Function.cpp revision 360784
1//===- Function.cpp - Implement the Global object classes -----------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements the Function class for the IR library.
10//
11//===----------------------------------------------------------------------===//
12
13#include "llvm/IR/Function.h"
14#include "SymbolTableListTraitsImpl.h"
15#include "llvm/ADT/ArrayRef.h"
16#include "llvm/ADT/DenseSet.h"
17#include "llvm/ADT/None.h"
18#include "llvm/ADT/STLExtras.h"
19#include "llvm/ADT/SmallString.h"
20#include "llvm/ADT/SmallVector.h"
21#include "llvm/ADT/StringExtras.h"
22#include "llvm/ADT/StringRef.h"
23#include "llvm/IR/Argument.h"
24#include "llvm/IR/Attributes.h"
25#include "llvm/IR/BasicBlock.h"
26#include "llvm/IR/Constant.h"
27#include "llvm/IR/Constants.h"
28#include "llvm/IR/DerivedTypes.h"
29#include "llvm/IR/GlobalValue.h"
30#include "llvm/IR/InstIterator.h"
31#include "llvm/IR/Instruction.h"
32#include "llvm/IR/Instructions.h"
33#include "llvm/IR/Intrinsics.h"
34#include "llvm/IR/IntrinsicsAArch64.h"
35#include "llvm/IR/IntrinsicsAMDGPU.h"
36#include "llvm/IR/IntrinsicsARM.h"
37#include "llvm/IR/IntrinsicsBPF.h"
38#include "llvm/IR/IntrinsicsHexagon.h"
39#include "llvm/IR/IntrinsicsMips.h"
40#include "llvm/IR/IntrinsicsNVPTX.h"
41#include "llvm/IR/IntrinsicsPowerPC.h"
42#include "llvm/IR/IntrinsicsR600.h"
43#include "llvm/IR/IntrinsicsRISCV.h"
44#include "llvm/IR/IntrinsicsS390.h"
45#include "llvm/IR/IntrinsicsWebAssembly.h"
46#include "llvm/IR/IntrinsicsX86.h"
47#include "llvm/IR/IntrinsicsXCore.h"
48#include "llvm/IR/LLVMContext.h"
49#include "llvm/IR/MDBuilder.h"
50#include "llvm/IR/Metadata.h"
51#include "llvm/IR/Module.h"
52#include "llvm/IR/SymbolTableListTraits.h"
53#include "llvm/IR/Type.h"
54#include "llvm/IR/Use.h"
55#include "llvm/IR/User.h"
56#include "llvm/IR/Value.h"
57#include "llvm/IR/ValueSymbolTable.h"
58#include "llvm/Support/Casting.h"
59#include "llvm/Support/Compiler.h"
60#include "llvm/Support/ErrorHandling.h"
61#include <algorithm>
62#include <cassert>
63#include <cstddef>
64#include <cstdint>
65#include <cstring>
66#include <string>
67
68using namespace llvm;
69using ProfileCount = Function::ProfileCount;
70
71// Explicit instantiations of SymbolTableListTraits since some of the methods
72// are not in the public header file...
73template class llvm::SymbolTableListTraits<BasicBlock>;
74
75//===----------------------------------------------------------------------===//
76// Argument Implementation
77//===----------------------------------------------------------------------===//
78
79Argument::Argument(Type *Ty, const Twine &Name, Function *Par, unsigned ArgNo)
80    : Value(Ty, Value::ArgumentVal), Parent(Par), ArgNo(ArgNo) {
81  setName(Name);
82}
83
84void Argument::setParent(Function *parent) {
85  Parent = parent;
86}
87
88bool Argument::hasNonNullAttr() const {
89  if (!getType()->isPointerTy()) return false;
90  if (getParent()->hasParamAttribute(getArgNo(), Attribute::NonNull))
91    return true;
92  else if (getDereferenceableBytes() > 0 &&
93           !NullPointerIsDefined(getParent(),
94                                 getType()->getPointerAddressSpace()))
95    return true;
96  return false;
97}
98
99bool Argument::hasByValAttr() const {
100  if (!getType()->isPointerTy()) return false;
101  return hasAttribute(Attribute::ByVal);
102}
103
104bool Argument::hasSwiftSelfAttr() const {
105  return getParent()->hasParamAttribute(getArgNo(), Attribute::SwiftSelf);
106}
107
108bool Argument::hasSwiftErrorAttr() const {
109  return getParent()->hasParamAttribute(getArgNo(), Attribute::SwiftError);
110}
111
112bool Argument::hasInAllocaAttr() const {
113  if (!getType()->isPointerTy()) return false;
114  return hasAttribute(Attribute::InAlloca);
115}
116
117bool Argument::hasByValOrInAllocaAttr() const {
118  if (!getType()->isPointerTy()) return false;
119  AttributeList Attrs = getParent()->getAttributes();
120  return Attrs.hasParamAttribute(getArgNo(), Attribute::ByVal) ||
121         Attrs.hasParamAttribute(getArgNo(), Attribute::InAlloca);
122}
123
124unsigned Argument::getParamAlignment() const {
125  assert(getType()->isPointerTy() && "Only pointers have alignments");
126  return getParent()->getParamAlignment(getArgNo());
127}
128
129MaybeAlign Argument::getParamAlign() const {
130  assert(getType()->isPointerTy() && "Only pointers have alignments");
131  return getParent()->getParamAlign(getArgNo());
132}
133
134Type *Argument::getParamByValType() const {
135  assert(getType()->isPointerTy() && "Only pointers have byval types");
136  return getParent()->getParamByValType(getArgNo());
137}
138
139uint64_t Argument::getDereferenceableBytes() const {
140  assert(getType()->isPointerTy() &&
141         "Only pointers have dereferenceable bytes");
142  return getParent()->getParamDereferenceableBytes(getArgNo());
143}
144
145uint64_t Argument::getDereferenceableOrNullBytes() const {
146  assert(getType()->isPointerTy() &&
147         "Only pointers have dereferenceable bytes");
148  return getParent()->getParamDereferenceableOrNullBytes(getArgNo());
149}
150
151bool Argument::hasNestAttr() const {
152  if (!getType()->isPointerTy()) return false;
153  return hasAttribute(Attribute::Nest);
154}
155
156bool Argument::hasNoAliasAttr() const {
157  if (!getType()->isPointerTy()) return false;
158  return hasAttribute(Attribute::NoAlias);
159}
160
161bool Argument::hasNoCaptureAttr() const {
162  if (!getType()->isPointerTy()) return false;
163  return hasAttribute(Attribute::NoCapture);
164}
165
166bool Argument::hasStructRetAttr() const {
167  if (!getType()->isPointerTy()) return false;
168  return hasAttribute(Attribute::StructRet);
169}
170
171bool Argument::hasInRegAttr() const {
172  return hasAttribute(Attribute::InReg);
173}
174
175bool Argument::hasReturnedAttr() const {
176  return hasAttribute(Attribute::Returned);
177}
178
179bool Argument::hasZExtAttr() const {
180  return hasAttribute(Attribute::ZExt);
181}
182
183bool Argument::hasSExtAttr() const {
184  return hasAttribute(Attribute::SExt);
185}
186
187bool Argument::onlyReadsMemory() const {
188  AttributeList Attrs = getParent()->getAttributes();
189  return Attrs.hasParamAttribute(getArgNo(), Attribute::ReadOnly) ||
190         Attrs.hasParamAttribute(getArgNo(), Attribute::ReadNone);
191}
192
193void Argument::addAttrs(AttrBuilder &B) {
194  AttributeList AL = getParent()->getAttributes();
195  AL = AL.addParamAttributes(Parent->getContext(), getArgNo(), B);
196  getParent()->setAttributes(AL);
197}
198
199void Argument::addAttr(Attribute::AttrKind Kind) {
200  getParent()->addParamAttr(getArgNo(), Kind);
201}
202
203void Argument::addAttr(Attribute Attr) {
204  getParent()->addParamAttr(getArgNo(), Attr);
205}
206
207void Argument::removeAttr(Attribute::AttrKind Kind) {
208  getParent()->removeParamAttr(getArgNo(), Kind);
209}
210
211bool Argument::hasAttribute(Attribute::AttrKind Kind) const {
212  return getParent()->hasParamAttribute(getArgNo(), Kind);
213}
214
215Attribute Argument::getAttribute(Attribute::AttrKind Kind) const {
216  return getParent()->getParamAttribute(getArgNo(), Kind);
217}
218
219//===----------------------------------------------------------------------===//
220// Helper Methods in Function
221//===----------------------------------------------------------------------===//
222
223LLVMContext &Function::getContext() const {
224  return getType()->getContext();
225}
226
227unsigned Function::getInstructionCount() const {
228  unsigned NumInstrs = 0;
229  for (const BasicBlock &BB : BasicBlocks)
230    NumInstrs += std::distance(BB.instructionsWithoutDebug().begin(),
231                               BB.instructionsWithoutDebug().end());
232  return NumInstrs;
233}
234
235Function *Function::Create(FunctionType *Ty, LinkageTypes Linkage,
236                           const Twine &N, Module &M) {
237  return Create(Ty, Linkage, M.getDataLayout().getProgramAddressSpace(), N, &M);
238}
239
240void Function::removeFromParent() {
241  getParent()->getFunctionList().remove(getIterator());
242}
243
244void Function::eraseFromParent() {
245  getParent()->getFunctionList().erase(getIterator());
246}
247
248//===----------------------------------------------------------------------===//
249// Function Implementation
250//===----------------------------------------------------------------------===//
251
252static unsigned computeAddrSpace(unsigned AddrSpace, Module *M) {
253  // If AS == -1 and we are passed a valid module pointer we place the function
254  // in the program address space. Otherwise we default to AS0.
255  if (AddrSpace == static_cast<unsigned>(-1))
256    return M ? M->getDataLayout().getProgramAddressSpace() : 0;
257  return AddrSpace;
258}
259
260Function::Function(FunctionType *Ty, LinkageTypes Linkage, unsigned AddrSpace,
261                   const Twine &name, Module *ParentModule)
262    : GlobalObject(Ty, Value::FunctionVal,
263                   OperandTraits<Function>::op_begin(this), 0, Linkage, name,
264                   computeAddrSpace(AddrSpace, ParentModule)),
265      NumArgs(Ty->getNumParams()) {
266  assert(FunctionType::isValidReturnType(getReturnType()) &&
267         "invalid return type");
268  setGlobalObjectSubClassData(0);
269
270  // We only need a symbol table for a function if the context keeps value names
271  if (!getContext().shouldDiscardValueNames())
272    SymTab = std::make_unique<ValueSymbolTable>();
273
274  // If the function has arguments, mark them as lazily built.
275  if (Ty->getNumParams())
276    setValueSubclassData(1);   // Set the "has lazy arguments" bit.
277
278  if (ParentModule)
279    ParentModule->getFunctionList().push_back(this);
280
281  HasLLVMReservedName = getName().startswith("llvm.");
282  // Ensure intrinsics have the right parameter attributes.
283  // Note, the IntID field will have been set in Value::setName if this function
284  // name is a valid intrinsic ID.
285  if (IntID)
286    setAttributes(Intrinsic::getAttributes(getContext(), IntID));
287}
288
289Function::~Function() {
290  dropAllReferences();    // After this it is safe to delete instructions.
291
292  // Delete all of the method arguments and unlink from symbol table...
293  if (Arguments)
294    clearArguments();
295
296  // Remove the function from the on-the-side GC table.
297  clearGC();
298}
299
300void Function::BuildLazyArguments() const {
301  // Create the arguments vector, all arguments start out unnamed.
302  auto *FT = getFunctionType();
303  if (NumArgs > 0) {
304    Arguments = std::allocator<Argument>().allocate(NumArgs);
305    for (unsigned i = 0, e = NumArgs; i != e; ++i) {
306      Type *ArgTy = FT->getParamType(i);
307      assert(!ArgTy->isVoidTy() && "Cannot have void typed arguments!");
308      new (Arguments + i) Argument(ArgTy, "", const_cast<Function *>(this), i);
309    }
310  }
311
312  // Clear the lazy arguments bit.
313  unsigned SDC = getSubclassDataFromValue();
314  SDC &= ~(1 << 0);
315  const_cast<Function*>(this)->setValueSubclassData(SDC);
316  assert(!hasLazyArguments());
317}
318
319static MutableArrayRef<Argument> makeArgArray(Argument *Args, size_t Count) {
320  return MutableArrayRef<Argument>(Args, Count);
321}
322
323void Function::clearArguments() {
324  for (Argument &A : makeArgArray(Arguments, NumArgs)) {
325    A.setName("");
326    A.~Argument();
327  }
328  std::allocator<Argument>().deallocate(Arguments, NumArgs);
329  Arguments = nullptr;
330}
331
332void Function::stealArgumentListFrom(Function &Src) {
333  assert(isDeclaration() && "Expected no references to current arguments");
334
335  // Drop the current arguments, if any, and set the lazy argument bit.
336  if (!hasLazyArguments()) {
337    assert(llvm::all_of(makeArgArray(Arguments, NumArgs),
338                        [](const Argument &A) { return A.use_empty(); }) &&
339           "Expected arguments to be unused in declaration");
340    clearArguments();
341    setValueSubclassData(getSubclassDataFromValue() | (1 << 0));
342  }
343
344  // Nothing to steal if Src has lazy arguments.
345  if (Src.hasLazyArguments())
346    return;
347
348  // Steal arguments from Src, and fix the lazy argument bits.
349  assert(arg_size() == Src.arg_size());
350  Arguments = Src.Arguments;
351  Src.Arguments = nullptr;
352  for (Argument &A : makeArgArray(Arguments, NumArgs)) {
353    // FIXME: This does the work of transferNodesFromList inefficiently.
354    SmallString<128> Name;
355    if (A.hasName())
356      Name = A.getName();
357    if (!Name.empty())
358      A.setName("");
359    A.setParent(this);
360    if (!Name.empty())
361      A.setName(Name);
362  }
363
364  setValueSubclassData(getSubclassDataFromValue() & ~(1 << 0));
365  assert(!hasLazyArguments());
366  Src.setValueSubclassData(Src.getSubclassDataFromValue() | (1 << 0));
367}
368
369// dropAllReferences() - This function causes all the subinstructions to "let
370// go" of all references that they are maintaining.  This allows one to
371// 'delete' a whole class at a time, even though there may be circular
372// references... first all references are dropped, and all use counts go to
373// zero.  Then everything is deleted for real.  Note that no operations are
374// valid on an object that has "dropped all references", except operator
375// delete.
376//
377void Function::dropAllReferences() {
378  setIsMaterializable(false);
379
380  for (BasicBlock &BB : *this)
381    BB.dropAllReferences();
382
383  // Delete all basic blocks. They are now unused, except possibly by
384  // blockaddresses, but BasicBlock's destructor takes care of those.
385  while (!BasicBlocks.empty())
386    BasicBlocks.begin()->eraseFromParent();
387
388  // Drop uses of any optional data (real or placeholder).
389  if (getNumOperands()) {
390    User::dropAllReferences();
391    setNumHungOffUseOperands(0);
392    setValueSubclassData(getSubclassDataFromValue() & ~0xe);
393  }
394
395  // Metadata is stored in a side-table.
396  clearMetadata();
397}
398
399void Function::addAttribute(unsigned i, Attribute::AttrKind Kind) {
400  AttributeList PAL = getAttributes();
401  PAL = PAL.addAttribute(getContext(), i, Kind);
402  setAttributes(PAL);
403}
404
405void Function::addAttribute(unsigned i, Attribute Attr) {
406  AttributeList PAL = getAttributes();
407  PAL = PAL.addAttribute(getContext(), i, Attr);
408  setAttributes(PAL);
409}
410
411void Function::addAttributes(unsigned i, const AttrBuilder &Attrs) {
412  AttributeList PAL = getAttributes();
413  PAL = PAL.addAttributes(getContext(), i, Attrs);
414  setAttributes(PAL);
415}
416
417void Function::addParamAttr(unsigned ArgNo, Attribute::AttrKind Kind) {
418  AttributeList PAL = getAttributes();
419  PAL = PAL.addParamAttribute(getContext(), ArgNo, Kind);
420  setAttributes(PAL);
421}
422
423void Function::addParamAttr(unsigned ArgNo, Attribute Attr) {
424  AttributeList PAL = getAttributes();
425  PAL = PAL.addParamAttribute(getContext(), ArgNo, Attr);
426  setAttributes(PAL);
427}
428
429void Function::addParamAttrs(unsigned ArgNo, const AttrBuilder &Attrs) {
430  AttributeList PAL = getAttributes();
431  PAL = PAL.addParamAttributes(getContext(), ArgNo, Attrs);
432  setAttributes(PAL);
433}
434
435void Function::removeAttribute(unsigned i, Attribute::AttrKind Kind) {
436  AttributeList PAL = getAttributes();
437  PAL = PAL.removeAttribute(getContext(), i, Kind);
438  setAttributes(PAL);
439}
440
441void Function::removeAttribute(unsigned i, StringRef Kind) {
442  AttributeList PAL = getAttributes();
443  PAL = PAL.removeAttribute(getContext(), i, Kind);
444  setAttributes(PAL);
445}
446
447void Function::removeAttributes(unsigned i, const AttrBuilder &Attrs) {
448  AttributeList PAL = getAttributes();
449  PAL = PAL.removeAttributes(getContext(), i, Attrs);
450  setAttributes(PAL);
451}
452
453void Function::removeParamAttr(unsigned ArgNo, Attribute::AttrKind Kind) {
454  AttributeList PAL = getAttributes();
455  PAL = PAL.removeParamAttribute(getContext(), ArgNo, Kind);
456  setAttributes(PAL);
457}
458
459void Function::removeParamAttr(unsigned ArgNo, StringRef Kind) {
460  AttributeList PAL = getAttributes();
461  PAL = PAL.removeParamAttribute(getContext(), ArgNo, Kind);
462  setAttributes(PAL);
463}
464
465void Function::removeParamAttrs(unsigned ArgNo, const AttrBuilder &Attrs) {
466  AttributeList PAL = getAttributes();
467  PAL = PAL.removeParamAttributes(getContext(), ArgNo, Attrs);
468  setAttributes(PAL);
469}
470
471void Function::addDereferenceableAttr(unsigned i, uint64_t Bytes) {
472  AttributeList PAL = getAttributes();
473  PAL = PAL.addDereferenceableAttr(getContext(), i, Bytes);
474  setAttributes(PAL);
475}
476
477void Function::addDereferenceableParamAttr(unsigned ArgNo, uint64_t Bytes) {
478  AttributeList PAL = getAttributes();
479  PAL = PAL.addDereferenceableParamAttr(getContext(), ArgNo, Bytes);
480  setAttributes(PAL);
481}
482
483void Function::addDereferenceableOrNullAttr(unsigned i, uint64_t Bytes) {
484  AttributeList PAL = getAttributes();
485  PAL = PAL.addDereferenceableOrNullAttr(getContext(), i, Bytes);
486  setAttributes(PAL);
487}
488
489void Function::addDereferenceableOrNullParamAttr(unsigned ArgNo,
490                                                 uint64_t Bytes) {
491  AttributeList PAL = getAttributes();
492  PAL = PAL.addDereferenceableOrNullParamAttr(getContext(), ArgNo, Bytes);
493  setAttributes(PAL);
494}
495
496const std::string &Function::getGC() const {
497  assert(hasGC() && "Function has no collector");
498  return getContext().getGC(*this);
499}
500
501void Function::setGC(std::string Str) {
502  setValueSubclassDataBit(14, !Str.empty());
503  getContext().setGC(*this, std::move(Str));
504}
505
506void Function::clearGC() {
507  if (!hasGC())
508    return;
509  getContext().deleteGC(*this);
510  setValueSubclassDataBit(14, false);
511}
512
513/// Copy all additional attributes (those not needed to create a Function) from
514/// the Function Src to this one.
515void Function::copyAttributesFrom(const Function *Src) {
516  GlobalObject::copyAttributesFrom(Src);
517  setCallingConv(Src->getCallingConv());
518  setAttributes(Src->getAttributes());
519  if (Src->hasGC())
520    setGC(Src->getGC());
521  else
522    clearGC();
523  if (Src->hasPersonalityFn())
524    setPersonalityFn(Src->getPersonalityFn());
525  if (Src->hasPrefixData())
526    setPrefixData(Src->getPrefixData());
527  if (Src->hasPrologueData())
528    setPrologueData(Src->getPrologueData());
529}
530
531/// Table of string intrinsic names indexed by enum value.
532static const char * const IntrinsicNameTable[] = {
533  "not_intrinsic",
534#define GET_INTRINSIC_NAME_TABLE
535#include "llvm/IR/IntrinsicImpl.inc"
536#undef GET_INTRINSIC_NAME_TABLE
537};
538
539/// Table of per-target intrinsic name tables.
540#define GET_INTRINSIC_TARGET_DATA
541#include "llvm/IR/IntrinsicImpl.inc"
542#undef GET_INTRINSIC_TARGET_DATA
543
544/// Find the segment of \c IntrinsicNameTable for intrinsics with the same
545/// target as \c Name, or the generic table if \c Name is not target specific.
546///
547/// Returns the relevant slice of \c IntrinsicNameTable
548static ArrayRef<const char *> findTargetSubtable(StringRef Name) {
549  assert(Name.startswith("llvm."));
550
551  ArrayRef<IntrinsicTargetInfo> Targets(TargetInfos);
552  // Drop "llvm." and take the first dotted component. That will be the target
553  // if this is target specific.
554  StringRef Target = Name.drop_front(5).split('.').first;
555  auto It = partition_point(
556      Targets, [=](const IntrinsicTargetInfo &TI) { return TI.Name < Target; });
557  // We've either found the target or just fall back to the generic set, which
558  // is always first.
559  const auto &TI = It != Targets.end() && It->Name == Target ? *It : Targets[0];
560  return makeArrayRef(&IntrinsicNameTable[1] + TI.Offset, TI.Count);
561}
562
563/// This does the actual lookup of an intrinsic ID which
564/// matches the given function name.
565Intrinsic::ID Function::lookupIntrinsicID(StringRef Name) {
566  ArrayRef<const char *> NameTable = findTargetSubtable(Name);
567  int Idx = Intrinsic::lookupLLVMIntrinsicByName(NameTable, Name);
568  if (Idx == -1)
569    return Intrinsic::not_intrinsic;
570
571  // Intrinsic IDs correspond to the location in IntrinsicNameTable, but we have
572  // an index into a sub-table.
573  int Adjust = NameTable.data() - IntrinsicNameTable;
574  Intrinsic::ID ID = static_cast<Intrinsic::ID>(Idx + Adjust);
575
576  // If the intrinsic is not overloaded, require an exact match. If it is
577  // overloaded, require either exact or prefix match.
578  const auto MatchSize = strlen(NameTable[Idx]);
579  assert(Name.size() >= MatchSize && "Expected either exact or prefix match");
580  bool IsExactMatch = Name.size() == MatchSize;
581  return IsExactMatch || Intrinsic::isOverloaded(ID) ? ID
582                                                     : Intrinsic::not_intrinsic;
583}
584
585void Function::recalculateIntrinsicID() {
586  StringRef Name = getName();
587  if (!Name.startswith("llvm.")) {
588    HasLLVMReservedName = false;
589    IntID = Intrinsic::not_intrinsic;
590    return;
591  }
592  HasLLVMReservedName = true;
593  IntID = lookupIntrinsicID(Name);
594}
595
596/// Returns a stable mangling for the type specified for use in the name
597/// mangling scheme used by 'any' types in intrinsic signatures.  The mangling
598/// of named types is simply their name.  Manglings for unnamed types consist
599/// of a prefix ('p' for pointers, 'a' for arrays, 'f_' for functions)
600/// combined with the mangling of their component types.  A vararg function
601/// type will have a suffix of 'vararg'.  Since function types can contain
602/// other function types, we close a function type mangling with suffix 'f'
603/// which can't be confused with it's prefix.  This ensures we don't have
604/// collisions between two unrelated function types. Otherwise, you might
605/// parse ffXX as f(fXX) or f(fX)X.  (X is a placeholder for any other type.)
606///
607static std::string getMangledTypeStr(Type* Ty) {
608  std::string Result;
609  if (PointerType* PTyp = dyn_cast<PointerType>(Ty)) {
610    Result += "p" + utostr(PTyp->getAddressSpace()) +
611      getMangledTypeStr(PTyp->getElementType());
612  } else if (ArrayType* ATyp = dyn_cast<ArrayType>(Ty)) {
613    Result += "a" + utostr(ATyp->getNumElements()) +
614      getMangledTypeStr(ATyp->getElementType());
615  } else if (StructType *STyp = dyn_cast<StructType>(Ty)) {
616    if (!STyp->isLiteral()) {
617      Result += "s_";
618      Result += STyp->getName();
619    } else {
620      Result += "sl_";
621      for (auto Elem : STyp->elements())
622        Result += getMangledTypeStr(Elem);
623    }
624    // Ensure nested structs are distinguishable.
625    Result += "s";
626  } else if (FunctionType *FT = dyn_cast<FunctionType>(Ty)) {
627    Result += "f_" + getMangledTypeStr(FT->getReturnType());
628    for (size_t i = 0; i < FT->getNumParams(); i++)
629      Result += getMangledTypeStr(FT->getParamType(i));
630    if (FT->isVarArg())
631      Result += "vararg";
632    // Ensure nested function types are distinguishable.
633    Result += "f";
634  } else if (VectorType* VTy = dyn_cast<VectorType>(Ty)) {
635    if (VTy->isScalable())
636      Result += "nx";
637    Result += "v" + utostr(VTy->getVectorNumElements()) +
638      getMangledTypeStr(VTy->getVectorElementType());
639  } else if (Ty) {
640    switch (Ty->getTypeID()) {
641    default: llvm_unreachable("Unhandled type");
642    case Type::VoidTyID:      Result += "isVoid";   break;
643    case Type::MetadataTyID:  Result += "Metadata"; break;
644    case Type::HalfTyID:      Result += "f16";      break;
645    case Type::FloatTyID:     Result += "f32";      break;
646    case Type::DoubleTyID:    Result += "f64";      break;
647    case Type::X86_FP80TyID:  Result += "f80";      break;
648    case Type::FP128TyID:     Result += "f128";     break;
649    case Type::PPC_FP128TyID: Result += "ppcf128";  break;
650    case Type::X86_MMXTyID:   Result += "x86mmx";   break;
651    case Type::IntegerTyID:
652      Result += "i" + utostr(cast<IntegerType>(Ty)->getBitWidth());
653      break;
654    }
655  }
656  return Result;
657}
658
659StringRef Intrinsic::getName(ID id) {
660  assert(id < num_intrinsics && "Invalid intrinsic ID!");
661  assert(!Intrinsic::isOverloaded(id) &&
662         "This version of getName does not support overloading");
663  return IntrinsicNameTable[id];
664}
665
666std::string Intrinsic::getName(ID id, ArrayRef<Type*> Tys) {
667  assert(id < num_intrinsics && "Invalid intrinsic ID!");
668  std::string Result(IntrinsicNameTable[id]);
669  for (Type *Ty : Tys) {
670    Result += "." + getMangledTypeStr(Ty);
671  }
672  return Result;
673}
674
675/// IIT_Info - These are enumerators that describe the entries returned by the
676/// getIntrinsicInfoTableEntries function.
677///
678/// NOTE: This must be kept in synch with the copy in TblGen/IntrinsicEmitter!
679enum IIT_Info {
680  // Common values should be encoded with 0-15.
681  IIT_Done = 0,
682  IIT_I1   = 1,
683  IIT_I8   = 2,
684  IIT_I16  = 3,
685  IIT_I32  = 4,
686  IIT_I64  = 5,
687  IIT_F16  = 6,
688  IIT_F32  = 7,
689  IIT_F64  = 8,
690  IIT_V2   = 9,
691  IIT_V4   = 10,
692  IIT_V8   = 11,
693  IIT_V16  = 12,
694  IIT_V32  = 13,
695  IIT_PTR  = 14,
696  IIT_ARG  = 15,
697
698  // Values from 16+ are only encodable with the inefficient encoding.
699  IIT_V64  = 16,
700  IIT_MMX  = 17,
701  IIT_TOKEN = 18,
702  IIT_METADATA = 19,
703  IIT_EMPTYSTRUCT = 20,
704  IIT_STRUCT2 = 21,
705  IIT_STRUCT3 = 22,
706  IIT_STRUCT4 = 23,
707  IIT_STRUCT5 = 24,
708  IIT_EXTEND_ARG = 25,
709  IIT_TRUNC_ARG = 26,
710  IIT_ANYPTR = 27,
711  IIT_V1   = 28,
712  IIT_VARARG = 29,
713  IIT_HALF_VEC_ARG = 30,
714  IIT_SAME_VEC_WIDTH_ARG = 31,
715  IIT_PTR_TO_ARG = 32,
716  IIT_PTR_TO_ELT = 33,
717  IIT_VEC_OF_ANYPTRS_TO_ELT = 34,
718  IIT_I128 = 35,
719  IIT_V512 = 36,
720  IIT_V1024 = 37,
721  IIT_STRUCT6 = 38,
722  IIT_STRUCT7 = 39,
723  IIT_STRUCT8 = 40,
724  IIT_F128 = 41,
725  IIT_VEC_ELEMENT = 42,
726  IIT_SCALABLE_VEC = 43,
727  IIT_SUBDIVIDE2_ARG = 44,
728  IIT_SUBDIVIDE4_ARG = 45,
729  IIT_VEC_OF_BITCASTS_TO_INT = 46
730};
731
732static void DecodeIITType(unsigned &NextElt, ArrayRef<unsigned char> Infos,
733                      SmallVectorImpl<Intrinsic::IITDescriptor> &OutputTable) {
734  using namespace Intrinsic;
735
736  IIT_Info Info = IIT_Info(Infos[NextElt++]);
737  unsigned StructElts = 2;
738
739  switch (Info) {
740  case IIT_Done:
741    OutputTable.push_back(IITDescriptor::get(IITDescriptor::Void, 0));
742    return;
743  case IIT_VARARG:
744    OutputTable.push_back(IITDescriptor::get(IITDescriptor::VarArg, 0));
745    return;
746  case IIT_MMX:
747    OutputTable.push_back(IITDescriptor::get(IITDescriptor::MMX, 0));
748    return;
749  case IIT_TOKEN:
750    OutputTable.push_back(IITDescriptor::get(IITDescriptor::Token, 0));
751    return;
752  case IIT_METADATA:
753    OutputTable.push_back(IITDescriptor::get(IITDescriptor::Metadata, 0));
754    return;
755  case IIT_F16:
756    OutputTable.push_back(IITDescriptor::get(IITDescriptor::Half, 0));
757    return;
758  case IIT_F32:
759    OutputTable.push_back(IITDescriptor::get(IITDescriptor::Float, 0));
760    return;
761  case IIT_F64:
762    OutputTable.push_back(IITDescriptor::get(IITDescriptor::Double, 0));
763    return;
764  case IIT_F128:
765    OutputTable.push_back(IITDescriptor::get(IITDescriptor::Quad, 0));
766    return;
767  case IIT_I1:
768    OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 1));
769    return;
770  case IIT_I8:
771    OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 8));
772    return;
773  case IIT_I16:
774    OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer,16));
775    return;
776  case IIT_I32:
777    OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 32));
778    return;
779  case IIT_I64:
780    OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 64));
781    return;
782  case IIT_I128:
783    OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 128));
784    return;
785  case IIT_V1:
786    OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 1));
787    DecodeIITType(NextElt, Infos, OutputTable);
788    return;
789  case IIT_V2:
790    OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 2));
791    DecodeIITType(NextElt, Infos, OutputTable);
792    return;
793  case IIT_V4:
794    OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 4));
795    DecodeIITType(NextElt, Infos, OutputTable);
796    return;
797  case IIT_V8:
798    OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 8));
799    DecodeIITType(NextElt, Infos, OutputTable);
800    return;
801  case IIT_V16:
802    OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 16));
803    DecodeIITType(NextElt, Infos, OutputTable);
804    return;
805  case IIT_V32:
806    OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 32));
807    DecodeIITType(NextElt, Infos, OutputTable);
808    return;
809  case IIT_V64:
810    OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 64));
811    DecodeIITType(NextElt, Infos, OutputTable);
812    return;
813  case IIT_V512:
814    OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 512));
815    DecodeIITType(NextElt, Infos, OutputTable);
816    return;
817  case IIT_V1024:
818    OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 1024));
819    DecodeIITType(NextElt, Infos, OutputTable);
820    return;
821  case IIT_PTR:
822    OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 0));
823    DecodeIITType(NextElt, Infos, OutputTable);
824    return;
825  case IIT_ANYPTR: {  // [ANYPTR addrspace, subtype]
826    OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer,
827                                             Infos[NextElt++]));
828    DecodeIITType(NextElt, Infos, OutputTable);
829    return;
830  }
831  case IIT_ARG: {
832    unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
833    OutputTable.push_back(IITDescriptor::get(IITDescriptor::Argument, ArgInfo));
834    return;
835  }
836  case IIT_EXTEND_ARG: {
837    unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
838    OutputTable.push_back(IITDescriptor::get(IITDescriptor::ExtendArgument,
839                                             ArgInfo));
840    return;
841  }
842  case IIT_TRUNC_ARG: {
843    unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
844    OutputTable.push_back(IITDescriptor::get(IITDescriptor::TruncArgument,
845                                             ArgInfo));
846    return;
847  }
848  case IIT_HALF_VEC_ARG: {
849    unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
850    OutputTable.push_back(IITDescriptor::get(IITDescriptor::HalfVecArgument,
851                                             ArgInfo));
852    return;
853  }
854  case IIT_SAME_VEC_WIDTH_ARG: {
855    unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
856    OutputTable.push_back(IITDescriptor::get(IITDescriptor::SameVecWidthArgument,
857                                             ArgInfo));
858    return;
859  }
860  case IIT_PTR_TO_ARG: {
861    unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
862    OutputTable.push_back(IITDescriptor::get(IITDescriptor::PtrToArgument,
863                                             ArgInfo));
864    return;
865  }
866  case IIT_PTR_TO_ELT: {
867    unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
868    OutputTable.push_back(IITDescriptor::get(IITDescriptor::PtrToElt, ArgInfo));
869    return;
870  }
871  case IIT_VEC_OF_ANYPTRS_TO_ELT: {
872    unsigned short ArgNo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
873    unsigned short RefNo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
874    OutputTable.push_back(
875        IITDescriptor::get(IITDescriptor::VecOfAnyPtrsToElt, ArgNo, RefNo));
876    return;
877  }
878  case IIT_EMPTYSTRUCT:
879    OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct, 0));
880    return;
881  case IIT_STRUCT8: ++StructElts; LLVM_FALLTHROUGH;
882  case IIT_STRUCT7: ++StructElts; LLVM_FALLTHROUGH;
883  case IIT_STRUCT6: ++StructElts; LLVM_FALLTHROUGH;
884  case IIT_STRUCT5: ++StructElts; LLVM_FALLTHROUGH;
885  case IIT_STRUCT4: ++StructElts; LLVM_FALLTHROUGH;
886  case IIT_STRUCT3: ++StructElts; LLVM_FALLTHROUGH;
887  case IIT_STRUCT2: {
888    OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct,StructElts));
889
890    for (unsigned i = 0; i != StructElts; ++i)
891      DecodeIITType(NextElt, Infos, OutputTable);
892    return;
893  }
894  case IIT_SUBDIVIDE2_ARG: {
895    unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
896    OutputTable.push_back(IITDescriptor::get(IITDescriptor::Subdivide2Argument,
897                                             ArgInfo));
898    return;
899  }
900  case IIT_SUBDIVIDE4_ARG: {
901    unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
902    OutputTable.push_back(IITDescriptor::get(IITDescriptor::Subdivide4Argument,
903                                             ArgInfo));
904    return;
905  }
906  case IIT_VEC_ELEMENT: {
907    unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
908    OutputTable.push_back(IITDescriptor::get(IITDescriptor::VecElementArgument,
909                                             ArgInfo));
910    return;
911  }
912  case IIT_SCALABLE_VEC: {
913    OutputTable.push_back(IITDescriptor::get(IITDescriptor::ScalableVecArgument,
914                                             0));
915    DecodeIITType(NextElt, Infos, OutputTable);
916    return;
917  }
918  case IIT_VEC_OF_BITCASTS_TO_INT: {
919    unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
920    OutputTable.push_back(IITDescriptor::get(IITDescriptor::VecOfBitcastsToInt,
921                                             ArgInfo));
922    return;
923  }
924  }
925  llvm_unreachable("unhandled");
926}
927
928#define GET_INTRINSIC_GENERATOR_GLOBAL
929#include "llvm/IR/IntrinsicImpl.inc"
930#undef GET_INTRINSIC_GENERATOR_GLOBAL
931
932void Intrinsic::getIntrinsicInfoTableEntries(ID id,
933                                             SmallVectorImpl<IITDescriptor> &T){
934  // Check to see if the intrinsic's type was expressible by the table.
935  unsigned TableVal = IIT_Table[id-1];
936
937  // Decode the TableVal into an array of IITValues.
938  SmallVector<unsigned char, 8> IITValues;
939  ArrayRef<unsigned char> IITEntries;
940  unsigned NextElt = 0;
941  if ((TableVal >> 31) != 0) {
942    // This is an offset into the IIT_LongEncodingTable.
943    IITEntries = IIT_LongEncodingTable;
944
945    // Strip sentinel bit.
946    NextElt = (TableVal << 1) >> 1;
947  } else {
948    // Decode the TableVal into an array of IITValues.  If the entry was encoded
949    // into a single word in the table itself, decode it now.
950    do {
951      IITValues.push_back(TableVal & 0xF);
952      TableVal >>= 4;
953    } while (TableVal);
954
955    IITEntries = IITValues;
956    NextElt = 0;
957  }
958
959  // Okay, decode the table into the output vector of IITDescriptors.
960  DecodeIITType(NextElt, IITEntries, T);
961  while (NextElt != IITEntries.size() && IITEntries[NextElt] != 0)
962    DecodeIITType(NextElt, IITEntries, T);
963}
964
965static Type *DecodeFixedType(ArrayRef<Intrinsic::IITDescriptor> &Infos,
966                             ArrayRef<Type*> Tys, LLVMContext &Context) {
967  using namespace Intrinsic;
968
969  IITDescriptor D = Infos.front();
970  Infos = Infos.slice(1);
971
972  switch (D.Kind) {
973  case IITDescriptor::Void: return Type::getVoidTy(Context);
974  case IITDescriptor::VarArg: return Type::getVoidTy(Context);
975  case IITDescriptor::MMX: return Type::getX86_MMXTy(Context);
976  case IITDescriptor::Token: return Type::getTokenTy(Context);
977  case IITDescriptor::Metadata: return Type::getMetadataTy(Context);
978  case IITDescriptor::Half: return Type::getHalfTy(Context);
979  case IITDescriptor::Float: return Type::getFloatTy(Context);
980  case IITDescriptor::Double: return Type::getDoubleTy(Context);
981  case IITDescriptor::Quad: return Type::getFP128Ty(Context);
982
983  case IITDescriptor::Integer:
984    return IntegerType::get(Context, D.Integer_Width);
985  case IITDescriptor::Vector:
986    return VectorType::get(DecodeFixedType(Infos, Tys, Context),D.Vector_Width);
987  case IITDescriptor::Pointer:
988    return PointerType::get(DecodeFixedType(Infos, Tys, Context),
989                            D.Pointer_AddressSpace);
990  case IITDescriptor::Struct: {
991    SmallVector<Type *, 8> Elts;
992    for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i)
993      Elts.push_back(DecodeFixedType(Infos, Tys, Context));
994    return StructType::get(Context, Elts);
995  }
996  case IITDescriptor::Argument:
997    return Tys[D.getArgumentNumber()];
998  case IITDescriptor::ExtendArgument: {
999    Type *Ty = Tys[D.getArgumentNumber()];
1000    if (VectorType *VTy = dyn_cast<VectorType>(Ty))
1001      return VectorType::getExtendedElementVectorType(VTy);
1002
1003    return IntegerType::get(Context, 2 * cast<IntegerType>(Ty)->getBitWidth());
1004  }
1005  case IITDescriptor::TruncArgument: {
1006    Type *Ty = Tys[D.getArgumentNumber()];
1007    if (VectorType *VTy = dyn_cast<VectorType>(Ty))
1008      return VectorType::getTruncatedElementVectorType(VTy);
1009
1010    IntegerType *ITy = cast<IntegerType>(Ty);
1011    assert(ITy->getBitWidth() % 2 == 0);
1012    return IntegerType::get(Context, ITy->getBitWidth() / 2);
1013  }
1014  case IITDescriptor::Subdivide2Argument:
1015  case IITDescriptor::Subdivide4Argument: {
1016    Type *Ty = Tys[D.getArgumentNumber()];
1017    VectorType *VTy = dyn_cast<VectorType>(Ty);
1018    assert(VTy && "Expected an argument of Vector Type");
1019    int SubDivs = D.Kind == IITDescriptor::Subdivide2Argument ? 1 : 2;
1020    return VectorType::getSubdividedVectorType(VTy, SubDivs);
1021  }
1022  case IITDescriptor::HalfVecArgument:
1023    return VectorType::getHalfElementsVectorType(cast<VectorType>(
1024                                                  Tys[D.getArgumentNumber()]));
1025  case IITDescriptor::SameVecWidthArgument: {
1026    Type *EltTy = DecodeFixedType(Infos, Tys, Context);
1027    Type *Ty = Tys[D.getArgumentNumber()];
1028    if (auto *VTy = dyn_cast<VectorType>(Ty))
1029      return VectorType::get(EltTy, VTy->getElementCount());
1030    return EltTy;
1031  }
1032  case IITDescriptor::PtrToArgument: {
1033    Type *Ty = Tys[D.getArgumentNumber()];
1034    return PointerType::getUnqual(Ty);
1035  }
1036  case IITDescriptor::PtrToElt: {
1037    Type *Ty = Tys[D.getArgumentNumber()];
1038    VectorType *VTy = dyn_cast<VectorType>(Ty);
1039    if (!VTy)
1040      llvm_unreachable("Expected an argument of Vector Type");
1041    Type *EltTy = VTy->getVectorElementType();
1042    return PointerType::getUnqual(EltTy);
1043  }
1044  case IITDescriptor::VecElementArgument: {
1045    Type *Ty = Tys[D.getArgumentNumber()];
1046    if (VectorType *VTy = dyn_cast<VectorType>(Ty))
1047      return VTy->getElementType();
1048    llvm_unreachable("Expected an argument of Vector Type");
1049  }
1050  case IITDescriptor::VecOfBitcastsToInt: {
1051    Type *Ty = Tys[D.getArgumentNumber()];
1052    VectorType *VTy = dyn_cast<VectorType>(Ty);
1053    assert(VTy && "Expected an argument of Vector Type");
1054    return VectorType::getInteger(VTy);
1055  }
1056  case IITDescriptor::VecOfAnyPtrsToElt:
1057    // Return the overloaded type (which determines the pointers address space)
1058    return Tys[D.getOverloadArgNumber()];
1059  case IITDescriptor::ScalableVecArgument: {
1060    Type *Ty = DecodeFixedType(Infos, Tys, Context);
1061    return VectorType::get(Ty->getVectorElementType(),
1062                           { Ty->getVectorNumElements(), true });
1063  }
1064  }
1065  llvm_unreachable("unhandled");
1066}
1067
1068FunctionType *Intrinsic::getType(LLVMContext &Context,
1069                                 ID id, ArrayRef<Type*> Tys) {
1070  SmallVector<IITDescriptor, 8> Table;
1071  getIntrinsicInfoTableEntries(id, Table);
1072
1073  ArrayRef<IITDescriptor> TableRef = Table;
1074  Type *ResultTy = DecodeFixedType(TableRef, Tys, Context);
1075
1076  SmallVector<Type*, 8> ArgTys;
1077  while (!TableRef.empty())
1078    ArgTys.push_back(DecodeFixedType(TableRef, Tys, Context));
1079
1080  // DecodeFixedType returns Void for IITDescriptor::Void and IITDescriptor::VarArg
1081  // If we see void type as the type of the last argument, it is vararg intrinsic
1082  if (!ArgTys.empty() && ArgTys.back()->isVoidTy()) {
1083    ArgTys.pop_back();
1084    return FunctionType::get(ResultTy, ArgTys, true);
1085  }
1086  return FunctionType::get(ResultTy, ArgTys, false);
1087}
1088
1089bool Intrinsic::isOverloaded(ID id) {
1090#define GET_INTRINSIC_OVERLOAD_TABLE
1091#include "llvm/IR/IntrinsicImpl.inc"
1092#undef GET_INTRINSIC_OVERLOAD_TABLE
1093}
1094
1095bool Intrinsic::isLeaf(ID id) {
1096  switch (id) {
1097  default:
1098    return true;
1099
1100  case Intrinsic::experimental_gc_statepoint:
1101  case Intrinsic::experimental_patchpoint_void:
1102  case Intrinsic::experimental_patchpoint_i64:
1103    return false;
1104  }
1105}
1106
1107/// This defines the "Intrinsic::getAttributes(ID id)" method.
1108#define GET_INTRINSIC_ATTRIBUTES
1109#include "llvm/IR/IntrinsicImpl.inc"
1110#undef GET_INTRINSIC_ATTRIBUTES
1111
1112Function *Intrinsic::getDeclaration(Module *M, ID id, ArrayRef<Type*> Tys) {
1113  // There can never be multiple globals with the same name of different types,
1114  // because intrinsics must be a specific type.
1115  return cast<Function>(
1116      M->getOrInsertFunction(getName(id, Tys),
1117                             getType(M->getContext(), id, Tys))
1118          .getCallee());
1119}
1120
1121// This defines the "Intrinsic::getIntrinsicForGCCBuiltin()" method.
1122#define GET_LLVM_INTRINSIC_FOR_GCC_BUILTIN
1123#include "llvm/IR/IntrinsicImpl.inc"
1124#undef GET_LLVM_INTRINSIC_FOR_GCC_BUILTIN
1125
1126// This defines the "Intrinsic::getIntrinsicForMSBuiltin()" method.
1127#define GET_LLVM_INTRINSIC_FOR_MS_BUILTIN
1128#include "llvm/IR/IntrinsicImpl.inc"
1129#undef GET_LLVM_INTRINSIC_FOR_MS_BUILTIN
1130
1131using DeferredIntrinsicMatchPair =
1132    std::pair<Type *, ArrayRef<Intrinsic::IITDescriptor>>;
1133
1134static bool matchIntrinsicType(
1135    Type *Ty, ArrayRef<Intrinsic::IITDescriptor> &Infos,
1136    SmallVectorImpl<Type *> &ArgTys,
1137    SmallVectorImpl<DeferredIntrinsicMatchPair> &DeferredChecks,
1138    bool IsDeferredCheck) {
1139  using namespace Intrinsic;
1140
1141  // If we ran out of descriptors, there are too many arguments.
1142  if (Infos.empty()) return true;
1143
1144  // Do this before slicing off the 'front' part
1145  auto InfosRef = Infos;
1146  auto DeferCheck = [&DeferredChecks, &InfosRef](Type *T) {
1147    DeferredChecks.emplace_back(T, InfosRef);
1148    return false;
1149  };
1150
1151  IITDescriptor D = Infos.front();
1152  Infos = Infos.slice(1);
1153
1154  switch (D.Kind) {
1155    case IITDescriptor::Void: return !Ty->isVoidTy();
1156    case IITDescriptor::VarArg: return true;
1157    case IITDescriptor::MMX:  return !Ty->isX86_MMXTy();
1158    case IITDescriptor::Token: return !Ty->isTokenTy();
1159    case IITDescriptor::Metadata: return !Ty->isMetadataTy();
1160    case IITDescriptor::Half: return !Ty->isHalfTy();
1161    case IITDescriptor::Float: return !Ty->isFloatTy();
1162    case IITDescriptor::Double: return !Ty->isDoubleTy();
1163    case IITDescriptor::Quad: return !Ty->isFP128Ty();
1164    case IITDescriptor::Integer: return !Ty->isIntegerTy(D.Integer_Width);
1165    case IITDescriptor::Vector: {
1166      VectorType *VT = dyn_cast<VectorType>(Ty);
1167      return !VT || VT->getNumElements() != D.Vector_Width ||
1168             matchIntrinsicType(VT->getElementType(), Infos, ArgTys,
1169                                DeferredChecks, IsDeferredCheck);
1170    }
1171    case IITDescriptor::Pointer: {
1172      PointerType *PT = dyn_cast<PointerType>(Ty);
1173      return !PT || PT->getAddressSpace() != D.Pointer_AddressSpace ||
1174             matchIntrinsicType(PT->getElementType(), Infos, ArgTys,
1175                                DeferredChecks, IsDeferredCheck);
1176    }
1177
1178    case IITDescriptor::Struct: {
1179      StructType *ST = dyn_cast<StructType>(Ty);
1180      if (!ST || ST->getNumElements() != D.Struct_NumElements)
1181        return true;
1182
1183      for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i)
1184        if (matchIntrinsicType(ST->getElementType(i), Infos, ArgTys,
1185                               DeferredChecks, IsDeferredCheck))
1186          return true;
1187      return false;
1188    }
1189
1190    case IITDescriptor::Argument:
1191      // If this is the second occurrence of an argument,
1192      // verify that the later instance matches the previous instance.
1193      if (D.getArgumentNumber() < ArgTys.size())
1194        return Ty != ArgTys[D.getArgumentNumber()];
1195
1196      if (D.getArgumentNumber() > ArgTys.size() ||
1197          D.getArgumentKind() == IITDescriptor::AK_MatchType)
1198        return IsDeferredCheck || DeferCheck(Ty);
1199
1200      assert(D.getArgumentNumber() == ArgTys.size() && !IsDeferredCheck &&
1201             "Table consistency error");
1202      ArgTys.push_back(Ty);
1203
1204      switch (D.getArgumentKind()) {
1205        case IITDescriptor::AK_Any:        return false; // Success
1206        case IITDescriptor::AK_AnyInteger: return !Ty->isIntOrIntVectorTy();
1207        case IITDescriptor::AK_AnyFloat:   return !Ty->isFPOrFPVectorTy();
1208        case IITDescriptor::AK_AnyVector:  return !isa<VectorType>(Ty);
1209        case IITDescriptor::AK_AnyPointer: return !isa<PointerType>(Ty);
1210        default:                           break;
1211      }
1212      llvm_unreachable("all argument kinds not covered");
1213
1214    case IITDescriptor::ExtendArgument: {
1215      // If this is a forward reference, defer the check for later.
1216      if (D.getArgumentNumber() >= ArgTys.size())
1217        return IsDeferredCheck || DeferCheck(Ty);
1218
1219      Type *NewTy = ArgTys[D.getArgumentNumber()];
1220      if (VectorType *VTy = dyn_cast<VectorType>(NewTy))
1221        NewTy = VectorType::getExtendedElementVectorType(VTy);
1222      else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy))
1223        NewTy = IntegerType::get(ITy->getContext(), 2 * ITy->getBitWidth());
1224      else
1225        return true;
1226
1227      return Ty != NewTy;
1228    }
1229    case IITDescriptor::TruncArgument: {
1230      // If this is a forward reference, defer the check for later.
1231      if (D.getArgumentNumber() >= ArgTys.size())
1232        return IsDeferredCheck || DeferCheck(Ty);
1233
1234      Type *NewTy = ArgTys[D.getArgumentNumber()];
1235      if (VectorType *VTy = dyn_cast<VectorType>(NewTy))
1236        NewTy = VectorType::getTruncatedElementVectorType(VTy);
1237      else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy))
1238        NewTy = IntegerType::get(ITy->getContext(), ITy->getBitWidth() / 2);
1239      else
1240        return true;
1241
1242      return Ty != NewTy;
1243    }
1244    case IITDescriptor::HalfVecArgument:
1245      // If this is a forward reference, defer the check for later.
1246      if (D.getArgumentNumber() >= ArgTys.size())
1247        return IsDeferredCheck || DeferCheck(Ty);
1248      return !isa<VectorType>(ArgTys[D.getArgumentNumber()]) ||
1249             VectorType::getHalfElementsVectorType(
1250                     cast<VectorType>(ArgTys[D.getArgumentNumber()])) != Ty;
1251    case IITDescriptor::SameVecWidthArgument: {
1252      if (D.getArgumentNumber() >= ArgTys.size()) {
1253        // Defer check and subsequent check for the vector element type.
1254        Infos = Infos.slice(1);
1255        return IsDeferredCheck || DeferCheck(Ty);
1256      }
1257      auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]);
1258      auto *ThisArgType = dyn_cast<VectorType>(Ty);
1259      // Both must be vectors of the same number of elements or neither.
1260      if ((ReferenceType != nullptr) != (ThisArgType != nullptr))
1261        return true;
1262      Type *EltTy = Ty;
1263      if (ThisArgType) {
1264        if (ReferenceType->getElementCount() !=
1265            ThisArgType->getElementCount())
1266          return true;
1267        EltTy = ThisArgType->getVectorElementType();
1268      }
1269      return matchIntrinsicType(EltTy, Infos, ArgTys, DeferredChecks,
1270                                IsDeferredCheck);
1271    }
1272    case IITDescriptor::PtrToArgument: {
1273      if (D.getArgumentNumber() >= ArgTys.size())
1274        return IsDeferredCheck || DeferCheck(Ty);
1275      Type * ReferenceType = ArgTys[D.getArgumentNumber()];
1276      PointerType *ThisArgType = dyn_cast<PointerType>(Ty);
1277      return (!ThisArgType || ThisArgType->getElementType() != ReferenceType);
1278    }
1279    case IITDescriptor::PtrToElt: {
1280      if (D.getArgumentNumber() >= ArgTys.size())
1281        return IsDeferredCheck || DeferCheck(Ty);
1282      VectorType * ReferenceType =
1283        dyn_cast<VectorType> (ArgTys[D.getArgumentNumber()]);
1284      PointerType *ThisArgType = dyn_cast<PointerType>(Ty);
1285
1286      return (!ThisArgType || !ReferenceType ||
1287              ThisArgType->getElementType() != ReferenceType->getElementType());
1288    }
1289    case IITDescriptor::VecOfAnyPtrsToElt: {
1290      unsigned RefArgNumber = D.getRefArgNumber();
1291      if (RefArgNumber >= ArgTys.size()) {
1292        if (IsDeferredCheck)
1293          return true;
1294        // If forward referencing, already add the pointer-vector type and
1295        // defer the checks for later.
1296        ArgTys.push_back(Ty);
1297        return DeferCheck(Ty);
1298      }
1299
1300      if (!IsDeferredCheck){
1301        assert(D.getOverloadArgNumber() == ArgTys.size() &&
1302               "Table consistency error");
1303        ArgTys.push_back(Ty);
1304      }
1305
1306      // Verify the overloaded type "matches" the Ref type.
1307      // i.e. Ty is a vector with the same width as Ref.
1308      // Composed of pointers to the same element type as Ref.
1309      VectorType *ReferenceType = dyn_cast<VectorType>(ArgTys[RefArgNumber]);
1310      VectorType *ThisArgVecTy = dyn_cast<VectorType>(Ty);
1311      if (!ThisArgVecTy || !ReferenceType ||
1312          (ReferenceType->getVectorNumElements() !=
1313           ThisArgVecTy->getVectorNumElements()))
1314        return true;
1315      PointerType *ThisArgEltTy =
1316              dyn_cast<PointerType>(ThisArgVecTy->getVectorElementType());
1317      if (!ThisArgEltTy)
1318        return true;
1319      return ThisArgEltTy->getElementType() !=
1320             ReferenceType->getVectorElementType();
1321    }
1322    case IITDescriptor::VecElementArgument: {
1323      if (D.getArgumentNumber() >= ArgTys.size())
1324        return IsDeferredCheck ? true : DeferCheck(Ty);
1325      auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]);
1326      return !ReferenceType || Ty != ReferenceType->getElementType();
1327    }
1328    case IITDescriptor::Subdivide2Argument:
1329    case IITDescriptor::Subdivide4Argument: {
1330      // If this is a forward reference, defer the check for later.
1331      if (D.getArgumentNumber() >= ArgTys.size())
1332        return IsDeferredCheck || DeferCheck(Ty);
1333
1334      Type *NewTy = ArgTys[D.getArgumentNumber()];
1335      if (auto *VTy = dyn_cast<VectorType>(NewTy)) {
1336        int SubDivs = D.Kind == IITDescriptor::Subdivide2Argument ? 1 : 2;
1337        NewTy = VectorType::getSubdividedVectorType(VTy, SubDivs);
1338        return Ty != NewTy;
1339      }
1340      return true;
1341    }
1342    case IITDescriptor::ScalableVecArgument: {
1343      VectorType *VTy = dyn_cast<VectorType>(Ty);
1344      if (!VTy || !VTy->isScalable())
1345        return true;
1346      return matchIntrinsicType(VTy, Infos, ArgTys, DeferredChecks,
1347                                IsDeferredCheck);
1348    }
1349    case IITDescriptor::VecOfBitcastsToInt: {
1350      if (D.getArgumentNumber() >= ArgTys.size())
1351        return IsDeferredCheck || DeferCheck(Ty);
1352      auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]);
1353      auto *ThisArgVecTy = dyn_cast<VectorType>(Ty);
1354      if (!ThisArgVecTy || !ReferenceType)
1355        return true;
1356      return ThisArgVecTy != VectorType::getInteger(ReferenceType);
1357    }
1358  }
1359  llvm_unreachable("unhandled");
1360}
1361
1362Intrinsic::MatchIntrinsicTypesResult
1363Intrinsic::matchIntrinsicSignature(FunctionType *FTy,
1364                                   ArrayRef<Intrinsic::IITDescriptor> &Infos,
1365                                   SmallVectorImpl<Type *> &ArgTys) {
1366  SmallVector<DeferredIntrinsicMatchPair, 2> DeferredChecks;
1367  if (matchIntrinsicType(FTy->getReturnType(), Infos, ArgTys, DeferredChecks,
1368                         false))
1369    return MatchIntrinsicTypes_NoMatchRet;
1370
1371  unsigned NumDeferredReturnChecks = DeferredChecks.size();
1372
1373  for (auto Ty : FTy->params())
1374    if (matchIntrinsicType(Ty, Infos, ArgTys, DeferredChecks, false))
1375      return MatchIntrinsicTypes_NoMatchArg;
1376
1377  for (unsigned I = 0, E = DeferredChecks.size(); I != E; ++I) {
1378    DeferredIntrinsicMatchPair &Check = DeferredChecks[I];
1379    if (matchIntrinsicType(Check.first, Check.second, ArgTys, DeferredChecks,
1380                           true))
1381      return I < NumDeferredReturnChecks ? MatchIntrinsicTypes_NoMatchRet
1382                                         : MatchIntrinsicTypes_NoMatchArg;
1383  }
1384
1385  return MatchIntrinsicTypes_Match;
1386}
1387
1388bool
1389Intrinsic::matchIntrinsicVarArg(bool isVarArg,
1390                                ArrayRef<Intrinsic::IITDescriptor> &Infos) {
1391  // If there are no descriptors left, then it can't be a vararg.
1392  if (Infos.empty())
1393    return isVarArg;
1394
1395  // There should be only one descriptor remaining at this point.
1396  if (Infos.size() != 1)
1397    return true;
1398
1399  // Check and verify the descriptor.
1400  IITDescriptor D = Infos.front();
1401  Infos = Infos.slice(1);
1402  if (D.Kind == IITDescriptor::VarArg)
1403    return !isVarArg;
1404
1405  return true;
1406}
1407
1408Optional<Function*> Intrinsic::remangleIntrinsicFunction(Function *F) {
1409  Intrinsic::ID ID = F->getIntrinsicID();
1410  if (!ID)
1411    return None;
1412
1413  FunctionType *FTy = F->getFunctionType();
1414  // Accumulate an array of overloaded types for the given intrinsic
1415  SmallVector<Type *, 4> ArgTys;
1416  {
1417    SmallVector<Intrinsic::IITDescriptor, 8> Table;
1418    getIntrinsicInfoTableEntries(ID, Table);
1419    ArrayRef<Intrinsic::IITDescriptor> TableRef = Table;
1420
1421    if (Intrinsic::matchIntrinsicSignature(FTy, TableRef, ArgTys))
1422      return None;
1423    if (Intrinsic::matchIntrinsicVarArg(FTy->isVarArg(), TableRef))
1424      return None;
1425  }
1426
1427  StringRef Name = F->getName();
1428  if (Name == Intrinsic::getName(ID, ArgTys))
1429    return None;
1430
1431  auto NewDecl = Intrinsic::getDeclaration(F->getParent(), ID, ArgTys);
1432  NewDecl->setCallingConv(F->getCallingConv());
1433  assert(NewDecl->getFunctionType() == FTy && "Shouldn't change the signature");
1434  return NewDecl;
1435}
1436
1437/// hasAddressTaken - returns true if there are any uses of this function
1438/// other than direct calls or invokes to it.
1439bool Function::hasAddressTaken(const User* *PutOffender) const {
1440  for (const Use &U : uses()) {
1441    const User *FU = U.getUser();
1442    if (isa<BlockAddress>(FU))
1443      continue;
1444    const auto *Call = dyn_cast<CallBase>(FU);
1445    if (!Call) {
1446      if (PutOffender)
1447        *PutOffender = FU;
1448      return true;
1449    }
1450    if (!Call->isCallee(&U)) {
1451      if (PutOffender)
1452        *PutOffender = FU;
1453      return true;
1454    }
1455  }
1456  return false;
1457}
1458
1459bool Function::isDefTriviallyDead() const {
1460  // Check the linkage
1461  if (!hasLinkOnceLinkage() && !hasLocalLinkage() &&
1462      !hasAvailableExternallyLinkage())
1463    return false;
1464
1465  // Check if the function is used by anything other than a blockaddress.
1466  for (const User *U : users())
1467    if (!isa<BlockAddress>(U))
1468      return false;
1469
1470  return true;
1471}
1472
1473/// callsFunctionThatReturnsTwice - Return true if the function has a call to
1474/// setjmp or other function that gcc recognizes as "returning twice".
1475bool Function::callsFunctionThatReturnsTwice() const {
1476  for (const Instruction &I : instructions(this))
1477    if (const auto *Call = dyn_cast<CallBase>(&I))
1478      if (Call->hasFnAttr(Attribute::ReturnsTwice))
1479        return true;
1480
1481  return false;
1482}
1483
1484Constant *Function::getPersonalityFn() const {
1485  assert(hasPersonalityFn() && getNumOperands());
1486  return cast<Constant>(Op<0>());
1487}
1488
1489void Function::setPersonalityFn(Constant *Fn) {
1490  setHungoffOperand<0>(Fn);
1491  setValueSubclassDataBit(3, Fn != nullptr);
1492}
1493
1494Constant *Function::getPrefixData() const {
1495  assert(hasPrefixData() && getNumOperands());
1496  return cast<Constant>(Op<1>());
1497}
1498
1499void Function::setPrefixData(Constant *PrefixData) {
1500  setHungoffOperand<1>(PrefixData);
1501  setValueSubclassDataBit(1, PrefixData != nullptr);
1502}
1503
1504Constant *Function::getPrologueData() const {
1505  assert(hasPrologueData() && getNumOperands());
1506  return cast<Constant>(Op<2>());
1507}
1508
1509void Function::setPrologueData(Constant *PrologueData) {
1510  setHungoffOperand<2>(PrologueData);
1511  setValueSubclassDataBit(2, PrologueData != nullptr);
1512}
1513
1514void Function::allocHungoffUselist() {
1515  // If we've already allocated a uselist, stop here.
1516  if (getNumOperands())
1517    return;
1518
1519  allocHungoffUses(3, /*IsPhi=*/ false);
1520  setNumHungOffUseOperands(3);
1521
1522  // Initialize the uselist with placeholder operands to allow traversal.
1523  auto *CPN = ConstantPointerNull::get(Type::getInt1PtrTy(getContext(), 0));
1524  Op<0>().set(CPN);
1525  Op<1>().set(CPN);
1526  Op<2>().set(CPN);
1527}
1528
1529template <int Idx>
1530void Function::setHungoffOperand(Constant *C) {
1531  if (C) {
1532    allocHungoffUselist();
1533    Op<Idx>().set(C);
1534  } else if (getNumOperands()) {
1535    Op<Idx>().set(
1536        ConstantPointerNull::get(Type::getInt1PtrTy(getContext(), 0)));
1537  }
1538}
1539
1540void Function::setValueSubclassDataBit(unsigned Bit, bool On) {
1541  assert(Bit < 16 && "SubclassData contains only 16 bits");
1542  if (On)
1543    setValueSubclassData(getSubclassDataFromValue() | (1 << Bit));
1544  else
1545    setValueSubclassData(getSubclassDataFromValue() & ~(1 << Bit));
1546}
1547
1548void Function::setEntryCount(ProfileCount Count,
1549                             const DenseSet<GlobalValue::GUID> *S) {
1550  assert(Count.hasValue());
1551#if !defined(NDEBUG)
1552  auto PrevCount = getEntryCount();
1553  assert(!PrevCount.hasValue() || PrevCount.getType() == Count.getType());
1554#endif
1555
1556  auto ImportGUIDs = getImportGUIDs();
1557  if (S == nullptr && ImportGUIDs.size())
1558    S = &ImportGUIDs;
1559
1560  MDBuilder MDB(getContext());
1561  setMetadata(
1562      LLVMContext::MD_prof,
1563      MDB.createFunctionEntryCount(Count.getCount(), Count.isSynthetic(), S));
1564}
1565
1566void Function::setEntryCount(uint64_t Count, Function::ProfileCountType Type,
1567                             const DenseSet<GlobalValue::GUID> *Imports) {
1568  setEntryCount(ProfileCount(Count, Type), Imports);
1569}
1570
1571ProfileCount Function::getEntryCount(bool AllowSynthetic) const {
1572  MDNode *MD = getMetadata(LLVMContext::MD_prof);
1573  if (MD && MD->getOperand(0))
1574    if (MDString *MDS = dyn_cast<MDString>(MD->getOperand(0))) {
1575      if (MDS->getString().equals("function_entry_count")) {
1576        ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(1));
1577        uint64_t Count = CI->getValue().getZExtValue();
1578        // A value of -1 is used for SamplePGO when there were no samples.
1579        // Treat this the same as unknown.
1580        if (Count == (uint64_t)-1)
1581          return ProfileCount::getInvalid();
1582        return ProfileCount(Count, PCT_Real);
1583      } else if (AllowSynthetic &&
1584                 MDS->getString().equals("synthetic_function_entry_count")) {
1585        ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(1));
1586        uint64_t Count = CI->getValue().getZExtValue();
1587        return ProfileCount(Count, PCT_Synthetic);
1588      }
1589    }
1590  return ProfileCount::getInvalid();
1591}
1592
1593DenseSet<GlobalValue::GUID> Function::getImportGUIDs() const {
1594  DenseSet<GlobalValue::GUID> R;
1595  if (MDNode *MD = getMetadata(LLVMContext::MD_prof))
1596    if (MDString *MDS = dyn_cast<MDString>(MD->getOperand(0)))
1597      if (MDS->getString().equals("function_entry_count"))
1598        for (unsigned i = 2; i < MD->getNumOperands(); i++)
1599          R.insert(mdconst::extract<ConstantInt>(MD->getOperand(i))
1600                       ->getValue()
1601                       .getZExtValue());
1602  return R;
1603}
1604
1605void Function::setSectionPrefix(StringRef Prefix) {
1606  MDBuilder MDB(getContext());
1607  setMetadata(LLVMContext::MD_section_prefix,
1608              MDB.createFunctionSectionPrefix(Prefix));
1609}
1610
1611Optional<StringRef> Function::getSectionPrefix() const {
1612  if (MDNode *MD = getMetadata(LLVMContext::MD_section_prefix)) {
1613    assert(cast<MDString>(MD->getOperand(0))
1614               ->getString()
1615               .equals("function_section_prefix") &&
1616           "Metadata not match");
1617    return cast<MDString>(MD->getOperand(1))->getString();
1618  }
1619  return None;
1620}
1621
1622bool Function::nullPointerIsDefined() const {
1623  return getFnAttribute("null-pointer-is-valid")
1624          .getValueAsString()
1625          .equals("true");
1626}
1627
1628bool llvm::NullPointerIsDefined(const Function *F, unsigned AS) {
1629  if (F && F->nullPointerIsDefined())
1630    return true;
1631
1632  if (AS != 0)
1633    return true;
1634
1635  return false;
1636}
1637