IRMover.cpp revision 360784
1//===- lib/Linker/IRMover.cpp ---------------------------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8
9#include "llvm/Linker/IRMover.h"
10#include "LinkDiagnosticInfo.h"
11#include "llvm/ADT/SetVector.h"
12#include "llvm/ADT/SmallString.h"
13#include "llvm/ADT/Triple.h"
14#include "llvm/IR/Constants.h"
15#include "llvm/IR/DebugInfo.h"
16#include "llvm/IR/DiagnosticPrinter.h"
17#include "llvm/IR/GVMaterializer.h"
18#include "llvm/IR/Intrinsics.h"
19#include "llvm/IR/TypeFinder.h"
20#include "llvm/Support/Error.h"
21#include "llvm/Transforms/Utils/Cloning.h"
22#include <utility>
23using namespace llvm;
24
25//===----------------------------------------------------------------------===//
26// TypeMap implementation.
27//===----------------------------------------------------------------------===//
28
29namespace {
30class TypeMapTy : public ValueMapTypeRemapper {
31  /// This is a mapping from a source type to a destination type to use.
32  DenseMap<Type *, Type *> MappedTypes;
33
34  /// When checking to see if two subgraphs are isomorphic, we speculatively
35  /// add types to MappedTypes, but keep track of them here in case we need to
36  /// roll back.
37  SmallVector<Type *, 16> SpeculativeTypes;
38
39  SmallVector<StructType *, 16> SpeculativeDstOpaqueTypes;
40
41  /// This is a list of non-opaque structs in the source module that are mapped
42  /// to an opaque struct in the destination module.
43  SmallVector<StructType *, 16> SrcDefinitionsToResolve;
44
45  /// This is the set of opaque types in the destination modules who are
46  /// getting a body from the source module.
47  SmallPtrSet<StructType *, 16> DstResolvedOpaqueTypes;
48
49public:
50  TypeMapTy(IRMover::IdentifiedStructTypeSet &DstStructTypesSet)
51      : DstStructTypesSet(DstStructTypesSet) {}
52
53  IRMover::IdentifiedStructTypeSet &DstStructTypesSet;
54  /// Indicate that the specified type in the destination module is conceptually
55  /// equivalent to the specified type in the source module.
56  void addTypeMapping(Type *DstTy, Type *SrcTy);
57
58  /// Produce a body for an opaque type in the dest module from a type
59  /// definition in the source module.
60  void linkDefinedTypeBodies();
61
62  /// Return the mapped type to use for the specified input type from the
63  /// source module.
64  Type *get(Type *SrcTy);
65  Type *get(Type *SrcTy, SmallPtrSet<StructType *, 8> &Visited);
66
67  void finishType(StructType *DTy, StructType *STy, ArrayRef<Type *> ETypes);
68
69  FunctionType *get(FunctionType *T) {
70    return cast<FunctionType>(get((Type *)T));
71  }
72
73private:
74  Type *remapType(Type *SrcTy) override { return get(SrcTy); }
75
76  bool areTypesIsomorphic(Type *DstTy, Type *SrcTy);
77};
78}
79
80void TypeMapTy::addTypeMapping(Type *DstTy, Type *SrcTy) {
81  assert(SpeculativeTypes.empty());
82  assert(SpeculativeDstOpaqueTypes.empty());
83
84  // Check to see if these types are recursively isomorphic and establish a
85  // mapping between them if so.
86  if (!areTypesIsomorphic(DstTy, SrcTy)) {
87    // Oops, they aren't isomorphic.  Just discard this request by rolling out
88    // any speculative mappings we've established.
89    for (Type *Ty : SpeculativeTypes)
90      MappedTypes.erase(Ty);
91
92    SrcDefinitionsToResolve.resize(SrcDefinitionsToResolve.size() -
93                                   SpeculativeDstOpaqueTypes.size());
94    for (StructType *Ty : SpeculativeDstOpaqueTypes)
95      DstResolvedOpaqueTypes.erase(Ty);
96  } else {
97    // SrcTy and DstTy are recursively ismorphic. We clear names of SrcTy
98    // and all its descendants to lower amount of renaming in LLVM context
99    // Renaming occurs because we load all source modules to the same context
100    // and declaration with existing name gets renamed (i.e Foo -> Foo.42).
101    // As a result we may get several different types in the destination
102    // module, which are in fact the same.
103    for (Type *Ty : SpeculativeTypes)
104      if (auto *STy = dyn_cast<StructType>(Ty))
105        if (STy->hasName())
106          STy->setName("");
107  }
108  SpeculativeTypes.clear();
109  SpeculativeDstOpaqueTypes.clear();
110}
111
112/// Recursively walk this pair of types, returning true if they are isomorphic,
113/// false if they are not.
114bool TypeMapTy::areTypesIsomorphic(Type *DstTy, Type *SrcTy) {
115  // Two types with differing kinds are clearly not isomorphic.
116  if (DstTy->getTypeID() != SrcTy->getTypeID())
117    return false;
118
119  // If we have an entry in the MappedTypes table, then we have our answer.
120  Type *&Entry = MappedTypes[SrcTy];
121  if (Entry)
122    return Entry == DstTy;
123
124  // Two identical types are clearly isomorphic.  Remember this
125  // non-speculatively.
126  if (DstTy == SrcTy) {
127    Entry = DstTy;
128    return true;
129  }
130
131  // Okay, we have two types with identical kinds that we haven't seen before.
132
133  // If this is an opaque struct type, special case it.
134  if (StructType *SSTy = dyn_cast<StructType>(SrcTy)) {
135    // Mapping an opaque type to any struct, just keep the dest struct.
136    if (SSTy->isOpaque()) {
137      Entry = DstTy;
138      SpeculativeTypes.push_back(SrcTy);
139      return true;
140    }
141
142    // Mapping a non-opaque source type to an opaque dest.  If this is the first
143    // type that we're mapping onto this destination type then we succeed.  Keep
144    // the dest, but fill it in later. If this is the second (different) type
145    // that we're trying to map onto the same opaque type then we fail.
146    if (cast<StructType>(DstTy)->isOpaque()) {
147      // We can only map one source type onto the opaque destination type.
148      if (!DstResolvedOpaqueTypes.insert(cast<StructType>(DstTy)).second)
149        return false;
150      SrcDefinitionsToResolve.push_back(SSTy);
151      SpeculativeTypes.push_back(SrcTy);
152      SpeculativeDstOpaqueTypes.push_back(cast<StructType>(DstTy));
153      Entry = DstTy;
154      return true;
155    }
156  }
157
158  // If the number of subtypes disagree between the two types, then we fail.
159  if (SrcTy->getNumContainedTypes() != DstTy->getNumContainedTypes())
160    return false;
161
162  // Fail if any of the extra properties (e.g. array size) of the type disagree.
163  if (isa<IntegerType>(DstTy))
164    return false; // bitwidth disagrees.
165  if (PointerType *PT = dyn_cast<PointerType>(DstTy)) {
166    if (PT->getAddressSpace() != cast<PointerType>(SrcTy)->getAddressSpace())
167      return false;
168  } else if (FunctionType *FT = dyn_cast<FunctionType>(DstTy)) {
169    if (FT->isVarArg() != cast<FunctionType>(SrcTy)->isVarArg())
170      return false;
171  } else if (StructType *DSTy = dyn_cast<StructType>(DstTy)) {
172    StructType *SSTy = cast<StructType>(SrcTy);
173    if (DSTy->isLiteral() != SSTy->isLiteral() ||
174        DSTy->isPacked() != SSTy->isPacked())
175      return false;
176  } else if (auto *DSeqTy = dyn_cast<SequentialType>(DstTy)) {
177    if (DSeqTy->getNumElements() !=
178        cast<SequentialType>(SrcTy)->getNumElements())
179      return false;
180  }
181
182  // Otherwise, we speculate that these two types will line up and recursively
183  // check the subelements.
184  Entry = DstTy;
185  SpeculativeTypes.push_back(SrcTy);
186
187  for (unsigned I = 0, E = SrcTy->getNumContainedTypes(); I != E; ++I)
188    if (!areTypesIsomorphic(DstTy->getContainedType(I),
189                            SrcTy->getContainedType(I)))
190      return false;
191
192  // If everything seems to have lined up, then everything is great.
193  return true;
194}
195
196void TypeMapTy::linkDefinedTypeBodies() {
197  SmallVector<Type *, 16> Elements;
198  for (StructType *SrcSTy : SrcDefinitionsToResolve) {
199    StructType *DstSTy = cast<StructType>(MappedTypes[SrcSTy]);
200    assert(DstSTy->isOpaque());
201
202    // Map the body of the source type over to a new body for the dest type.
203    Elements.resize(SrcSTy->getNumElements());
204    for (unsigned I = 0, E = Elements.size(); I != E; ++I)
205      Elements[I] = get(SrcSTy->getElementType(I));
206
207    DstSTy->setBody(Elements, SrcSTy->isPacked());
208    DstStructTypesSet.switchToNonOpaque(DstSTy);
209  }
210  SrcDefinitionsToResolve.clear();
211  DstResolvedOpaqueTypes.clear();
212}
213
214void TypeMapTy::finishType(StructType *DTy, StructType *STy,
215                           ArrayRef<Type *> ETypes) {
216  DTy->setBody(ETypes, STy->isPacked());
217
218  // Steal STy's name.
219  if (STy->hasName()) {
220    SmallString<16> TmpName = STy->getName();
221    STy->setName("");
222    DTy->setName(TmpName);
223  }
224
225  DstStructTypesSet.addNonOpaque(DTy);
226}
227
228Type *TypeMapTy::get(Type *Ty) {
229  SmallPtrSet<StructType *, 8> Visited;
230  return get(Ty, Visited);
231}
232
233Type *TypeMapTy::get(Type *Ty, SmallPtrSet<StructType *, 8> &Visited) {
234  // If we already have an entry for this type, return it.
235  Type **Entry = &MappedTypes[Ty];
236  if (*Entry)
237    return *Entry;
238
239  // These are types that LLVM itself will unique.
240  bool IsUniqued = !isa<StructType>(Ty) || cast<StructType>(Ty)->isLiteral();
241
242  if (!IsUniqued) {
243    StructType *STy = cast<StructType>(Ty);
244    // This is actually a type from the destination module, this can be reached
245    // when this type is loaded in another module, added to DstStructTypesSet,
246    // and then we reach the same type in another module where it has not been
247    // added to MappedTypes. (PR37684)
248    if (STy->getContext().isODRUniquingDebugTypes() && !STy->isOpaque() &&
249        DstStructTypesSet.hasType(STy))
250      return *Entry = STy;
251
252#ifndef NDEBUG
253    for (auto &Pair : MappedTypes) {
254      assert(!(Pair.first != Ty && Pair.second == Ty) &&
255             "mapping to a source type");
256    }
257#endif
258
259    if (!Visited.insert(STy).second) {
260      StructType *DTy = StructType::create(Ty->getContext());
261      return *Entry = DTy;
262    }
263  }
264
265  // If this is not a recursive type, then just map all of the elements and
266  // then rebuild the type from inside out.
267  SmallVector<Type *, 4> ElementTypes;
268
269  // If there are no element types to map, then the type is itself.  This is
270  // true for the anonymous {} struct, things like 'float', integers, etc.
271  if (Ty->getNumContainedTypes() == 0 && IsUniqued)
272    return *Entry = Ty;
273
274  // Remap all of the elements, keeping track of whether any of them change.
275  bool AnyChange = false;
276  ElementTypes.resize(Ty->getNumContainedTypes());
277  for (unsigned I = 0, E = Ty->getNumContainedTypes(); I != E; ++I) {
278    ElementTypes[I] = get(Ty->getContainedType(I), Visited);
279    AnyChange |= ElementTypes[I] != Ty->getContainedType(I);
280  }
281
282  // If we found our type while recursively processing stuff, just use it.
283  Entry = &MappedTypes[Ty];
284  if (*Entry) {
285    if (auto *DTy = dyn_cast<StructType>(*Entry)) {
286      if (DTy->isOpaque()) {
287        auto *STy = cast<StructType>(Ty);
288        finishType(DTy, STy, ElementTypes);
289      }
290    }
291    return *Entry;
292  }
293
294  // If all of the element types mapped directly over and the type is not
295  // a named struct, then the type is usable as-is.
296  if (!AnyChange && IsUniqued)
297    return *Entry = Ty;
298
299  // Otherwise, rebuild a modified type.
300  switch (Ty->getTypeID()) {
301  default:
302    llvm_unreachable("unknown derived type to remap");
303  case Type::ArrayTyID:
304    return *Entry = ArrayType::get(ElementTypes[0],
305                                   cast<ArrayType>(Ty)->getNumElements());
306  case Type::VectorTyID:
307    return *Entry = VectorType::get(ElementTypes[0],
308                                    cast<VectorType>(Ty)->getNumElements());
309  case Type::PointerTyID:
310    return *Entry = PointerType::get(ElementTypes[0],
311                                     cast<PointerType>(Ty)->getAddressSpace());
312  case Type::FunctionTyID:
313    return *Entry = FunctionType::get(ElementTypes[0],
314                                      makeArrayRef(ElementTypes).slice(1),
315                                      cast<FunctionType>(Ty)->isVarArg());
316  case Type::StructTyID: {
317    auto *STy = cast<StructType>(Ty);
318    bool IsPacked = STy->isPacked();
319    if (IsUniqued)
320      return *Entry = StructType::get(Ty->getContext(), ElementTypes, IsPacked);
321
322    // If the type is opaque, we can just use it directly.
323    if (STy->isOpaque()) {
324      DstStructTypesSet.addOpaque(STy);
325      return *Entry = Ty;
326    }
327
328    if (StructType *OldT =
329            DstStructTypesSet.findNonOpaque(ElementTypes, IsPacked)) {
330      STy->setName("");
331      return *Entry = OldT;
332    }
333
334    if (!AnyChange) {
335      DstStructTypesSet.addNonOpaque(STy);
336      return *Entry = Ty;
337    }
338
339    StructType *DTy = StructType::create(Ty->getContext());
340    finishType(DTy, STy, ElementTypes);
341    return *Entry = DTy;
342  }
343  }
344}
345
346LinkDiagnosticInfo::LinkDiagnosticInfo(DiagnosticSeverity Severity,
347                                       const Twine &Msg)
348    : DiagnosticInfo(DK_Linker, Severity), Msg(Msg) {}
349void LinkDiagnosticInfo::print(DiagnosticPrinter &DP) const { DP << Msg; }
350
351//===----------------------------------------------------------------------===//
352// IRLinker implementation.
353//===----------------------------------------------------------------------===//
354
355namespace {
356class IRLinker;
357
358/// Creates prototypes for functions that are lazily linked on the fly. This
359/// speeds up linking for modules with many/ lazily linked functions of which
360/// few get used.
361class GlobalValueMaterializer final : public ValueMaterializer {
362  IRLinker &TheIRLinker;
363
364public:
365  GlobalValueMaterializer(IRLinker &TheIRLinker) : TheIRLinker(TheIRLinker) {}
366  Value *materialize(Value *V) override;
367};
368
369class LocalValueMaterializer final : public ValueMaterializer {
370  IRLinker &TheIRLinker;
371
372public:
373  LocalValueMaterializer(IRLinker &TheIRLinker) : TheIRLinker(TheIRLinker) {}
374  Value *materialize(Value *V) override;
375};
376
377/// Type of the Metadata map in \a ValueToValueMapTy.
378typedef DenseMap<const Metadata *, TrackingMDRef> MDMapT;
379
380/// This is responsible for keeping track of the state used for moving data
381/// from SrcM to DstM.
382class IRLinker {
383  Module &DstM;
384  std::unique_ptr<Module> SrcM;
385
386  /// See IRMover::move().
387  std::function<void(GlobalValue &, IRMover::ValueAdder)> AddLazyFor;
388
389  TypeMapTy TypeMap;
390  GlobalValueMaterializer GValMaterializer;
391  LocalValueMaterializer LValMaterializer;
392
393  /// A metadata map that's shared between IRLinker instances.
394  MDMapT &SharedMDs;
395
396  /// Mapping of values from what they used to be in Src, to what they are now
397  /// in DstM.  ValueToValueMapTy is a ValueMap, which involves some overhead
398  /// due to the use of Value handles which the Linker doesn't actually need,
399  /// but this allows us to reuse the ValueMapper code.
400  ValueToValueMapTy ValueMap;
401  ValueToValueMapTy IndirectSymbolValueMap;
402
403  DenseSet<GlobalValue *> ValuesToLink;
404  std::vector<GlobalValue *> Worklist;
405  std::vector<std::pair<GlobalValue *, Value*>> RAUWWorklist;
406
407  void maybeAdd(GlobalValue *GV) {
408    if (ValuesToLink.insert(GV).second)
409      Worklist.push_back(GV);
410  }
411
412  /// Whether we are importing globals for ThinLTO, as opposed to linking the
413  /// source module. If this flag is set, it means that we can rely on some
414  /// other object file to define any non-GlobalValue entities defined by the
415  /// source module. This currently causes us to not link retained types in
416  /// debug info metadata and module inline asm.
417  bool IsPerformingImport;
418
419  /// Set to true when all global value body linking is complete (including
420  /// lazy linking). Used to prevent metadata linking from creating new
421  /// references.
422  bool DoneLinkingBodies = false;
423
424  /// The Error encountered during materialization. We use an Optional here to
425  /// avoid needing to manage an unconsumed success value.
426  Optional<Error> FoundError;
427  void setError(Error E) {
428    if (E)
429      FoundError = std::move(E);
430  }
431
432  /// Most of the errors produced by this module are inconvertible StringErrors.
433  /// This convenience function lets us return one of those more easily.
434  Error stringErr(const Twine &T) {
435    return make_error<StringError>(T, inconvertibleErrorCode());
436  }
437
438  /// Entry point for mapping values and alternate context for mapping aliases.
439  ValueMapper Mapper;
440  unsigned IndirectSymbolMCID;
441
442  /// Handles cloning of a global values from the source module into
443  /// the destination module, including setting the attributes and visibility.
444  GlobalValue *copyGlobalValueProto(const GlobalValue *SGV, bool ForDefinition);
445
446  void emitWarning(const Twine &Message) {
447    SrcM->getContext().diagnose(LinkDiagnosticInfo(DS_Warning, Message));
448  }
449
450  /// Given a global in the source module, return the global in the
451  /// destination module that is being linked to, if any.
452  GlobalValue *getLinkedToGlobal(const GlobalValue *SrcGV) {
453    // If the source has no name it can't link.  If it has local linkage,
454    // there is no name match-up going on.
455    if (!SrcGV->hasName() || SrcGV->hasLocalLinkage())
456      return nullptr;
457
458    // Otherwise see if we have a match in the destination module's symtab.
459    GlobalValue *DGV = DstM.getNamedValue(SrcGV->getName());
460    if (!DGV)
461      return nullptr;
462
463    // If we found a global with the same name in the dest module, but it has
464    // internal linkage, we are really not doing any linkage here.
465    if (DGV->hasLocalLinkage())
466      return nullptr;
467
468    // Otherwise, we do in fact link to the destination global.
469    return DGV;
470  }
471
472  void computeTypeMapping();
473
474  Expected<Constant *> linkAppendingVarProto(GlobalVariable *DstGV,
475                                             const GlobalVariable *SrcGV);
476
477  /// Given the GlobaValue \p SGV in the source module, and the matching
478  /// GlobalValue \p DGV (if any), return true if the linker will pull \p SGV
479  /// into the destination module.
480  ///
481  /// Note this code may call the client-provided \p AddLazyFor.
482  bool shouldLink(GlobalValue *DGV, GlobalValue &SGV);
483  Expected<Constant *> linkGlobalValueProto(GlobalValue *GV,
484                                            bool ForIndirectSymbol);
485
486  Error linkModuleFlagsMetadata();
487
488  void linkGlobalVariable(GlobalVariable &Dst, GlobalVariable &Src);
489  Error linkFunctionBody(Function &Dst, Function &Src);
490  void linkIndirectSymbolBody(GlobalIndirectSymbol &Dst,
491                              GlobalIndirectSymbol &Src);
492  Error linkGlobalValueBody(GlobalValue &Dst, GlobalValue &Src);
493
494  /// Replace all types in the source AttributeList with the
495  /// corresponding destination type.
496  AttributeList mapAttributeTypes(LLVMContext &C, AttributeList Attrs);
497
498  /// Functions that take care of cloning a specific global value type
499  /// into the destination module.
500  GlobalVariable *copyGlobalVariableProto(const GlobalVariable *SGVar);
501  Function *copyFunctionProto(const Function *SF);
502  GlobalValue *copyGlobalIndirectSymbolProto(const GlobalIndirectSymbol *SGIS);
503
504  /// Perform "replace all uses with" operations. These work items need to be
505  /// performed as part of materialization, but we postpone them to happen after
506  /// materialization is done. The materializer called by ValueMapper is not
507  /// expected to delete constants, as ValueMapper is holding pointers to some
508  /// of them, but constant destruction may be indirectly triggered by RAUW.
509  /// Hence, the need to move this out of the materialization call chain.
510  void flushRAUWWorklist();
511
512  /// When importing for ThinLTO, prevent importing of types listed on
513  /// the DICompileUnit that we don't need a copy of in the importing
514  /// module.
515  void prepareCompileUnitsForImport();
516  void linkNamedMDNodes();
517
518public:
519  IRLinker(Module &DstM, MDMapT &SharedMDs,
520           IRMover::IdentifiedStructTypeSet &Set, std::unique_ptr<Module> SrcM,
521           ArrayRef<GlobalValue *> ValuesToLink,
522           std::function<void(GlobalValue &, IRMover::ValueAdder)> AddLazyFor,
523           bool IsPerformingImport)
524      : DstM(DstM), SrcM(std::move(SrcM)), AddLazyFor(std::move(AddLazyFor)),
525        TypeMap(Set), GValMaterializer(*this), LValMaterializer(*this),
526        SharedMDs(SharedMDs), IsPerformingImport(IsPerformingImport),
527        Mapper(ValueMap, RF_MoveDistinctMDs | RF_IgnoreMissingLocals, &TypeMap,
528               &GValMaterializer),
529        IndirectSymbolMCID(Mapper.registerAlternateMappingContext(
530            IndirectSymbolValueMap, &LValMaterializer)) {
531    ValueMap.getMDMap() = std::move(SharedMDs);
532    for (GlobalValue *GV : ValuesToLink)
533      maybeAdd(GV);
534    if (IsPerformingImport)
535      prepareCompileUnitsForImport();
536  }
537  ~IRLinker() { SharedMDs = std::move(*ValueMap.getMDMap()); }
538
539  Error run();
540  Value *materialize(Value *V, bool ForIndirectSymbol);
541};
542}
543
544/// The LLVM SymbolTable class autorenames globals that conflict in the symbol
545/// table. This is good for all clients except for us. Go through the trouble
546/// to force this back.
547static void forceRenaming(GlobalValue *GV, StringRef Name) {
548  // If the global doesn't force its name or if it already has the right name,
549  // there is nothing for us to do.
550  if (GV->hasLocalLinkage() || GV->getName() == Name)
551    return;
552
553  Module *M = GV->getParent();
554
555  // If there is a conflict, rename the conflict.
556  if (GlobalValue *ConflictGV = M->getNamedValue(Name)) {
557    GV->takeName(ConflictGV);
558    ConflictGV->setName(Name); // This will cause ConflictGV to get renamed
559    assert(ConflictGV->getName() != Name && "forceRenaming didn't work");
560  } else {
561    GV->setName(Name); // Force the name back
562  }
563}
564
565Value *GlobalValueMaterializer::materialize(Value *SGV) {
566  return TheIRLinker.materialize(SGV, false);
567}
568
569Value *LocalValueMaterializer::materialize(Value *SGV) {
570  return TheIRLinker.materialize(SGV, true);
571}
572
573Value *IRLinker::materialize(Value *V, bool ForIndirectSymbol) {
574  auto *SGV = dyn_cast<GlobalValue>(V);
575  if (!SGV)
576    return nullptr;
577
578  Expected<Constant *> NewProto = linkGlobalValueProto(SGV, ForIndirectSymbol);
579  if (!NewProto) {
580    setError(NewProto.takeError());
581    return nullptr;
582  }
583  if (!*NewProto)
584    return nullptr;
585
586  GlobalValue *New = dyn_cast<GlobalValue>(*NewProto);
587  if (!New)
588    return *NewProto;
589
590  // If we already created the body, just return.
591  if (auto *F = dyn_cast<Function>(New)) {
592    if (!F->isDeclaration())
593      return New;
594  } else if (auto *V = dyn_cast<GlobalVariable>(New)) {
595    if (V->hasInitializer() || V->hasAppendingLinkage())
596      return New;
597  } else {
598    auto *IS = cast<GlobalIndirectSymbol>(New);
599    if (IS->getIndirectSymbol())
600      return New;
601  }
602
603  // When linking a global for an indirect symbol, it will always be linked.
604  // However we need to check if it was not already scheduled to satisfy a
605  // reference from a regular global value initializer. We know if it has been
606  // schedule if the "New" GlobalValue that is mapped here for the indirect
607  // symbol is the same as the one already mapped. If there is an entry in the
608  // ValueMap but the value is different, it means that the value already had a
609  // definition in the destination module (linkonce for instance), but we need a
610  // new definition for the indirect symbol ("New" will be different.
611  if (ForIndirectSymbol && ValueMap.lookup(SGV) == New)
612    return New;
613
614  if (ForIndirectSymbol || shouldLink(New, *SGV))
615    setError(linkGlobalValueBody(*New, *SGV));
616
617  return New;
618}
619
620/// Loop through the global variables in the src module and merge them into the
621/// dest module.
622GlobalVariable *IRLinker::copyGlobalVariableProto(const GlobalVariable *SGVar) {
623  // No linking to be performed or linking from the source: simply create an
624  // identical version of the symbol over in the dest module... the
625  // initializer will be filled in later by LinkGlobalInits.
626  GlobalVariable *NewDGV =
627      new GlobalVariable(DstM, TypeMap.get(SGVar->getValueType()),
628                         SGVar->isConstant(), GlobalValue::ExternalLinkage,
629                         /*init*/ nullptr, SGVar->getName(),
630                         /*insertbefore*/ nullptr, SGVar->getThreadLocalMode(),
631                         SGVar->getAddressSpace());
632  NewDGV->setAlignment(MaybeAlign(SGVar->getAlignment()));
633  NewDGV->copyAttributesFrom(SGVar);
634  return NewDGV;
635}
636
637AttributeList IRLinker::mapAttributeTypes(LLVMContext &C, AttributeList Attrs) {
638  for (unsigned i = 0; i < Attrs.getNumAttrSets(); ++i) {
639    if (Attrs.hasAttribute(i, Attribute::ByVal)) {
640      Type *Ty = Attrs.getAttribute(i, Attribute::ByVal).getValueAsType();
641      if (!Ty)
642        continue;
643
644      Attrs = Attrs.removeAttribute(C, i, Attribute::ByVal);
645      Attrs = Attrs.addAttribute(
646          C, i, Attribute::getWithByValType(C, TypeMap.get(Ty)));
647    }
648  }
649  return Attrs;
650}
651
652/// Link the function in the source module into the destination module if
653/// needed, setting up mapping information.
654Function *IRLinker::copyFunctionProto(const Function *SF) {
655  // If there is no linkage to be performed or we are linking from the source,
656  // bring SF over.
657  auto *F = Function::Create(TypeMap.get(SF->getFunctionType()),
658                             GlobalValue::ExternalLinkage,
659                             SF->getAddressSpace(), SF->getName(), &DstM);
660  F->copyAttributesFrom(SF);
661  F->setAttributes(mapAttributeTypes(F->getContext(), F->getAttributes()));
662  return F;
663}
664
665/// Set up prototypes for any indirect symbols that come over from the source
666/// module.
667GlobalValue *
668IRLinker::copyGlobalIndirectSymbolProto(const GlobalIndirectSymbol *SGIS) {
669  // If there is no linkage to be performed or we're linking from the source,
670  // bring over SGA.
671  auto *Ty = TypeMap.get(SGIS->getValueType());
672  GlobalIndirectSymbol *GIS;
673  if (isa<GlobalAlias>(SGIS))
674    GIS = GlobalAlias::create(Ty, SGIS->getAddressSpace(),
675                              GlobalValue::ExternalLinkage, SGIS->getName(),
676                              &DstM);
677  else
678    GIS = GlobalIFunc::create(Ty, SGIS->getAddressSpace(),
679                              GlobalValue::ExternalLinkage, SGIS->getName(),
680                              nullptr, &DstM);
681  GIS->copyAttributesFrom(SGIS);
682  return GIS;
683}
684
685GlobalValue *IRLinker::copyGlobalValueProto(const GlobalValue *SGV,
686                                            bool ForDefinition) {
687  GlobalValue *NewGV;
688  if (auto *SGVar = dyn_cast<GlobalVariable>(SGV)) {
689    NewGV = copyGlobalVariableProto(SGVar);
690  } else if (auto *SF = dyn_cast<Function>(SGV)) {
691    NewGV = copyFunctionProto(SF);
692  } else {
693    if (ForDefinition)
694      NewGV = copyGlobalIndirectSymbolProto(cast<GlobalIndirectSymbol>(SGV));
695    else if (SGV->getValueType()->isFunctionTy())
696      NewGV =
697          Function::Create(cast<FunctionType>(TypeMap.get(SGV->getValueType())),
698                           GlobalValue::ExternalLinkage, SGV->getAddressSpace(),
699                           SGV->getName(), &DstM);
700    else
701      NewGV =
702          new GlobalVariable(DstM, TypeMap.get(SGV->getValueType()),
703                             /*isConstant*/ false, GlobalValue::ExternalLinkage,
704                             /*init*/ nullptr, SGV->getName(),
705                             /*insertbefore*/ nullptr,
706                             SGV->getThreadLocalMode(), SGV->getAddressSpace());
707  }
708
709  if (ForDefinition)
710    NewGV->setLinkage(SGV->getLinkage());
711  else if (SGV->hasExternalWeakLinkage())
712    NewGV->setLinkage(GlobalValue::ExternalWeakLinkage);
713
714  if (auto *NewGO = dyn_cast<GlobalObject>(NewGV)) {
715    // Metadata for global variables and function declarations is copied eagerly.
716    if (isa<GlobalVariable>(SGV) || SGV->isDeclaration())
717      NewGO->copyMetadata(cast<GlobalObject>(SGV), 0);
718  }
719
720  // Remove these copied constants in case this stays a declaration, since
721  // they point to the source module. If the def is linked the values will
722  // be mapped in during linkFunctionBody.
723  if (auto *NewF = dyn_cast<Function>(NewGV)) {
724    NewF->setPersonalityFn(nullptr);
725    NewF->setPrefixData(nullptr);
726    NewF->setPrologueData(nullptr);
727  }
728
729  return NewGV;
730}
731
732static StringRef getTypeNamePrefix(StringRef Name) {
733  size_t DotPos = Name.rfind('.');
734  return (DotPos == 0 || DotPos == StringRef::npos || Name.back() == '.' ||
735          !isdigit(static_cast<unsigned char>(Name[DotPos + 1])))
736             ? Name
737             : Name.substr(0, DotPos);
738}
739
740/// Loop over all of the linked values to compute type mappings.  For example,
741/// if we link "extern Foo *x" and "Foo *x = NULL", then we have two struct
742/// types 'Foo' but one got renamed when the module was loaded into the same
743/// LLVMContext.
744void IRLinker::computeTypeMapping() {
745  for (GlobalValue &SGV : SrcM->globals()) {
746    GlobalValue *DGV = getLinkedToGlobal(&SGV);
747    if (!DGV)
748      continue;
749
750    if (!DGV->hasAppendingLinkage() || !SGV.hasAppendingLinkage()) {
751      TypeMap.addTypeMapping(DGV->getType(), SGV.getType());
752      continue;
753    }
754
755    // Unify the element type of appending arrays.
756    ArrayType *DAT = cast<ArrayType>(DGV->getValueType());
757    ArrayType *SAT = cast<ArrayType>(SGV.getValueType());
758    TypeMap.addTypeMapping(DAT->getElementType(), SAT->getElementType());
759  }
760
761  for (GlobalValue &SGV : *SrcM)
762    if (GlobalValue *DGV = getLinkedToGlobal(&SGV)) {
763      if (DGV->getType() == SGV.getType()) {
764        // If the types of DGV and SGV are the same, it means that DGV is from
765        // the source module and got added to DstM from a shared metadata.  We
766        // shouldn't map this type to itself in case the type's components get
767        // remapped to a new type from DstM (for instance, during the loop over
768        // SrcM->getIdentifiedStructTypes() below).
769        continue;
770      }
771
772      TypeMap.addTypeMapping(DGV->getType(), SGV.getType());
773    }
774
775  for (GlobalValue &SGV : SrcM->aliases())
776    if (GlobalValue *DGV = getLinkedToGlobal(&SGV))
777      TypeMap.addTypeMapping(DGV->getType(), SGV.getType());
778
779  // Incorporate types by name, scanning all the types in the source module.
780  // At this point, the destination module may have a type "%foo = { i32 }" for
781  // example.  When the source module got loaded into the same LLVMContext, if
782  // it had the same type, it would have been renamed to "%foo.42 = { i32 }".
783  std::vector<StructType *> Types = SrcM->getIdentifiedStructTypes();
784  for (StructType *ST : Types) {
785    if (!ST->hasName())
786      continue;
787
788    if (TypeMap.DstStructTypesSet.hasType(ST)) {
789      // This is actually a type from the destination module.
790      // getIdentifiedStructTypes() can have found it by walking debug info
791      // metadata nodes, some of which get linked by name when ODR Type Uniquing
792      // is enabled on the Context, from the source to the destination module.
793      continue;
794    }
795
796    auto STTypePrefix = getTypeNamePrefix(ST->getName());
797    if (STTypePrefix.size()== ST->getName().size())
798      continue;
799
800    // Check to see if the destination module has a struct with the prefix name.
801    StructType *DST = DstM.getTypeByName(STTypePrefix);
802    if (!DST)
803      continue;
804
805    // Don't use it if this actually came from the source module. They're in
806    // the same LLVMContext after all. Also don't use it unless the type is
807    // actually used in the destination module. This can happen in situations
808    // like this:
809    //
810    //      Module A                         Module B
811    //      --------                         --------
812    //   %Z = type { %A }                %B = type { %C.1 }
813    //   %A = type { %B.1, [7 x i8] }    %C.1 = type { i8* }
814    //   %B.1 = type { %C }              %A.2 = type { %B.3, [5 x i8] }
815    //   %C = type { i8* }               %B.3 = type { %C.1 }
816    //
817    // When we link Module B with Module A, the '%B' in Module B is
818    // used. However, that would then use '%C.1'. But when we process '%C.1',
819    // we prefer to take the '%C' version. So we are then left with both
820    // '%C.1' and '%C' being used for the same types. This leads to some
821    // variables using one type and some using the other.
822    if (TypeMap.DstStructTypesSet.hasType(DST))
823      TypeMap.addTypeMapping(DST, ST);
824  }
825
826  // Now that we have discovered all of the type equivalences, get a body for
827  // any 'opaque' types in the dest module that are now resolved.
828  TypeMap.linkDefinedTypeBodies();
829}
830
831static void getArrayElements(const Constant *C,
832                             SmallVectorImpl<Constant *> &Dest) {
833  unsigned NumElements = cast<ArrayType>(C->getType())->getNumElements();
834
835  for (unsigned i = 0; i != NumElements; ++i)
836    Dest.push_back(C->getAggregateElement(i));
837}
838
839/// If there were any appending global variables, link them together now.
840Expected<Constant *>
841IRLinker::linkAppendingVarProto(GlobalVariable *DstGV,
842                                const GlobalVariable *SrcGV) {
843  Type *EltTy = cast<ArrayType>(TypeMap.get(SrcGV->getValueType()))
844                    ->getElementType();
845
846  // FIXME: This upgrade is done during linking to support the C API.  Once the
847  // old form is deprecated, we should move this upgrade to
848  // llvm::UpgradeGlobalVariable() and simplify the logic here and in
849  // Mapper::mapAppendingVariable() in ValueMapper.cpp.
850  StringRef Name = SrcGV->getName();
851  bool IsNewStructor = false;
852  bool IsOldStructor = false;
853  if (Name == "llvm.global_ctors" || Name == "llvm.global_dtors") {
854    if (cast<StructType>(EltTy)->getNumElements() == 3)
855      IsNewStructor = true;
856    else
857      IsOldStructor = true;
858  }
859
860  PointerType *VoidPtrTy = Type::getInt8Ty(SrcGV->getContext())->getPointerTo();
861  if (IsOldStructor) {
862    auto &ST = *cast<StructType>(EltTy);
863    Type *Tys[3] = {ST.getElementType(0), ST.getElementType(1), VoidPtrTy};
864    EltTy = StructType::get(SrcGV->getContext(), Tys, false);
865  }
866
867  uint64_t DstNumElements = 0;
868  if (DstGV) {
869    ArrayType *DstTy = cast<ArrayType>(DstGV->getValueType());
870    DstNumElements = DstTy->getNumElements();
871
872    if (!SrcGV->hasAppendingLinkage() || !DstGV->hasAppendingLinkage())
873      return stringErr(
874          "Linking globals named '" + SrcGV->getName() +
875          "': can only link appending global with another appending "
876          "global!");
877
878    // Check to see that they two arrays agree on type.
879    if (EltTy != DstTy->getElementType())
880      return stringErr("Appending variables with different element types!");
881    if (DstGV->isConstant() != SrcGV->isConstant())
882      return stringErr("Appending variables linked with different const'ness!");
883
884    if (DstGV->getAlignment() != SrcGV->getAlignment())
885      return stringErr(
886          "Appending variables with different alignment need to be linked!");
887
888    if (DstGV->getVisibility() != SrcGV->getVisibility())
889      return stringErr(
890          "Appending variables with different visibility need to be linked!");
891
892    if (DstGV->hasGlobalUnnamedAddr() != SrcGV->hasGlobalUnnamedAddr())
893      return stringErr(
894          "Appending variables with different unnamed_addr need to be linked!");
895
896    if (DstGV->getSection() != SrcGV->getSection())
897      return stringErr(
898          "Appending variables with different section name need to be linked!");
899  }
900
901  SmallVector<Constant *, 16> SrcElements;
902  getArrayElements(SrcGV->getInitializer(), SrcElements);
903
904  if (IsNewStructor) {
905    auto It = remove_if(SrcElements, [this](Constant *E) {
906      auto *Key =
907          dyn_cast<GlobalValue>(E->getAggregateElement(2)->stripPointerCasts());
908      if (!Key)
909        return false;
910      GlobalValue *DGV = getLinkedToGlobal(Key);
911      return !shouldLink(DGV, *Key);
912    });
913    SrcElements.erase(It, SrcElements.end());
914  }
915  uint64_t NewSize = DstNumElements + SrcElements.size();
916  ArrayType *NewType = ArrayType::get(EltTy, NewSize);
917
918  // Create the new global variable.
919  GlobalVariable *NG = new GlobalVariable(
920      DstM, NewType, SrcGV->isConstant(), SrcGV->getLinkage(),
921      /*init*/ nullptr, /*name*/ "", DstGV, SrcGV->getThreadLocalMode(),
922      SrcGV->getAddressSpace());
923
924  NG->copyAttributesFrom(SrcGV);
925  forceRenaming(NG, SrcGV->getName());
926
927  Constant *Ret = ConstantExpr::getBitCast(NG, TypeMap.get(SrcGV->getType()));
928
929  Mapper.scheduleMapAppendingVariable(*NG,
930                                      DstGV ? DstGV->getInitializer() : nullptr,
931                                      IsOldStructor, SrcElements);
932
933  // Replace any uses of the two global variables with uses of the new
934  // global.
935  if (DstGV) {
936    RAUWWorklist.push_back(
937        std::make_pair(DstGV, ConstantExpr::getBitCast(NG, DstGV->getType())));
938  }
939
940  return Ret;
941}
942
943bool IRLinker::shouldLink(GlobalValue *DGV, GlobalValue &SGV) {
944  if (ValuesToLink.count(&SGV) || SGV.hasLocalLinkage())
945    return true;
946
947  if (DGV && !DGV->isDeclarationForLinker())
948    return false;
949
950  if (SGV.isDeclaration() || DoneLinkingBodies)
951    return false;
952
953  // Callback to the client to give a chance to lazily add the Global to the
954  // list of value to link.
955  bool LazilyAdded = false;
956  AddLazyFor(SGV, [this, &LazilyAdded](GlobalValue &GV) {
957    maybeAdd(&GV);
958    LazilyAdded = true;
959  });
960  return LazilyAdded;
961}
962
963Expected<Constant *> IRLinker::linkGlobalValueProto(GlobalValue *SGV,
964                                                    bool ForIndirectSymbol) {
965  GlobalValue *DGV = getLinkedToGlobal(SGV);
966
967  bool ShouldLink = shouldLink(DGV, *SGV);
968
969  // just missing from map
970  if (ShouldLink) {
971    auto I = ValueMap.find(SGV);
972    if (I != ValueMap.end())
973      return cast<Constant>(I->second);
974
975    I = IndirectSymbolValueMap.find(SGV);
976    if (I != IndirectSymbolValueMap.end())
977      return cast<Constant>(I->second);
978  }
979
980  if (!ShouldLink && ForIndirectSymbol)
981    DGV = nullptr;
982
983  // Handle the ultra special appending linkage case first.
984  assert(!DGV || SGV->hasAppendingLinkage() == DGV->hasAppendingLinkage());
985  if (SGV->hasAppendingLinkage())
986    return linkAppendingVarProto(cast_or_null<GlobalVariable>(DGV),
987                                 cast<GlobalVariable>(SGV));
988
989  GlobalValue *NewGV;
990  if (DGV && !ShouldLink) {
991    NewGV = DGV;
992  } else {
993    // If we are done linking global value bodies (i.e. we are performing
994    // metadata linking), don't link in the global value due to this
995    // reference, simply map it to null.
996    if (DoneLinkingBodies)
997      return nullptr;
998
999    NewGV = copyGlobalValueProto(SGV, ShouldLink || ForIndirectSymbol);
1000    if (ShouldLink || !ForIndirectSymbol)
1001      forceRenaming(NewGV, SGV->getName());
1002  }
1003
1004  // Overloaded intrinsics have overloaded types names as part of their
1005  // names. If we renamed overloaded types we should rename the intrinsic
1006  // as well.
1007  if (Function *F = dyn_cast<Function>(NewGV))
1008    if (auto Remangled = Intrinsic::remangleIntrinsicFunction(F))
1009      NewGV = Remangled.getValue();
1010
1011  if (ShouldLink || ForIndirectSymbol) {
1012    if (const Comdat *SC = SGV->getComdat()) {
1013      if (auto *GO = dyn_cast<GlobalObject>(NewGV)) {
1014        Comdat *DC = DstM.getOrInsertComdat(SC->getName());
1015        DC->setSelectionKind(SC->getSelectionKind());
1016        GO->setComdat(DC);
1017      }
1018    }
1019  }
1020
1021  if (!ShouldLink && ForIndirectSymbol)
1022    NewGV->setLinkage(GlobalValue::InternalLinkage);
1023
1024  Constant *C = NewGV;
1025  // Only create a bitcast if necessary. In particular, with
1026  // DebugTypeODRUniquing we may reach metadata in the destination module
1027  // containing a GV from the source module, in which case SGV will be
1028  // the same as DGV and NewGV, and TypeMap.get() will assert since it
1029  // assumes it is being invoked on a type in the source module.
1030  if (DGV && NewGV != SGV) {
1031    C = ConstantExpr::getPointerBitCastOrAddrSpaceCast(
1032      NewGV, TypeMap.get(SGV->getType()));
1033  }
1034
1035  if (DGV && NewGV != DGV) {
1036    // Schedule "replace all uses with" to happen after materializing is
1037    // done. It is not safe to do it now, since ValueMapper may be holding
1038    // pointers to constants that will get deleted if RAUW runs.
1039    RAUWWorklist.push_back(std::make_pair(
1040        DGV,
1041        ConstantExpr::getPointerBitCastOrAddrSpaceCast(NewGV, DGV->getType())));
1042  }
1043
1044  return C;
1045}
1046
1047/// Update the initializers in the Dest module now that all globals that may be
1048/// referenced are in Dest.
1049void IRLinker::linkGlobalVariable(GlobalVariable &Dst, GlobalVariable &Src) {
1050  // Figure out what the initializer looks like in the dest module.
1051  Mapper.scheduleMapGlobalInitializer(Dst, *Src.getInitializer());
1052}
1053
1054/// Copy the source function over into the dest function and fix up references
1055/// to values. At this point we know that Dest is an external function, and
1056/// that Src is not.
1057Error IRLinker::linkFunctionBody(Function &Dst, Function &Src) {
1058  assert(Dst.isDeclaration() && !Src.isDeclaration());
1059
1060  // Materialize if needed.
1061  if (Error Err = Src.materialize())
1062    return Err;
1063
1064  // Link in the operands without remapping.
1065  if (Src.hasPrefixData())
1066    Dst.setPrefixData(Src.getPrefixData());
1067  if (Src.hasPrologueData())
1068    Dst.setPrologueData(Src.getPrologueData());
1069  if (Src.hasPersonalityFn())
1070    Dst.setPersonalityFn(Src.getPersonalityFn());
1071
1072  // Copy over the metadata attachments without remapping.
1073  Dst.copyMetadata(&Src, 0);
1074
1075  // Steal arguments and splice the body of Src into Dst.
1076  Dst.stealArgumentListFrom(Src);
1077  Dst.getBasicBlockList().splice(Dst.end(), Src.getBasicBlockList());
1078
1079  // Everything has been moved over.  Remap it.
1080  Mapper.scheduleRemapFunction(Dst);
1081  return Error::success();
1082}
1083
1084void IRLinker::linkIndirectSymbolBody(GlobalIndirectSymbol &Dst,
1085                                      GlobalIndirectSymbol &Src) {
1086  Mapper.scheduleMapGlobalIndirectSymbol(Dst, *Src.getIndirectSymbol(),
1087                                         IndirectSymbolMCID);
1088}
1089
1090Error IRLinker::linkGlobalValueBody(GlobalValue &Dst, GlobalValue &Src) {
1091  if (auto *F = dyn_cast<Function>(&Src))
1092    return linkFunctionBody(cast<Function>(Dst), *F);
1093  if (auto *GVar = dyn_cast<GlobalVariable>(&Src)) {
1094    linkGlobalVariable(cast<GlobalVariable>(Dst), *GVar);
1095    return Error::success();
1096  }
1097  linkIndirectSymbolBody(cast<GlobalIndirectSymbol>(Dst), cast<GlobalIndirectSymbol>(Src));
1098  return Error::success();
1099}
1100
1101void IRLinker::flushRAUWWorklist() {
1102  for (const auto &Elem : RAUWWorklist) {
1103    GlobalValue *Old;
1104    Value *New;
1105    std::tie(Old, New) = Elem;
1106
1107    Old->replaceAllUsesWith(New);
1108    Old->eraseFromParent();
1109  }
1110  RAUWWorklist.clear();
1111}
1112
1113void IRLinker::prepareCompileUnitsForImport() {
1114  NamedMDNode *SrcCompileUnits = SrcM->getNamedMetadata("llvm.dbg.cu");
1115  if (!SrcCompileUnits)
1116    return;
1117  // When importing for ThinLTO, prevent importing of types listed on
1118  // the DICompileUnit that we don't need a copy of in the importing
1119  // module. They will be emitted by the originating module.
1120  for (unsigned I = 0, E = SrcCompileUnits->getNumOperands(); I != E; ++I) {
1121    auto *CU = cast<DICompileUnit>(SrcCompileUnits->getOperand(I));
1122    assert(CU && "Expected valid compile unit");
1123    // Enums, macros, and retained types don't need to be listed on the
1124    // imported DICompileUnit. This means they will only be imported
1125    // if reached from the mapped IR. Do this by setting their value map
1126    // entries to nullptr, which will automatically prevent their importing
1127    // when reached from the DICompileUnit during metadata mapping.
1128    ValueMap.MD()[CU->getRawEnumTypes()].reset(nullptr);
1129    ValueMap.MD()[CU->getRawMacros()].reset(nullptr);
1130    ValueMap.MD()[CU->getRawRetainedTypes()].reset(nullptr);
1131    // The original definition (or at least its debug info - if the variable is
1132    // internalized an optimized away) will remain in the source module, so
1133    // there's no need to import them.
1134    // If LLVM ever does more advanced optimizations on global variables
1135    // (removing/localizing write operations, for instance) that can track
1136    // through debug info, this decision may need to be revisited - but do so
1137    // with care when it comes to debug info size. Emitting small CUs containing
1138    // only a few imported entities into every destination module may be very
1139    // size inefficient.
1140    ValueMap.MD()[CU->getRawGlobalVariables()].reset(nullptr);
1141
1142    // Imported entities only need to be mapped in if they have local
1143    // scope, as those might correspond to an imported entity inside a
1144    // function being imported (any locally scoped imported entities that
1145    // don't end up referenced by an imported function will not be emitted
1146    // into the object). Imported entities not in a local scope
1147    // (e.g. on the namespace) only need to be emitted by the originating
1148    // module. Create a list of the locally scoped imported entities, and
1149    // replace the source CUs imported entity list with the new list, so
1150    // only those are mapped in.
1151    // FIXME: Locally-scoped imported entities could be moved to the
1152    // functions they are local to instead of listing them on the CU, and
1153    // we would naturally only link in those needed by function importing.
1154    SmallVector<TrackingMDNodeRef, 4> AllImportedModules;
1155    bool ReplaceImportedEntities = false;
1156    for (auto *IE : CU->getImportedEntities()) {
1157      DIScope *Scope = IE->getScope();
1158      assert(Scope && "Invalid Scope encoding!");
1159      if (isa<DILocalScope>(Scope))
1160        AllImportedModules.emplace_back(IE);
1161      else
1162        ReplaceImportedEntities = true;
1163    }
1164    if (ReplaceImportedEntities) {
1165      if (!AllImportedModules.empty())
1166        CU->replaceImportedEntities(MDTuple::get(
1167            CU->getContext(),
1168            SmallVector<Metadata *, 16>(AllImportedModules.begin(),
1169                                        AllImportedModules.end())));
1170      else
1171        // If there were no local scope imported entities, we can map
1172        // the whole list to nullptr.
1173        ValueMap.MD()[CU->getRawImportedEntities()].reset(nullptr);
1174    }
1175  }
1176}
1177
1178/// Insert all of the named MDNodes in Src into the Dest module.
1179void IRLinker::linkNamedMDNodes() {
1180  const NamedMDNode *SrcModFlags = SrcM->getModuleFlagsMetadata();
1181  for (const NamedMDNode &NMD : SrcM->named_metadata()) {
1182    // Don't link module flags here. Do them separately.
1183    if (&NMD == SrcModFlags)
1184      continue;
1185    NamedMDNode *DestNMD = DstM.getOrInsertNamedMetadata(NMD.getName());
1186    // Add Src elements into Dest node.
1187    for (const MDNode *Op : NMD.operands())
1188      DestNMD->addOperand(Mapper.mapMDNode(*Op));
1189  }
1190}
1191
1192/// Merge the linker flags in Src into the Dest module.
1193Error IRLinker::linkModuleFlagsMetadata() {
1194  // If the source module has no module flags, we are done.
1195  const NamedMDNode *SrcModFlags = SrcM->getModuleFlagsMetadata();
1196  if (!SrcModFlags)
1197    return Error::success();
1198
1199  // If the destination module doesn't have module flags yet, then just copy
1200  // over the source module's flags.
1201  NamedMDNode *DstModFlags = DstM.getOrInsertModuleFlagsMetadata();
1202  if (DstModFlags->getNumOperands() == 0) {
1203    for (unsigned I = 0, E = SrcModFlags->getNumOperands(); I != E; ++I)
1204      DstModFlags->addOperand(SrcModFlags->getOperand(I));
1205
1206    return Error::success();
1207  }
1208
1209  // First build a map of the existing module flags and requirements.
1210  DenseMap<MDString *, std::pair<MDNode *, unsigned>> Flags;
1211  SmallSetVector<MDNode *, 16> Requirements;
1212  for (unsigned I = 0, E = DstModFlags->getNumOperands(); I != E; ++I) {
1213    MDNode *Op = DstModFlags->getOperand(I);
1214    ConstantInt *Behavior = mdconst::extract<ConstantInt>(Op->getOperand(0));
1215    MDString *ID = cast<MDString>(Op->getOperand(1));
1216
1217    if (Behavior->getZExtValue() == Module::Require) {
1218      Requirements.insert(cast<MDNode>(Op->getOperand(2)));
1219    } else {
1220      Flags[ID] = std::make_pair(Op, I);
1221    }
1222  }
1223
1224  // Merge in the flags from the source module, and also collect its set of
1225  // requirements.
1226  for (unsigned I = 0, E = SrcModFlags->getNumOperands(); I != E; ++I) {
1227    MDNode *SrcOp = SrcModFlags->getOperand(I);
1228    ConstantInt *SrcBehavior =
1229        mdconst::extract<ConstantInt>(SrcOp->getOperand(0));
1230    MDString *ID = cast<MDString>(SrcOp->getOperand(1));
1231    MDNode *DstOp;
1232    unsigned DstIndex;
1233    std::tie(DstOp, DstIndex) = Flags.lookup(ID);
1234    unsigned SrcBehaviorValue = SrcBehavior->getZExtValue();
1235
1236    // If this is a requirement, add it and continue.
1237    if (SrcBehaviorValue == Module::Require) {
1238      // If the destination module does not already have this requirement, add
1239      // it.
1240      if (Requirements.insert(cast<MDNode>(SrcOp->getOperand(2)))) {
1241        DstModFlags->addOperand(SrcOp);
1242      }
1243      continue;
1244    }
1245
1246    // If there is no existing flag with this ID, just add it.
1247    if (!DstOp) {
1248      Flags[ID] = std::make_pair(SrcOp, DstModFlags->getNumOperands());
1249      DstModFlags->addOperand(SrcOp);
1250      continue;
1251    }
1252
1253    // Otherwise, perform a merge.
1254    ConstantInt *DstBehavior =
1255        mdconst::extract<ConstantInt>(DstOp->getOperand(0));
1256    unsigned DstBehaviorValue = DstBehavior->getZExtValue();
1257
1258    auto overrideDstValue = [&]() {
1259      DstModFlags->setOperand(DstIndex, SrcOp);
1260      Flags[ID].first = SrcOp;
1261    };
1262
1263    // If either flag has override behavior, handle it first.
1264    if (DstBehaviorValue == Module::Override) {
1265      // Diagnose inconsistent flags which both have override behavior.
1266      if (SrcBehaviorValue == Module::Override &&
1267          SrcOp->getOperand(2) != DstOp->getOperand(2))
1268        return stringErr("linking module flags '" + ID->getString() +
1269                         "': IDs have conflicting override values in '" +
1270                         SrcM->getModuleIdentifier() + "' and '" +
1271                         DstM.getModuleIdentifier() + "'");
1272      continue;
1273    } else if (SrcBehaviorValue == Module::Override) {
1274      // Update the destination flag to that of the source.
1275      overrideDstValue();
1276      continue;
1277    }
1278
1279    // Diagnose inconsistent merge behavior types.
1280    if (SrcBehaviorValue != DstBehaviorValue) {
1281      bool MaxAndWarn = (SrcBehaviorValue == Module::Max &&
1282                         DstBehaviorValue == Module::Warning) ||
1283                        (DstBehaviorValue == Module::Max &&
1284                         SrcBehaviorValue == Module::Warning);
1285      if (!MaxAndWarn)
1286        return stringErr("linking module flags '" + ID->getString() +
1287                         "': IDs have conflicting behaviors in '" +
1288                         SrcM->getModuleIdentifier() + "' and '" +
1289                         DstM.getModuleIdentifier() + "'");
1290    }
1291
1292    auto replaceDstValue = [&](MDNode *New) {
1293      Metadata *FlagOps[] = {DstOp->getOperand(0), ID, New};
1294      MDNode *Flag = MDNode::get(DstM.getContext(), FlagOps);
1295      DstModFlags->setOperand(DstIndex, Flag);
1296      Flags[ID].first = Flag;
1297    };
1298
1299    // Emit a warning if the values differ and either source or destination
1300    // request Warning behavior.
1301    if ((DstBehaviorValue == Module::Warning ||
1302         SrcBehaviorValue == Module::Warning) &&
1303        SrcOp->getOperand(2) != DstOp->getOperand(2)) {
1304      std::string Str;
1305      raw_string_ostream(Str)
1306          << "linking module flags '" << ID->getString()
1307          << "': IDs have conflicting values ('" << *SrcOp->getOperand(2)
1308          << "' from " << SrcM->getModuleIdentifier() << " with '"
1309          << *DstOp->getOperand(2) << "' from " << DstM.getModuleIdentifier()
1310          << ')';
1311      emitWarning(Str);
1312    }
1313
1314    // Choose the maximum if either source or destination request Max behavior.
1315    if (DstBehaviorValue == Module::Max || SrcBehaviorValue == Module::Max) {
1316      ConstantInt *DstValue =
1317          mdconst::extract<ConstantInt>(DstOp->getOperand(2));
1318      ConstantInt *SrcValue =
1319          mdconst::extract<ConstantInt>(SrcOp->getOperand(2));
1320
1321      // The resulting flag should have a Max behavior, and contain the maximum
1322      // value from between the source and destination values.
1323      Metadata *FlagOps[] = {
1324          (DstBehaviorValue != Module::Max ? SrcOp : DstOp)->getOperand(0), ID,
1325          (SrcValue->getZExtValue() > DstValue->getZExtValue() ? SrcOp : DstOp)
1326              ->getOperand(2)};
1327      MDNode *Flag = MDNode::get(DstM.getContext(), FlagOps);
1328      DstModFlags->setOperand(DstIndex, Flag);
1329      Flags[ID].first = Flag;
1330      continue;
1331    }
1332
1333    // Perform the merge for standard behavior types.
1334    switch (SrcBehaviorValue) {
1335    case Module::Require:
1336    case Module::Override:
1337      llvm_unreachable("not possible");
1338    case Module::Error: {
1339      // Emit an error if the values differ.
1340      if (SrcOp->getOperand(2) != DstOp->getOperand(2))
1341        return stringErr("linking module flags '" + ID->getString() +
1342                         "': IDs have conflicting values in '" +
1343                         SrcM->getModuleIdentifier() + "' and '" +
1344                         DstM.getModuleIdentifier() + "'");
1345      continue;
1346    }
1347    case Module::Warning: {
1348      break;
1349    }
1350    case Module::Max: {
1351      break;
1352    }
1353    case Module::Append: {
1354      MDNode *DstValue = cast<MDNode>(DstOp->getOperand(2));
1355      MDNode *SrcValue = cast<MDNode>(SrcOp->getOperand(2));
1356      SmallVector<Metadata *, 8> MDs;
1357      MDs.reserve(DstValue->getNumOperands() + SrcValue->getNumOperands());
1358      MDs.append(DstValue->op_begin(), DstValue->op_end());
1359      MDs.append(SrcValue->op_begin(), SrcValue->op_end());
1360
1361      replaceDstValue(MDNode::get(DstM.getContext(), MDs));
1362      break;
1363    }
1364    case Module::AppendUnique: {
1365      SmallSetVector<Metadata *, 16> Elts;
1366      MDNode *DstValue = cast<MDNode>(DstOp->getOperand(2));
1367      MDNode *SrcValue = cast<MDNode>(SrcOp->getOperand(2));
1368      Elts.insert(DstValue->op_begin(), DstValue->op_end());
1369      Elts.insert(SrcValue->op_begin(), SrcValue->op_end());
1370
1371      replaceDstValue(MDNode::get(DstM.getContext(),
1372                                  makeArrayRef(Elts.begin(), Elts.end())));
1373      break;
1374    }
1375    }
1376
1377  }
1378
1379  // Check all of the requirements.
1380  for (unsigned I = 0, E = Requirements.size(); I != E; ++I) {
1381    MDNode *Requirement = Requirements[I];
1382    MDString *Flag = cast<MDString>(Requirement->getOperand(0));
1383    Metadata *ReqValue = Requirement->getOperand(1);
1384
1385    MDNode *Op = Flags[Flag].first;
1386    if (!Op || Op->getOperand(2) != ReqValue)
1387      return stringErr("linking module flags '" + Flag->getString() +
1388                       "': does not have the required value");
1389  }
1390  return Error::success();
1391}
1392
1393/// Return InlineAsm adjusted with target-specific directives if required.
1394/// For ARM and Thumb, we have to add directives to select the appropriate ISA
1395/// to support mixing module-level inline assembly from ARM and Thumb modules.
1396static std::string adjustInlineAsm(const std::string &InlineAsm,
1397                                   const Triple &Triple) {
1398  if (Triple.getArch() == Triple::thumb || Triple.getArch() == Triple::thumbeb)
1399    return ".text\n.balign 2\n.thumb\n" + InlineAsm;
1400  if (Triple.getArch() == Triple::arm || Triple.getArch() == Triple::armeb)
1401    return ".text\n.balign 4\n.arm\n" + InlineAsm;
1402  return InlineAsm;
1403}
1404
1405Error IRLinker::run() {
1406  // Ensure metadata materialized before value mapping.
1407  if (SrcM->getMaterializer())
1408    if (Error Err = SrcM->getMaterializer()->materializeMetadata())
1409      return Err;
1410
1411  // Inherit the target data from the source module if the destination module
1412  // doesn't have one already.
1413  if (DstM.getDataLayout().isDefault())
1414    DstM.setDataLayout(SrcM->getDataLayout());
1415
1416  if (SrcM->getDataLayout() != DstM.getDataLayout()) {
1417    emitWarning("Linking two modules of different data layouts: '" +
1418                SrcM->getModuleIdentifier() + "' is '" +
1419                SrcM->getDataLayoutStr() + "' whereas '" +
1420                DstM.getModuleIdentifier() + "' is '" +
1421                DstM.getDataLayoutStr() + "'\n");
1422  }
1423
1424  // Copy the target triple from the source to dest if the dest's is empty.
1425  if (DstM.getTargetTriple().empty() && !SrcM->getTargetTriple().empty())
1426    DstM.setTargetTriple(SrcM->getTargetTriple());
1427
1428  Triple SrcTriple(SrcM->getTargetTriple()), DstTriple(DstM.getTargetTriple());
1429
1430  if (!SrcM->getTargetTriple().empty()&&
1431      !SrcTriple.isCompatibleWith(DstTriple))
1432    emitWarning("Linking two modules of different target triples: " +
1433                SrcM->getModuleIdentifier() + "' is '" +
1434                SrcM->getTargetTriple() + "' whereas '" +
1435                DstM.getModuleIdentifier() + "' is '" + DstM.getTargetTriple() +
1436                "'\n");
1437
1438  DstM.setTargetTriple(SrcTriple.merge(DstTriple));
1439
1440  // Append the module inline asm string.
1441  if (!IsPerformingImport && !SrcM->getModuleInlineAsm().empty()) {
1442    std::string SrcModuleInlineAsm = adjustInlineAsm(SrcM->getModuleInlineAsm(),
1443                                                     SrcTriple);
1444    if (DstM.getModuleInlineAsm().empty())
1445      DstM.setModuleInlineAsm(SrcModuleInlineAsm);
1446    else
1447      DstM.setModuleInlineAsm(DstM.getModuleInlineAsm() + "\n" +
1448                              SrcModuleInlineAsm);
1449  }
1450
1451  // Loop over all of the linked values to compute type mappings.
1452  computeTypeMapping();
1453
1454  std::reverse(Worklist.begin(), Worklist.end());
1455  while (!Worklist.empty()) {
1456    GlobalValue *GV = Worklist.back();
1457    Worklist.pop_back();
1458
1459    // Already mapped.
1460    if (ValueMap.find(GV) != ValueMap.end() ||
1461        IndirectSymbolValueMap.find(GV) != IndirectSymbolValueMap.end())
1462      continue;
1463
1464    assert(!GV->isDeclaration());
1465    Mapper.mapValue(*GV);
1466    if (FoundError)
1467      return std::move(*FoundError);
1468    flushRAUWWorklist();
1469  }
1470
1471  // Note that we are done linking global value bodies. This prevents
1472  // metadata linking from creating new references.
1473  DoneLinkingBodies = true;
1474  Mapper.addFlags(RF_NullMapMissingGlobalValues);
1475
1476  // Remap all of the named MDNodes in Src into the DstM module. We do this
1477  // after linking GlobalValues so that MDNodes that reference GlobalValues
1478  // are properly remapped.
1479  linkNamedMDNodes();
1480
1481  // Merge the module flags into the DstM module.
1482  return linkModuleFlagsMetadata();
1483}
1484
1485IRMover::StructTypeKeyInfo::KeyTy::KeyTy(ArrayRef<Type *> E, bool P)
1486    : ETypes(E), IsPacked(P) {}
1487
1488IRMover::StructTypeKeyInfo::KeyTy::KeyTy(const StructType *ST)
1489    : ETypes(ST->elements()), IsPacked(ST->isPacked()) {}
1490
1491bool IRMover::StructTypeKeyInfo::KeyTy::operator==(const KeyTy &That) const {
1492  return IsPacked == That.IsPacked && ETypes == That.ETypes;
1493}
1494
1495bool IRMover::StructTypeKeyInfo::KeyTy::operator!=(const KeyTy &That) const {
1496  return !this->operator==(That);
1497}
1498
1499StructType *IRMover::StructTypeKeyInfo::getEmptyKey() {
1500  return DenseMapInfo<StructType *>::getEmptyKey();
1501}
1502
1503StructType *IRMover::StructTypeKeyInfo::getTombstoneKey() {
1504  return DenseMapInfo<StructType *>::getTombstoneKey();
1505}
1506
1507unsigned IRMover::StructTypeKeyInfo::getHashValue(const KeyTy &Key) {
1508  return hash_combine(hash_combine_range(Key.ETypes.begin(), Key.ETypes.end()),
1509                      Key.IsPacked);
1510}
1511
1512unsigned IRMover::StructTypeKeyInfo::getHashValue(const StructType *ST) {
1513  return getHashValue(KeyTy(ST));
1514}
1515
1516bool IRMover::StructTypeKeyInfo::isEqual(const KeyTy &LHS,
1517                                         const StructType *RHS) {
1518  if (RHS == getEmptyKey() || RHS == getTombstoneKey())
1519    return false;
1520  return LHS == KeyTy(RHS);
1521}
1522
1523bool IRMover::StructTypeKeyInfo::isEqual(const StructType *LHS,
1524                                         const StructType *RHS) {
1525  if (RHS == getEmptyKey() || RHS == getTombstoneKey())
1526    return LHS == RHS;
1527  return KeyTy(LHS) == KeyTy(RHS);
1528}
1529
1530void IRMover::IdentifiedStructTypeSet::addNonOpaque(StructType *Ty) {
1531  assert(!Ty->isOpaque());
1532  NonOpaqueStructTypes.insert(Ty);
1533}
1534
1535void IRMover::IdentifiedStructTypeSet::switchToNonOpaque(StructType *Ty) {
1536  assert(!Ty->isOpaque());
1537  NonOpaqueStructTypes.insert(Ty);
1538  bool Removed = OpaqueStructTypes.erase(Ty);
1539  (void)Removed;
1540  assert(Removed);
1541}
1542
1543void IRMover::IdentifiedStructTypeSet::addOpaque(StructType *Ty) {
1544  assert(Ty->isOpaque());
1545  OpaqueStructTypes.insert(Ty);
1546}
1547
1548StructType *
1549IRMover::IdentifiedStructTypeSet::findNonOpaque(ArrayRef<Type *> ETypes,
1550                                                bool IsPacked) {
1551  IRMover::StructTypeKeyInfo::KeyTy Key(ETypes, IsPacked);
1552  auto I = NonOpaqueStructTypes.find_as(Key);
1553  return I == NonOpaqueStructTypes.end() ? nullptr : *I;
1554}
1555
1556bool IRMover::IdentifiedStructTypeSet::hasType(StructType *Ty) {
1557  if (Ty->isOpaque())
1558    return OpaqueStructTypes.count(Ty);
1559  auto I = NonOpaqueStructTypes.find(Ty);
1560  return I == NonOpaqueStructTypes.end() ? false : *I == Ty;
1561}
1562
1563IRMover::IRMover(Module &M) : Composite(M) {
1564  TypeFinder StructTypes;
1565  StructTypes.run(M, /* OnlyNamed */ false);
1566  for (StructType *Ty : StructTypes) {
1567    if (Ty->isOpaque())
1568      IdentifiedStructTypes.addOpaque(Ty);
1569    else
1570      IdentifiedStructTypes.addNonOpaque(Ty);
1571  }
1572  // Self-map metadatas in the destination module. This is needed when
1573  // DebugTypeODRUniquing is enabled on the LLVMContext, since metadata in the
1574  // destination module may be reached from the source module.
1575  for (auto *MD : StructTypes.getVisitedMetadata()) {
1576    SharedMDs[MD].reset(const_cast<MDNode *>(MD));
1577  }
1578}
1579
1580Error IRMover::move(
1581    std::unique_ptr<Module> Src, ArrayRef<GlobalValue *> ValuesToLink,
1582    std::function<void(GlobalValue &, ValueAdder Add)> AddLazyFor,
1583    bool IsPerformingImport) {
1584  IRLinker TheIRLinker(Composite, SharedMDs, IdentifiedStructTypes,
1585                       std::move(Src), ValuesToLink, std::move(AddLazyFor),
1586                       IsPerformingImport);
1587  Error E = TheIRLinker.run();
1588  Composite.dropTriviallyDeadConstantArrays();
1589  return E;
1590}
1591