Type.cpp revision 360784
1//===- Type.cpp - Implement the Type class --------------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements the Type class for the IR library.
10//
11//===----------------------------------------------------------------------===//
12
13#include "llvm/IR/Type.h"
14#include "LLVMContextImpl.h"
15#include "llvm/ADT/APInt.h"
16#include "llvm/ADT/None.h"
17#include "llvm/ADT/SmallString.h"
18#include "llvm/ADT/StringMap.h"
19#include "llvm/ADT/StringRef.h"
20#include "llvm/IR/Constant.h"
21#include "llvm/IR/Constants.h"
22#include "llvm/IR/DerivedTypes.h"
23#include "llvm/IR/LLVMContext.h"
24#include "llvm/IR/Module.h"
25#include "llvm/IR/Value.h"
26#include "llvm/Support/Casting.h"
27#include "llvm/Support/MathExtras.h"
28#include "llvm/Support/raw_ostream.h"
29#include "llvm/Support/TypeSize.h"
30#include <cassert>
31#include <utility>
32
33using namespace llvm;
34
35//===----------------------------------------------------------------------===//
36//                         Type Class Implementation
37//===----------------------------------------------------------------------===//
38
39Type *Type::getPrimitiveType(LLVMContext &C, TypeID IDNumber) {
40  switch (IDNumber) {
41  case VoidTyID      : return getVoidTy(C);
42  case HalfTyID      : return getHalfTy(C);
43  case FloatTyID     : return getFloatTy(C);
44  case DoubleTyID    : return getDoubleTy(C);
45  case X86_FP80TyID  : return getX86_FP80Ty(C);
46  case FP128TyID     : return getFP128Ty(C);
47  case PPC_FP128TyID : return getPPC_FP128Ty(C);
48  case LabelTyID     : return getLabelTy(C);
49  case MetadataTyID  : return getMetadataTy(C);
50  case X86_MMXTyID   : return getX86_MMXTy(C);
51  case TokenTyID     : return getTokenTy(C);
52  default:
53    return nullptr;
54  }
55}
56
57bool Type::isIntegerTy(unsigned Bitwidth) const {
58  return isIntegerTy() && cast<IntegerType>(this)->getBitWidth() == Bitwidth;
59}
60
61bool Type::canLosslesslyBitCastTo(Type *Ty) const {
62  // Identity cast means no change so return true
63  if (this == Ty)
64    return true;
65
66  // They are not convertible unless they are at least first class types
67  if (!this->isFirstClassType() || !Ty->isFirstClassType())
68    return false;
69
70  // Vector -> Vector conversions are always lossless if the two vector types
71  // have the same size, otherwise not.  Also, 64-bit vector types can be
72  // converted to x86mmx.
73  if (auto *thisPTy = dyn_cast<VectorType>(this)) {
74    if (auto *thatPTy = dyn_cast<VectorType>(Ty))
75      return thisPTy->getBitWidth() == thatPTy->getBitWidth();
76    if (Ty->getTypeID() == Type::X86_MMXTyID &&
77        thisPTy->getBitWidth() == 64)
78      return true;
79  }
80
81  if (this->getTypeID() == Type::X86_MMXTyID)
82    if (auto *thatPTy = dyn_cast<VectorType>(Ty))
83      if (thatPTy->getBitWidth() == 64)
84        return true;
85
86  // At this point we have only various mismatches of the first class types
87  // remaining and ptr->ptr. Just select the lossless conversions. Everything
88  // else is not lossless. Conservatively assume we can't losslessly convert
89  // between pointers with different address spaces.
90  if (auto *PTy = dyn_cast<PointerType>(this)) {
91    if (auto *OtherPTy = dyn_cast<PointerType>(Ty))
92      return PTy->getAddressSpace() == OtherPTy->getAddressSpace();
93    return false;
94  }
95  return false;  // Other types have no identity values
96}
97
98bool Type::isEmptyTy() const {
99  if (auto *ATy = dyn_cast<ArrayType>(this)) {
100    unsigned NumElements = ATy->getNumElements();
101    return NumElements == 0 || ATy->getElementType()->isEmptyTy();
102  }
103
104  if (auto *STy = dyn_cast<StructType>(this)) {
105    unsigned NumElements = STy->getNumElements();
106    for (unsigned i = 0; i < NumElements; ++i)
107      if (!STy->getElementType(i)->isEmptyTy())
108        return false;
109    return true;
110  }
111
112  return false;
113}
114
115TypeSize Type::getPrimitiveSizeInBits() const {
116  switch (getTypeID()) {
117  case Type::HalfTyID: return TypeSize::Fixed(16);
118  case Type::FloatTyID: return TypeSize::Fixed(32);
119  case Type::DoubleTyID: return TypeSize::Fixed(64);
120  case Type::X86_FP80TyID: return TypeSize::Fixed(80);
121  case Type::FP128TyID: return TypeSize::Fixed(128);
122  case Type::PPC_FP128TyID: return TypeSize::Fixed(128);
123  case Type::X86_MMXTyID: return TypeSize::Fixed(64);
124  case Type::IntegerTyID:
125    return TypeSize::Fixed(cast<IntegerType>(this)->getBitWidth());
126  case Type::VectorTyID: {
127    const VectorType *VTy = cast<VectorType>(this);
128    return TypeSize(VTy->getBitWidth(), VTy->isScalable());
129  }
130  default: return TypeSize::Fixed(0);
131  }
132}
133
134unsigned Type::getScalarSizeInBits() const {
135  return getScalarType()->getPrimitiveSizeInBits();
136}
137
138int Type::getFPMantissaWidth() const {
139  if (auto *VTy = dyn_cast<VectorType>(this))
140    return VTy->getElementType()->getFPMantissaWidth();
141  assert(isFloatingPointTy() && "Not a floating point type!");
142  if (getTypeID() == HalfTyID) return 11;
143  if (getTypeID() == FloatTyID) return 24;
144  if (getTypeID() == DoubleTyID) return 53;
145  if (getTypeID() == X86_FP80TyID) return 64;
146  if (getTypeID() == FP128TyID) return 113;
147  assert(getTypeID() == PPC_FP128TyID && "unknown fp type");
148  return -1;
149}
150
151bool Type::isSizedDerivedType(SmallPtrSetImpl<Type*> *Visited) const {
152  if (auto *ATy = dyn_cast<ArrayType>(this))
153    return ATy->getElementType()->isSized(Visited);
154
155  if (auto *VTy = dyn_cast<VectorType>(this))
156    return VTy->getElementType()->isSized(Visited);
157
158  return cast<StructType>(this)->isSized(Visited);
159}
160
161//===----------------------------------------------------------------------===//
162//                          Primitive 'Type' data
163//===----------------------------------------------------------------------===//
164
165Type *Type::getVoidTy(LLVMContext &C) { return &C.pImpl->VoidTy; }
166Type *Type::getLabelTy(LLVMContext &C) { return &C.pImpl->LabelTy; }
167Type *Type::getHalfTy(LLVMContext &C) { return &C.pImpl->HalfTy; }
168Type *Type::getFloatTy(LLVMContext &C) { return &C.pImpl->FloatTy; }
169Type *Type::getDoubleTy(LLVMContext &C) { return &C.pImpl->DoubleTy; }
170Type *Type::getMetadataTy(LLVMContext &C) { return &C.pImpl->MetadataTy; }
171Type *Type::getTokenTy(LLVMContext &C) { return &C.pImpl->TokenTy; }
172Type *Type::getX86_FP80Ty(LLVMContext &C) { return &C.pImpl->X86_FP80Ty; }
173Type *Type::getFP128Ty(LLVMContext &C) { return &C.pImpl->FP128Ty; }
174Type *Type::getPPC_FP128Ty(LLVMContext &C) { return &C.pImpl->PPC_FP128Ty; }
175Type *Type::getX86_MMXTy(LLVMContext &C) { return &C.pImpl->X86_MMXTy; }
176
177IntegerType *Type::getInt1Ty(LLVMContext &C) { return &C.pImpl->Int1Ty; }
178IntegerType *Type::getInt8Ty(LLVMContext &C) { return &C.pImpl->Int8Ty; }
179IntegerType *Type::getInt16Ty(LLVMContext &C) { return &C.pImpl->Int16Ty; }
180IntegerType *Type::getInt32Ty(LLVMContext &C) { return &C.pImpl->Int32Ty; }
181IntegerType *Type::getInt64Ty(LLVMContext &C) { return &C.pImpl->Int64Ty; }
182IntegerType *Type::getInt128Ty(LLVMContext &C) { return &C.pImpl->Int128Ty; }
183
184IntegerType *Type::getIntNTy(LLVMContext &C, unsigned N) {
185  return IntegerType::get(C, N);
186}
187
188PointerType *Type::getHalfPtrTy(LLVMContext &C, unsigned AS) {
189  return getHalfTy(C)->getPointerTo(AS);
190}
191
192PointerType *Type::getFloatPtrTy(LLVMContext &C, unsigned AS) {
193  return getFloatTy(C)->getPointerTo(AS);
194}
195
196PointerType *Type::getDoublePtrTy(LLVMContext &C, unsigned AS) {
197  return getDoubleTy(C)->getPointerTo(AS);
198}
199
200PointerType *Type::getX86_FP80PtrTy(LLVMContext &C, unsigned AS) {
201  return getX86_FP80Ty(C)->getPointerTo(AS);
202}
203
204PointerType *Type::getFP128PtrTy(LLVMContext &C, unsigned AS) {
205  return getFP128Ty(C)->getPointerTo(AS);
206}
207
208PointerType *Type::getPPC_FP128PtrTy(LLVMContext &C, unsigned AS) {
209  return getPPC_FP128Ty(C)->getPointerTo(AS);
210}
211
212PointerType *Type::getX86_MMXPtrTy(LLVMContext &C, unsigned AS) {
213  return getX86_MMXTy(C)->getPointerTo(AS);
214}
215
216PointerType *Type::getIntNPtrTy(LLVMContext &C, unsigned N, unsigned AS) {
217  return getIntNTy(C, N)->getPointerTo(AS);
218}
219
220PointerType *Type::getInt1PtrTy(LLVMContext &C, unsigned AS) {
221  return getInt1Ty(C)->getPointerTo(AS);
222}
223
224PointerType *Type::getInt8PtrTy(LLVMContext &C, unsigned AS) {
225  return getInt8Ty(C)->getPointerTo(AS);
226}
227
228PointerType *Type::getInt16PtrTy(LLVMContext &C, unsigned AS) {
229  return getInt16Ty(C)->getPointerTo(AS);
230}
231
232PointerType *Type::getInt32PtrTy(LLVMContext &C, unsigned AS) {
233  return getInt32Ty(C)->getPointerTo(AS);
234}
235
236PointerType *Type::getInt64PtrTy(LLVMContext &C, unsigned AS) {
237  return getInt64Ty(C)->getPointerTo(AS);
238}
239
240//===----------------------------------------------------------------------===//
241//                       IntegerType Implementation
242//===----------------------------------------------------------------------===//
243
244IntegerType *IntegerType::get(LLVMContext &C, unsigned NumBits) {
245  assert(NumBits >= MIN_INT_BITS && "bitwidth too small");
246  assert(NumBits <= MAX_INT_BITS && "bitwidth too large");
247
248  // Check for the built-in integer types
249  switch (NumBits) {
250  case   1: return cast<IntegerType>(Type::getInt1Ty(C));
251  case   8: return cast<IntegerType>(Type::getInt8Ty(C));
252  case  16: return cast<IntegerType>(Type::getInt16Ty(C));
253  case  32: return cast<IntegerType>(Type::getInt32Ty(C));
254  case  64: return cast<IntegerType>(Type::getInt64Ty(C));
255  case 128: return cast<IntegerType>(Type::getInt128Ty(C));
256  default:
257    break;
258  }
259
260  IntegerType *&Entry = C.pImpl->IntegerTypes[NumBits];
261
262  if (!Entry)
263    Entry = new (C.pImpl->Alloc) IntegerType(C, NumBits);
264
265  return Entry;
266}
267
268bool IntegerType::isPowerOf2ByteWidth() const {
269  unsigned BitWidth = getBitWidth();
270  return (BitWidth > 7) && isPowerOf2_32(BitWidth);
271}
272
273APInt IntegerType::getMask() const {
274  return APInt::getAllOnesValue(getBitWidth());
275}
276
277//===----------------------------------------------------------------------===//
278//                       FunctionType Implementation
279//===----------------------------------------------------------------------===//
280
281FunctionType::FunctionType(Type *Result, ArrayRef<Type*> Params,
282                           bool IsVarArgs)
283  : Type(Result->getContext(), FunctionTyID) {
284  Type **SubTys = reinterpret_cast<Type**>(this+1);
285  assert(isValidReturnType(Result) && "invalid return type for function");
286  setSubclassData(IsVarArgs);
287
288  SubTys[0] = Result;
289
290  for (unsigned i = 0, e = Params.size(); i != e; ++i) {
291    assert(isValidArgumentType(Params[i]) &&
292           "Not a valid type for function argument!");
293    SubTys[i+1] = Params[i];
294  }
295
296  ContainedTys = SubTys;
297  NumContainedTys = Params.size() + 1; // + 1 for result type
298}
299
300// This is the factory function for the FunctionType class.
301FunctionType *FunctionType::get(Type *ReturnType,
302                                ArrayRef<Type*> Params, bool isVarArg) {
303  LLVMContextImpl *pImpl = ReturnType->getContext().pImpl;
304  const FunctionTypeKeyInfo::KeyTy Key(ReturnType, Params, isVarArg);
305  FunctionType *FT;
306  // Since we only want to allocate a fresh function type in case none is found
307  // and we don't want to perform two lookups (one for checking if existent and
308  // one for inserting the newly allocated one), here we instead lookup based on
309  // Key and update the reference to the function type in-place to a newly
310  // allocated one if not found.
311  auto Insertion = pImpl->FunctionTypes.insert_as(nullptr, Key);
312  if (Insertion.second) {
313    // The function type was not found. Allocate one and update FunctionTypes
314    // in-place.
315    FT = (FunctionType *)pImpl->Alloc.Allocate(
316        sizeof(FunctionType) + sizeof(Type *) * (Params.size() + 1),
317        alignof(FunctionType));
318    new (FT) FunctionType(ReturnType, Params, isVarArg);
319    *Insertion.first = FT;
320  } else {
321    // The function type was found. Just return it.
322    FT = *Insertion.first;
323  }
324  return FT;
325}
326
327FunctionType *FunctionType::get(Type *Result, bool isVarArg) {
328  return get(Result, None, isVarArg);
329}
330
331bool FunctionType::isValidReturnType(Type *RetTy) {
332  return !RetTy->isFunctionTy() && !RetTy->isLabelTy() &&
333  !RetTy->isMetadataTy();
334}
335
336bool FunctionType::isValidArgumentType(Type *ArgTy) {
337  return ArgTy->isFirstClassType();
338}
339
340//===----------------------------------------------------------------------===//
341//                       StructType Implementation
342//===----------------------------------------------------------------------===//
343
344// Primitive Constructors.
345
346StructType *StructType::get(LLVMContext &Context, ArrayRef<Type*> ETypes,
347                            bool isPacked) {
348  LLVMContextImpl *pImpl = Context.pImpl;
349  const AnonStructTypeKeyInfo::KeyTy Key(ETypes, isPacked);
350
351  StructType *ST;
352  // Since we only want to allocate a fresh struct type in case none is found
353  // and we don't want to perform two lookups (one for checking if existent and
354  // one for inserting the newly allocated one), here we instead lookup based on
355  // Key and update the reference to the struct type in-place to a newly
356  // allocated one if not found.
357  auto Insertion = pImpl->AnonStructTypes.insert_as(nullptr, Key);
358  if (Insertion.second) {
359    // The struct type was not found. Allocate one and update AnonStructTypes
360    // in-place.
361    ST = new (Context.pImpl->Alloc) StructType(Context);
362    ST->setSubclassData(SCDB_IsLiteral);  // Literal struct.
363    ST->setBody(ETypes, isPacked);
364    *Insertion.first = ST;
365  } else {
366    // The struct type was found. Just return it.
367    ST = *Insertion.first;
368  }
369
370  return ST;
371}
372
373void StructType::setBody(ArrayRef<Type*> Elements, bool isPacked) {
374  assert(isOpaque() && "Struct body already set!");
375
376  setSubclassData(getSubclassData() | SCDB_HasBody);
377  if (isPacked)
378    setSubclassData(getSubclassData() | SCDB_Packed);
379
380  NumContainedTys = Elements.size();
381
382  if (Elements.empty()) {
383    ContainedTys = nullptr;
384    return;
385  }
386
387  ContainedTys = Elements.copy(getContext().pImpl->Alloc).data();
388}
389
390void StructType::setName(StringRef Name) {
391  if (Name == getName()) return;
392
393  StringMap<StructType *> &SymbolTable = getContext().pImpl->NamedStructTypes;
394
395  using EntryTy = StringMap<StructType *>::MapEntryTy;
396
397  // If this struct already had a name, remove its symbol table entry. Don't
398  // delete the data yet because it may be part of the new name.
399  if (SymbolTableEntry)
400    SymbolTable.remove((EntryTy *)SymbolTableEntry);
401
402  // If this is just removing the name, we're done.
403  if (Name.empty()) {
404    if (SymbolTableEntry) {
405      // Delete the old string data.
406      ((EntryTy *)SymbolTableEntry)->Destroy(SymbolTable.getAllocator());
407      SymbolTableEntry = nullptr;
408    }
409    return;
410  }
411
412  // Look up the entry for the name.
413  auto IterBool =
414      getContext().pImpl->NamedStructTypes.insert(std::make_pair(Name, this));
415
416  // While we have a name collision, try a random rename.
417  if (!IterBool.second) {
418    SmallString<64> TempStr(Name);
419    TempStr.push_back('.');
420    raw_svector_ostream TmpStream(TempStr);
421    unsigned NameSize = Name.size();
422
423    do {
424      TempStr.resize(NameSize + 1);
425      TmpStream << getContext().pImpl->NamedStructTypesUniqueID++;
426
427      IterBool = getContext().pImpl->NamedStructTypes.insert(
428          std::make_pair(TmpStream.str(), this));
429    } while (!IterBool.second);
430  }
431
432  // Delete the old string data.
433  if (SymbolTableEntry)
434    ((EntryTy *)SymbolTableEntry)->Destroy(SymbolTable.getAllocator());
435  SymbolTableEntry = &*IterBool.first;
436}
437
438//===----------------------------------------------------------------------===//
439// StructType Helper functions.
440
441StructType *StructType::create(LLVMContext &Context, StringRef Name) {
442  StructType *ST = new (Context.pImpl->Alloc) StructType(Context);
443  if (!Name.empty())
444    ST->setName(Name);
445  return ST;
446}
447
448StructType *StructType::get(LLVMContext &Context, bool isPacked) {
449  return get(Context, None, isPacked);
450}
451
452StructType *StructType::create(LLVMContext &Context, ArrayRef<Type*> Elements,
453                               StringRef Name, bool isPacked) {
454  StructType *ST = create(Context, Name);
455  ST->setBody(Elements, isPacked);
456  return ST;
457}
458
459StructType *StructType::create(LLVMContext &Context, ArrayRef<Type*> Elements) {
460  return create(Context, Elements, StringRef());
461}
462
463StructType *StructType::create(LLVMContext &Context) {
464  return create(Context, StringRef());
465}
466
467StructType *StructType::create(ArrayRef<Type*> Elements, StringRef Name,
468                               bool isPacked) {
469  assert(!Elements.empty() &&
470         "This method may not be invoked with an empty list");
471  return create(Elements[0]->getContext(), Elements, Name, isPacked);
472}
473
474StructType *StructType::create(ArrayRef<Type*> Elements) {
475  assert(!Elements.empty() &&
476         "This method may not be invoked with an empty list");
477  return create(Elements[0]->getContext(), Elements, StringRef());
478}
479
480bool StructType::isSized(SmallPtrSetImpl<Type*> *Visited) const {
481  if ((getSubclassData() & SCDB_IsSized) != 0)
482    return true;
483  if (isOpaque())
484    return false;
485
486  if (Visited && !Visited->insert(const_cast<StructType*>(this)).second)
487    return false;
488
489  // Okay, our struct is sized if all of the elements are, but if one of the
490  // elements is opaque, the struct isn't sized *yet*, but may become sized in
491  // the future, so just bail out without caching.
492  for (element_iterator I = element_begin(), E = element_end(); I != E; ++I)
493    if (!(*I)->isSized(Visited))
494      return false;
495
496  // Here we cheat a bit and cast away const-ness. The goal is to memoize when
497  // we find a sized type, as types can only move from opaque to sized, not the
498  // other way.
499  const_cast<StructType*>(this)->setSubclassData(
500    getSubclassData() | SCDB_IsSized);
501  return true;
502}
503
504StringRef StructType::getName() const {
505  assert(!isLiteral() && "Literal structs never have names");
506  if (!SymbolTableEntry) return StringRef();
507
508  return ((StringMapEntry<StructType*> *)SymbolTableEntry)->getKey();
509}
510
511bool StructType::isValidElementType(Type *ElemTy) {
512  if (auto *VTy = dyn_cast<VectorType>(ElemTy))
513    return !VTy->isScalable();
514  return !ElemTy->isVoidTy() && !ElemTy->isLabelTy() &&
515         !ElemTy->isMetadataTy() && !ElemTy->isFunctionTy() &&
516         !ElemTy->isTokenTy();
517}
518
519bool StructType::isLayoutIdentical(StructType *Other) const {
520  if (this == Other) return true;
521
522  if (isPacked() != Other->isPacked())
523    return false;
524
525  return elements() == Other->elements();
526}
527
528StructType *Module::getTypeByName(StringRef Name) const {
529  return getContext().pImpl->NamedStructTypes.lookup(Name);
530}
531
532//===----------------------------------------------------------------------===//
533//                       CompositeType Implementation
534//===----------------------------------------------------------------------===//
535
536Type *CompositeType::getTypeAtIndex(const Value *V) const {
537  if (auto *STy = dyn_cast<StructType>(this)) {
538    unsigned Idx =
539      (unsigned)cast<Constant>(V)->getUniqueInteger().getZExtValue();
540    assert(indexValid(Idx) && "Invalid structure index!");
541    return STy->getElementType(Idx);
542  }
543
544  return cast<SequentialType>(this)->getElementType();
545}
546
547Type *CompositeType::getTypeAtIndex(unsigned Idx) const{
548  if (auto *STy = dyn_cast<StructType>(this)) {
549    assert(indexValid(Idx) && "Invalid structure index!");
550    return STy->getElementType(Idx);
551  }
552
553  return cast<SequentialType>(this)->getElementType();
554}
555
556bool CompositeType::indexValid(const Value *V) const {
557  if (auto *STy = dyn_cast<StructType>(this)) {
558    // Structure indexes require (vectors of) 32-bit integer constants.  In the
559    // vector case all of the indices must be equal.
560    if (!V->getType()->isIntOrIntVectorTy(32))
561      return false;
562    const Constant *C = dyn_cast<Constant>(V);
563    if (C && V->getType()->isVectorTy())
564      C = C->getSplatValue();
565    const ConstantInt *CU = dyn_cast_or_null<ConstantInt>(C);
566    return CU && CU->getZExtValue() < STy->getNumElements();
567  }
568
569  // Sequential types can be indexed by any integer.
570  return V->getType()->isIntOrIntVectorTy();
571}
572
573bool CompositeType::indexValid(unsigned Idx) const {
574  if (auto *STy = dyn_cast<StructType>(this))
575    return Idx < STy->getNumElements();
576  // Sequential types can be indexed by any integer.
577  return true;
578}
579
580//===----------------------------------------------------------------------===//
581//                           ArrayType Implementation
582//===----------------------------------------------------------------------===//
583
584ArrayType::ArrayType(Type *ElType, uint64_t NumEl)
585  : SequentialType(ArrayTyID, ElType, NumEl) {}
586
587ArrayType *ArrayType::get(Type *ElementType, uint64_t NumElements) {
588  assert(isValidElementType(ElementType) && "Invalid type for array element!");
589
590  LLVMContextImpl *pImpl = ElementType->getContext().pImpl;
591  ArrayType *&Entry =
592    pImpl->ArrayTypes[std::make_pair(ElementType, NumElements)];
593
594  if (!Entry)
595    Entry = new (pImpl->Alloc) ArrayType(ElementType, NumElements);
596  return Entry;
597}
598
599bool ArrayType::isValidElementType(Type *ElemTy) {
600  if (auto *VTy = dyn_cast<VectorType>(ElemTy))
601    return !VTy->isScalable();
602  return !ElemTy->isVoidTy() && !ElemTy->isLabelTy() &&
603         !ElemTy->isMetadataTy() && !ElemTy->isFunctionTy() &&
604         !ElemTy->isTokenTy();
605}
606
607//===----------------------------------------------------------------------===//
608//                          VectorType Implementation
609//===----------------------------------------------------------------------===//
610
611VectorType::VectorType(Type *ElType, ElementCount EC)
612  : SequentialType(VectorTyID, ElType, EC.Min), Scalable(EC.Scalable) {}
613
614VectorType *VectorType::get(Type *ElementType, ElementCount EC) {
615  assert(EC.Min > 0 && "#Elements of a VectorType must be greater than 0");
616  assert(isValidElementType(ElementType) && "Element type of a VectorType must "
617                                            "be an integer, floating point, or "
618                                            "pointer type.");
619
620  LLVMContextImpl *pImpl = ElementType->getContext().pImpl;
621  VectorType *&Entry = ElementType->getContext().pImpl
622                                 ->VectorTypes[std::make_pair(ElementType, EC)];
623  if (!Entry)
624    Entry = new (pImpl->Alloc) VectorType(ElementType, EC);
625  return Entry;
626}
627
628bool VectorType::isValidElementType(Type *ElemTy) {
629  return ElemTy->isIntegerTy() || ElemTy->isFloatingPointTy() ||
630    ElemTy->isPointerTy();
631}
632
633//===----------------------------------------------------------------------===//
634//                         PointerType Implementation
635//===----------------------------------------------------------------------===//
636
637PointerType *PointerType::get(Type *EltTy, unsigned AddressSpace) {
638  assert(EltTy && "Can't get a pointer to <null> type!");
639  assert(isValidElementType(EltTy) && "Invalid type for pointer element!");
640
641  LLVMContextImpl *CImpl = EltTy->getContext().pImpl;
642
643  // Since AddressSpace #0 is the common case, we special case it.
644  PointerType *&Entry = AddressSpace == 0 ? CImpl->PointerTypes[EltTy]
645     : CImpl->ASPointerTypes[std::make_pair(EltTy, AddressSpace)];
646
647  if (!Entry)
648    Entry = new (CImpl->Alloc) PointerType(EltTy, AddressSpace);
649  return Entry;
650}
651
652PointerType::PointerType(Type *E, unsigned AddrSpace)
653  : Type(E->getContext(), PointerTyID), PointeeTy(E) {
654  ContainedTys = &PointeeTy;
655  NumContainedTys = 1;
656  setSubclassData(AddrSpace);
657}
658
659PointerType *Type::getPointerTo(unsigned addrs) const {
660  return PointerType::get(const_cast<Type*>(this), addrs);
661}
662
663bool PointerType::isValidElementType(Type *ElemTy) {
664  return !ElemTy->isVoidTy() && !ElemTy->isLabelTy() &&
665         !ElemTy->isMetadataTy() && !ElemTy->isTokenTy();
666}
667
668bool PointerType::isLoadableOrStorableType(Type *ElemTy) {
669  return isValidElementType(ElemTy) && !ElemTy->isFunctionTy();
670}
671