Value.cpp revision 360784
1263320Sdim//===-- Value.cpp - Implement the Value class -----------------------------===//
2263320Sdim//
3263320Sdim// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4263320Sdim// See https://llvm.org/LICENSE.txt for license information.
5263320Sdim// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6263320Sdim//
7263320Sdim//===----------------------------------------------------------------------===//
8263320Sdim//
9263320Sdim// This file implements the Value, ValueHandle, and User classes.
10263320Sdim//
11263320Sdim//===----------------------------------------------------------------------===//
12263320Sdim
13263320Sdim#include "llvm/IR/Value.h"
14263320Sdim#include "LLVMContextImpl.h"
15263320Sdim#include "llvm/ADT/DenseMap.h"
16263320Sdim#include "llvm/ADT/SetVector.h"
17263320Sdim#include "llvm/ADT/SmallString.h"
18263320Sdim#include "llvm/IR/Constant.h"
19263320Sdim#include "llvm/IR/Constants.h"
20263320Sdim#include "llvm/IR/DataLayout.h"
21263320Sdim#include "llvm/IR/DerivedTypes.h"
22263320Sdim#include "llvm/IR/DerivedUser.h"
23263320Sdim#include "llvm/IR/GetElementPtrTypeIterator.h"
24263320Sdim#include "llvm/IR/InstrTypes.h"
25263320Sdim#include "llvm/IR/Instructions.h"
26263320Sdim#include "llvm/IR/IntrinsicInst.h"
27263320Sdim#include "llvm/IR/Module.h"
28263320Sdim#include "llvm/IR/Operator.h"
29263320Sdim#include "llvm/IR/Statepoint.h"
30263320Sdim#include "llvm/IR/ValueHandle.h"
31263320Sdim#include "llvm/IR/ValueSymbolTable.h"
32263320Sdim#include "llvm/Support/CommandLine.h"
33263320Sdim#include "llvm/Support/Debug.h"
34263320Sdim#include "llvm/Support/ErrorHandling.h"
35263320Sdim#include "llvm/Support/ManagedStatic.h"
36263320Sdim#include "llvm/Support/raw_ostream.h"
37263320Sdim#include <algorithm>
38263320Sdim
39263320Sdimusing namespace llvm;
40263320Sdim
41263320Sdimstatic cl::opt<unsigned> NonGlobalValueMaxNameSize(
42263320Sdim    "non-global-value-max-name-size", cl::Hidden, cl::init(1024),
43263320Sdim    cl::desc("Maximum size for the name of non-global values."));
44263320Sdim
45263320Sdim//===----------------------------------------------------------------------===//
46263320Sdim//                                Value Class
47263320Sdim//===----------------------------------------------------------------------===//
48263320Sdimstatic inline Type *checkType(Type *Ty) {
49263320Sdim  assert(Ty && "Value defined with a null type: Error!");
50263320Sdim  return Ty;
51263320Sdim}
52263320Sdim
53263320SdimValue::Value(Type *ty, unsigned scid)
54263320Sdim    : VTy(checkType(ty)), UseList(nullptr), SubclassID(scid),
55263320Sdim      HasValueHandle(0), SubclassOptionalData(0), SubclassData(0),
56263320Sdim      NumUserOperands(0), IsUsedByMD(false), HasName(false) {
57263320Sdim  static_assert(ConstantFirstVal == 0, "!(SubclassID < ConstantFirstVal)");
58263320Sdim  // FIXME: Why isn't this in the subclass gunk??
59263320Sdim  // Note, we cannot call isa<CallInst> before the CallInst has been
60263320Sdim  // constructed.
61263320Sdim  if (SubclassID == Instruction::Call || SubclassID == Instruction::Invoke ||
62263320Sdim      SubclassID == Instruction::CallBr)
63263320Sdim    assert((VTy->isFirstClassType() || VTy->isVoidTy() || VTy->isStructTy()) &&
64263320Sdim           "invalid CallInst type!");
65263320Sdim  else if (SubclassID != BasicBlockVal &&
66263320Sdim           (/*SubclassID < ConstantFirstVal ||*/ SubclassID > ConstantLastVal))
67263320Sdim    assert((VTy->isFirstClassType() || VTy->isVoidTy()) &&
68263320Sdim           "Cannot create non-first-class values except for constants!");
69263320Sdim  static_assert(sizeof(Value) == 2 * sizeof(void *) + 2 * sizeof(unsigned),
70263320Sdim                "Value too big");
71263320Sdim}
72263320Sdim
73263320SdimValue::~Value() {
74263320Sdim  // Notify all ValueHandles (if present) that this value is going away.
75263320Sdim  if (HasValueHandle)
76263320Sdim    ValueHandleBase::ValueIsDeleted(this);
77263320Sdim  if (isUsedByMetadata())
78263320Sdim    ValueAsMetadata::handleDeletion(this);
79263320Sdim
80263320Sdim#ifndef NDEBUG      // Only in -g mode...
81263320Sdim  // Check to make sure that there are no uses of this value that are still
82263320Sdim  // around when the value is destroyed.  If there are, then we have a dangling
83263320Sdim  // reference and something is wrong.  This code is here to print out where
84263320Sdim  // the value is still being referenced.
85263320Sdim  //
86263320Sdim  if (!use_empty()) {
87263320Sdim    dbgs() << "While deleting: " << *VTy << " %" << getName() << "\n";
88263320Sdim    for (auto *U : users())
89263320Sdim      dbgs() << "Use still stuck around after Def is destroyed:" << *U << "\n";
90263320Sdim  }
91263320Sdim#endif
92263320Sdim  assert(use_empty() && "Uses remain when a value is destroyed!");
93263320Sdim
94263320Sdim  // If this value is named, destroy the name.  This should not be in a symtab
95263320Sdim  // at this point.
96263320Sdim  destroyValueName();
97263320Sdim}
98263320Sdim
99263320Sdimvoid Value::deleteValue() {
100263320Sdim  switch (getValueID()) {
101263320Sdim#define HANDLE_VALUE(Name)                                                     \
102263320Sdim  case Value::Name##Val:                                                       \
103263320Sdim    delete static_cast<Name *>(this);                                          \
104263320Sdim    break;
105263320Sdim#define HANDLE_MEMORY_VALUE(Name)                                              \
106263320Sdim  case Value::Name##Val:                                                       \
107263320Sdim    static_cast<DerivedUser *>(this)->DeleteValue(                             \
108263320Sdim        static_cast<DerivedUser *>(this));                                     \
109263320Sdim    break;
110263320Sdim#define HANDLE_INSTRUCTION(Name)  /* nothing */
111263320Sdim#include "llvm/IR/Value.def"
112263320Sdim
113263320Sdim#define HANDLE_INST(N, OPC, CLASS)                                             \
114263320Sdim  case Value::InstructionVal + Instruction::OPC:                               \
115263320Sdim    delete static_cast<CLASS *>(this);                                         \
116263320Sdim    break;
117263320Sdim#define HANDLE_USER_INST(N, OPC, CLASS)
118263320Sdim#include "llvm/IR/Instruction.def"
119263320Sdim
120263320Sdim  default:
121263320Sdim    llvm_unreachable("attempting to delete unknown value kind");
122263320Sdim  }
123263320Sdim}
124263320Sdim
125263320Sdimvoid Value::destroyValueName() {
126263320Sdim  ValueName *Name = getValueName();
127263320Sdim  if (Name)
128263320Sdim    Name->Destroy();
129263320Sdim  setValueName(nullptr);
130263320Sdim}
131263320Sdim
132263320Sdimbool Value::hasNUses(unsigned N) const {
133263320Sdim  return hasNItems(use_begin(), use_end(), N);
134263320Sdim}
135263320Sdim
136263320Sdimbool Value::hasNUsesOrMore(unsigned N) const {
137263320Sdim  return hasNItemsOrMore(use_begin(), use_end(), N);
138263320Sdim}
139263320Sdim
140263320Sdimbool Value::isUsedInBasicBlock(const BasicBlock *BB) const {
141263320Sdim  // This can be computed either by scanning the instructions in BB, or by
142263320Sdim  // scanning the use list of this Value. Both lists can be very long, but
143263320Sdim  // usually one is quite short.
144263320Sdim  //
145263320Sdim  // Scan both lists simultaneously until one is exhausted. This limits the
146263320Sdim  // search to the shorter list.
147263320Sdim  BasicBlock::const_iterator BI = BB->begin(), BE = BB->end();
148263320Sdim  const_user_iterator UI = user_begin(), UE = user_end();
149263320Sdim  for (; BI != BE && UI != UE; ++BI, ++UI) {
150263320Sdim    // Scan basic block: Check if this Value is used by the instruction at BI.
151263320Sdim    if (is_contained(BI->operands(), this))
152263320Sdim      return true;
153263320Sdim    // Scan use list: Check if the use at UI is in BB.
154263320Sdim    const auto *User = dyn_cast<Instruction>(*UI);
155263320Sdim    if (User && User->getParent() == BB)
156263320Sdim      return true;
157263320Sdim  }
158263320Sdim  return false;
159263320Sdim}
160263320Sdim
161263320Sdimunsigned Value::getNumUses() const {
162263320Sdim  return (unsigned)std::distance(use_begin(), use_end());
163263320Sdim}
164263320Sdim
165263320Sdimstatic bool getSymTab(Value *V, ValueSymbolTable *&ST) {
166263320Sdim  ST = nullptr;
167263320Sdim  if (Instruction *I = dyn_cast<Instruction>(V)) {
168263320Sdim    if (BasicBlock *P = I->getParent())
169263320Sdim      if (Function *PP = P->getParent())
170263320Sdim        ST = PP->getValueSymbolTable();
171263320Sdim  } else if (BasicBlock *BB = dyn_cast<BasicBlock>(V)) {
172263320Sdim    if (Function *P = BB->getParent())
173263320Sdim      ST = P->getValueSymbolTable();
174263320Sdim  } else if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
175263320Sdim    if (Module *P = GV->getParent())
176263320Sdim      ST = &P->getValueSymbolTable();
177263320Sdim  } else if (Argument *A = dyn_cast<Argument>(V)) {
178263320Sdim    if (Function *P = A->getParent())
179263320Sdim      ST = P->getValueSymbolTable();
180263320Sdim  } else {
181263320Sdim    assert(isa<Constant>(V) && "Unknown value type!");
182263320Sdim    return true;  // no name is setable for this.
183263320Sdim  }
184263320Sdim  return false;
185263320Sdim}
186263320Sdim
187263320SdimValueName *Value::getValueName() const {
188263320Sdim  if (!HasName) return nullptr;
189263320Sdim
190263320Sdim  LLVMContext &Ctx = getContext();
191263320Sdim  auto I = Ctx.pImpl->ValueNames.find(this);
192263320Sdim  assert(I != Ctx.pImpl->ValueNames.end() &&
193263320Sdim         "No name entry found!");
194263320Sdim
195263320Sdim  return I->second;
196263320Sdim}
197263320Sdim
198263320Sdimvoid Value::setValueName(ValueName *VN) {
199263320Sdim  LLVMContext &Ctx = getContext();
200263320Sdim
201263320Sdim  assert(HasName == Ctx.pImpl->ValueNames.count(this) &&
202263320Sdim         "HasName bit out of sync!");
203263320Sdim
204263320Sdim  if (!VN) {
205263320Sdim    if (HasName)
206263320Sdim      Ctx.pImpl->ValueNames.erase(this);
207263320Sdim    HasName = false;
208263320Sdim    return;
209263320Sdim  }
210263320Sdim
211263320Sdim  HasName = true;
212263320Sdim  Ctx.pImpl->ValueNames[this] = VN;
213263320Sdim}
214263320Sdim
215263320SdimStringRef Value::getName() const {
216263320Sdim  // Make sure the empty string is still a C string. For historical reasons,
217263320Sdim  // some clients want to call .data() on the result and expect it to be null
218263320Sdim  // terminated.
219263320Sdim  if (!hasName())
220263320Sdim    return StringRef("", 0);
221263320Sdim  return getValueName()->getKey();
222263320Sdim}
223263320Sdim
224263320Sdimvoid Value::setNameImpl(const Twine &NewName) {
225263320Sdim  // Fast-path: LLVMContext can be set to strip out non-GlobalValue names
226263320Sdim  if (getContext().shouldDiscardValueNames() && !isa<GlobalValue>(this))
227263320Sdim    return;
228263320Sdim
229263320Sdim  // Fast path for common IRBuilder case of setName("") when there is no name.
230263320Sdim  if (NewName.isTriviallyEmpty() && !hasName())
231263320Sdim    return;
232263320Sdim
233263320Sdim  SmallString<256> NameData;
234263320Sdim  StringRef NameRef = NewName.toStringRef(NameData);
235263320Sdim  assert(NameRef.find_first_of(0) == StringRef::npos &&
236263320Sdim         "Null bytes are not allowed in names");
237
238  // Name isn't changing?
239  if (getName() == NameRef)
240    return;
241
242  // Cap the size of non-GlobalValue names.
243  if (NameRef.size() > NonGlobalValueMaxNameSize && !isa<GlobalValue>(this))
244    NameRef =
245        NameRef.substr(0, std::max(1u, (unsigned)NonGlobalValueMaxNameSize));
246
247  assert(!getType()->isVoidTy() && "Cannot assign a name to void values!");
248
249  // Get the symbol table to update for this object.
250  ValueSymbolTable *ST;
251  if (getSymTab(this, ST))
252    return;  // Cannot set a name on this value (e.g. constant).
253
254  if (!ST) { // No symbol table to update?  Just do the change.
255    if (NameRef.empty()) {
256      // Free the name for this value.
257      destroyValueName();
258      return;
259    }
260
261    // NOTE: Could optimize for the case the name is shrinking to not deallocate
262    // then reallocated.
263    destroyValueName();
264
265    // Create the new name.
266    setValueName(ValueName::Create(NameRef));
267    getValueName()->setValue(this);
268    return;
269  }
270
271  // NOTE: Could optimize for the case the name is shrinking to not deallocate
272  // then reallocated.
273  if (hasName()) {
274    // Remove old name.
275    ST->removeValueName(getValueName());
276    destroyValueName();
277
278    if (NameRef.empty())
279      return;
280  }
281
282  // Name is changing to something new.
283  setValueName(ST->createValueName(NameRef, this));
284}
285
286void Value::setName(const Twine &NewName) {
287  setNameImpl(NewName);
288  if (Function *F = dyn_cast<Function>(this))
289    F->recalculateIntrinsicID();
290}
291
292void Value::takeName(Value *V) {
293  ValueSymbolTable *ST = nullptr;
294  // If this value has a name, drop it.
295  if (hasName()) {
296    // Get the symtab this is in.
297    if (getSymTab(this, ST)) {
298      // We can't set a name on this value, but we need to clear V's name if
299      // it has one.
300      if (V->hasName()) V->setName("");
301      return;  // Cannot set a name on this value (e.g. constant).
302    }
303
304    // Remove old name.
305    if (ST)
306      ST->removeValueName(getValueName());
307    destroyValueName();
308  }
309
310  // Now we know that this has no name.
311
312  // If V has no name either, we're done.
313  if (!V->hasName()) return;
314
315  // Get this's symtab if we didn't before.
316  if (!ST) {
317    if (getSymTab(this, ST)) {
318      // Clear V's name.
319      V->setName("");
320      return;  // Cannot set a name on this value (e.g. constant).
321    }
322  }
323
324  // Get V's ST, this should always succed, because V has a name.
325  ValueSymbolTable *VST;
326  bool Failure = getSymTab(V, VST);
327  assert(!Failure && "V has a name, so it should have a ST!"); (void)Failure;
328
329  // If these values are both in the same symtab, we can do this very fast.
330  // This works even if both values have no symtab yet.
331  if (ST == VST) {
332    // Take the name!
333    setValueName(V->getValueName());
334    V->setValueName(nullptr);
335    getValueName()->setValue(this);
336    return;
337  }
338
339  // Otherwise, things are slightly more complex.  Remove V's name from VST and
340  // then reinsert it into ST.
341
342  if (VST)
343    VST->removeValueName(V->getValueName());
344  setValueName(V->getValueName());
345  V->setValueName(nullptr);
346  getValueName()->setValue(this);
347
348  if (ST)
349    ST->reinsertValue(this);
350}
351
352void Value::assertModuleIsMaterializedImpl() const {
353#ifndef NDEBUG
354  const GlobalValue *GV = dyn_cast<GlobalValue>(this);
355  if (!GV)
356    return;
357  const Module *M = GV->getParent();
358  if (!M)
359    return;
360  assert(M->isMaterialized());
361#endif
362}
363
364#ifndef NDEBUG
365static bool contains(SmallPtrSetImpl<ConstantExpr *> &Cache, ConstantExpr *Expr,
366                     Constant *C) {
367  if (!Cache.insert(Expr).second)
368    return false;
369
370  for (auto &O : Expr->operands()) {
371    if (O == C)
372      return true;
373    auto *CE = dyn_cast<ConstantExpr>(O);
374    if (!CE)
375      continue;
376    if (contains(Cache, CE, C))
377      return true;
378  }
379  return false;
380}
381
382static bool contains(Value *Expr, Value *V) {
383  if (Expr == V)
384    return true;
385
386  auto *C = dyn_cast<Constant>(V);
387  if (!C)
388    return false;
389
390  auto *CE = dyn_cast<ConstantExpr>(Expr);
391  if (!CE)
392    return false;
393
394  SmallPtrSet<ConstantExpr *, 4> Cache;
395  return contains(Cache, CE, C);
396}
397#endif // NDEBUG
398
399void Value::doRAUW(Value *New, ReplaceMetadataUses ReplaceMetaUses) {
400  assert(New && "Value::replaceAllUsesWith(<null>) is invalid!");
401  assert(!contains(New, this) &&
402         "this->replaceAllUsesWith(expr(this)) is NOT valid!");
403  assert(New->getType() == getType() &&
404         "replaceAllUses of value with new value of different type!");
405
406  // Notify all ValueHandles (if present) that this value is going away.
407  if (HasValueHandle)
408    ValueHandleBase::ValueIsRAUWd(this, New);
409  if (ReplaceMetaUses == ReplaceMetadataUses::Yes && isUsedByMetadata())
410    ValueAsMetadata::handleRAUW(this, New);
411
412  while (!materialized_use_empty()) {
413    Use &U = *UseList;
414    // Must handle Constants specially, we cannot call replaceUsesOfWith on a
415    // constant because they are uniqued.
416    if (auto *C = dyn_cast<Constant>(U.getUser())) {
417      if (!isa<GlobalValue>(C)) {
418        C->handleOperandChange(this, New);
419        continue;
420      }
421    }
422
423    U.set(New);
424  }
425
426  if (BasicBlock *BB = dyn_cast<BasicBlock>(this))
427    BB->replaceSuccessorsPhiUsesWith(cast<BasicBlock>(New));
428}
429
430void Value::replaceAllUsesWith(Value *New) {
431  doRAUW(New, ReplaceMetadataUses::Yes);
432}
433
434void Value::replaceNonMetadataUsesWith(Value *New) {
435  doRAUW(New, ReplaceMetadataUses::No);
436}
437
438// Like replaceAllUsesWith except it does not handle constants or basic blocks.
439// This routine leaves uses within BB.
440void Value::replaceUsesOutsideBlock(Value *New, BasicBlock *BB) {
441  assert(New && "Value::replaceUsesOutsideBlock(<null>, BB) is invalid!");
442  assert(!contains(New, this) &&
443         "this->replaceUsesOutsideBlock(expr(this), BB) is NOT valid!");
444  assert(New->getType() == getType() &&
445         "replaceUses of value with new value of different type!");
446  assert(BB && "Basic block that may contain a use of 'New' must be defined\n");
447
448  replaceUsesWithIf(New, [BB](Use &U) {
449    auto *I = dyn_cast<Instruction>(U.getUser());
450    // Don't replace if it's an instruction in the BB basic block.
451    return !I || I->getParent() != BB;
452  });
453}
454
455namespace {
456// Various metrics for how much to strip off of pointers.
457enum PointerStripKind {
458  PSK_ZeroIndices,
459  PSK_ZeroIndicesAndAliases,
460  PSK_ZeroIndicesSameRepresentation,
461  PSK_ZeroIndicesAndInvariantGroups,
462  PSK_InBoundsConstantIndices,
463  PSK_InBounds
464};
465
466template <PointerStripKind StripKind>
467static const Value *stripPointerCastsAndOffsets(const Value *V) {
468  if (!V->getType()->isPointerTy())
469    return V;
470
471  // Even though we don't look through PHI nodes, we could be called on an
472  // instruction in an unreachable block, which may be on a cycle.
473  SmallPtrSet<const Value *, 4> Visited;
474
475  Visited.insert(V);
476  do {
477    if (auto *GEP = dyn_cast<GEPOperator>(V)) {
478      switch (StripKind) {
479      case PSK_ZeroIndices:
480      case PSK_ZeroIndicesAndAliases:
481      case PSK_ZeroIndicesSameRepresentation:
482      case PSK_ZeroIndicesAndInvariantGroups:
483        if (!GEP->hasAllZeroIndices())
484          return V;
485        break;
486      case PSK_InBoundsConstantIndices:
487        if (!GEP->hasAllConstantIndices())
488          return V;
489        LLVM_FALLTHROUGH;
490      case PSK_InBounds:
491        if (!GEP->isInBounds())
492          return V;
493        break;
494      }
495      V = GEP->getPointerOperand();
496    } else if (Operator::getOpcode(V) == Instruction::BitCast) {
497      V = cast<Operator>(V)->getOperand(0);
498    } else if (StripKind != PSK_ZeroIndicesSameRepresentation &&
499               Operator::getOpcode(V) == Instruction::AddrSpaceCast) {
500      // TODO: If we know an address space cast will not change the
501      //       representation we could look through it here as well.
502      V = cast<Operator>(V)->getOperand(0);
503    } else if (StripKind == PSK_ZeroIndicesAndAliases && isa<GlobalAlias>(V)) {
504      V = cast<GlobalAlias>(V)->getAliasee();
505    } else {
506      if (const auto *Call = dyn_cast<CallBase>(V)) {
507        if (const Value *RV = Call->getReturnedArgOperand()) {
508          V = RV;
509          continue;
510        }
511        // The result of launder.invariant.group must alias it's argument,
512        // but it can't be marked with returned attribute, that's why it needs
513        // special case.
514        if (StripKind == PSK_ZeroIndicesAndInvariantGroups &&
515            (Call->getIntrinsicID() == Intrinsic::launder_invariant_group ||
516             Call->getIntrinsicID() == Intrinsic::strip_invariant_group)) {
517          V = Call->getArgOperand(0);
518          continue;
519        }
520      }
521      return V;
522    }
523    assert(V->getType()->isPointerTy() && "Unexpected operand type!");
524  } while (Visited.insert(V).second);
525
526  return V;
527}
528} // end anonymous namespace
529
530const Value *Value::stripPointerCasts() const {
531  return stripPointerCastsAndOffsets<PSK_ZeroIndices>(this);
532}
533
534const Value *Value::stripPointerCastsAndAliases() const {
535  return stripPointerCastsAndOffsets<PSK_ZeroIndicesAndAliases>(this);
536}
537
538const Value *Value::stripPointerCastsSameRepresentation() const {
539  return stripPointerCastsAndOffsets<PSK_ZeroIndicesSameRepresentation>(this);
540}
541
542const Value *Value::stripInBoundsConstantOffsets() const {
543  return stripPointerCastsAndOffsets<PSK_InBoundsConstantIndices>(this);
544}
545
546const Value *Value::stripPointerCastsAndInvariantGroups() const {
547  return stripPointerCastsAndOffsets<PSK_ZeroIndicesAndInvariantGroups>(this);
548}
549
550const Value *
551Value::stripAndAccumulateConstantOffsets(const DataLayout &DL, APInt &Offset,
552                                         bool AllowNonInbounds) const {
553  if (!getType()->isPtrOrPtrVectorTy())
554    return this;
555
556  unsigned BitWidth = Offset.getBitWidth();
557  assert(BitWidth == DL.getIndexTypeSizeInBits(getType()) &&
558         "The offset bit width does not match the DL specification.");
559
560  // Even though we don't look through PHI nodes, we could be called on an
561  // instruction in an unreachable block, which may be on a cycle.
562  SmallPtrSet<const Value *, 4> Visited;
563  Visited.insert(this);
564  const Value *V = this;
565  do {
566    if (auto *GEP = dyn_cast<GEPOperator>(V)) {
567      // If in-bounds was requested, we do not strip non-in-bounds GEPs.
568      if (!AllowNonInbounds && !GEP->isInBounds())
569        return V;
570
571      // If one of the values we have visited is an addrspacecast, then
572      // the pointer type of this GEP may be different from the type
573      // of the Ptr parameter which was passed to this function.  This
574      // means when we construct GEPOffset, we need to use the size
575      // of GEP's pointer type rather than the size of the original
576      // pointer type.
577      APInt GEPOffset(DL.getIndexTypeSizeInBits(V->getType()), 0);
578      if (!GEP->accumulateConstantOffset(DL, GEPOffset))
579        return V;
580
581      // Stop traversal if the pointer offset wouldn't fit in the bit-width
582      // provided by the Offset argument. This can happen due to AddrSpaceCast
583      // stripping.
584      if (GEPOffset.getMinSignedBits() > BitWidth)
585        return V;
586
587      Offset += GEPOffset.sextOrTrunc(BitWidth);
588      V = GEP->getPointerOperand();
589    } else if (Operator::getOpcode(V) == Instruction::BitCast ||
590               Operator::getOpcode(V) == Instruction::AddrSpaceCast) {
591      V = cast<Operator>(V)->getOperand(0);
592    } else if (auto *GA = dyn_cast<GlobalAlias>(V)) {
593      if (!GA->isInterposable())
594        V = GA->getAliasee();
595    } else if (const auto *Call = dyn_cast<CallBase>(V)) {
596        if (const Value *RV = Call->getReturnedArgOperand())
597          V = RV;
598    }
599    assert(V->getType()->isPtrOrPtrVectorTy() && "Unexpected operand type!");
600  } while (Visited.insert(V).second);
601
602  return V;
603}
604
605const Value *Value::stripInBoundsOffsets() const {
606  return stripPointerCastsAndOffsets<PSK_InBounds>(this);
607}
608
609uint64_t Value::getPointerDereferenceableBytes(const DataLayout &DL,
610                                               bool &CanBeNull) const {
611  assert(getType()->isPointerTy() && "must be pointer");
612
613  uint64_t DerefBytes = 0;
614  CanBeNull = false;
615  if (const Argument *A = dyn_cast<Argument>(this)) {
616    DerefBytes = A->getDereferenceableBytes();
617    if (DerefBytes == 0 && (A->hasByValAttr() || A->hasStructRetAttr())) {
618      Type *PT = cast<PointerType>(A->getType())->getElementType();
619      if (PT->isSized())
620        DerefBytes = DL.getTypeStoreSize(PT);
621    }
622    if (DerefBytes == 0) {
623      DerefBytes = A->getDereferenceableOrNullBytes();
624      CanBeNull = true;
625    }
626  } else if (const auto *Call = dyn_cast<CallBase>(this)) {
627    DerefBytes = Call->getDereferenceableBytes(AttributeList::ReturnIndex);
628    if (DerefBytes == 0) {
629      DerefBytes =
630          Call->getDereferenceableOrNullBytes(AttributeList::ReturnIndex);
631      CanBeNull = true;
632    }
633  } else if (const LoadInst *LI = dyn_cast<LoadInst>(this)) {
634    if (MDNode *MD = LI->getMetadata(LLVMContext::MD_dereferenceable)) {
635      ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(0));
636      DerefBytes = CI->getLimitedValue();
637    }
638    if (DerefBytes == 0) {
639      if (MDNode *MD =
640              LI->getMetadata(LLVMContext::MD_dereferenceable_or_null)) {
641        ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(0));
642        DerefBytes = CI->getLimitedValue();
643      }
644      CanBeNull = true;
645    }
646  } else if (auto *IP = dyn_cast<IntToPtrInst>(this)) {
647    if (MDNode *MD = IP->getMetadata(LLVMContext::MD_dereferenceable)) {
648      ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(0));
649      DerefBytes = CI->getLimitedValue();
650    }
651    if (DerefBytes == 0) {
652      if (MDNode *MD =
653              IP->getMetadata(LLVMContext::MD_dereferenceable_or_null)) {
654        ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(0));
655        DerefBytes = CI->getLimitedValue();
656      }
657      CanBeNull = true;
658    }
659  } else if (auto *AI = dyn_cast<AllocaInst>(this)) {
660    if (!AI->isArrayAllocation()) {
661      DerefBytes = DL.getTypeStoreSize(AI->getAllocatedType());
662      CanBeNull = false;
663    }
664  } else if (auto *GV = dyn_cast<GlobalVariable>(this)) {
665    if (GV->getValueType()->isSized() && !GV->hasExternalWeakLinkage()) {
666      // TODO: Don't outright reject hasExternalWeakLinkage but set the
667      // CanBeNull flag.
668      DerefBytes = DL.getTypeStoreSize(GV->getValueType());
669      CanBeNull = false;
670    }
671  }
672  return DerefBytes;
673}
674
675MaybeAlign Value::getPointerAlignment(const DataLayout &DL) const {
676  assert(getType()->isPointerTy() && "must be pointer");
677  if (auto *GO = dyn_cast<GlobalObject>(this)) {
678    if (isa<Function>(GO)) {
679      const MaybeAlign FunctionPtrAlign = DL.getFunctionPtrAlign();
680      switch (DL.getFunctionPtrAlignType()) {
681      case DataLayout::FunctionPtrAlignType::Independent:
682        return FunctionPtrAlign;
683      case DataLayout::FunctionPtrAlignType::MultipleOfFunctionAlign:
684        return std::max(FunctionPtrAlign, MaybeAlign(GO->getAlignment()));
685      }
686      llvm_unreachable("Unhandled FunctionPtrAlignType");
687    }
688    const MaybeAlign Alignment(GO->getAlignment());
689    if (!Alignment) {
690      if (auto *GVar = dyn_cast<GlobalVariable>(GO)) {
691        Type *ObjectType = GVar->getValueType();
692        if (ObjectType->isSized()) {
693          // If the object is defined in the current Module, we'll be giving
694          // it the preferred alignment. Otherwise, we have to assume that it
695          // may only have the minimum ABI alignment.
696          if (GVar->isStrongDefinitionForLinker())
697            return MaybeAlign(DL.getPreferredAlignment(GVar));
698          else
699            return Align(DL.getABITypeAlignment(ObjectType));
700        }
701      }
702    }
703    return Alignment;
704  } else if (const Argument *A = dyn_cast<Argument>(this)) {
705    const MaybeAlign Alignment(A->getParamAlignment());
706    if (!Alignment && A->hasStructRetAttr()) {
707      // An sret parameter has at least the ABI alignment of the return type.
708      Type *EltTy = cast<PointerType>(A->getType())->getElementType();
709      if (EltTy->isSized())
710        return Align(DL.getABITypeAlignment(EltTy));
711    }
712    return Alignment;
713  } else if (const AllocaInst *AI = dyn_cast<AllocaInst>(this)) {
714    const MaybeAlign Alignment(AI->getAlignment());
715    if (!Alignment) {
716      Type *AllocatedType = AI->getAllocatedType();
717      if (AllocatedType->isSized())
718        return MaybeAlign(DL.getPrefTypeAlignment(AllocatedType));
719    }
720    return Alignment;
721  } else if (const auto *Call = dyn_cast<CallBase>(this)) {
722    const MaybeAlign Alignment(Call->getRetAlignment());
723    if (!Alignment && Call->getCalledFunction())
724      return MaybeAlign(
725          Call->getCalledFunction()->getAttributes().getRetAlignment());
726    return Alignment;
727  } else if (const LoadInst *LI = dyn_cast<LoadInst>(this)) {
728    if (MDNode *MD = LI->getMetadata(LLVMContext::MD_align)) {
729      ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(0));
730      return MaybeAlign(CI->getLimitedValue());
731    }
732  }
733  return llvm::None;
734}
735
736const Value *Value::DoPHITranslation(const BasicBlock *CurBB,
737                                     const BasicBlock *PredBB) const {
738  auto *PN = dyn_cast<PHINode>(this);
739  if (PN && PN->getParent() == CurBB)
740    return PN->getIncomingValueForBlock(PredBB);
741  return this;
742}
743
744LLVMContext &Value::getContext() const { return VTy->getContext(); }
745
746void Value::reverseUseList() {
747  if (!UseList || !UseList->Next)
748    // No need to reverse 0 or 1 uses.
749    return;
750
751  Use *Head = UseList;
752  Use *Current = UseList->Next;
753  Head->Next = nullptr;
754  while (Current) {
755    Use *Next = Current->Next;
756    Current->Next = Head;
757    Head->setPrev(&Current->Next);
758    Head = Current;
759    Current = Next;
760  }
761  UseList = Head;
762  Head->setPrev(&UseList);
763}
764
765bool Value::isSwiftError() const {
766  auto *Arg = dyn_cast<Argument>(this);
767  if (Arg)
768    return Arg->hasSwiftErrorAttr();
769  auto *Alloca = dyn_cast<AllocaInst>(this);
770  if (!Alloca)
771    return false;
772  return Alloca->isSwiftError();
773}
774
775//===----------------------------------------------------------------------===//
776//                             ValueHandleBase Class
777//===----------------------------------------------------------------------===//
778
779void ValueHandleBase::AddToExistingUseList(ValueHandleBase **List) {
780  assert(List && "Handle list is null?");
781
782  // Splice ourselves into the list.
783  Next = *List;
784  *List = this;
785  setPrevPtr(List);
786  if (Next) {
787    Next->setPrevPtr(&Next);
788    assert(getValPtr() == Next->getValPtr() && "Added to wrong list?");
789  }
790}
791
792void ValueHandleBase::AddToExistingUseListAfter(ValueHandleBase *List) {
793  assert(List && "Must insert after existing node");
794
795  Next = List->Next;
796  setPrevPtr(&List->Next);
797  List->Next = this;
798  if (Next)
799    Next->setPrevPtr(&Next);
800}
801
802void ValueHandleBase::AddToUseList() {
803  assert(getValPtr() && "Null pointer doesn't have a use list!");
804
805  LLVMContextImpl *pImpl = getValPtr()->getContext().pImpl;
806
807  if (getValPtr()->HasValueHandle) {
808    // If this value already has a ValueHandle, then it must be in the
809    // ValueHandles map already.
810    ValueHandleBase *&Entry = pImpl->ValueHandles[getValPtr()];
811    assert(Entry && "Value doesn't have any handles?");
812    AddToExistingUseList(&Entry);
813    return;
814  }
815
816  // Ok, it doesn't have any handles yet, so we must insert it into the
817  // DenseMap.  However, doing this insertion could cause the DenseMap to
818  // reallocate itself, which would invalidate all of the PrevP pointers that
819  // point into the old table.  Handle this by checking for reallocation and
820  // updating the stale pointers only if needed.
821  DenseMap<Value*, ValueHandleBase*> &Handles = pImpl->ValueHandles;
822  const void *OldBucketPtr = Handles.getPointerIntoBucketsArray();
823
824  ValueHandleBase *&Entry = Handles[getValPtr()];
825  assert(!Entry && "Value really did already have handles?");
826  AddToExistingUseList(&Entry);
827  getValPtr()->HasValueHandle = true;
828
829  // If reallocation didn't happen or if this was the first insertion, don't
830  // walk the table.
831  if (Handles.isPointerIntoBucketsArray(OldBucketPtr) ||
832      Handles.size() == 1) {
833    return;
834  }
835
836  // Okay, reallocation did happen.  Fix the Prev Pointers.
837  for (DenseMap<Value*, ValueHandleBase*>::iterator I = Handles.begin(),
838       E = Handles.end(); I != E; ++I) {
839    assert(I->second && I->first == I->second->getValPtr() &&
840           "List invariant broken!");
841    I->second->setPrevPtr(&I->second);
842  }
843}
844
845void ValueHandleBase::RemoveFromUseList() {
846  assert(getValPtr() && getValPtr()->HasValueHandle &&
847         "Pointer doesn't have a use list!");
848
849  // Unlink this from its use list.
850  ValueHandleBase **PrevPtr = getPrevPtr();
851  assert(*PrevPtr == this && "List invariant broken");
852
853  *PrevPtr = Next;
854  if (Next) {
855    assert(Next->getPrevPtr() == &Next && "List invariant broken");
856    Next->setPrevPtr(PrevPtr);
857    return;
858  }
859
860  // If the Next pointer was null, then it is possible that this was the last
861  // ValueHandle watching VP.  If so, delete its entry from the ValueHandles
862  // map.
863  LLVMContextImpl *pImpl = getValPtr()->getContext().pImpl;
864  DenseMap<Value*, ValueHandleBase*> &Handles = pImpl->ValueHandles;
865  if (Handles.isPointerIntoBucketsArray(PrevPtr)) {
866    Handles.erase(getValPtr());
867    getValPtr()->HasValueHandle = false;
868  }
869}
870
871void ValueHandleBase::ValueIsDeleted(Value *V) {
872  assert(V->HasValueHandle && "Should only be called if ValueHandles present");
873
874  // Get the linked list base, which is guaranteed to exist since the
875  // HasValueHandle flag is set.
876  LLVMContextImpl *pImpl = V->getContext().pImpl;
877  ValueHandleBase *Entry = pImpl->ValueHandles[V];
878  assert(Entry && "Value bit set but no entries exist");
879
880  // We use a local ValueHandleBase as an iterator so that ValueHandles can add
881  // and remove themselves from the list without breaking our iteration.  This
882  // is not really an AssertingVH; we just have to give ValueHandleBase a kind.
883  // Note that we deliberately do not the support the case when dropping a value
884  // handle results in a new value handle being permanently added to the list
885  // (as might occur in theory for CallbackVH's): the new value handle will not
886  // be processed and the checking code will mete out righteous punishment if
887  // the handle is still present once we have finished processing all the other
888  // value handles (it is fine to momentarily add then remove a value handle).
889  for (ValueHandleBase Iterator(Assert, *Entry); Entry; Entry = Iterator.Next) {
890    Iterator.RemoveFromUseList();
891    Iterator.AddToExistingUseListAfter(Entry);
892    assert(Entry->Next == &Iterator && "Loop invariant broken.");
893
894    switch (Entry->getKind()) {
895    case Assert:
896      break;
897    case Weak:
898    case WeakTracking:
899      // WeakTracking and Weak just go to null, which unlinks them
900      // from the list.
901      Entry->operator=(nullptr);
902      break;
903    case Callback:
904      // Forward to the subclass's implementation.
905      static_cast<CallbackVH*>(Entry)->deleted();
906      break;
907    }
908  }
909
910  // All callbacks, weak references, and assertingVHs should be dropped by now.
911  if (V->HasValueHandle) {
912#ifndef NDEBUG      // Only in +Asserts mode...
913    dbgs() << "While deleting: " << *V->getType() << " %" << V->getName()
914           << "\n";
915    if (pImpl->ValueHandles[V]->getKind() == Assert)
916      llvm_unreachable("An asserting value handle still pointed to this"
917                       " value!");
918
919#endif
920    llvm_unreachable("All references to V were not removed?");
921  }
922}
923
924void ValueHandleBase::ValueIsRAUWd(Value *Old, Value *New) {
925  assert(Old->HasValueHandle &&"Should only be called if ValueHandles present");
926  assert(Old != New && "Changing value into itself!");
927  assert(Old->getType() == New->getType() &&
928         "replaceAllUses of value with new value of different type!");
929
930  // Get the linked list base, which is guaranteed to exist since the
931  // HasValueHandle flag is set.
932  LLVMContextImpl *pImpl = Old->getContext().pImpl;
933  ValueHandleBase *Entry = pImpl->ValueHandles[Old];
934
935  assert(Entry && "Value bit set but no entries exist");
936
937  // We use a local ValueHandleBase as an iterator so that
938  // ValueHandles can add and remove themselves from the list without
939  // breaking our iteration.  This is not really an AssertingVH; we
940  // just have to give ValueHandleBase some kind.
941  for (ValueHandleBase Iterator(Assert, *Entry); Entry; Entry = Iterator.Next) {
942    Iterator.RemoveFromUseList();
943    Iterator.AddToExistingUseListAfter(Entry);
944    assert(Entry->Next == &Iterator && "Loop invariant broken.");
945
946    switch (Entry->getKind()) {
947    case Assert:
948    case Weak:
949      // Asserting and Weak handles do not follow RAUW implicitly.
950      break;
951    case WeakTracking:
952      // Weak goes to the new value, which will unlink it from Old's list.
953      Entry->operator=(New);
954      break;
955    case Callback:
956      // Forward to the subclass's implementation.
957      static_cast<CallbackVH*>(Entry)->allUsesReplacedWith(New);
958      break;
959    }
960  }
961
962#ifndef NDEBUG
963  // If any new weak value handles were added while processing the
964  // list, then complain about it now.
965  if (Old->HasValueHandle)
966    for (Entry = pImpl->ValueHandles[Old]; Entry; Entry = Entry->Next)
967      switch (Entry->getKind()) {
968      case WeakTracking:
969        dbgs() << "After RAUW from " << *Old->getType() << " %"
970               << Old->getName() << " to " << *New->getType() << " %"
971               << New->getName() << "\n";
972        llvm_unreachable(
973            "A weak tracking value handle still pointed to the old value!\n");
974      default:
975        break;
976      }
977#endif
978}
979
980// Pin the vtable to this file.
981void CallbackVH::anchor() {}
982