XCOFFObjectWriter.cpp revision 360784
1//===-- lib/MC/XCOFFObjectWriter.cpp - XCOFF file writer ------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements XCOFF object file writer information.
10//
11//===----------------------------------------------------------------------===//
12
13#include "llvm/BinaryFormat/XCOFF.h"
14#include "llvm/MC/MCAsmLayout.h"
15#include "llvm/MC/MCAssembler.h"
16#include "llvm/MC/MCObjectWriter.h"
17#include "llvm/MC/MCSectionXCOFF.h"
18#include "llvm/MC/MCSymbolXCOFF.h"
19#include "llvm/MC/MCValue.h"
20#include "llvm/MC/MCXCOFFObjectWriter.h"
21#include "llvm/MC/StringTableBuilder.h"
22#include "llvm/Support/Error.h"
23#include "llvm/Support/MathExtras.h"
24
25#include <deque>
26
27using namespace llvm;
28
29// An XCOFF object file has a limited set of predefined sections. The most
30// important ones for us (right now) are:
31// .text --> contains program code and read-only data.
32// .data --> contains initialized data, function descriptors, and the TOC.
33// .bss  --> contains uninitialized data.
34// Each of these sections is composed of 'Control Sections'. A Control Section
35// is more commonly referred to as a csect. A csect is an indivisible unit of
36// code or data, and acts as a container for symbols. A csect is mapped
37// into a section based on its storage-mapping class, with the exception of
38// XMC_RW which gets mapped to either .data or .bss based on whether it's
39// explicitly initialized or not.
40//
41// We don't represent the sections in the MC layer as there is nothing
42// interesting about them at at that level: they carry information that is
43// only relevant to the ObjectWriter, so we materialize them in this class.
44namespace {
45
46constexpr unsigned DefaultSectionAlign = 4;
47constexpr int16_t MaxSectionIndex = INT16_MAX;
48
49// Packs the csect's alignment and type into a byte.
50uint8_t getEncodedType(const MCSectionXCOFF *);
51
52// Wrapper around an MCSymbolXCOFF.
53struct Symbol {
54  const MCSymbolXCOFF *const MCSym;
55  uint32_t SymbolTableIndex;
56
57  XCOFF::StorageClass getStorageClass() const {
58    return MCSym->getStorageClass();
59  }
60  StringRef getName() const { return MCSym->getName(); }
61  Symbol(const MCSymbolXCOFF *MCSym) : MCSym(MCSym), SymbolTableIndex(-1) {}
62};
63
64// Wrapper for an MCSectionXCOFF.
65struct ControlSection {
66  const MCSectionXCOFF *const MCCsect;
67  uint32_t SymbolTableIndex;
68  uint32_t Address;
69  uint32_t Size;
70
71  SmallVector<Symbol, 1> Syms;
72  StringRef getName() const { return MCCsect->getSectionName(); }
73  ControlSection(const MCSectionXCOFF *MCSec)
74      : MCCsect(MCSec), SymbolTableIndex(-1), Address(-1), Size(0) {}
75};
76
77// Type to be used for a container representing a set of csects with
78// (approximately) the same storage mapping class. For example all the csects
79// with a storage mapping class of `xmc_pr` will get placed into the same
80// container.
81using CsectGroup = std::deque<ControlSection>;
82
83using CsectGroups = std::deque<CsectGroup *>;
84
85// Represents the data related to a section excluding the csects that make up
86// the raw data of the section. The csects are stored separately as not all
87// sections contain csects, and some sections contain csects which are better
88// stored separately, e.g. the .data section containing read-write, descriptor,
89// TOCBase and TOC-entry csects.
90struct Section {
91  char Name[XCOFF::NameSize];
92  // The physical/virtual address of the section. For an object file
93  // these values are equivalent.
94  uint32_t Address;
95  uint32_t Size;
96  uint32_t FileOffsetToData;
97  uint32_t FileOffsetToRelocations;
98  uint32_t RelocationCount;
99  int32_t Flags;
100
101  int16_t Index;
102
103  // Virtual sections do not need storage allocated in the object file.
104  const bool IsVirtual;
105
106  // XCOFF has special section numbers for symbols:
107  // -2 Specifies N_DEBUG, a special symbolic debugging symbol.
108  // -1 Specifies N_ABS, an absolute symbol. The symbol has a value but is not
109  // relocatable.
110  //  0 Specifies N_UNDEF, an undefined external symbol.
111  // Therefore, we choose -3 (N_DEBUG - 1) to represent a section index that
112  // hasn't been initialized.
113  static constexpr int16_t UninitializedIndex =
114      XCOFF::ReservedSectionNum::N_DEBUG - 1;
115
116  CsectGroups Groups;
117
118  void reset() {
119    Address = 0;
120    Size = 0;
121    FileOffsetToData = 0;
122    FileOffsetToRelocations = 0;
123    RelocationCount = 0;
124    Index = UninitializedIndex;
125    // Clear any csects we have stored.
126    for (auto *Group : Groups)
127      Group->clear();
128  }
129
130  Section(const char *N, XCOFF::SectionTypeFlags Flags, bool IsVirtual,
131          CsectGroups Groups)
132      : Address(0), Size(0), FileOffsetToData(0), FileOffsetToRelocations(0),
133        RelocationCount(0), Flags(Flags), Index(UninitializedIndex),
134        IsVirtual(IsVirtual), Groups(Groups) {
135    strncpy(Name, N, XCOFF::NameSize);
136  }
137};
138
139class XCOFFObjectWriter : public MCObjectWriter {
140
141  uint32_t SymbolTableEntryCount = 0;
142  uint32_t SymbolTableOffset = 0;
143  uint16_t SectionCount = 0;
144
145  support::endian::Writer W;
146  std::unique_ptr<MCXCOFFObjectTargetWriter> TargetObjectWriter;
147  StringTableBuilder Strings;
148
149  // CsectGroups. These store the csects which make up different parts of
150  // the sections. Should have one for each set of csects that get mapped into
151  // the same section and get handled in a 'similar' way.
152  CsectGroup UndefinedCsects;
153  CsectGroup ProgramCodeCsects;
154  CsectGroup ReadOnlyCsects;
155  CsectGroup DataCsects;
156  CsectGroup FuncDSCsects;
157  CsectGroup TOCCsects;
158  CsectGroup BSSCsects;
159
160  // The Predefined sections.
161  Section Text;
162  Section Data;
163  Section BSS;
164
165  // All the XCOFF sections, in the order they will appear in the section header
166  // table.
167  std::array<Section *const, 3> Sections{{&Text, &Data, &BSS}};
168
169  CsectGroup &getCsectGroup(const MCSectionXCOFF *MCSec);
170
171  virtual void reset() override;
172
173  void executePostLayoutBinding(MCAssembler &, const MCAsmLayout &) override;
174
175  void recordRelocation(MCAssembler &, const MCAsmLayout &, const MCFragment *,
176                        const MCFixup &, MCValue, uint64_t &) override;
177
178  uint64_t writeObject(MCAssembler &, const MCAsmLayout &) override;
179
180  static bool nameShouldBeInStringTable(const StringRef &);
181  void writeSymbolName(const StringRef &);
182  void writeSymbolTableEntryForCsectMemberLabel(const Symbol &,
183                                                const ControlSection &, int16_t,
184                                                uint64_t);
185  void writeSymbolTableEntryForControlSection(const ControlSection &, int16_t,
186                                              XCOFF::StorageClass);
187  void writeFileHeader();
188  void writeSectionHeaderTable();
189  void writeSections(const MCAssembler &Asm, const MCAsmLayout &Layout);
190  void writeSymbolTable(const MCAsmLayout &Layout);
191
192  // Called after all the csects and symbols have been processed by
193  // `executePostLayoutBinding`, this function handles building up the majority
194  // of the structures in the object file representation. Namely:
195  // *) Calculates physical/virtual addresses, raw-pointer offsets, and section
196  //    sizes.
197  // *) Assigns symbol table indices.
198  // *) Builds up the section header table by adding any non-empty sections to
199  //    `Sections`.
200  void assignAddressesAndIndices(const MCAsmLayout &);
201
202  bool
203  needsAuxiliaryHeader() const { /* TODO aux header support not implemented. */
204    return false;
205  }
206
207  // Returns the size of the auxiliary header to be written to the object file.
208  size_t auxiliaryHeaderSize() const {
209    assert(!needsAuxiliaryHeader() &&
210           "Auxiliary header support not implemented.");
211    return 0;
212  }
213
214public:
215  XCOFFObjectWriter(std::unique_ptr<MCXCOFFObjectTargetWriter> MOTW,
216                    raw_pwrite_stream &OS);
217};
218
219XCOFFObjectWriter::XCOFFObjectWriter(
220    std::unique_ptr<MCXCOFFObjectTargetWriter> MOTW, raw_pwrite_stream &OS)
221    : W(OS, support::big), TargetObjectWriter(std::move(MOTW)),
222      Strings(StringTableBuilder::XCOFF),
223      Text(".text", XCOFF::STYP_TEXT, /* IsVirtual */ false,
224           CsectGroups{&ProgramCodeCsects, &ReadOnlyCsects}),
225      Data(".data", XCOFF::STYP_DATA, /* IsVirtual */ false,
226           CsectGroups{&DataCsects, &FuncDSCsects, &TOCCsects}),
227      BSS(".bss", XCOFF::STYP_BSS, /* IsVirtual */ true,
228          CsectGroups{&BSSCsects}) {}
229
230void XCOFFObjectWriter::reset() {
231  UndefinedCsects.clear();
232
233  // Reset any sections we have written to, and empty the section header table.
234  for (auto *Sec : Sections)
235    Sec->reset();
236
237  // Reset the symbol table and string table.
238  SymbolTableEntryCount = 0;
239  SymbolTableOffset = 0;
240  SectionCount = 0;
241  Strings.clear();
242
243  MCObjectWriter::reset();
244}
245
246CsectGroup &XCOFFObjectWriter::getCsectGroup(const MCSectionXCOFF *MCSec) {
247  switch (MCSec->getMappingClass()) {
248  case XCOFF::XMC_PR:
249    assert(XCOFF::XTY_SD == MCSec->getCSectType() &&
250           "Only an initialized csect can contain program code.");
251    return ProgramCodeCsects;
252  case XCOFF::XMC_RO:
253    assert(XCOFF::XTY_SD == MCSec->getCSectType() &&
254           "Only an initialized csect can contain read only data.");
255    return ReadOnlyCsects;
256  case XCOFF::XMC_RW:
257    if (XCOFF::XTY_CM == MCSec->getCSectType())
258      return BSSCsects;
259
260    if (XCOFF::XTY_SD == MCSec->getCSectType())
261      return DataCsects;
262
263    report_fatal_error("Unhandled mapping of read-write csect to section.");
264  case XCOFF::XMC_DS:
265    return FuncDSCsects;
266  case XCOFF::XMC_BS:
267    assert(XCOFF::XTY_CM == MCSec->getCSectType() &&
268           "Mapping invalid csect. CSECT with bss storage class must be "
269           "common type.");
270    return BSSCsects;
271  case XCOFF::XMC_TC0:
272    assert(XCOFF::XTY_SD == MCSec->getCSectType() &&
273           "Only an initialized csect can contain TOC-base.");
274    assert(TOCCsects.empty() &&
275           "We should have only one TOC-base, and it should be the first csect "
276           "in this CsectGroup.");
277    return TOCCsects;
278  case XCOFF::XMC_TC:
279    assert(XCOFF::XTY_SD == MCSec->getCSectType() &&
280           "Only an initialized csect can contain TC entry.");
281    assert(!TOCCsects.empty() &&
282           "We should at least have a TOC-base in this CsectGroup.");
283    return TOCCsects;
284  default:
285    report_fatal_error("Unhandled mapping of csect to section.");
286  }
287}
288
289void XCOFFObjectWriter::executePostLayoutBinding(MCAssembler &Asm,
290                                                 const MCAsmLayout &Layout) {
291  if (TargetObjectWriter->is64Bit())
292    report_fatal_error("64-bit XCOFF object files are not supported yet.");
293
294  // Maps the MC Section representation to its corresponding ControlSection
295  // wrapper. Needed for finding the ControlSection to insert an MCSymbol into
296  // from its containing MCSectionXCOFF.
297  DenseMap<const MCSectionXCOFF *, ControlSection *> WrapperMap;
298
299  for (const auto &S : Asm) {
300    const auto *MCSec = cast<const MCSectionXCOFF>(&S);
301    assert(WrapperMap.find(MCSec) == WrapperMap.end() &&
302           "Cannot add a csect twice.");
303    assert(XCOFF::XTY_ER != MCSec->getCSectType() &&
304           "An undefined csect should not get registered.");
305
306    // If the name does not fit in the storage provided in the symbol table
307    // entry, add it to the string table.
308    if (nameShouldBeInStringTable(MCSec->getSectionName()))
309      Strings.add(MCSec->getSectionName());
310
311    CsectGroup &Group = getCsectGroup(MCSec);
312    Group.emplace_back(MCSec);
313    WrapperMap[MCSec] = &Group.back();
314  }
315
316  for (const MCSymbol &S : Asm.symbols()) {
317    // Nothing to do for temporary symbols.
318    if (S.isTemporary())
319      continue;
320
321    const MCSymbolXCOFF *XSym = cast<MCSymbolXCOFF>(&S);
322    const MCSectionXCOFF *ContainingCsect = XSym->getContainingCsect();
323
324    // Handle undefined symbol.
325    if (ContainingCsect->getCSectType() == XCOFF::XTY_ER) {
326      UndefinedCsects.emplace_back(ContainingCsect);
327      continue;
328    }
329
330    // If the symbol is the csect itself, we don't need to put the symbol
331    // into csect's Syms.
332    if (XSym == ContainingCsect->getQualNameSymbol())
333      continue;
334
335    assert(WrapperMap.find(ContainingCsect) != WrapperMap.end() &&
336           "Expected containing csect to exist in map");
337
338    // Lookup the containing csect and add the symbol to it.
339    WrapperMap[ContainingCsect]->Syms.emplace_back(XSym);
340
341    // If the name does not fit in the storage provided in the symbol table
342    // entry, add it to the string table.
343    if (nameShouldBeInStringTable(XSym->getName()))
344      Strings.add(XSym->getName());
345    }
346
347  Strings.finalize();
348  assignAddressesAndIndices(Layout);
349}
350
351void XCOFFObjectWriter::recordRelocation(MCAssembler &, const MCAsmLayout &,
352                                         const MCFragment *, const MCFixup &,
353                                         MCValue, uint64_t &) {
354  // TODO: recordRelocation is not yet implemented.
355}
356
357void XCOFFObjectWriter::writeSections(const MCAssembler &Asm,
358                                      const MCAsmLayout &Layout) {
359  uint32_t CurrentAddressLocation = 0;
360  for (const auto *Section : Sections) {
361    // Nothing to write for this Section.
362    if (Section->Index == Section::UninitializedIndex || Section->IsVirtual)
363      continue;
364
365    assert(CurrentAddressLocation == Section->Address &&
366           "Sections should be written consecutively.");
367    for (const auto *Group : Section->Groups) {
368      for (const auto &Csect : *Group) {
369        if (uint32_t PaddingSize = Csect.Address - CurrentAddressLocation)
370          W.OS.write_zeros(PaddingSize);
371        if (Csect.Size)
372          Asm.writeSectionData(W.OS, Csect.MCCsect, Layout);
373        CurrentAddressLocation = Csect.Address + Csect.Size;
374      }
375    }
376
377    // The size of the tail padding in a section is the end virtual address of
378    // the current section minus the the end virtual address of the last csect
379    // in that section.
380    if (uint32_t PaddingSize =
381            Section->Address + Section->Size - CurrentAddressLocation) {
382      W.OS.write_zeros(PaddingSize);
383      CurrentAddressLocation += PaddingSize;
384    }
385  }
386}
387
388uint64_t XCOFFObjectWriter::writeObject(MCAssembler &Asm,
389                                        const MCAsmLayout &Layout) {
390  // We always emit a timestamp of 0 for reproducibility, so ensure incremental
391  // linking is not enabled, in case, like with Windows COFF, such a timestamp
392  // is incompatible with incremental linking of XCOFF.
393  if (Asm.isIncrementalLinkerCompatible())
394    report_fatal_error("Incremental linking not supported for XCOFF.");
395
396  if (TargetObjectWriter->is64Bit())
397    report_fatal_error("64-bit XCOFF object files are not supported yet.");
398
399  uint64_t StartOffset = W.OS.tell();
400
401  writeFileHeader();
402  writeSectionHeaderTable();
403  writeSections(Asm, Layout);
404  // TODO writeRelocations();
405
406  writeSymbolTable(Layout);
407  // Write the string table.
408  Strings.write(W.OS);
409
410  return W.OS.tell() - StartOffset;
411}
412
413bool XCOFFObjectWriter::nameShouldBeInStringTable(const StringRef &SymbolName) {
414  return SymbolName.size() > XCOFF::NameSize;
415}
416
417void XCOFFObjectWriter::writeSymbolName(const StringRef &SymbolName) {
418  if (nameShouldBeInStringTable(SymbolName)) {
419    W.write<int32_t>(0);
420    W.write<uint32_t>(Strings.getOffset(SymbolName));
421  } else {
422    char Name[XCOFF::NameSize+1];
423    std::strncpy(Name, SymbolName.data(), XCOFF::NameSize);
424    ArrayRef<char> NameRef(Name, XCOFF::NameSize);
425    W.write(NameRef);
426  }
427}
428
429void XCOFFObjectWriter::writeSymbolTableEntryForCsectMemberLabel(
430    const Symbol &SymbolRef, const ControlSection &CSectionRef,
431    int16_t SectionIndex, uint64_t SymbolOffset) {
432  // Name or Zeros and string table offset
433  writeSymbolName(SymbolRef.getName());
434  assert(SymbolOffset <= UINT32_MAX - CSectionRef.Address &&
435         "Symbol address overflows.");
436  W.write<uint32_t>(CSectionRef.Address + SymbolOffset);
437  W.write<int16_t>(SectionIndex);
438  // Basic/Derived type. See the description of the n_type field for symbol
439  // table entries for a detailed description. Since we don't yet support
440  // visibility, and all other bits are either optionally set or reserved, this
441  // is always zero.
442  // TODO FIXME How to assert a symbol's visibilty is default?
443  // TODO Set the function indicator (bit 10, 0x0020) for functions
444  // when debugging is enabled.
445  W.write<uint16_t>(0);
446  W.write<uint8_t>(SymbolRef.getStorageClass());
447  // Always 1 aux entry for now.
448  W.write<uint8_t>(1);
449
450  // Now output the auxiliary entry.
451  W.write<uint32_t>(CSectionRef.SymbolTableIndex);
452  // Parameter typecheck hash. Not supported.
453  W.write<uint32_t>(0);
454  // Typecheck section number. Not supported.
455  W.write<uint16_t>(0);
456  // Symbol type: Label
457  W.write<uint8_t>(XCOFF::XTY_LD);
458  // Storage mapping class.
459  W.write<uint8_t>(CSectionRef.MCCsect->getMappingClass());
460  // Reserved (x_stab).
461  W.write<uint32_t>(0);
462  // Reserved (x_snstab).
463  W.write<uint16_t>(0);
464}
465
466void XCOFFObjectWriter::writeSymbolTableEntryForControlSection(
467    const ControlSection &CSectionRef, int16_t SectionIndex,
468    XCOFF::StorageClass StorageClass) {
469  // n_name, n_zeros, n_offset
470  writeSymbolName(CSectionRef.getName());
471  // n_value
472  W.write<uint32_t>(CSectionRef.Address);
473  // n_scnum
474  W.write<int16_t>(SectionIndex);
475  // Basic/Derived type. See the description of the n_type field for symbol
476  // table entries for a detailed description. Since we don't yet support
477  // visibility, and all other bits are either optionally set or reserved, this
478  // is always zero.
479  // TODO FIXME How to assert a symbol's visibilty is default?
480  // TODO Set the function indicator (bit 10, 0x0020) for functions
481  // when debugging is enabled.
482  W.write<uint16_t>(0);
483  // n_sclass
484  W.write<uint8_t>(StorageClass);
485  // Always 1 aux entry for now.
486  W.write<uint8_t>(1);
487
488  // Now output the auxiliary entry.
489  W.write<uint32_t>(CSectionRef.Size);
490  // Parameter typecheck hash. Not supported.
491  W.write<uint32_t>(0);
492  // Typecheck section number. Not supported.
493  W.write<uint16_t>(0);
494  // Symbol type.
495  W.write<uint8_t>(getEncodedType(CSectionRef.MCCsect));
496  // Storage mapping class.
497  W.write<uint8_t>(CSectionRef.MCCsect->getMappingClass());
498  // Reserved (x_stab).
499  W.write<uint32_t>(0);
500  // Reserved (x_snstab).
501  W.write<uint16_t>(0);
502}
503
504void XCOFFObjectWriter::writeFileHeader() {
505  // Magic.
506  W.write<uint16_t>(0x01df);
507  // Number of sections.
508  W.write<uint16_t>(SectionCount);
509  // Timestamp field. For reproducible output we write a 0, which represents no
510  // timestamp.
511  W.write<int32_t>(0);
512  // Byte Offset to the start of the symbol table.
513  W.write<uint32_t>(SymbolTableOffset);
514  // Number of entries in the symbol table.
515  W.write<int32_t>(SymbolTableEntryCount);
516  // Size of the optional header.
517  W.write<uint16_t>(0);
518  // Flags.
519  W.write<uint16_t>(0);
520}
521
522void XCOFFObjectWriter::writeSectionHeaderTable() {
523  for (const auto *Sec : Sections) {
524    // Nothing to write for this Section.
525    if (Sec->Index == Section::UninitializedIndex)
526      continue;
527
528    // Write Name.
529    ArrayRef<char> NameRef(Sec->Name, XCOFF::NameSize);
530    W.write(NameRef);
531
532    // Write the Physical Address and Virtual Address. In an object file these
533    // are the same.
534    W.write<uint32_t>(Sec->Address);
535    W.write<uint32_t>(Sec->Address);
536
537    W.write<uint32_t>(Sec->Size);
538    W.write<uint32_t>(Sec->FileOffsetToData);
539
540    // Relocation pointer and Lineno pointer. Not supported yet.
541    W.write<uint32_t>(0);
542    W.write<uint32_t>(0);
543
544    // Relocation and line-number counts. Not supported yet.
545    W.write<uint16_t>(0);
546    W.write<uint16_t>(0);
547
548    W.write<int32_t>(Sec->Flags);
549  }
550}
551
552void XCOFFObjectWriter::writeSymbolTable(const MCAsmLayout &Layout) {
553  for (const auto &Csect : UndefinedCsects) {
554    writeSymbolTableEntryForControlSection(
555        Csect, XCOFF::ReservedSectionNum::N_UNDEF, Csect.MCCsect->getStorageClass());
556  }
557
558  for (const auto *Section : Sections) {
559    // Nothing to write for this Section.
560    if (Section->Index == Section::UninitializedIndex)
561      continue;
562
563    for (const auto *Group : Section->Groups) {
564      if (Group->empty())
565        continue;
566
567      const int16_t SectionIndex = Section->Index;
568      for (const auto &Csect : *Group) {
569        // Write out the control section first and then each symbol in it.
570        writeSymbolTableEntryForControlSection(
571            Csect, SectionIndex, Csect.MCCsect->getStorageClass());
572
573        for (const auto &Sym : Csect.Syms)
574          writeSymbolTableEntryForCsectMemberLabel(
575              Sym, Csect, SectionIndex, Layout.getSymbolOffset(*(Sym.MCSym)));
576      }
577    }
578  }
579}
580
581void XCOFFObjectWriter::assignAddressesAndIndices(const MCAsmLayout &Layout) {
582  // The first symbol table entry is for the file name. We are not emitting it
583  // yet, so start at index 0.
584  uint32_t SymbolTableIndex = 0;
585
586  // Calculate indices for undefined symbols.
587  for (auto &Csect : UndefinedCsects) {
588    Csect.Size = 0;
589    Csect.Address = 0;
590    Csect.SymbolTableIndex = SymbolTableIndex;
591    // 1 main and 1 auxiliary symbol table entry for each contained symbol.
592    SymbolTableIndex += 2;
593  }
594
595  // The address corrresponds to the address of sections and symbols in the
596  // object file. We place the shared address 0 immediately after the
597  // section header table.
598  uint32_t Address = 0;
599  // Section indices are 1-based in XCOFF.
600  int32_t SectionIndex = 1;
601
602  for (auto *Section : Sections) {
603    const bool IsEmpty =
604        llvm::all_of(Section->Groups,
605                     [](const CsectGroup *Group) { return Group->empty(); });
606    if (IsEmpty)
607      continue;
608
609    if (SectionIndex > MaxSectionIndex)
610      report_fatal_error("Section index overflow!");
611    Section->Index = SectionIndex++;
612    SectionCount++;
613
614    bool SectionAddressSet = false;
615    for (auto *Group : Section->Groups) {
616      if (Group->empty())
617        continue;
618
619      for (auto &Csect : *Group) {
620        const MCSectionXCOFF *MCSec = Csect.MCCsect;
621        Csect.Address = alignTo(Address, MCSec->getAlignment());
622        Csect.Size = Layout.getSectionAddressSize(MCSec);
623        Address = Csect.Address + Csect.Size;
624        Csect.SymbolTableIndex = SymbolTableIndex;
625        // 1 main and 1 auxiliary symbol table entry for the csect.
626        SymbolTableIndex += 2;
627
628        for (auto &Sym : Csect.Syms) {
629          Sym.SymbolTableIndex = SymbolTableIndex;
630          // 1 main and 1 auxiliary symbol table entry for each contained
631          // symbol.
632          SymbolTableIndex += 2;
633        }
634      }
635
636      if (!SectionAddressSet) {
637        Section->Address = Group->front().Address;
638        SectionAddressSet = true;
639      }
640    }
641
642    // Make sure the address of the next section aligned to
643    // DefaultSectionAlign.
644    Address = alignTo(Address, DefaultSectionAlign);
645    Section->Size = Address - Section->Address;
646  }
647
648  SymbolTableEntryCount = SymbolTableIndex;
649
650  // Calculate the RawPointer value for each section.
651  uint64_t RawPointer = sizeof(XCOFF::FileHeader32) + auxiliaryHeaderSize() +
652                        SectionCount * sizeof(XCOFF::SectionHeader32);
653  for (auto *Sec : Sections) {
654    if (Sec->Index == Section::UninitializedIndex || Sec->IsVirtual)
655      continue;
656
657    Sec->FileOffsetToData = RawPointer;
658    RawPointer += Sec->Size;
659  }
660
661  // TODO Add in Relocation storage to the RawPointer Calculation.
662  // TODO What to align the SymbolTable to?
663  // TODO Error check that the number of symbol table entries fits in 32-bits
664  // signed ...
665  if (SymbolTableEntryCount)
666    SymbolTableOffset = RawPointer;
667}
668
669// Takes the log base 2 of the alignment and shifts the result into the 5 most
670// significant bits of a byte, then or's in the csect type into the least
671// significant 3 bits.
672uint8_t getEncodedType(const MCSectionXCOFF *Sec) {
673  unsigned Align = Sec->getAlignment();
674  assert(isPowerOf2_32(Align) && "Alignment must be a power of 2.");
675  unsigned Log2Align = Log2_32(Align);
676  // Result is a number in the range [0, 31] which fits in the 5 least
677  // significant bits. Shift this value into the 5 most significant bits, and
678  // bitwise-or in the csect type.
679  uint8_t EncodedAlign = Log2Align << 3;
680  return EncodedAlign | Sec->getCSectType();
681}
682
683} // end anonymous namespace
684
685std::unique_ptr<MCObjectWriter>
686llvm::createXCOFFObjectWriter(std::unique_ptr<MCXCOFFObjectTargetWriter> MOTW,
687                              raw_pwrite_stream &OS) {
688  return std::make_unique<XCOFFObjectWriter>(std::move(MOTW), OS);
689}
690