InstrProf.cpp revision 360784
1//===- InstrProf.cpp - Instrumented profiling format support --------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file contains support for clang's instrumentation based PGO and
10// coverage.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/ProfileData/InstrProf.h"
15#include "llvm/ADT/ArrayRef.h"
16#include "llvm/ADT/SmallString.h"
17#include "llvm/ADT/SmallVector.h"
18#include "llvm/ADT/StringExtras.h"
19#include "llvm/ADT/StringRef.h"
20#include "llvm/ADT/Triple.h"
21#include "llvm/IR/Constant.h"
22#include "llvm/IR/Constants.h"
23#include "llvm/IR/Function.h"
24#include "llvm/IR/GlobalValue.h"
25#include "llvm/IR/GlobalVariable.h"
26#include "llvm/IR/Instruction.h"
27#include "llvm/IR/LLVMContext.h"
28#include "llvm/IR/MDBuilder.h"
29#include "llvm/IR/Metadata.h"
30#include "llvm/IR/Module.h"
31#include "llvm/IR/Type.h"
32#include "llvm/ProfileData/InstrProfReader.h"
33#include "llvm/Support/Casting.h"
34#include "llvm/Support/CommandLine.h"
35#include "llvm/Support/Compiler.h"
36#include "llvm/Support/Compression.h"
37#include "llvm/Support/Endian.h"
38#include "llvm/Support/Error.h"
39#include "llvm/Support/ErrorHandling.h"
40#include "llvm/Support/LEB128.h"
41#include "llvm/Support/ManagedStatic.h"
42#include "llvm/Support/MathExtras.h"
43#include "llvm/Support/Path.h"
44#include "llvm/Support/SwapByteOrder.h"
45#include <algorithm>
46#include <cassert>
47#include <cstddef>
48#include <cstdint>
49#include <cstring>
50#include <memory>
51#include <string>
52#include <system_error>
53#include <utility>
54#include <vector>
55
56using namespace llvm;
57
58static cl::opt<bool> StaticFuncFullModulePrefix(
59    "static-func-full-module-prefix", cl::init(true), cl::Hidden,
60    cl::desc("Use full module build paths in the profile counter names for "
61             "static functions."));
62
63// This option is tailored to users that have different top-level directory in
64// profile-gen and profile-use compilation. Users need to specific the number
65// of levels to strip. A value larger than the number of directories in the
66// source file will strip all the directory names and only leave the basename.
67//
68// Note current ThinLTO module importing for the indirect-calls assumes
69// the source directory name not being stripped. A non-zero option value here
70// can potentially prevent some inter-module indirect-call-promotions.
71static cl::opt<unsigned> StaticFuncStripDirNamePrefix(
72    "static-func-strip-dirname-prefix", cl::init(0), cl::Hidden,
73    cl::desc("Strip specified level of directory name from source path in "
74             "the profile counter name for static functions."));
75
76static std::string getInstrProfErrString(instrprof_error Err) {
77  switch (Err) {
78  case instrprof_error::success:
79    return "Success";
80  case instrprof_error::eof:
81    return "End of File";
82  case instrprof_error::unrecognized_format:
83    return "Unrecognized instrumentation profile encoding format";
84  case instrprof_error::bad_magic:
85    return "Invalid instrumentation profile data (bad magic)";
86  case instrprof_error::bad_header:
87    return "Invalid instrumentation profile data (file header is corrupt)";
88  case instrprof_error::unsupported_version:
89    return "Unsupported instrumentation profile format version";
90  case instrprof_error::unsupported_hash_type:
91    return "Unsupported instrumentation profile hash type";
92  case instrprof_error::too_large:
93    return "Too much profile data";
94  case instrprof_error::truncated:
95    return "Truncated profile data";
96  case instrprof_error::malformed:
97    return "Malformed instrumentation profile data";
98  case instrprof_error::unknown_function:
99    return "No profile data available for function";
100  case instrprof_error::hash_mismatch:
101    return "Function control flow change detected (hash mismatch)";
102  case instrprof_error::count_mismatch:
103    return "Function basic block count change detected (counter mismatch)";
104  case instrprof_error::counter_overflow:
105    return "Counter overflow";
106  case instrprof_error::value_site_count_mismatch:
107    return "Function value site count change detected (counter mismatch)";
108  case instrprof_error::compress_failed:
109    return "Failed to compress data (zlib)";
110  case instrprof_error::uncompress_failed:
111    return "Failed to uncompress data (zlib)";
112  case instrprof_error::empty_raw_profile:
113    return "Empty raw profile file";
114  case instrprof_error::zlib_unavailable:
115    return "Profile uses zlib compression but the profile reader was built without zlib support";
116  }
117  llvm_unreachable("A value of instrprof_error has no message.");
118}
119
120namespace {
121
122// FIXME: This class is only here to support the transition to llvm::Error. It
123// will be removed once this transition is complete. Clients should prefer to
124// deal with the Error value directly, rather than converting to error_code.
125class InstrProfErrorCategoryType : public std::error_category {
126  const char *name() const noexcept override { return "llvm.instrprof"; }
127
128  std::string message(int IE) const override {
129    return getInstrProfErrString(static_cast<instrprof_error>(IE));
130  }
131};
132
133} // end anonymous namespace
134
135static ManagedStatic<InstrProfErrorCategoryType> ErrorCategory;
136
137const std::error_category &llvm::instrprof_category() {
138  return *ErrorCategory;
139}
140
141namespace {
142
143const char *InstrProfSectNameCommon[] = {
144#define INSTR_PROF_SECT_ENTRY(Kind, SectNameCommon, SectNameCoff, Prefix)      \
145  SectNameCommon,
146#include "llvm/ProfileData/InstrProfData.inc"
147};
148
149const char *InstrProfSectNameCoff[] = {
150#define INSTR_PROF_SECT_ENTRY(Kind, SectNameCommon, SectNameCoff, Prefix)      \
151  SectNameCoff,
152#include "llvm/ProfileData/InstrProfData.inc"
153};
154
155const char *InstrProfSectNamePrefix[] = {
156#define INSTR_PROF_SECT_ENTRY(Kind, SectNameCommon, SectNameCoff, Prefix)      \
157  Prefix,
158#include "llvm/ProfileData/InstrProfData.inc"
159};
160
161} // namespace
162
163namespace llvm {
164
165std::string getInstrProfSectionName(InstrProfSectKind IPSK,
166                                    Triple::ObjectFormatType OF,
167                                    bool AddSegmentInfo) {
168  std::string SectName;
169
170  if (OF == Triple::MachO && AddSegmentInfo)
171    SectName = InstrProfSectNamePrefix[IPSK];
172
173  if (OF == Triple::COFF)
174    SectName += InstrProfSectNameCoff[IPSK];
175  else
176    SectName += InstrProfSectNameCommon[IPSK];
177
178  if (OF == Triple::MachO && IPSK == IPSK_data && AddSegmentInfo)
179    SectName += ",regular,live_support";
180
181  return SectName;
182}
183
184void SoftInstrProfErrors::addError(instrprof_error IE) {
185  if (IE == instrprof_error::success)
186    return;
187
188  if (FirstError == instrprof_error::success)
189    FirstError = IE;
190
191  switch (IE) {
192  case instrprof_error::hash_mismatch:
193    ++NumHashMismatches;
194    break;
195  case instrprof_error::count_mismatch:
196    ++NumCountMismatches;
197    break;
198  case instrprof_error::counter_overflow:
199    ++NumCounterOverflows;
200    break;
201  case instrprof_error::value_site_count_mismatch:
202    ++NumValueSiteCountMismatches;
203    break;
204  default:
205    llvm_unreachable("Not a soft error");
206  }
207}
208
209std::string InstrProfError::message() const {
210  return getInstrProfErrString(Err);
211}
212
213char InstrProfError::ID = 0;
214
215std::string getPGOFuncName(StringRef RawFuncName,
216                           GlobalValue::LinkageTypes Linkage,
217                           StringRef FileName,
218                           uint64_t Version LLVM_ATTRIBUTE_UNUSED) {
219  return GlobalValue::getGlobalIdentifier(RawFuncName, Linkage, FileName);
220}
221
222// Strip NumPrefix level of directory name from PathNameStr. If the number of
223// directory separators is less than NumPrefix, strip all the directories and
224// leave base file name only.
225static StringRef stripDirPrefix(StringRef PathNameStr, uint32_t NumPrefix) {
226  uint32_t Count = NumPrefix;
227  uint32_t Pos = 0, LastPos = 0;
228  for (auto & CI : PathNameStr) {
229    ++Pos;
230    if (llvm::sys::path::is_separator(CI)) {
231      LastPos = Pos;
232      --Count;
233    }
234    if (Count == 0)
235      break;
236  }
237  return PathNameStr.substr(LastPos);
238}
239
240// Return the PGOFuncName. This function has some special handling when called
241// in LTO optimization. The following only applies when calling in LTO passes
242// (when \c InLTO is true): LTO's internalization privatizes many global linkage
243// symbols. This happens after value profile annotation, but those internal
244// linkage functions should not have a source prefix.
245// Additionally, for ThinLTO mode, exported internal functions are promoted
246// and renamed. We need to ensure that the original internal PGO name is
247// used when computing the GUID that is compared against the profiled GUIDs.
248// To differentiate compiler generated internal symbols from original ones,
249// PGOFuncName meta data are created and attached to the original internal
250// symbols in the value profile annotation step
251// (PGOUseFunc::annotateIndirectCallSites). If a symbol does not have the meta
252// data, its original linkage must be non-internal.
253std::string getPGOFuncName(const Function &F, bool InLTO, uint64_t Version) {
254  if (!InLTO) {
255    StringRef FileName(F.getParent()->getSourceFileName());
256    uint32_t StripLevel = StaticFuncFullModulePrefix ? 0 : (uint32_t)-1;
257    if (StripLevel < StaticFuncStripDirNamePrefix)
258      StripLevel = StaticFuncStripDirNamePrefix;
259    if (StripLevel)
260      FileName = stripDirPrefix(FileName, StripLevel);
261    return getPGOFuncName(F.getName(), F.getLinkage(), FileName, Version);
262  }
263
264  // In LTO mode (when InLTO is true), first check if there is a meta data.
265  if (MDNode *MD = getPGOFuncNameMetadata(F)) {
266    StringRef S = cast<MDString>(MD->getOperand(0))->getString();
267    return S.str();
268  }
269
270  // If there is no meta data, the function must be a global before the value
271  // profile annotation pass. Its current linkage may be internal if it is
272  // internalized in LTO mode.
273  return getPGOFuncName(F.getName(), GlobalValue::ExternalLinkage, "");
274}
275
276StringRef getFuncNameWithoutPrefix(StringRef PGOFuncName, StringRef FileName) {
277  if (FileName.empty())
278    return PGOFuncName;
279  // Drop the file name including ':'. See also getPGOFuncName.
280  if (PGOFuncName.startswith(FileName))
281    PGOFuncName = PGOFuncName.drop_front(FileName.size() + 1);
282  return PGOFuncName;
283}
284
285// \p FuncName is the string used as profile lookup key for the function. A
286// symbol is created to hold the name. Return the legalized symbol name.
287std::string getPGOFuncNameVarName(StringRef FuncName,
288                                  GlobalValue::LinkageTypes Linkage) {
289  std::string VarName = getInstrProfNameVarPrefix();
290  VarName += FuncName;
291
292  if (!GlobalValue::isLocalLinkage(Linkage))
293    return VarName;
294
295  // Now fix up illegal chars in local VarName that may upset the assembler.
296  const char *InvalidChars = "-:<>/\"'";
297  size_t found = VarName.find_first_of(InvalidChars);
298  while (found != std::string::npos) {
299    VarName[found] = '_';
300    found = VarName.find_first_of(InvalidChars, found + 1);
301  }
302  return VarName;
303}
304
305GlobalVariable *createPGOFuncNameVar(Module &M,
306                                     GlobalValue::LinkageTypes Linkage,
307                                     StringRef PGOFuncName) {
308  // We generally want to match the function's linkage, but available_externally
309  // and extern_weak both have the wrong semantics, and anything that doesn't
310  // need to link across compilation units doesn't need to be visible at all.
311  if (Linkage == GlobalValue::ExternalWeakLinkage)
312    Linkage = GlobalValue::LinkOnceAnyLinkage;
313  else if (Linkage == GlobalValue::AvailableExternallyLinkage)
314    Linkage = GlobalValue::LinkOnceODRLinkage;
315  else if (Linkage == GlobalValue::InternalLinkage ||
316           Linkage == GlobalValue::ExternalLinkage)
317    Linkage = GlobalValue::PrivateLinkage;
318
319  auto *Value =
320      ConstantDataArray::getString(M.getContext(), PGOFuncName, false);
321  auto FuncNameVar =
322      new GlobalVariable(M, Value->getType(), true, Linkage, Value,
323                         getPGOFuncNameVarName(PGOFuncName, Linkage));
324
325  // Hide the symbol so that we correctly get a copy for each executable.
326  if (!GlobalValue::isLocalLinkage(FuncNameVar->getLinkage()))
327    FuncNameVar->setVisibility(GlobalValue::HiddenVisibility);
328
329  return FuncNameVar;
330}
331
332GlobalVariable *createPGOFuncNameVar(Function &F, StringRef PGOFuncName) {
333  return createPGOFuncNameVar(*F.getParent(), F.getLinkage(), PGOFuncName);
334}
335
336Error InstrProfSymtab::create(Module &M, bool InLTO) {
337  for (Function &F : M) {
338    // Function may not have a name: like using asm("") to overwrite the name.
339    // Ignore in this case.
340    if (!F.hasName())
341      continue;
342    const std::string &PGOFuncName = getPGOFuncName(F, InLTO);
343    if (Error E = addFuncName(PGOFuncName))
344      return E;
345    MD5FuncMap.emplace_back(Function::getGUID(PGOFuncName), &F);
346    // In ThinLTO, local function may have been promoted to global and have
347    // suffix added to the function name. We need to add the stripped function
348    // name to the symbol table so that we can find a match from profile.
349    if (InLTO) {
350      auto pos = PGOFuncName.find('.');
351      if (pos != std::string::npos) {
352        const std::string &OtherFuncName = PGOFuncName.substr(0, pos);
353        if (Error E = addFuncName(OtherFuncName))
354          return E;
355        MD5FuncMap.emplace_back(Function::getGUID(OtherFuncName), &F);
356      }
357    }
358  }
359  Sorted = false;
360  finalizeSymtab();
361  return Error::success();
362}
363
364uint64_t InstrProfSymtab::getFunctionHashFromAddress(uint64_t Address) {
365  finalizeSymtab();
366  auto It = partition_point(AddrToMD5Map, [=](std::pair<uint64_t, uint64_t> A) {
367    return A.first < Address;
368  });
369  // Raw function pointer collected by value profiler may be from
370  // external functions that are not instrumented. They won't have
371  // mapping data to be used by the deserializer. Force the value to
372  // be 0 in this case.
373  if (It != AddrToMD5Map.end() && It->first == Address)
374    return (uint64_t)It->second;
375  return 0;
376}
377
378Error collectPGOFuncNameStrings(ArrayRef<std::string> NameStrs,
379                                bool doCompression, std::string &Result) {
380  assert(!NameStrs.empty() && "No name data to emit");
381
382  uint8_t Header[16], *P = Header;
383  std::string UncompressedNameStrings =
384      join(NameStrs.begin(), NameStrs.end(), getInstrProfNameSeparator());
385
386  assert(StringRef(UncompressedNameStrings)
387                 .count(getInstrProfNameSeparator()) == (NameStrs.size() - 1) &&
388         "PGO name is invalid (contains separator token)");
389
390  unsigned EncLen = encodeULEB128(UncompressedNameStrings.length(), P);
391  P += EncLen;
392
393  auto WriteStringToResult = [&](size_t CompressedLen, StringRef InputStr) {
394    EncLen = encodeULEB128(CompressedLen, P);
395    P += EncLen;
396    char *HeaderStr = reinterpret_cast<char *>(&Header[0]);
397    unsigned HeaderLen = P - &Header[0];
398    Result.append(HeaderStr, HeaderLen);
399    Result += InputStr;
400    return Error::success();
401  };
402
403  if (!doCompression) {
404    return WriteStringToResult(0, UncompressedNameStrings);
405  }
406
407  SmallString<128> CompressedNameStrings;
408  Error E = zlib::compress(StringRef(UncompressedNameStrings),
409                           CompressedNameStrings, zlib::BestSizeCompression);
410  if (E) {
411    consumeError(std::move(E));
412    return make_error<InstrProfError>(instrprof_error::compress_failed);
413  }
414
415  return WriteStringToResult(CompressedNameStrings.size(),
416                             CompressedNameStrings);
417}
418
419StringRef getPGOFuncNameVarInitializer(GlobalVariable *NameVar) {
420  auto *Arr = cast<ConstantDataArray>(NameVar->getInitializer());
421  StringRef NameStr =
422      Arr->isCString() ? Arr->getAsCString() : Arr->getAsString();
423  return NameStr;
424}
425
426Error collectPGOFuncNameStrings(ArrayRef<GlobalVariable *> NameVars,
427                                std::string &Result, bool doCompression) {
428  std::vector<std::string> NameStrs;
429  for (auto *NameVar : NameVars) {
430    NameStrs.push_back(getPGOFuncNameVarInitializer(NameVar));
431  }
432  return collectPGOFuncNameStrings(
433      NameStrs, zlib::isAvailable() && doCompression, Result);
434}
435
436Error readPGOFuncNameStrings(StringRef NameStrings, InstrProfSymtab &Symtab) {
437  const uint8_t *P = NameStrings.bytes_begin();
438  const uint8_t *EndP = NameStrings.bytes_end();
439  while (P < EndP) {
440    uint32_t N;
441    uint64_t UncompressedSize = decodeULEB128(P, &N);
442    P += N;
443    uint64_t CompressedSize = decodeULEB128(P, &N);
444    P += N;
445    bool isCompressed = (CompressedSize != 0);
446    SmallString<128> UncompressedNameStrings;
447    StringRef NameStrings;
448    if (isCompressed) {
449      if (!llvm::zlib::isAvailable())
450        return make_error<InstrProfError>(instrprof_error::zlib_unavailable);
451
452      StringRef CompressedNameStrings(reinterpret_cast<const char *>(P),
453                                      CompressedSize);
454      if (Error E =
455              zlib::uncompress(CompressedNameStrings, UncompressedNameStrings,
456                               UncompressedSize)) {
457        consumeError(std::move(E));
458        return make_error<InstrProfError>(instrprof_error::uncompress_failed);
459      }
460      P += CompressedSize;
461      NameStrings = StringRef(UncompressedNameStrings.data(),
462                              UncompressedNameStrings.size());
463    } else {
464      NameStrings =
465          StringRef(reinterpret_cast<const char *>(P), UncompressedSize);
466      P += UncompressedSize;
467    }
468    // Now parse the name strings.
469    SmallVector<StringRef, 0> Names;
470    NameStrings.split(Names, getInstrProfNameSeparator());
471    for (StringRef &Name : Names)
472      if (Error E = Symtab.addFuncName(Name))
473        return E;
474
475    while (P < EndP && *P == 0)
476      P++;
477  }
478  return Error::success();
479}
480
481void InstrProfRecord::accumulateCounts(CountSumOrPercent &Sum) const {
482  uint64_t FuncSum = 0;
483  Sum.NumEntries += Counts.size();
484  for (size_t F = 0, E = Counts.size(); F < E; ++F)
485    FuncSum += Counts[F];
486  Sum.CountSum += FuncSum;
487
488  for (uint32_t VK = IPVK_First; VK <= IPVK_Last; ++VK) {
489    uint64_t KindSum = 0;
490    uint32_t NumValueSites = getNumValueSites(VK);
491    for (size_t I = 0; I < NumValueSites; ++I) {
492      uint32_t NV = getNumValueDataForSite(VK, I);
493      std::unique_ptr<InstrProfValueData[]> VD = getValueForSite(VK, I);
494      for (uint32_t V = 0; V < NV; V++)
495        KindSum += VD[V].Count;
496    }
497    Sum.ValueCounts[VK] += KindSum;
498  }
499}
500
501void InstrProfValueSiteRecord::overlap(InstrProfValueSiteRecord &Input,
502                                       uint32_t ValueKind,
503                                       OverlapStats &Overlap,
504                                       OverlapStats &FuncLevelOverlap) {
505  this->sortByTargetValues();
506  Input.sortByTargetValues();
507  double Score = 0.0f, FuncLevelScore = 0.0f;
508  auto I = ValueData.begin();
509  auto IE = ValueData.end();
510  auto J = Input.ValueData.begin();
511  auto JE = Input.ValueData.end();
512  while (I != IE && J != JE) {
513    if (I->Value == J->Value) {
514      Score += OverlapStats::score(I->Count, J->Count,
515                                   Overlap.Base.ValueCounts[ValueKind],
516                                   Overlap.Test.ValueCounts[ValueKind]);
517      FuncLevelScore += OverlapStats::score(
518          I->Count, J->Count, FuncLevelOverlap.Base.ValueCounts[ValueKind],
519          FuncLevelOverlap.Test.ValueCounts[ValueKind]);
520      ++I;
521    } else if (I->Value < J->Value) {
522      ++I;
523      continue;
524    }
525    ++J;
526  }
527  Overlap.Overlap.ValueCounts[ValueKind] += Score;
528  FuncLevelOverlap.Overlap.ValueCounts[ValueKind] += FuncLevelScore;
529}
530
531// Return false on mismatch.
532void InstrProfRecord::overlapValueProfData(uint32_t ValueKind,
533                                           InstrProfRecord &Other,
534                                           OverlapStats &Overlap,
535                                           OverlapStats &FuncLevelOverlap) {
536  uint32_t ThisNumValueSites = getNumValueSites(ValueKind);
537  assert(ThisNumValueSites == Other.getNumValueSites(ValueKind));
538  if (!ThisNumValueSites)
539    return;
540
541  std::vector<InstrProfValueSiteRecord> &ThisSiteRecords =
542      getOrCreateValueSitesForKind(ValueKind);
543  MutableArrayRef<InstrProfValueSiteRecord> OtherSiteRecords =
544      Other.getValueSitesForKind(ValueKind);
545  for (uint32_t I = 0; I < ThisNumValueSites; I++)
546    ThisSiteRecords[I].overlap(OtherSiteRecords[I], ValueKind, Overlap,
547                               FuncLevelOverlap);
548}
549
550void InstrProfRecord::overlap(InstrProfRecord &Other, OverlapStats &Overlap,
551                              OverlapStats &FuncLevelOverlap,
552                              uint64_t ValueCutoff) {
553  // FuncLevel CountSum for other should already computed and nonzero.
554  assert(FuncLevelOverlap.Test.CountSum >= 1.0f);
555  accumulateCounts(FuncLevelOverlap.Base);
556  bool Mismatch = (Counts.size() != Other.Counts.size());
557
558  // Check if the value profiles mismatch.
559  if (!Mismatch) {
560    for (uint32_t Kind = IPVK_First; Kind <= IPVK_Last; ++Kind) {
561      uint32_t ThisNumValueSites = getNumValueSites(Kind);
562      uint32_t OtherNumValueSites = Other.getNumValueSites(Kind);
563      if (ThisNumValueSites != OtherNumValueSites) {
564        Mismatch = true;
565        break;
566      }
567    }
568  }
569  if (Mismatch) {
570    Overlap.addOneMismatch(FuncLevelOverlap.Test);
571    return;
572  }
573
574  // Compute overlap for value counts.
575  for (uint32_t Kind = IPVK_First; Kind <= IPVK_Last; ++Kind)
576    overlapValueProfData(Kind, Other, Overlap, FuncLevelOverlap);
577
578  double Score = 0.0;
579  uint64_t MaxCount = 0;
580  // Compute overlap for edge counts.
581  for (size_t I = 0, E = Other.Counts.size(); I < E; ++I) {
582    Score += OverlapStats::score(Counts[I], Other.Counts[I],
583                                 Overlap.Base.CountSum, Overlap.Test.CountSum);
584    MaxCount = std::max(Other.Counts[I], MaxCount);
585  }
586  Overlap.Overlap.CountSum += Score;
587  Overlap.Overlap.NumEntries += 1;
588
589  if (MaxCount >= ValueCutoff) {
590    double FuncScore = 0.0;
591    for (size_t I = 0, E = Other.Counts.size(); I < E; ++I)
592      FuncScore += OverlapStats::score(Counts[I], Other.Counts[I],
593                                       FuncLevelOverlap.Base.CountSum,
594                                       FuncLevelOverlap.Test.CountSum);
595    FuncLevelOverlap.Overlap.CountSum = FuncScore;
596    FuncLevelOverlap.Overlap.NumEntries = Other.Counts.size();
597    FuncLevelOverlap.Valid = true;
598  }
599}
600
601void InstrProfValueSiteRecord::merge(InstrProfValueSiteRecord &Input,
602                                     uint64_t Weight,
603                                     function_ref<void(instrprof_error)> Warn) {
604  this->sortByTargetValues();
605  Input.sortByTargetValues();
606  auto I = ValueData.begin();
607  auto IE = ValueData.end();
608  for (auto J = Input.ValueData.begin(), JE = Input.ValueData.end(); J != JE;
609       ++J) {
610    while (I != IE && I->Value < J->Value)
611      ++I;
612    if (I != IE && I->Value == J->Value) {
613      bool Overflowed;
614      I->Count = SaturatingMultiplyAdd(J->Count, Weight, I->Count, &Overflowed);
615      if (Overflowed)
616        Warn(instrprof_error::counter_overflow);
617      ++I;
618      continue;
619    }
620    ValueData.insert(I, *J);
621  }
622}
623
624void InstrProfValueSiteRecord::scale(uint64_t Weight,
625                                     function_ref<void(instrprof_error)> Warn) {
626  for (auto I = ValueData.begin(), IE = ValueData.end(); I != IE; ++I) {
627    bool Overflowed;
628    I->Count = SaturatingMultiply(I->Count, Weight, &Overflowed);
629    if (Overflowed)
630      Warn(instrprof_error::counter_overflow);
631  }
632}
633
634// Merge Value Profile data from Src record to this record for ValueKind.
635// Scale merged value counts by \p Weight.
636void InstrProfRecord::mergeValueProfData(
637    uint32_t ValueKind, InstrProfRecord &Src, uint64_t Weight,
638    function_ref<void(instrprof_error)> Warn) {
639  uint32_t ThisNumValueSites = getNumValueSites(ValueKind);
640  uint32_t OtherNumValueSites = Src.getNumValueSites(ValueKind);
641  if (ThisNumValueSites != OtherNumValueSites) {
642    Warn(instrprof_error::value_site_count_mismatch);
643    return;
644  }
645  if (!ThisNumValueSites)
646    return;
647  std::vector<InstrProfValueSiteRecord> &ThisSiteRecords =
648      getOrCreateValueSitesForKind(ValueKind);
649  MutableArrayRef<InstrProfValueSiteRecord> OtherSiteRecords =
650      Src.getValueSitesForKind(ValueKind);
651  for (uint32_t I = 0; I < ThisNumValueSites; I++)
652    ThisSiteRecords[I].merge(OtherSiteRecords[I], Weight, Warn);
653}
654
655void InstrProfRecord::merge(InstrProfRecord &Other, uint64_t Weight,
656                            function_ref<void(instrprof_error)> Warn) {
657  // If the number of counters doesn't match we either have bad data
658  // or a hash collision.
659  if (Counts.size() != Other.Counts.size()) {
660    Warn(instrprof_error::count_mismatch);
661    return;
662  }
663
664  for (size_t I = 0, E = Other.Counts.size(); I < E; ++I) {
665    bool Overflowed;
666    Counts[I] =
667        SaturatingMultiplyAdd(Other.Counts[I], Weight, Counts[I], &Overflowed);
668    if (Overflowed)
669      Warn(instrprof_error::counter_overflow);
670  }
671
672  for (uint32_t Kind = IPVK_First; Kind <= IPVK_Last; ++Kind)
673    mergeValueProfData(Kind, Other, Weight, Warn);
674}
675
676void InstrProfRecord::scaleValueProfData(
677    uint32_t ValueKind, uint64_t Weight,
678    function_ref<void(instrprof_error)> Warn) {
679  for (auto &R : getValueSitesForKind(ValueKind))
680    R.scale(Weight, Warn);
681}
682
683void InstrProfRecord::scale(uint64_t Weight,
684                            function_ref<void(instrprof_error)> Warn) {
685  for (auto &Count : this->Counts) {
686    bool Overflowed;
687    Count = SaturatingMultiply(Count, Weight, &Overflowed);
688    if (Overflowed)
689      Warn(instrprof_error::counter_overflow);
690  }
691  for (uint32_t Kind = IPVK_First; Kind <= IPVK_Last; ++Kind)
692    scaleValueProfData(Kind, Weight, Warn);
693}
694
695// Map indirect call target name hash to name string.
696uint64_t InstrProfRecord::remapValue(uint64_t Value, uint32_t ValueKind,
697                                     InstrProfSymtab *SymTab) {
698  if (!SymTab)
699    return Value;
700
701  if (ValueKind == IPVK_IndirectCallTarget)
702    return SymTab->getFunctionHashFromAddress(Value);
703
704  return Value;
705}
706
707void InstrProfRecord::addValueData(uint32_t ValueKind, uint32_t Site,
708                                   InstrProfValueData *VData, uint32_t N,
709                                   InstrProfSymtab *ValueMap) {
710  for (uint32_t I = 0; I < N; I++) {
711    VData[I].Value = remapValue(VData[I].Value, ValueKind, ValueMap);
712  }
713  std::vector<InstrProfValueSiteRecord> &ValueSites =
714      getOrCreateValueSitesForKind(ValueKind);
715  if (N == 0)
716    ValueSites.emplace_back();
717  else
718    ValueSites.emplace_back(VData, VData + N);
719}
720
721#define INSTR_PROF_COMMON_API_IMPL
722#include "llvm/ProfileData/InstrProfData.inc"
723
724/*!
725 * ValueProfRecordClosure Interface implementation for  InstrProfRecord
726 *  class. These C wrappers are used as adaptors so that C++ code can be
727 *  invoked as callbacks.
728 */
729uint32_t getNumValueKindsInstrProf(const void *Record) {
730  return reinterpret_cast<const InstrProfRecord *>(Record)->getNumValueKinds();
731}
732
733uint32_t getNumValueSitesInstrProf(const void *Record, uint32_t VKind) {
734  return reinterpret_cast<const InstrProfRecord *>(Record)
735      ->getNumValueSites(VKind);
736}
737
738uint32_t getNumValueDataInstrProf(const void *Record, uint32_t VKind) {
739  return reinterpret_cast<const InstrProfRecord *>(Record)
740      ->getNumValueData(VKind);
741}
742
743uint32_t getNumValueDataForSiteInstrProf(const void *R, uint32_t VK,
744                                         uint32_t S) {
745  return reinterpret_cast<const InstrProfRecord *>(R)
746      ->getNumValueDataForSite(VK, S);
747}
748
749void getValueForSiteInstrProf(const void *R, InstrProfValueData *Dst,
750                              uint32_t K, uint32_t S) {
751  reinterpret_cast<const InstrProfRecord *>(R)->getValueForSite(Dst, K, S);
752}
753
754ValueProfData *allocValueProfDataInstrProf(size_t TotalSizeInBytes) {
755  ValueProfData *VD =
756      (ValueProfData *)(new (::operator new(TotalSizeInBytes)) ValueProfData());
757  memset(VD, 0, TotalSizeInBytes);
758  return VD;
759}
760
761static ValueProfRecordClosure InstrProfRecordClosure = {
762    nullptr,
763    getNumValueKindsInstrProf,
764    getNumValueSitesInstrProf,
765    getNumValueDataInstrProf,
766    getNumValueDataForSiteInstrProf,
767    nullptr,
768    getValueForSiteInstrProf,
769    allocValueProfDataInstrProf};
770
771// Wrapper implementation using the closure mechanism.
772uint32_t ValueProfData::getSize(const InstrProfRecord &Record) {
773  auto Closure = InstrProfRecordClosure;
774  Closure.Record = &Record;
775  return getValueProfDataSize(&Closure);
776}
777
778// Wrapper implementation using the closure mechanism.
779std::unique_ptr<ValueProfData>
780ValueProfData::serializeFrom(const InstrProfRecord &Record) {
781  InstrProfRecordClosure.Record = &Record;
782
783  std::unique_ptr<ValueProfData> VPD(
784      serializeValueProfDataFrom(&InstrProfRecordClosure, nullptr));
785  return VPD;
786}
787
788void ValueProfRecord::deserializeTo(InstrProfRecord &Record,
789                                    InstrProfSymtab *SymTab) {
790  Record.reserveSites(Kind, NumValueSites);
791
792  InstrProfValueData *ValueData = getValueProfRecordValueData(this);
793  for (uint64_t VSite = 0; VSite < NumValueSites; ++VSite) {
794    uint8_t ValueDataCount = this->SiteCountArray[VSite];
795    Record.addValueData(Kind, VSite, ValueData, ValueDataCount, SymTab);
796    ValueData += ValueDataCount;
797  }
798}
799
800// For writing/serializing,  Old is the host endianness, and  New is
801// byte order intended on disk. For Reading/deserialization, Old
802// is the on-disk source endianness, and New is the host endianness.
803void ValueProfRecord::swapBytes(support::endianness Old,
804                                support::endianness New) {
805  using namespace support;
806
807  if (Old == New)
808    return;
809
810  if (getHostEndianness() != Old) {
811    sys::swapByteOrder<uint32_t>(NumValueSites);
812    sys::swapByteOrder<uint32_t>(Kind);
813  }
814  uint32_t ND = getValueProfRecordNumValueData(this);
815  InstrProfValueData *VD = getValueProfRecordValueData(this);
816
817  // No need to swap byte array: SiteCountArrray.
818  for (uint32_t I = 0; I < ND; I++) {
819    sys::swapByteOrder<uint64_t>(VD[I].Value);
820    sys::swapByteOrder<uint64_t>(VD[I].Count);
821  }
822  if (getHostEndianness() == Old) {
823    sys::swapByteOrder<uint32_t>(NumValueSites);
824    sys::swapByteOrder<uint32_t>(Kind);
825  }
826}
827
828void ValueProfData::deserializeTo(InstrProfRecord &Record,
829                                  InstrProfSymtab *SymTab) {
830  if (NumValueKinds == 0)
831    return;
832
833  ValueProfRecord *VR = getFirstValueProfRecord(this);
834  for (uint32_t K = 0; K < NumValueKinds; K++) {
835    VR->deserializeTo(Record, SymTab);
836    VR = getValueProfRecordNext(VR);
837  }
838}
839
840template <class T>
841static T swapToHostOrder(const unsigned char *&D, support::endianness Orig) {
842  using namespace support;
843
844  if (Orig == little)
845    return endian::readNext<T, little, unaligned>(D);
846  else
847    return endian::readNext<T, big, unaligned>(D);
848}
849
850static std::unique_ptr<ValueProfData> allocValueProfData(uint32_t TotalSize) {
851  return std::unique_ptr<ValueProfData>(new (::operator new(TotalSize))
852                                            ValueProfData());
853}
854
855Error ValueProfData::checkIntegrity() {
856  if (NumValueKinds > IPVK_Last + 1)
857    return make_error<InstrProfError>(instrprof_error::malformed);
858  // Total size needs to be mulltiple of quadword size.
859  if (TotalSize % sizeof(uint64_t))
860    return make_error<InstrProfError>(instrprof_error::malformed);
861
862  ValueProfRecord *VR = getFirstValueProfRecord(this);
863  for (uint32_t K = 0; K < this->NumValueKinds; K++) {
864    if (VR->Kind > IPVK_Last)
865      return make_error<InstrProfError>(instrprof_error::malformed);
866    VR = getValueProfRecordNext(VR);
867    if ((char *)VR - (char *)this > (ptrdiff_t)TotalSize)
868      return make_error<InstrProfError>(instrprof_error::malformed);
869  }
870  return Error::success();
871}
872
873Expected<std::unique_ptr<ValueProfData>>
874ValueProfData::getValueProfData(const unsigned char *D,
875                                const unsigned char *const BufferEnd,
876                                support::endianness Endianness) {
877  using namespace support;
878
879  if (D + sizeof(ValueProfData) > BufferEnd)
880    return make_error<InstrProfError>(instrprof_error::truncated);
881
882  const unsigned char *Header = D;
883  uint32_t TotalSize = swapToHostOrder<uint32_t>(Header, Endianness);
884  if (D + TotalSize > BufferEnd)
885    return make_error<InstrProfError>(instrprof_error::too_large);
886
887  std::unique_ptr<ValueProfData> VPD = allocValueProfData(TotalSize);
888  memcpy(VPD.get(), D, TotalSize);
889  // Byte swap.
890  VPD->swapBytesToHost(Endianness);
891
892  Error E = VPD->checkIntegrity();
893  if (E)
894    return std::move(E);
895
896  return std::move(VPD);
897}
898
899void ValueProfData::swapBytesToHost(support::endianness Endianness) {
900  using namespace support;
901
902  if (Endianness == getHostEndianness())
903    return;
904
905  sys::swapByteOrder<uint32_t>(TotalSize);
906  sys::swapByteOrder<uint32_t>(NumValueKinds);
907
908  ValueProfRecord *VR = getFirstValueProfRecord(this);
909  for (uint32_t K = 0; K < NumValueKinds; K++) {
910    VR->swapBytes(Endianness, getHostEndianness());
911    VR = getValueProfRecordNext(VR);
912  }
913}
914
915void ValueProfData::swapBytesFromHost(support::endianness Endianness) {
916  using namespace support;
917
918  if (Endianness == getHostEndianness())
919    return;
920
921  ValueProfRecord *VR = getFirstValueProfRecord(this);
922  for (uint32_t K = 0; K < NumValueKinds; K++) {
923    ValueProfRecord *NVR = getValueProfRecordNext(VR);
924    VR->swapBytes(getHostEndianness(), Endianness);
925    VR = NVR;
926  }
927  sys::swapByteOrder<uint32_t>(TotalSize);
928  sys::swapByteOrder<uint32_t>(NumValueKinds);
929}
930
931void annotateValueSite(Module &M, Instruction &Inst,
932                       const InstrProfRecord &InstrProfR,
933                       InstrProfValueKind ValueKind, uint32_t SiteIdx,
934                       uint32_t MaxMDCount) {
935  uint32_t NV = InstrProfR.getNumValueDataForSite(ValueKind, SiteIdx);
936  if (!NV)
937    return;
938
939  uint64_t Sum = 0;
940  std::unique_ptr<InstrProfValueData[]> VD =
941      InstrProfR.getValueForSite(ValueKind, SiteIdx, &Sum);
942
943  ArrayRef<InstrProfValueData> VDs(VD.get(), NV);
944  annotateValueSite(M, Inst, VDs, Sum, ValueKind, MaxMDCount);
945}
946
947void annotateValueSite(Module &M, Instruction &Inst,
948                       ArrayRef<InstrProfValueData> VDs,
949                       uint64_t Sum, InstrProfValueKind ValueKind,
950                       uint32_t MaxMDCount) {
951  LLVMContext &Ctx = M.getContext();
952  MDBuilder MDHelper(Ctx);
953  SmallVector<Metadata *, 3> Vals;
954  // Tag
955  Vals.push_back(MDHelper.createString("VP"));
956  // Value Kind
957  Vals.push_back(MDHelper.createConstant(
958      ConstantInt::get(Type::getInt32Ty(Ctx), ValueKind)));
959  // Total Count
960  Vals.push_back(
961      MDHelper.createConstant(ConstantInt::get(Type::getInt64Ty(Ctx), Sum)));
962
963  // Value Profile Data
964  uint32_t MDCount = MaxMDCount;
965  for (auto &VD : VDs) {
966    Vals.push_back(MDHelper.createConstant(
967        ConstantInt::get(Type::getInt64Ty(Ctx), VD.Value)));
968    Vals.push_back(MDHelper.createConstant(
969        ConstantInt::get(Type::getInt64Ty(Ctx), VD.Count)));
970    if (--MDCount == 0)
971      break;
972  }
973  Inst.setMetadata(LLVMContext::MD_prof, MDNode::get(Ctx, Vals));
974}
975
976bool getValueProfDataFromInst(const Instruction &Inst,
977                              InstrProfValueKind ValueKind,
978                              uint32_t MaxNumValueData,
979                              InstrProfValueData ValueData[],
980                              uint32_t &ActualNumValueData, uint64_t &TotalC) {
981  MDNode *MD = Inst.getMetadata(LLVMContext::MD_prof);
982  if (!MD)
983    return false;
984
985  unsigned NOps = MD->getNumOperands();
986
987  if (NOps < 5)
988    return false;
989
990  // Operand 0 is a string tag "VP":
991  MDString *Tag = cast<MDString>(MD->getOperand(0));
992  if (!Tag)
993    return false;
994
995  if (!Tag->getString().equals("VP"))
996    return false;
997
998  // Now check kind:
999  ConstantInt *KindInt = mdconst::dyn_extract<ConstantInt>(MD->getOperand(1));
1000  if (!KindInt)
1001    return false;
1002  if (KindInt->getZExtValue() != ValueKind)
1003    return false;
1004
1005  // Get total count
1006  ConstantInt *TotalCInt = mdconst::dyn_extract<ConstantInt>(MD->getOperand(2));
1007  if (!TotalCInt)
1008    return false;
1009  TotalC = TotalCInt->getZExtValue();
1010
1011  ActualNumValueData = 0;
1012
1013  for (unsigned I = 3; I < NOps; I += 2) {
1014    if (ActualNumValueData >= MaxNumValueData)
1015      break;
1016    ConstantInt *Value = mdconst::dyn_extract<ConstantInt>(MD->getOperand(I));
1017    ConstantInt *Count =
1018        mdconst::dyn_extract<ConstantInt>(MD->getOperand(I + 1));
1019    if (!Value || !Count)
1020      return false;
1021    ValueData[ActualNumValueData].Value = Value->getZExtValue();
1022    ValueData[ActualNumValueData].Count = Count->getZExtValue();
1023    ActualNumValueData++;
1024  }
1025  return true;
1026}
1027
1028MDNode *getPGOFuncNameMetadata(const Function &F) {
1029  return F.getMetadata(getPGOFuncNameMetadataName());
1030}
1031
1032void createPGOFuncNameMetadata(Function &F, StringRef PGOFuncName) {
1033  // Only for internal linkage functions.
1034  if (PGOFuncName == F.getName())
1035      return;
1036  // Don't create duplicated meta-data.
1037  if (getPGOFuncNameMetadata(F))
1038    return;
1039  LLVMContext &C = F.getContext();
1040  MDNode *N = MDNode::get(C, MDString::get(C, PGOFuncName));
1041  F.setMetadata(getPGOFuncNameMetadataName(), N);
1042}
1043
1044bool needsComdatForCounter(const Function &F, const Module &M) {
1045  if (F.hasComdat())
1046    return true;
1047
1048  if (!Triple(M.getTargetTriple()).supportsCOMDAT())
1049    return false;
1050
1051  // See createPGOFuncNameVar for more details. To avoid link errors, profile
1052  // counters for function with available_externally linkage needs to be changed
1053  // to linkonce linkage. On ELF based systems, this leads to weak symbols to be
1054  // created. Without using comdat, duplicate entries won't be removed by the
1055  // linker leading to increased data segement size and raw profile size. Even
1056  // worse, since the referenced counter from profile per-function data object
1057  // will be resolved to the common strong definition, the profile counts for
1058  // available_externally functions will end up being duplicated in raw profile
1059  // data. This can result in distorted profile as the counts of those dups
1060  // will be accumulated by the profile merger.
1061  GlobalValue::LinkageTypes Linkage = F.getLinkage();
1062  if (Linkage != GlobalValue::ExternalWeakLinkage &&
1063      Linkage != GlobalValue::AvailableExternallyLinkage)
1064    return false;
1065
1066  return true;
1067}
1068
1069// Check if INSTR_PROF_RAW_VERSION_VAR is defined.
1070bool isIRPGOFlagSet(const Module *M) {
1071  auto IRInstrVar =
1072      M->getNamedGlobal(INSTR_PROF_QUOTE(INSTR_PROF_RAW_VERSION_VAR));
1073  if (!IRInstrVar || IRInstrVar->isDeclaration() ||
1074      IRInstrVar->hasLocalLinkage())
1075    return false;
1076
1077  // Check if the flag is set.
1078  if (!IRInstrVar->hasInitializer())
1079    return false;
1080
1081  auto *InitVal = dyn_cast_or_null<ConstantInt>(IRInstrVar->getInitializer());
1082  if (!InitVal)
1083    return false;
1084  return (InitVal->getZExtValue() & VARIANT_MASK_IR_PROF) != 0;
1085}
1086
1087// Check if we can safely rename this Comdat function.
1088bool canRenameComdatFunc(const Function &F, bool CheckAddressTaken) {
1089  if (F.getName().empty())
1090    return false;
1091  if (!needsComdatForCounter(F, *(F.getParent())))
1092    return false;
1093  // Unsafe to rename the address-taken function (which can be used in
1094  // function comparison).
1095  if (CheckAddressTaken && F.hasAddressTaken())
1096    return false;
1097  // Only safe to do if this function may be discarded if it is not used
1098  // in the compilation unit.
1099  if (!GlobalValue::isDiscardableIfUnused(F.getLinkage()))
1100    return false;
1101
1102  // For AvailableExternallyLinkage functions.
1103  if (!F.hasComdat()) {
1104    assert(F.getLinkage() == GlobalValue::AvailableExternallyLinkage);
1105    return true;
1106  }
1107  return true;
1108}
1109
1110// Parse the value profile options.
1111void getMemOPSizeRangeFromOption(StringRef MemOPSizeRange, int64_t &RangeStart,
1112                                 int64_t &RangeLast) {
1113  static const int64_t DefaultMemOPSizeRangeStart = 0;
1114  static const int64_t DefaultMemOPSizeRangeLast = 8;
1115  RangeStart = DefaultMemOPSizeRangeStart;
1116  RangeLast = DefaultMemOPSizeRangeLast;
1117
1118  if (!MemOPSizeRange.empty()) {
1119    auto Pos = MemOPSizeRange.find(':');
1120    if (Pos != std::string::npos) {
1121      if (Pos > 0)
1122        MemOPSizeRange.substr(0, Pos).getAsInteger(10, RangeStart);
1123      if (Pos < MemOPSizeRange.size() - 1)
1124        MemOPSizeRange.substr(Pos + 1).getAsInteger(10, RangeLast);
1125    } else
1126      MemOPSizeRange.getAsInteger(10, RangeLast);
1127  }
1128  assert(RangeLast >= RangeStart);
1129}
1130
1131// Create a COMDAT variable INSTR_PROF_RAW_VERSION_VAR to make the runtime
1132// aware this is an ir_level profile so it can set the version flag.
1133void createIRLevelProfileFlagVar(Module &M, bool IsCS) {
1134  const StringRef VarName(INSTR_PROF_QUOTE(INSTR_PROF_RAW_VERSION_VAR));
1135  Type *IntTy64 = Type::getInt64Ty(M.getContext());
1136  uint64_t ProfileVersion = (INSTR_PROF_RAW_VERSION | VARIANT_MASK_IR_PROF);
1137  if (IsCS)
1138    ProfileVersion |= VARIANT_MASK_CSIR_PROF;
1139  auto IRLevelVersionVariable = new GlobalVariable(
1140      M, IntTy64, true, GlobalValue::WeakAnyLinkage,
1141      Constant::getIntegerValue(IntTy64, APInt(64, ProfileVersion)), VarName);
1142  IRLevelVersionVariable->setVisibility(GlobalValue::DefaultVisibility);
1143  Triple TT(M.getTargetTriple());
1144  if (TT.supportsCOMDAT()) {
1145    IRLevelVersionVariable->setLinkage(GlobalValue::ExternalLinkage);
1146    IRLevelVersionVariable->setComdat(M.getOrInsertComdat(VarName));
1147  }
1148}
1149
1150// Create the variable for the profile file name.
1151void createProfileFileNameVar(Module &M, StringRef InstrProfileOutput) {
1152  if (InstrProfileOutput.empty())
1153    return;
1154  Constant *ProfileNameConst =
1155      ConstantDataArray::getString(M.getContext(), InstrProfileOutput, true);
1156  GlobalVariable *ProfileNameVar = new GlobalVariable(
1157      M, ProfileNameConst->getType(), true, GlobalValue::WeakAnyLinkage,
1158      ProfileNameConst, INSTR_PROF_QUOTE(INSTR_PROF_PROFILE_NAME_VAR));
1159  Triple TT(M.getTargetTriple());
1160  if (TT.supportsCOMDAT()) {
1161    ProfileNameVar->setLinkage(GlobalValue::ExternalLinkage);
1162    ProfileNameVar->setComdat(M.getOrInsertComdat(
1163        StringRef(INSTR_PROF_QUOTE(INSTR_PROF_PROFILE_NAME_VAR))));
1164  }
1165}
1166
1167Error OverlapStats::accumulateCounts(const std::string &BaseFilename,
1168                                     const std::string &TestFilename,
1169                                     bool IsCS) {
1170  auto getProfileSum = [IsCS](const std::string &Filename,
1171                              CountSumOrPercent &Sum) -> Error {
1172    auto ReaderOrErr = InstrProfReader::create(Filename);
1173    if (Error E = ReaderOrErr.takeError()) {
1174      return E;
1175    }
1176    auto Reader = std::move(ReaderOrErr.get());
1177    Reader->accumulateCounts(Sum, IsCS);
1178    return Error::success();
1179  };
1180  auto Ret = getProfileSum(BaseFilename, Base);
1181  if (Ret)
1182    return Ret;
1183  Ret = getProfileSum(TestFilename, Test);
1184  if (Ret)
1185    return Ret;
1186  this->BaseFilename = &BaseFilename;
1187  this->TestFilename = &TestFilename;
1188  Valid = true;
1189  return Error::success();
1190}
1191
1192void OverlapStats::addOneMismatch(const CountSumOrPercent &MismatchFunc) {
1193  Mismatch.NumEntries += 1;
1194  Mismatch.CountSum += MismatchFunc.CountSum / Test.CountSum;
1195  for (unsigned I = 0; I < IPVK_Last - IPVK_First + 1; I++) {
1196    if (Test.ValueCounts[I] >= 1.0f)
1197      Mismatch.ValueCounts[I] +=
1198          MismatchFunc.ValueCounts[I] / Test.ValueCounts[I];
1199  }
1200}
1201
1202void OverlapStats::addOneUnique(const CountSumOrPercent &UniqueFunc) {
1203  Unique.NumEntries += 1;
1204  Unique.CountSum += UniqueFunc.CountSum / Test.CountSum;
1205  for (unsigned I = 0; I < IPVK_Last - IPVK_First + 1; I++) {
1206    if (Test.ValueCounts[I] >= 1.0f)
1207      Unique.ValueCounts[I] += UniqueFunc.ValueCounts[I] / Test.ValueCounts[I];
1208  }
1209}
1210
1211void OverlapStats::dump(raw_fd_ostream &OS) const {
1212  if (!Valid)
1213    return;
1214
1215  const char *EntryName =
1216      (Level == ProgramLevel ? "functions" : "edge counters");
1217  if (Level == ProgramLevel) {
1218    OS << "Profile overlap infomation for base_profile: " << *BaseFilename
1219       << " and test_profile: " << *TestFilename << "\nProgram level:\n";
1220  } else {
1221    OS << "Function level:\n"
1222       << "  Function: " << FuncName << " (Hash=" << FuncHash << ")\n";
1223  }
1224
1225  OS << "  # of " << EntryName << " overlap: " << Overlap.NumEntries << "\n";
1226  if (Mismatch.NumEntries)
1227    OS << "  # of " << EntryName << " mismatch: " << Mismatch.NumEntries
1228       << "\n";
1229  if (Unique.NumEntries)
1230    OS << "  # of " << EntryName
1231       << " only in test_profile: " << Unique.NumEntries << "\n";
1232
1233  OS << "  Edge profile overlap: " << format("%.3f%%", Overlap.CountSum * 100)
1234     << "\n";
1235  if (Mismatch.NumEntries)
1236    OS << "  Mismatched count percentage (Edge): "
1237       << format("%.3f%%", Mismatch.CountSum * 100) << "\n";
1238  if (Unique.NumEntries)
1239    OS << "  Percentage of Edge profile only in test_profile: "
1240       << format("%.3f%%", Unique.CountSum * 100) << "\n";
1241  OS << "  Edge profile base count sum: " << format("%.0f", Base.CountSum)
1242     << "\n"
1243     << "  Edge profile test count sum: " << format("%.0f", Test.CountSum)
1244     << "\n";
1245
1246  for (unsigned I = 0; I < IPVK_Last - IPVK_First + 1; I++) {
1247    if (Base.ValueCounts[I] < 1.0f && Test.ValueCounts[I] < 1.0f)
1248      continue;
1249    char ProfileKindName[20];
1250    switch (I) {
1251    case IPVK_IndirectCallTarget:
1252      strncpy(ProfileKindName, "IndirectCall", 19);
1253      break;
1254    case IPVK_MemOPSize:
1255      strncpy(ProfileKindName, "MemOP", 19);
1256      break;
1257    default:
1258      snprintf(ProfileKindName, 19, "VP[%d]", I);
1259      break;
1260    }
1261    OS << "  " << ProfileKindName
1262       << " profile overlap: " << format("%.3f%%", Overlap.ValueCounts[I] * 100)
1263       << "\n";
1264    if (Mismatch.NumEntries)
1265      OS << "  Mismatched count percentage (" << ProfileKindName
1266         << "): " << format("%.3f%%", Mismatch.ValueCounts[I] * 100) << "\n";
1267    if (Unique.NumEntries)
1268      OS << "  Percentage of " << ProfileKindName
1269         << " profile only in test_profile: "
1270         << format("%.3f%%", Unique.ValueCounts[I] * 100) << "\n";
1271    OS << "  " << ProfileKindName
1272       << " profile base count sum: " << format("%.0f", Base.ValueCounts[I])
1273       << "\n"
1274       << "  " << ProfileKindName
1275       << " profile test count sum: " << format("%.0f", Test.ValueCounts[I])
1276       << "\n";
1277  }
1278}
1279
1280} // end namespace llvm
1281