argument if converting it will push us over the register
293      // count to return limit.
294
295      // TODO: This is an approximation. When legalized this could be more. We
296      // can ask TLI for exactly how many.
297      unsigned ArgNumRegs = DL->getTypeStoreSize(ArgTy) / 4;
298      if (ArgNumRegs + ReturnNumRegs > MaxNumRetRegs)
299        continue;
300
301      // An argument is convertible only if all exit blocks are able to replace
302      // it.
303      for (ReturnInst *RI : Returns) {
304        BasicBlock *BB = RI->getParent();
305
306        MemDepResult Q = MDA->getPointerDependencyFrom(MemoryLocation(OutArg),
307                                                       true, BB->end(), BB, RI);
308        StoreInst *SI = nullptr;
309        if (Q.isDef())
310          SI = dyn_cast<StoreInst>(Q.getInst());
311
312        if (SI) {
313          LLVM_DEBUG(dbgs() << "Found out argument store: " << *SI << '\n');
314          ReplaceableStores.emplace_back(RI, SI);
315        } else {
316          ThisReplaceable = false;
317          break;
318        }
319      }
320
321      if (!ThisReplaceable)
322        continue; // Try the next argument candidate.
323
324      for (std::pair<ReturnInst *, StoreInst *> Store : ReplaceableStores) {
325        Value *ReplVal = Store.second->getValueOperand();
326
327        auto &ValVec = Replacements[Store.first];
328        if (llvm::find_if(ValVec,
329              [OutArg](const std::pair<Argument *, Value *> &Entry) {
330                 return Entry.first == OutArg;}) != ValVec.end()) {
331          LLVM_DEBUG(dbgs()
332                     << "Saw multiple out arg stores" << *OutArg << '\n');
333          // It is possible to see stores to the same argument multiple times,
334          // but we expect these would have been optimized out already.
335          ThisReplaceable = false;
336          break;
337        }
338
339        ValVec.emplace_back(OutArg, ReplVal);
340        Store.second->eraseFromParent();
341      }
342
343      if (ThisReplaceable) {
344        ReturnTypes.push_back(ArgTy);
345        OutArgIndexes.insert(OutArg->getArgNo());
346        ++NumOutArgumentsReplaced;
347        Changing = true;
348      }
349    }
350  } while (Changing);
351
352  if (Replacements.empty())
353    return false;
354
355  LLVMContext &Ctx = F.getParent()->getContext();
356  StructType *NewRetTy = StructType::create(Ctx, ReturnTypes, F.getName());
357
358  FunctionType *NewFuncTy = FunctionType::get(NewRetTy,
359                                              F.getFunctionType()->params(),
360                                              F.isVarArg());
361
362  LLVM_DEBUG(dbgs() << "Computed new return type: " << *NewRetTy << '\n');
363
364  Function *NewFunc = Function::Create(NewFuncTy, Function::PrivateLinkage,
365                                       F.getName() + ".body");
366  F.getParent()->getFunctionList().insert(F.getIterator(), NewFunc);
367  NewFunc->copyAttributesFrom(&F);
368  NewFunc->setComdat(F.getComdat());
369
370  // We want to preserve the function and param attributes, but need to strip
371  // off any return attributes, e.g. zeroext doesn't make sense with a struct.
372  NewFunc->stealArgumentListFrom(F);
373
374  AttrBuilder RetAttrs;
375  RetAttrs.addAttribute(Attribute::SExt);
376  RetAttrs.addAttribute(Attribute::ZExt);
377  RetAttrs.addAttribute(Attribute::NoAlias);
378  NewFunc->removeAttributes(AttributeList::ReturnIndex, RetAttrs);
379  // TODO: How to preserve metadata?
380
381  // Move the body of the function into the new rewritten function, and replace
382  // this function with a stub.
383  NewFunc->getBasicBlockList().splice(NewFunc->begin(), F.getBasicBlockList());
384
385  for (std::pair<ReturnInst *, ReplacementVec> &Replacement : Replacements) {
386    ReturnInst *RI = Replacement.first;
387    IRBuilder<> B(RI);
388    B.SetCurrentDebugLocation(RI->getDebugLoc());
389
390    int RetIdx = 0;
391    Value *NewRetVal = UndefValue::get(NewRetTy);
392
393    Value *RetVal = RI->getReturnValue();
394    if (RetVal)
395      NewRetVal = B.CreateInsertValue(NewRetVal, RetVal, RetIdx++);
396
397    for (std::pair<Argument *, Value *> ReturnPoint : Replacement.second) {
398      Argument *Arg = ReturnPoint.first;
399      Value *Val = ReturnPoint.second;
400      Type *EltTy = Arg->getType()->getPointerElementType();
401      if (Val->getType() != EltTy) {
402        Type *EffectiveEltTy = EltTy;
403        if (StructType *CT = dyn_cast<StructType>(EltTy)) {
404          assert(CT->getNumElements() == 1);
405          EffectiveEltTy = CT->getElementType(0);
406        }
407
408        if (DL->getTypeSizeInBits(EffectiveEltTy) !=
409            DL->getTypeSizeInBits(Val->getType())) {
410          assert(isVec3ToVec4Shuffle(EffectiveEltTy, Val->getType()));
411          Val = B.CreateShuffleVector(Val, UndefValue::get(Val->getType()),
412                                      { 0, 1, 2 });
413        }
414
415        Val = B.CreateBitCast(Val, EffectiveEltTy);
416
417        // Re-create single element composite.
418        if (EltTy != EffectiveEltTy)
419          Val = B.CreateInsertValue(UndefValue::get(EltTy), Val, 0);
420      }
421
422      NewRetVal = B.CreateInsertValue(NewRetVal, Val, RetIdx++);
423    }
424
425    if (RetVal)
426      RI->setOperand(0, NewRetVal);
427    else {
428      B.CreateRet(NewRetVal);
429      RI->eraseFromParent();
430    }
431  }
432
433  SmallVector<Value *, 16> StubCallArgs;
434  for (Argument &Arg : F.args()) {
435    if (OutArgIndexes.count(Arg.getArgNo())) {
436      // It's easier to preserve the type of the argument list. We rely on
437      // DeadArgumentElimination to take care of these.
438      StubCallArgs.push_back(UndefValue::get(Arg.getType()));
439    } else {
440      StubCallArgs.push_back(&Arg);
441    }
442  }
443
444  BasicBlock *StubBB = BasicBlock::Create(Ctx, "", &F);
445  IRBuilder<> B(StubBB);
446  CallInst *StubCall = B.CreateCall(NewFunc, StubCallArgs);
447
448  int RetIdx = RetTy->isVoidTy() ? 0 : 1;
449  for (Argument &Arg : F.args()) {
450    if (!OutArgIndexes.count(Arg.getArgNo()))
451      continue;
452
453    PointerType *ArgType = cast<PointerType>(Arg.getType());
454
455    auto *EltTy = ArgType->getElementType();
456    unsigned Align = Arg.getParamAlignment();
457    if (Align == 0)
458      Align = DL->getABITypeAlignment(EltTy);
459
460    Value *Val = B.CreateExtractValue(StubCall, RetIdx++);
461    Type *PtrTy = Val->getType()->getPointerTo(ArgType->getAddressSpace());
462
463    // We can peek through bitcasts, so the type may not match.
464    Value *PtrVal = B.CreateBitCast(&Arg, PtrTy);
465
466    B.CreateAlignedStore(Val, PtrVal, Align);
467  }
468
469  if (!RetTy->isVoidTy()) {
470    B.CreateRet(B.CreateExtractValue(StubCall, 0));
471  } else {
472    B.CreateRetVoid();
473  }
474
475  // The function is now a stub we want to inline.
476  F.addFnAttr(Attribute::AlwaysInline);
477
478  ++NumOutArgumentFunctionsReplaced;
479  return true;
480}
481
482FunctionPass *llvm::createAMDGPURewriteOutArgumentsPass() {
483  return new AMDGPURewriteOutArguments();
484}
485