AArch64StackTagging.cpp revision 360784
1//===- AArch64StackTagging.cpp - Stack tagging in IR --===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//===----------------------------------------------------------------------===//
10
11#include "AArch64.h"
12#include "AArch64InstrInfo.h"
13#include "AArch64Subtarget.h"
14#include "AArch64TargetMachine.h"
15#include "llvm/ADT/DenseMap.h"
16#include "llvm/ADT/DepthFirstIterator.h"
17#include "llvm/ADT/MapVector.h"
18#include "llvm/ADT/None.h"
19#include "llvm/ADT/Optional.h"
20#include "llvm/ADT/SmallVector.h"
21#include "llvm/ADT/Statistic.h"
22#include "llvm/Analysis/CFG.h"
23#include "llvm/Analysis/LoopInfo.h"
24#include "llvm/Analysis/ScalarEvolution.h"
25#include "llvm/Analysis/ScalarEvolutionExpressions.h"
26#include "llvm/Analysis/ValueTracking.h"
27#include "llvm/CodeGen/LiveRegUnits.h"
28#include "llvm/CodeGen/MachineBasicBlock.h"
29#include "llvm/CodeGen/MachineFunction.h"
30#include "llvm/CodeGen/MachineFunctionPass.h"
31#include "llvm/CodeGen/MachineInstr.h"
32#include "llvm/CodeGen/MachineInstrBuilder.h"
33#include "llvm/CodeGen/MachineLoopInfo.h"
34#include "llvm/CodeGen/MachineOperand.h"
35#include "llvm/CodeGen/MachineRegisterInfo.h"
36#include "llvm/CodeGen/TargetPassConfig.h"
37#include "llvm/CodeGen/TargetRegisterInfo.h"
38#include "llvm/IR/DebugLoc.h"
39#include "llvm/IR/Dominators.h"
40#include "llvm/IR/Function.h"
41#include "llvm/IR/GetElementPtrTypeIterator.h"
42#include "llvm/IR/Instruction.h"
43#include "llvm/IR/Instructions.h"
44#include "llvm/IR/IntrinsicInst.h"
45#include "llvm/IR/IntrinsicsAArch64.h"
46#include "llvm/IR/Metadata.h"
47#include "llvm/Pass.h"
48#include "llvm/Support/Casting.h"
49#include "llvm/Support/Debug.h"
50#include "llvm/Support/raw_ostream.h"
51#include "llvm/Transforms/Utils/Local.h"
52#include <cassert>
53#include <iterator>
54#include <utility>
55
56using namespace llvm;
57
58#define DEBUG_TYPE "stack-tagging"
59
60static cl::opt<bool> ClMergeInit(
61    "stack-tagging-merge-init", cl::Hidden, cl::init(true), cl::ZeroOrMore,
62    cl::desc("merge stack variable initializers with tagging when possible"));
63
64static cl::opt<unsigned> ClScanLimit("stack-tagging-merge-init-scan-limit",
65                                     cl::init(40), cl::Hidden);
66
67static const Align kTagGranuleSize = Align(16);
68
69namespace {
70
71class InitializerBuilder {
72  uint64_t Size;
73  const DataLayout *DL;
74  Value *BasePtr;
75  Function *SetTagFn;
76  Function *SetTagZeroFn;
77  Function *StgpFn;
78
79  // List of initializers sorted by start offset.
80  struct Range {
81    uint64_t Start, End;
82    Instruction *Inst;
83  };
84  SmallVector<Range, 4> Ranges;
85  // 8-aligned offset => 8-byte initializer
86  // Missing keys are zero initialized.
87  std::map<uint64_t, Value *> Out;
88
89public:
90  InitializerBuilder(uint64_t Size, const DataLayout *DL, Value *BasePtr,
91                     Function *SetTagFn, Function *SetTagZeroFn,
92                     Function *StgpFn)
93      : Size(Size), DL(DL), BasePtr(BasePtr), SetTagFn(SetTagFn),
94        SetTagZeroFn(SetTagZeroFn), StgpFn(StgpFn) {}
95
96  bool addRange(uint64_t Start, uint64_t End, Instruction *Inst) {
97    auto I = std::lower_bound(
98        Ranges.begin(), Ranges.end(), Start,
99        [](const Range &LHS, uint64_t RHS) { return LHS.End <= RHS; });
100    if (I != Ranges.end() && End > I->Start) {
101      // Overlap - bail.
102      return false;
103    }
104    Ranges.insert(I, {Start, End, Inst});
105    return true;
106  }
107
108  bool addStore(uint64_t Offset, StoreInst *SI, const DataLayout *DL) {
109    int64_t StoreSize = DL->getTypeStoreSize(SI->getOperand(0)->getType());
110    if (!addRange(Offset, Offset + StoreSize, SI))
111      return false;
112    IRBuilder<> IRB(SI);
113    applyStore(IRB, Offset, Offset + StoreSize, SI->getOperand(0));
114    return true;
115  }
116
117  bool addMemSet(uint64_t Offset, MemSetInst *MSI) {
118    uint64_t StoreSize = cast<ConstantInt>(MSI->getLength())->getZExtValue();
119    if (!addRange(Offset, Offset + StoreSize, MSI))
120      return false;
121    IRBuilder<> IRB(MSI);
122    applyMemSet(IRB, Offset, Offset + StoreSize,
123                cast<ConstantInt>(MSI->getValue()));
124    return true;
125  }
126
127  void applyMemSet(IRBuilder<> &IRB, int64_t Start, int64_t End,
128                   ConstantInt *V) {
129    // Out[] does not distinguish between zero and undef, and we already know
130    // that this memset does not overlap with any other initializer. Nothing to
131    // do for memset(0).
132    if (V->isZero())
133      return;
134    for (int64_t Offset = Start - Start % 8; Offset < End; Offset += 8) {
135      uint64_t Cst = 0x0101010101010101UL;
136      int LowBits = Offset < Start ? (Start - Offset) * 8 : 0;
137      if (LowBits)
138        Cst = (Cst >> LowBits) << LowBits;
139      int HighBits = End - Offset < 8 ? (8 - (End - Offset)) * 8 : 0;
140      if (HighBits)
141        Cst = (Cst << HighBits) >> HighBits;
142      ConstantInt *C =
143          ConstantInt::get(IRB.getInt64Ty(), Cst * V->getZExtValue());
144
145      Value *&CurrentV = Out[Offset];
146      if (!CurrentV) {
147        CurrentV = C;
148      } else {
149        CurrentV = IRB.CreateOr(CurrentV, C);
150      }
151    }
152  }
153
154  // Take a 64-bit slice of the value starting at the given offset (in bytes).
155  // Offset can be negative. Pad with zeroes on both sides when necessary.
156  Value *sliceValue(IRBuilder<> &IRB, Value *V, int64_t Offset) {
157    if (Offset > 0) {
158      V = IRB.CreateLShr(V, Offset * 8);
159      V = IRB.CreateZExtOrTrunc(V, IRB.getInt64Ty());
160    } else if (Offset < 0) {
161      V = IRB.CreateZExtOrTrunc(V, IRB.getInt64Ty());
162      V = IRB.CreateShl(V, -Offset * 8);
163    } else {
164      V = IRB.CreateZExtOrTrunc(V, IRB.getInt64Ty());
165    }
166    return V;
167  }
168
169  void applyStore(IRBuilder<> &IRB, int64_t Start, int64_t End,
170                  Value *StoredValue) {
171    StoredValue = flatten(IRB, StoredValue);
172    for (int64_t Offset = Start - Start % 8; Offset < End; Offset += 8) {
173      Value *V = sliceValue(IRB, StoredValue, Offset - Start);
174      Value *&CurrentV = Out[Offset];
175      if (!CurrentV) {
176        CurrentV = V;
177      } else {
178        CurrentV = IRB.CreateOr(CurrentV, V);
179      }
180    }
181  }
182
183  void generate(IRBuilder<> &IRB) {
184    LLVM_DEBUG(dbgs() << "Combined initializer\n");
185    // No initializers => the entire allocation is undef.
186    if (Ranges.empty()) {
187      emitUndef(IRB, 0, Size);
188      return;
189    }
190
191    // Look through 8-byte initializer list 16 bytes at a time;
192    // If one of the two 8-byte halfs is non-zero non-undef, emit STGP.
193    // Otherwise, emit zeroes up to next available item.
194    uint64_t LastOffset = 0;
195    for (uint64_t Offset = 0; Offset < Size; Offset += 16) {
196      auto I1 = Out.find(Offset);
197      auto I2 = Out.find(Offset + 8);
198      if (I1 == Out.end() && I2 == Out.end())
199        continue;
200
201      if (Offset > LastOffset)
202        emitZeroes(IRB, LastOffset, Offset - LastOffset);
203
204      Value *Store1 = I1 == Out.end() ? Constant::getNullValue(IRB.getInt64Ty())
205                                      : I1->second;
206      Value *Store2 = I2 == Out.end() ? Constant::getNullValue(IRB.getInt64Ty())
207                                      : I2->second;
208      emitPair(IRB, Offset, Store1, Store2);
209      LastOffset = Offset + 16;
210    }
211
212    // memset(0) does not update Out[], therefore the tail can be either undef
213    // or zero.
214    if (LastOffset < Size)
215      emitZeroes(IRB, LastOffset, Size - LastOffset);
216
217    for (const auto &R : Ranges) {
218      R.Inst->eraseFromParent();
219    }
220  }
221
222  void emitZeroes(IRBuilder<> &IRB, uint64_t Offset, uint64_t Size) {
223    LLVM_DEBUG(dbgs() << "  [" << Offset << ", " << Offset + Size
224                      << ") zero\n");
225    Value *Ptr = BasePtr;
226    if (Offset)
227      Ptr = IRB.CreateConstGEP1_32(Ptr, Offset);
228    IRB.CreateCall(SetTagZeroFn,
229                   {Ptr, ConstantInt::get(IRB.getInt64Ty(), Size)});
230  }
231
232  void emitUndef(IRBuilder<> &IRB, uint64_t Offset, uint64_t Size) {
233    LLVM_DEBUG(dbgs() << "  [" << Offset << ", " << Offset + Size
234                      << ") undef\n");
235    Value *Ptr = BasePtr;
236    if (Offset)
237      Ptr = IRB.CreateConstGEP1_32(Ptr, Offset);
238    IRB.CreateCall(SetTagFn, {Ptr, ConstantInt::get(IRB.getInt64Ty(), Size)});
239  }
240
241  void emitPair(IRBuilder<> &IRB, uint64_t Offset, Value *A, Value *B) {
242    LLVM_DEBUG(dbgs() << "  [" << Offset << ", " << Offset + 16 << "):\n");
243    LLVM_DEBUG(dbgs() << "    " << *A << "\n    " << *B << "\n");
244    Value *Ptr = BasePtr;
245    if (Offset)
246      Ptr = IRB.CreateConstGEP1_32(Ptr, Offset);
247    IRB.CreateCall(StgpFn, {Ptr, A, B});
248  }
249
250  Value *flatten(IRBuilder<> &IRB, Value *V) {
251    if (V->getType()->isIntegerTy())
252      return V;
253    // vector of pointers -> vector of ints
254    if (VectorType *VecTy = dyn_cast<VectorType>(V->getType())) {
255      LLVMContext &Ctx = IRB.getContext();
256      Type *EltTy = VecTy->getElementType();
257      if (EltTy->isPointerTy()) {
258        uint32_t EltSize = DL->getTypeSizeInBits(EltTy);
259        Type *NewTy = VectorType::get(IntegerType::get(Ctx, EltSize),
260                                      VecTy->getNumElements());
261        V = IRB.CreatePointerCast(V, NewTy);
262      }
263    }
264    return IRB.CreateBitOrPointerCast(
265        V, IRB.getIntNTy(DL->getTypeStoreSize(V->getType()) * 8));
266  }
267};
268
269class AArch64StackTagging : public FunctionPass {
270  struct AllocaInfo {
271    AllocaInst *AI;
272    SmallVector<IntrinsicInst *, 2> LifetimeStart;
273    SmallVector<IntrinsicInst *, 2> LifetimeEnd;
274    SmallVector<DbgVariableIntrinsic *, 2> DbgVariableIntrinsics;
275    int Tag; // -1 for non-tagged allocations
276  };
277
278  bool MergeInit;
279
280public:
281  static char ID; // Pass ID, replacement for typeid
282
283  AArch64StackTagging(bool MergeInit = true)
284      : FunctionPass(ID),
285        MergeInit(ClMergeInit.getNumOccurrences() > 0 ? ClMergeInit
286                                                      : MergeInit) {
287    initializeAArch64StackTaggingPass(*PassRegistry::getPassRegistry());
288  }
289
290  bool isInterestingAlloca(const AllocaInst &AI);
291  void alignAndPadAlloca(AllocaInfo &Info);
292
293  void tagAlloca(AllocaInst *AI, Instruction *InsertBefore, Value *Ptr,
294                 uint64_t Size);
295  void untagAlloca(AllocaInst *AI, Instruction *InsertBefore, uint64_t Size);
296
297  Instruction *collectInitializers(Instruction *StartInst, Value *StartPtr,
298                                   uint64_t Size, InitializerBuilder &IB);
299
300  Instruction *
301  insertBaseTaggedPointer(const MapVector<AllocaInst *, AllocaInfo> &Allocas,
302                          const DominatorTree *DT);
303  bool runOnFunction(Function &F) override;
304
305  StringRef getPassName() const override { return "AArch64 Stack Tagging"; }
306
307private:
308  Function *F;
309  Function *SetTagFunc;
310  const DataLayout *DL;
311  AAResults *AA;
312
313  void getAnalysisUsage(AnalysisUsage &AU) const override {
314    AU.setPreservesCFG();
315    if (MergeInit)
316      AU.addRequired<AAResultsWrapperPass>();
317  }
318};
319
320} // end anonymous namespace
321
322char AArch64StackTagging::ID = 0;
323
324INITIALIZE_PASS_BEGIN(AArch64StackTagging, DEBUG_TYPE, "AArch64 Stack Tagging",
325                      false, false)
326INITIALIZE_PASS_END(AArch64StackTagging, DEBUG_TYPE, "AArch64 Stack Tagging",
327                    false, false)
328
329FunctionPass *llvm::createAArch64StackTaggingPass(bool MergeInit) {
330  return new AArch64StackTagging(MergeInit);
331}
332
333Instruction *AArch64StackTagging::collectInitializers(Instruction *StartInst,
334                                                      Value *StartPtr,
335                                                      uint64_t Size,
336                                                      InitializerBuilder &IB) {
337  MemoryLocation AllocaLoc{StartPtr, Size};
338  Instruction *LastInst = StartInst;
339  BasicBlock::iterator BI(StartInst);
340
341  unsigned Count = 0;
342  for (; Count < ClScanLimit && !BI->isTerminator(); ++BI) {
343    if (!isa<DbgInfoIntrinsic>(*BI))
344      ++Count;
345
346    if (isNoModRef(AA->getModRefInfo(&*BI, AllocaLoc)))
347      continue;
348
349    if (!isa<StoreInst>(BI) && !isa<MemSetInst>(BI)) {
350      // If the instruction is readnone, ignore it, otherwise bail out.  We
351      // don't even allow readonly here because we don't want something like:
352      // A[1] = 2; strlen(A); A[2] = 2; -> memcpy(A, ...); strlen(A).
353      if (BI->mayWriteToMemory() || BI->mayReadFromMemory())
354        break;
355      continue;
356    }
357
358    if (StoreInst *NextStore = dyn_cast<StoreInst>(BI)) {
359      if (!NextStore->isSimple())
360        break;
361
362      // Check to see if this store is to a constant offset from the start ptr.
363      Optional<int64_t> Offset =
364          isPointerOffset(StartPtr, NextStore->getPointerOperand(), *DL);
365      if (!Offset)
366        break;
367
368      if (!IB.addStore(*Offset, NextStore, DL))
369        break;
370      LastInst = NextStore;
371    } else {
372      MemSetInst *MSI = cast<MemSetInst>(BI);
373
374      if (MSI->isVolatile() || !isa<ConstantInt>(MSI->getLength()))
375        break;
376
377      if (!isa<ConstantInt>(MSI->getValue()))
378        break;
379
380      // Check to see if this store is to a constant offset from the start ptr.
381      Optional<int64_t> Offset = isPointerOffset(StartPtr, MSI->getDest(), *DL);
382      if (!Offset)
383        break;
384
385      if (!IB.addMemSet(*Offset, MSI))
386        break;
387      LastInst = MSI;
388    }
389  }
390  return LastInst;
391}
392
393bool AArch64StackTagging::isInterestingAlloca(const AllocaInst &AI) {
394  // FIXME: support dynamic allocas
395  bool IsInteresting =
396      AI.getAllocatedType()->isSized() && AI.isStaticAlloca() &&
397      // alloca() may be called with 0 size, ignore it.
398      AI.getAllocationSizeInBits(*DL).getValue() > 0 &&
399      // inalloca allocas are not treated as static, and we don't want
400      // dynamic alloca instrumentation for them as well.
401      !AI.isUsedWithInAlloca() &&
402      // swifterror allocas are register promoted by ISel
403      !AI.isSwiftError();
404  return IsInteresting;
405}
406
407void AArch64StackTagging::tagAlloca(AllocaInst *AI, Instruction *InsertBefore,
408                                    Value *Ptr, uint64_t Size) {
409  auto SetTagZeroFunc =
410      Intrinsic::getDeclaration(F->getParent(), Intrinsic::aarch64_settag_zero);
411  auto StgpFunc =
412      Intrinsic::getDeclaration(F->getParent(), Intrinsic::aarch64_stgp);
413
414  InitializerBuilder IB(Size, DL, Ptr, SetTagFunc, SetTagZeroFunc, StgpFunc);
415  bool LittleEndian =
416      Triple(AI->getModule()->getTargetTriple()).isLittleEndian();
417  // Current implementation of initializer merging assumes little endianness.
418  if (MergeInit && !F->hasOptNone() && LittleEndian) {
419    LLVM_DEBUG(dbgs() << "collecting initializers for " << *AI
420                      << ", size = " << Size << "\n");
421    InsertBefore = collectInitializers(InsertBefore, Ptr, Size, IB);
422  }
423
424  IRBuilder<> IRB(InsertBefore);
425  IB.generate(IRB);
426}
427
428void AArch64StackTagging::untagAlloca(AllocaInst *AI, Instruction *InsertBefore,
429                                      uint64_t Size) {
430  IRBuilder<> IRB(InsertBefore);
431  IRB.CreateCall(SetTagFunc, {IRB.CreatePointerCast(AI, IRB.getInt8PtrTy()),
432                              ConstantInt::get(IRB.getInt64Ty(), Size)});
433}
434
435Instruction *AArch64StackTagging::insertBaseTaggedPointer(
436    const MapVector<AllocaInst *, AllocaInfo> &Allocas,
437    const DominatorTree *DT) {
438  BasicBlock *PrologueBB = nullptr;
439  // Try sinking IRG as deep as possible to avoid hurting shrink wrap.
440  for (auto &I : Allocas) {
441    const AllocaInfo &Info = I.second;
442    AllocaInst *AI = Info.AI;
443    if (Info.Tag < 0)
444      continue;
445    if (!PrologueBB) {
446      PrologueBB = AI->getParent();
447      continue;
448    }
449    PrologueBB = DT->findNearestCommonDominator(PrologueBB, AI->getParent());
450  }
451  assert(PrologueBB);
452
453  IRBuilder<> IRB(&PrologueBB->front());
454  Function *IRG_SP =
455      Intrinsic::getDeclaration(F->getParent(), Intrinsic::aarch64_irg_sp);
456  Instruction *Base =
457      IRB.CreateCall(IRG_SP, {Constant::getNullValue(IRB.getInt64Ty())});
458  Base->setName("basetag");
459  return Base;
460}
461
462void AArch64StackTagging::alignAndPadAlloca(AllocaInfo &Info) {
463  const Align NewAlignment =
464      max(MaybeAlign(Info.AI->getAlignment()), kTagGranuleSize);
465  Info.AI->setAlignment(NewAlignment);
466
467  uint64_t Size = Info.AI->getAllocationSizeInBits(*DL).getValue() / 8;
468  uint64_t AlignedSize = alignTo(Size, kTagGranuleSize);
469  if (Size == AlignedSize)
470    return;
471
472  // Add padding to the alloca.
473  Type *AllocatedType =
474      Info.AI->isArrayAllocation()
475          ? ArrayType::get(
476                Info.AI->getAllocatedType(),
477                cast<ConstantInt>(Info.AI->getArraySize())->getZExtValue())
478          : Info.AI->getAllocatedType();
479  Type *PaddingType =
480      ArrayType::get(Type::getInt8Ty(F->getContext()), AlignedSize - Size);
481  Type *TypeWithPadding = StructType::get(AllocatedType, PaddingType);
482  auto *NewAI = new AllocaInst(
483      TypeWithPadding, Info.AI->getType()->getAddressSpace(), nullptr, "", Info.AI);
484  NewAI->takeName(Info.AI);
485  NewAI->setAlignment(MaybeAlign(Info.AI->getAlignment()));
486  NewAI->setUsedWithInAlloca(Info.AI->isUsedWithInAlloca());
487  NewAI->setSwiftError(Info.AI->isSwiftError());
488  NewAI->copyMetadata(*Info.AI);
489
490  auto *NewPtr = new BitCastInst(NewAI, Info.AI->getType(), "", Info.AI);
491  Info.AI->replaceAllUsesWith(NewPtr);
492  Info.AI->eraseFromParent();
493  Info.AI = NewAI;
494}
495
496// Helper function to check for post-dominance.
497static bool postDominates(const PostDominatorTree *PDT, const IntrinsicInst *A,
498                          const IntrinsicInst *B) {
499  const BasicBlock *ABB = A->getParent();
500  const BasicBlock *BBB = B->getParent();
501
502  if (ABB != BBB)
503    return PDT->dominates(ABB, BBB);
504
505  for (const Instruction &I : *ABB) {
506    if (&I == B)
507      return true;
508    if (&I == A)
509      return false;
510  }
511  llvm_unreachable("Corrupt instruction list");
512}
513
514// FIXME: check for MTE extension
515bool AArch64StackTagging::runOnFunction(Function &Fn) {
516  if (!Fn.hasFnAttribute(Attribute::SanitizeMemTag))
517    return false;
518
519  F = &Fn;
520  DL = &Fn.getParent()->getDataLayout();
521  if (MergeInit)
522    AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
523
524  MapVector<AllocaInst *, AllocaInfo> Allocas; // need stable iteration order
525  SmallVector<Instruction *, 8> RetVec;
526  DenseMap<Value *, AllocaInst *> AllocaForValue;
527  SmallVector<Instruction *, 4> UnrecognizedLifetimes;
528
529  for (auto &BB : *F) {
530    for (BasicBlock::iterator IT = BB.begin(); IT != BB.end(); ++IT) {
531      Instruction *I = &*IT;
532      if (auto *AI = dyn_cast<AllocaInst>(I)) {
533        Allocas[AI].AI = AI;
534        continue;
535      }
536
537      if (auto *DVI = dyn_cast<DbgVariableIntrinsic>(I)) {
538        if (auto *AI =
539                dyn_cast_or_null<AllocaInst>(DVI->getVariableLocation())) {
540          Allocas[AI].DbgVariableIntrinsics.push_back(DVI);
541        }
542        continue;
543      }
544
545      auto *II = dyn_cast<IntrinsicInst>(I);
546      if (II && (II->getIntrinsicID() == Intrinsic::lifetime_start ||
547                 II->getIntrinsicID() == Intrinsic::lifetime_end)) {
548        AllocaInst *AI =
549            llvm::findAllocaForValue(II->getArgOperand(1), AllocaForValue);
550        if (!AI) {
551          UnrecognizedLifetimes.push_back(I);
552          continue;
553        }
554        if (II->getIntrinsicID() == Intrinsic::lifetime_start)
555          Allocas[AI].LifetimeStart.push_back(II);
556        else
557          Allocas[AI].LifetimeEnd.push_back(II);
558      }
559
560      if (isa<ReturnInst>(I) || isa<ResumeInst>(I) || isa<CleanupReturnInst>(I))
561        RetVec.push_back(I);
562    }
563  }
564
565  if (Allocas.empty())
566    return false;
567
568  int NextTag = 0;
569  int NumInterestingAllocas = 0;
570  for (auto &I : Allocas) {
571    AllocaInfo &Info = I.second;
572    assert(Info.AI);
573
574    if (!isInterestingAlloca(*Info.AI)) {
575      Info.Tag = -1;
576      continue;
577    }
578
579    alignAndPadAlloca(Info);
580    NumInterestingAllocas++;
581    Info.Tag = NextTag;
582    NextTag = (NextTag + 1) % 16;
583  }
584
585  if (NumInterestingAllocas == 0)
586    return true;
587
588  std::unique_ptr<DominatorTree> DeleteDT;
589  DominatorTree *DT = nullptr;
590  if (auto *P = getAnalysisIfAvailable<DominatorTreeWrapperPass>())
591    DT = &P->getDomTree();
592
593  if (DT == nullptr && (NumInterestingAllocas > 1 ||
594                        !F->hasFnAttribute(Attribute::OptimizeNone))) {
595    DeleteDT = std::make_unique<DominatorTree>(*F);
596    DT = DeleteDT.get();
597  }
598
599  std::unique_ptr<PostDominatorTree> DeletePDT;
600  PostDominatorTree *PDT = nullptr;
601  if (auto *P = getAnalysisIfAvailable<PostDominatorTreeWrapperPass>())
602    PDT = &P->getPostDomTree();
603
604  if (PDT == nullptr && !F->hasFnAttribute(Attribute::OptimizeNone)) {
605    DeletePDT = std::make_unique<PostDominatorTree>(*F);
606    PDT = DeletePDT.get();
607  }
608
609  SetTagFunc =
610      Intrinsic::getDeclaration(F->getParent(), Intrinsic::aarch64_settag);
611
612  Instruction *Base = insertBaseTaggedPointer(Allocas, DT);
613
614  for (auto &I : Allocas) {
615    const AllocaInfo &Info = I.second;
616    AllocaInst *AI = Info.AI;
617    if (Info.Tag < 0)
618      continue;
619
620    // Replace alloca with tagp(alloca).
621    IRBuilder<> IRB(Info.AI->getNextNode());
622    Function *TagP = Intrinsic::getDeclaration(
623        F->getParent(), Intrinsic::aarch64_tagp, {Info.AI->getType()});
624    Instruction *TagPCall =
625        IRB.CreateCall(TagP, {Constant::getNullValue(Info.AI->getType()), Base,
626                              ConstantInt::get(IRB.getInt64Ty(), Info.Tag)});
627    if (Info.AI->hasName())
628      TagPCall->setName(Info.AI->getName() + ".tag");
629    Info.AI->replaceAllUsesWith(TagPCall);
630    TagPCall->setOperand(0, Info.AI);
631
632    if (UnrecognizedLifetimes.empty() && Info.LifetimeStart.size() == 1 &&
633        Info.LifetimeEnd.size() == 1) {
634      IntrinsicInst *Start = Info.LifetimeStart[0];
635      IntrinsicInst *End = Info.LifetimeEnd[0];
636      uint64_t Size =
637          dyn_cast<ConstantInt>(Start->getArgOperand(0))->getZExtValue();
638      Size = alignTo(Size, kTagGranuleSize);
639      tagAlloca(AI, Start->getNextNode(), Start->getArgOperand(1), Size);
640      // We need to ensure that if we tag some object, we certainly untag it
641      // before the function exits.
642      if (PDT != nullptr && postDominates(PDT, End, Start)) {
643        untagAlloca(AI, End, Size);
644      } else {
645        SmallVector<Instruction *, 8> ReachableRetVec;
646        unsigned NumCoveredExits = 0;
647        for (auto &RI : RetVec) {
648          if (!isPotentiallyReachable(Start, RI, nullptr, DT))
649            continue;
650          ReachableRetVec.push_back(RI);
651          if (DT != nullptr && DT->dominates(End, RI))
652            ++NumCoveredExits;
653        }
654        // If there's a mix of covered and non-covered exits, just put the untag
655        // on exits, so we avoid the redundancy of untagging twice.
656        if (NumCoveredExits == ReachableRetVec.size()) {
657          untagAlloca(AI, End, Size);
658        } else {
659          for (auto &RI : ReachableRetVec)
660            untagAlloca(AI, RI, Size);
661          // We may have inserted untag outside of the lifetime interval.
662          // Remove the lifetime end call for this alloca.
663          End->eraseFromParent();
664        }
665      }
666    } else {
667      uint64_t Size = Info.AI->getAllocationSizeInBits(*DL).getValue() / 8;
668      Value *Ptr = IRB.CreatePointerCast(TagPCall, IRB.getInt8PtrTy());
669      tagAlloca(AI, &*IRB.GetInsertPoint(), Ptr, Size);
670      for (auto &RI : RetVec) {
671        untagAlloca(AI, RI, Size);
672      }
673      // We may have inserted tag/untag outside of any lifetime interval.
674      // Remove all lifetime intrinsics for this alloca.
675      for (auto &II : Info.LifetimeStart)
676        II->eraseFromParent();
677      for (auto &II : Info.LifetimeEnd)
678        II->eraseFromParent();
679    }
680
681    // Fixup debug intrinsics to point to the new alloca.
682    for (auto DVI : Info.DbgVariableIntrinsics)
683      DVI->setArgOperand(
684          0,
685          MetadataAsValue::get(F->getContext(), LocalAsMetadata::get(Info.AI)));
686  }
687
688  // If we have instrumented at least one alloca, all unrecognized lifetime
689  // instrinsics have to go.
690  for (auto &I : UnrecognizedLifetimes)
691    I->eraseFromParent();
692
693  return true;
694}
695