TypePromotion.cpp revision 360784
1//===----- TypePromotion.cpp ----------------------------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9/// \file
10/// This is an opcode based type promotion pass for small types that would
11/// otherwise be promoted during legalisation. This works around the limitations
12/// of selection dag for cyclic regions. The search begins from icmp
13/// instructions operands where a tree, consisting of non-wrapping or safe
14/// wrapping instructions, is built, checked and promoted if possible.
15///
16//===----------------------------------------------------------------------===//
17
18#include "llvm/ADT/SetVector.h"
19#include "llvm/ADT/StringRef.h"
20#include "llvm/Analysis/TargetTransformInfo.h"
21#include "llvm/CodeGen/Passes.h"
22#include "llvm/CodeGen/TargetLowering.h"
23#include "llvm/CodeGen/TargetPassConfig.h"
24#include "llvm/CodeGen/TargetSubtargetInfo.h"
25#include "llvm/IR/Attributes.h"
26#include "llvm/IR/BasicBlock.h"
27#include "llvm/IR/IRBuilder.h"
28#include "llvm/IR/Constants.h"
29#include "llvm/IR/DataLayout.h"
30#include "llvm/IR/InstrTypes.h"
31#include "llvm/IR/Instruction.h"
32#include "llvm/IR/Instructions.h"
33#include "llvm/IR/IntrinsicInst.h"
34#include "llvm/IR/Intrinsics.h"
35#include "llvm/IR/IntrinsicsARM.h"
36#include "llvm/IR/Type.h"
37#include "llvm/IR/Value.h"
38#include "llvm/IR/Verifier.h"
39#include "llvm/InitializePasses.h"
40#include "llvm/Pass.h"
41#include "llvm/Support/Casting.h"
42#include "llvm/Support/CommandLine.h"
43
44#define DEBUG_TYPE "type-promotion"
45#define PASS_NAME "Type Promotion"
46
47using namespace llvm;
48
49static cl::opt<bool>
50DisablePromotion("disable-type-promotion", cl::Hidden, cl::init(false),
51                 cl::desc("Disable type promotion pass"));
52
53// The goal of this pass is to enable more efficient code generation for
54// operations on narrow types (i.e. types with < 32-bits) and this is a
55// motivating IR code example:
56//
57//   define hidden i32 @cmp(i8 zeroext) {
58//     %2 = add i8 %0, -49
59//     %3 = icmp ult i8 %2, 3
60//     ..
61//   }
62//
63// The issue here is that i8 is type-legalized to i32 because i8 is not a
64// legal type. Thus, arithmetic is done in integer-precision, but then the
65// byte value is masked out as follows:
66//
67//   t19: i32 = add t4, Constant:i32<-49>
68//     t24: i32 = and t19, Constant:i32<255>
69//
70// Consequently, we generate code like this:
71//
72//   subs  r0, #49
73//   uxtb  r1, r0
74//   cmp r1, #3
75//
76// This shows that masking out the byte value results in generation of
77// the UXTB instruction. This is not optimal as r0 already contains the byte
78// value we need, and so instead we can just generate:
79//
80//   sub.w r1, r0, #49
81//   cmp r1, #3
82//
83// We achieve this by type promoting the IR to i32 like so for this example:
84//
85//   define i32 @cmp(i8 zeroext %c) {
86//     %0 = zext i8 %c to i32
87//     %c.off = add i32 %0, -49
88//     %1 = icmp ult i32 %c.off, 3
89//     ..
90//   }
91//
92// For this to be valid and legal, we need to prove that the i32 add is
93// producing the same value as the i8 addition, and that e.g. no overflow
94// happens.
95//
96// A brief sketch of the algorithm and some terminology.
97// We pattern match interesting IR patterns:
98// - which have "sources": instructions producing narrow values (i8, i16), and
99// - they have "sinks": instructions consuming these narrow values.
100//
101// We collect all instruction connecting sources and sinks in a worklist, so
102// that we can mutate these instruction and perform type promotion when it is
103// legal to do so.
104
105namespace {
106class IRPromoter {
107  LLVMContext &Ctx;
108  IntegerType *OrigTy = nullptr;
109  unsigned PromotedWidth = 0;
110  SetVector<Value*> &Visited;
111  SetVector<Value*> &Sources;
112  SetVector<Instruction*> &Sinks;
113  SmallVectorImpl<Instruction*> &SafeWrap;
114  IntegerType *ExtTy = nullptr;
115  SmallPtrSet<Value*, 8> NewInsts;
116  SmallPtrSet<Instruction*, 4> InstsToRemove;
117  DenseMap<Value*, SmallVector<Type*, 4>> TruncTysMap;
118  SmallPtrSet<Value*, 8> Promoted;
119
120  void ReplaceAllUsersOfWith(Value *From, Value *To);
121  void PrepareWrappingAdds(void);
122  void ExtendSources(void);
123  void ConvertTruncs(void);
124  void PromoteTree(void);
125  void TruncateSinks(void);
126  void Cleanup(void);
127
128public:
129  IRPromoter(LLVMContext &C, IntegerType *Ty, unsigned Width,
130             SetVector<Value*> &visited, SetVector<Value*> &sources,
131             SetVector<Instruction*> &sinks,
132             SmallVectorImpl<Instruction*> &wrap) :
133    Ctx(C), OrigTy(Ty), PromotedWidth(Width), Visited(visited),
134    Sources(sources), Sinks(sinks), SafeWrap(wrap) {
135    ExtTy = IntegerType::get(Ctx, PromotedWidth);
136    assert(OrigTy->getPrimitiveSizeInBits() < ExtTy->getPrimitiveSizeInBits()
137           && "Original type not smaller than extended type");
138  }
139
140  void Mutate();
141};
142
143class TypePromotion : public FunctionPass {
144  unsigned TypeSize = 0;
145  LLVMContext *Ctx = nullptr;
146  unsigned RegisterBitWidth = 0;
147  SmallPtrSet<Value*, 16> AllVisited;
148  SmallPtrSet<Instruction*, 8> SafeToPromote;
149  SmallVector<Instruction*, 4> SafeWrap;
150
151  // Does V have the same size result type as TypeSize.
152  bool EqualTypeSize(Value *V);
153  // Does V have the same size, or narrower, result type as TypeSize.
154  bool LessOrEqualTypeSize(Value *V);
155  // Does V have a result type that is wider than TypeSize.
156  bool GreaterThanTypeSize(Value *V);
157  // Does V have a result type that is narrower than TypeSize.
158  bool LessThanTypeSize(Value *V);
159  // Should V be a leaf in the promote tree?
160  bool isSource(Value *V);
161  // Should V be a root in the promotion tree?
162  bool isSink(Value *V);
163  // Should we change the result type of V? It will result in the users of V
164  // being visited.
165  bool shouldPromote(Value *V);
166  // Is I an add or a sub, which isn't marked as nuw, but where a wrapping
167  // result won't affect the computation?
168  bool isSafeWrap(Instruction *I);
169  // Can V have its integer type promoted, or can the type be ignored.
170  bool isSupportedType(Value *V);
171  // Is V an instruction with a supported opcode or another value that we can
172  // handle, such as constants and basic blocks.
173  bool isSupportedValue(Value *V);
174  // Is V an instruction thats result can trivially promoted, or has safe
175  // wrapping.
176  bool isLegalToPromote(Value *V);
177  bool TryToPromote(Value *V, unsigned PromotedWidth);
178
179public:
180  static char ID;
181
182  TypePromotion() : FunctionPass(ID) {}
183
184  void getAnalysisUsage(AnalysisUsage &AU) const override {
185    AU.addRequired<TargetTransformInfoWrapperPass>();
186    AU.addRequired<TargetPassConfig>();
187  }
188
189  StringRef getPassName() const override { return PASS_NAME; }
190
191  bool runOnFunction(Function &F) override;
192};
193
194}
195
196static bool GenerateSignBits(Value *V) {
197  if (!isa<Instruction>(V))
198    return false;
199
200  unsigned Opc = cast<Instruction>(V)->getOpcode();
201  return Opc == Instruction::AShr || Opc == Instruction::SDiv ||
202         Opc == Instruction::SRem || Opc == Instruction::SExt;
203}
204
205bool TypePromotion::EqualTypeSize(Value *V) {
206  return V->getType()->getScalarSizeInBits() == TypeSize;
207}
208
209bool TypePromotion::LessOrEqualTypeSize(Value *V) {
210  return V->getType()->getScalarSizeInBits() <= TypeSize;
211}
212
213bool TypePromotion::GreaterThanTypeSize(Value *V) {
214  return V->getType()->getScalarSizeInBits() > TypeSize;
215}
216
217bool TypePromotion::LessThanTypeSize(Value *V) {
218  return V->getType()->getScalarSizeInBits() < TypeSize;
219}
220
221/// Return true if the given value is a source in the use-def chain, producing
222/// a narrow 'TypeSize' value. These values will be zext to start the promotion
223/// of the tree to i32. We guarantee that these won't populate the upper bits
224/// of the register. ZExt on the loads will be free, and the same for call
225/// return values because we only accept ones that guarantee a zeroext ret val.
226/// Many arguments will have the zeroext attribute too, so those would be free
227/// too.
228bool TypePromotion::isSource(Value *V) {
229  if (!isa<IntegerType>(V->getType()))
230    return false;
231
232  // TODO Allow zext to be sources.
233  if (isa<Argument>(V))
234    return true;
235  else if (isa<LoadInst>(V))
236    return true;
237  else if (isa<BitCastInst>(V))
238    return true;
239  else if (auto *Call = dyn_cast<CallInst>(V))
240    return Call->hasRetAttr(Attribute::AttrKind::ZExt);
241  else if (auto *Trunc = dyn_cast<TruncInst>(V))
242    return EqualTypeSize(Trunc);
243  return false;
244}
245
246/// Return true if V will require any promoted values to be truncated for the
247/// the IR to remain valid. We can't mutate the value type of these
248/// instructions.
249bool TypePromotion::isSink(Value *V) {
250  // TODO The truncate also isn't actually necessary because we would already
251  // proved that the data value is kept within the range of the original data
252  // type.
253
254  // Sinks are:
255  // - points where the value in the register is being observed, such as an
256  //   icmp, switch or store.
257  // - points where value types have to match, such as calls and returns.
258  // - zext are included to ease the transformation and are generally removed
259  //   later on.
260  if (auto *Store = dyn_cast<StoreInst>(V))
261    return LessOrEqualTypeSize(Store->getValueOperand());
262  if (auto *Return = dyn_cast<ReturnInst>(V))
263    return LessOrEqualTypeSize(Return->getReturnValue());
264  if (auto *ZExt = dyn_cast<ZExtInst>(V))
265    return GreaterThanTypeSize(ZExt);
266  if (auto *Switch = dyn_cast<SwitchInst>(V))
267    return LessThanTypeSize(Switch->getCondition());
268  if (auto *ICmp = dyn_cast<ICmpInst>(V))
269    return ICmp->isSigned() || LessThanTypeSize(ICmp->getOperand(0));
270
271  return isa<CallInst>(V);
272}
273
274/// Return whether this instruction can safely wrap.
275bool TypePromotion::isSafeWrap(Instruction *I) {
276  // We can support a, potentially, wrapping instruction (I) if:
277  // - It is only used by an unsigned icmp.
278  // - The icmp uses a constant.
279  // - The wrapping value (I) is decreasing, i.e would underflow - wrapping
280  //   around zero to become a larger number than before.
281  // - The wrapping instruction (I) also uses a constant.
282  //
283  // We can then use the two constants to calculate whether the result would
284  // wrap in respect to itself in the original bitwidth. If it doesn't wrap,
285  // just underflows the range, the icmp would give the same result whether the
286  // result has been truncated or not. We calculate this by:
287  // - Zero extending both constants, if needed, to 32-bits.
288  // - Take the absolute value of I's constant, adding this to the icmp const.
289  // - Check that this value is not out of range for small type. If it is, it
290  //   means that it has underflowed enough to wrap around the icmp constant.
291  //
292  // For example:
293  //
294  // %sub = sub i8 %a, 2
295  // %cmp = icmp ule i8 %sub, 254
296  //
297  // If %a = 0, %sub = -2 == FE == 254
298  // But if this is evalulated as a i32
299  // %sub = -2 == FF FF FF FE == 4294967294
300  // So the unsigned compares (i8 and i32) would not yield the same result.
301  //
302  // Another way to look at it is:
303  // %a - 2 <= 254
304  // %a + 2 <= 254 + 2
305  // %a <= 256
306  // And we can't represent 256 in the i8 format, so we don't support it.
307  //
308  // Whereas:
309  //
310  // %sub i8 %a, 1
311  // %cmp = icmp ule i8 %sub, 254
312  //
313  // If %a = 0, %sub = -1 == FF == 255
314  // As i32:
315  // %sub = -1 == FF FF FF FF == 4294967295
316  //
317  // In this case, the unsigned compare results would be the same and this
318  // would also be true for ult, uge and ugt:
319  // - (255 < 254) == (0xFFFFFFFF < 254) == false
320  // - (255 <= 254) == (0xFFFFFFFF <= 254) == false
321  // - (255 > 254) == (0xFFFFFFFF > 254) == true
322  // - (255 >= 254) == (0xFFFFFFFF >= 254) == true
323  //
324  // To demonstrate why we can't handle increasing values:
325  //
326  // %add = add i8 %a, 2
327  // %cmp = icmp ult i8 %add, 127
328  //
329  // If %a = 254, %add = 256 == (i8 1)
330  // As i32:
331  // %add = 256
332  //
333  // (1 < 127) != (256 < 127)
334
335  unsigned Opc = I->getOpcode();
336  if (Opc != Instruction::Add && Opc != Instruction::Sub)
337    return false;
338
339  if (!I->hasOneUse() ||
340      !isa<ICmpInst>(*I->user_begin()) ||
341      !isa<ConstantInt>(I->getOperand(1)))
342    return false;
343
344  ConstantInt *OverflowConst = cast<ConstantInt>(I->getOperand(1));
345  bool NegImm = OverflowConst->isNegative();
346  bool IsDecreasing = ((Opc == Instruction::Sub) && !NegImm) ||
347                       ((Opc == Instruction::Add) && NegImm);
348  if (!IsDecreasing)
349    return false;
350
351  // Don't support an icmp that deals with sign bits.
352  auto *CI = cast<ICmpInst>(*I->user_begin());
353  if (CI->isSigned() || CI->isEquality())
354    return false;
355
356  ConstantInt *ICmpConst = nullptr;
357  if (auto *Const = dyn_cast<ConstantInt>(CI->getOperand(0)))
358    ICmpConst = Const;
359  else if (auto *Const = dyn_cast<ConstantInt>(CI->getOperand(1)))
360    ICmpConst = Const;
361  else
362    return false;
363
364  // Now check that the result can't wrap on itself.
365  APInt Total = ICmpConst->getValue().getBitWidth() < 32 ?
366    ICmpConst->getValue().zext(32) : ICmpConst->getValue();
367
368  Total += OverflowConst->getValue().getBitWidth() < 32 ?
369    OverflowConst->getValue().abs().zext(32) : OverflowConst->getValue().abs();
370
371  APInt Max = APInt::getAllOnesValue(TypePromotion::TypeSize);
372
373  if (Total.getBitWidth() > Max.getBitWidth()) {
374    if (Total.ugt(Max.zext(Total.getBitWidth())))
375      return false;
376  } else if (Max.getBitWidth() > Total.getBitWidth()) {
377    if (Total.zext(Max.getBitWidth()).ugt(Max))
378      return false;
379  } else if (Total.ugt(Max))
380    return false;
381
382  LLVM_DEBUG(dbgs() << "IR Promotion: Allowing safe overflow for "
383             << *I << "\n");
384  SafeWrap.push_back(I);
385  return true;
386}
387
388bool TypePromotion::shouldPromote(Value *V) {
389  if (!isa<IntegerType>(V->getType()) || isSink(V))
390    return false;
391
392  if (isSource(V))
393    return true;
394
395  auto *I = dyn_cast<Instruction>(V);
396  if (!I)
397    return false;
398
399  if (isa<ICmpInst>(I))
400    return false;
401
402  return true;
403}
404
405/// Return whether we can safely mutate V's type to ExtTy without having to be
406/// concerned with zero extending or truncation.
407static bool isPromotedResultSafe(Value *V) {
408  if (GenerateSignBits(V))
409    return false;
410
411  if (!isa<Instruction>(V))
412    return true;
413
414  if (!isa<OverflowingBinaryOperator>(V))
415    return true;
416
417  return cast<Instruction>(V)->hasNoUnsignedWrap();
418}
419
420void IRPromoter::ReplaceAllUsersOfWith(Value *From, Value *To) {
421  SmallVector<Instruction*, 4> Users;
422  Instruction *InstTo = dyn_cast<Instruction>(To);
423  bool ReplacedAll = true;
424
425  LLVM_DEBUG(dbgs() << "IR Promotion: Replacing " << *From << " with " << *To
426             << "\n");
427
428  for (Use &U : From->uses()) {
429    auto *User = cast<Instruction>(U.getUser());
430    if (InstTo && User->isIdenticalTo(InstTo)) {
431      ReplacedAll = false;
432      continue;
433    }
434    Users.push_back(User);
435  }
436
437  for (auto *U : Users)
438    U->replaceUsesOfWith(From, To);
439
440  if (ReplacedAll)
441    if (auto *I = dyn_cast<Instruction>(From))
442      InstsToRemove.insert(I);
443}
444
445void IRPromoter::PrepareWrappingAdds() {
446  LLVM_DEBUG(dbgs() << "IR Promotion: Prepare wrapping adds.\n");
447  IRBuilder<> Builder{Ctx};
448
449  // For adds that safely wrap and use a negative immediate as operand 1, we
450  // create an equivalent instruction using a positive immediate.
451  // That positive immediate can then be zext along with all the other
452  // immediates later.
453  for (auto *I : SafeWrap) {
454    if (I->getOpcode() != Instruction::Add)
455      continue;
456
457    LLVM_DEBUG(dbgs() << "IR Promotion: Adjusting " << *I << "\n");
458    assert((isa<ConstantInt>(I->getOperand(1)) &&
459            cast<ConstantInt>(I->getOperand(1))->isNegative()) &&
460           "Wrapping should have a negative immediate as the second operand");
461
462    auto Const = cast<ConstantInt>(I->getOperand(1));
463    auto *NewConst = ConstantInt::get(Ctx, Const->getValue().abs());
464    Builder.SetInsertPoint(I);
465    Value *NewVal = Builder.CreateSub(I->getOperand(0), NewConst);
466    if (auto *NewInst = dyn_cast<Instruction>(NewVal)) {
467      NewInst->copyIRFlags(I);
468      NewInsts.insert(NewInst);
469    }
470    InstsToRemove.insert(I);
471    I->replaceAllUsesWith(NewVal);
472    LLVM_DEBUG(dbgs() << "IR Promotion: New equivalent: " << *NewVal << "\n");
473  }
474  for (auto *I : NewInsts)
475    Visited.insert(I);
476}
477
478void IRPromoter::ExtendSources() {
479  IRBuilder<> Builder{Ctx};
480
481  auto InsertZExt = [&](Value *V, Instruction *InsertPt) {
482    assert(V->getType() != ExtTy && "zext already extends to i32");
483    LLVM_DEBUG(dbgs() << "IR Promotion: Inserting ZExt for " << *V << "\n");
484    Builder.SetInsertPoint(InsertPt);
485    if (auto *I = dyn_cast<Instruction>(V))
486      Builder.SetCurrentDebugLocation(I->getDebugLoc());
487
488    Value *ZExt = Builder.CreateZExt(V, ExtTy);
489    if (auto *I = dyn_cast<Instruction>(ZExt)) {
490      if (isa<Argument>(V))
491        I->moveBefore(InsertPt);
492      else
493        I->moveAfter(InsertPt);
494      NewInsts.insert(I);
495    }
496
497    ReplaceAllUsersOfWith(V, ZExt);
498  };
499
500  // Now, insert extending instructions between the sources and their users.
501  LLVM_DEBUG(dbgs() << "IR Promotion: Promoting sources:\n");
502  for (auto V : Sources) {
503    LLVM_DEBUG(dbgs() << " - " << *V << "\n");
504    if (auto *I = dyn_cast<Instruction>(V))
505      InsertZExt(I, I);
506    else if (auto *Arg = dyn_cast<Argument>(V)) {
507      BasicBlock &BB = Arg->getParent()->front();
508      InsertZExt(Arg, &*BB.getFirstInsertionPt());
509    } else {
510      llvm_unreachable("unhandled source that needs extending");
511    }
512    Promoted.insert(V);
513  }
514}
515
516void IRPromoter::PromoteTree() {
517  LLVM_DEBUG(dbgs() << "IR Promotion: Mutating the tree..\n");
518
519  IRBuilder<> Builder{Ctx};
520
521  // Mutate the types of the instructions within the tree. Here we handle
522  // constant operands.
523  for (auto *V : Visited) {
524    if (Sources.count(V))
525      continue;
526
527    auto *I = cast<Instruction>(V);
528    if (Sinks.count(I))
529      continue;
530
531    for (unsigned i = 0, e = I->getNumOperands(); i < e; ++i) {
532      Value *Op = I->getOperand(i);
533      if ((Op->getType() == ExtTy) || !isa<IntegerType>(Op->getType()))
534        continue;
535
536      if (auto *Const = dyn_cast<ConstantInt>(Op)) {
537        Constant *NewConst = ConstantExpr::getZExt(Const, ExtTy);
538        I->setOperand(i, NewConst);
539      } else if (isa<UndefValue>(Op))
540        I->setOperand(i, UndefValue::get(ExtTy));
541    }
542
543    // Mutate the result type, unless this is an icmp.
544    if (!isa<ICmpInst>(I)) {
545      I->mutateType(ExtTy);
546      Promoted.insert(I);
547    }
548  }
549}
550
551void IRPromoter::TruncateSinks() {
552  LLVM_DEBUG(dbgs() << "IR Promotion: Fixing up the sinks:\n");
553
554  IRBuilder<> Builder{Ctx};
555
556  auto InsertTrunc = [&](Value *V, Type *TruncTy) -> Instruction* {
557    if (!isa<Instruction>(V) || !isa<IntegerType>(V->getType()))
558      return nullptr;
559
560    if ((!Promoted.count(V) && !NewInsts.count(V)) || Sources.count(V))
561      return nullptr;
562
563    LLVM_DEBUG(dbgs() << "IR Promotion: Creating " << *TruncTy << " Trunc for "
564               << *V << "\n");
565    Builder.SetInsertPoint(cast<Instruction>(V));
566    auto *Trunc = dyn_cast<Instruction>(Builder.CreateTrunc(V, TruncTy));
567    if (Trunc)
568      NewInsts.insert(Trunc);
569    return Trunc;
570  };
571
572  // Fix up any stores or returns that use the results of the promoted
573  // chain.
574  for (auto I : Sinks) {
575    LLVM_DEBUG(dbgs() << "IR Promotion: For Sink: " << *I << "\n");
576
577    // Handle calls separately as we need to iterate over arg operands.
578    if (auto *Call = dyn_cast<CallInst>(I)) {
579      for (unsigned i = 0; i < Call->getNumArgOperands(); ++i) {
580        Value *Arg = Call->getArgOperand(i);
581        Type *Ty = TruncTysMap[Call][i];
582        if (Instruction *Trunc = InsertTrunc(Arg, Ty)) {
583          Trunc->moveBefore(Call);
584          Call->setArgOperand(i, Trunc);
585        }
586      }
587      continue;
588    }
589
590    // Special case switches because we need to truncate the condition.
591    if (auto *Switch = dyn_cast<SwitchInst>(I)) {
592      Type *Ty = TruncTysMap[Switch][0];
593      if (Instruction *Trunc = InsertTrunc(Switch->getCondition(), Ty)) {
594        Trunc->moveBefore(Switch);
595        Switch->setCondition(Trunc);
596      }
597      continue;
598    }
599
600    // Now handle the others.
601    for (unsigned i = 0; i < I->getNumOperands(); ++i) {
602      Type *Ty = TruncTysMap[I][i];
603      if (Instruction *Trunc = InsertTrunc(I->getOperand(i), Ty)) {
604        Trunc->moveBefore(I);
605        I->setOperand(i, Trunc);
606      }
607    }
608  }
609}
610
611void IRPromoter::Cleanup() {
612  LLVM_DEBUG(dbgs() << "IR Promotion: Cleanup..\n");
613  // Some zexts will now have become redundant, along with their trunc
614  // operands, so remove them
615  for (auto V : Visited) {
616    if (!isa<ZExtInst>(V))
617      continue;
618
619    auto ZExt = cast<ZExtInst>(V);
620    if (ZExt->getDestTy() != ExtTy)
621      continue;
622
623    Value *Src = ZExt->getOperand(0);
624    if (ZExt->getSrcTy() == ZExt->getDestTy()) {
625      LLVM_DEBUG(dbgs() << "IR Promotion: Removing unnecessary cast: " << *ZExt
626                 << "\n");
627      ReplaceAllUsersOfWith(ZExt, Src);
628      continue;
629    }
630
631    // Unless they produce a value that is narrower than ExtTy, we can
632    // replace the result of the zext with the input of a newly inserted
633    // trunc.
634    if (NewInsts.count(Src) && isa<TruncInst>(Src) &&
635        Src->getType() == OrigTy) {
636      auto *Trunc = cast<TruncInst>(Src);
637      assert(Trunc->getOperand(0)->getType() == ExtTy &&
638             "expected inserted trunc to be operating on i32");
639      ReplaceAllUsersOfWith(ZExt, Trunc->getOperand(0));
640    }
641  }
642
643  for (auto *I : InstsToRemove) {
644    LLVM_DEBUG(dbgs() << "IR Promotion: Removing " << *I << "\n");
645    I->dropAllReferences();
646    I->eraseFromParent();
647  }
648}
649
650void IRPromoter::ConvertTruncs() {
651  LLVM_DEBUG(dbgs() << "IR Promotion: Converting truncs..\n");
652  IRBuilder<> Builder{Ctx};
653
654  for (auto *V : Visited) {
655    if (!isa<TruncInst>(V) || Sources.count(V))
656      continue;
657
658    auto *Trunc = cast<TruncInst>(V);
659    Builder.SetInsertPoint(Trunc);
660    IntegerType *SrcTy = cast<IntegerType>(Trunc->getOperand(0)->getType());
661    IntegerType *DestTy = cast<IntegerType>(TruncTysMap[Trunc][0]);
662
663    unsigned NumBits = DestTy->getScalarSizeInBits();
664    ConstantInt *Mask =
665      ConstantInt::get(SrcTy, APInt::getMaxValue(NumBits).getZExtValue());
666    Value *Masked = Builder.CreateAnd(Trunc->getOperand(0), Mask);
667
668    if (auto *I = dyn_cast<Instruction>(Masked))
669      NewInsts.insert(I);
670
671    ReplaceAllUsersOfWith(Trunc, Masked);
672  }
673}
674
675void IRPromoter::Mutate() {
676  LLVM_DEBUG(dbgs() << "IR Promotion: Promoting use-def chains from "
677             << OrigTy->getBitWidth() << " to " << PromotedWidth << "-bits\n");
678
679  // Cache original types of the values that will likely need truncating
680  for (auto *I : Sinks) {
681    if (auto *Call = dyn_cast<CallInst>(I)) {
682      for (unsigned i = 0; i < Call->getNumArgOperands(); ++i) {
683        Value *Arg = Call->getArgOperand(i);
684        TruncTysMap[Call].push_back(Arg->getType());
685      }
686    } else if (auto *Switch = dyn_cast<SwitchInst>(I))
687      TruncTysMap[I].push_back(Switch->getCondition()->getType());
688    else {
689      for (unsigned i = 0; i < I->getNumOperands(); ++i)
690        TruncTysMap[I].push_back(I->getOperand(i)->getType());
691    }
692  }
693  for (auto *V : Visited) {
694    if (!isa<TruncInst>(V) || Sources.count(V))
695      continue;
696    auto *Trunc = cast<TruncInst>(V);
697    TruncTysMap[Trunc].push_back(Trunc->getDestTy());
698  }
699
700  // Convert adds using negative immediates to equivalent instructions that use
701  // positive constants.
702  PrepareWrappingAdds();
703
704  // Insert zext instructions between sources and their users.
705  ExtendSources();
706
707  // Promote visited instructions, mutating their types in place.
708  PromoteTree();
709
710  // Convert any truncs, that aren't sources, into AND masks.
711  ConvertTruncs();
712
713  // Insert trunc instructions for use by calls, stores etc...
714  TruncateSinks();
715
716  // Finally, remove unecessary zexts and truncs, delete old instructions and
717  // clear the data structures.
718  Cleanup();
719
720  LLVM_DEBUG(dbgs() << "IR Promotion: Mutation complete\n");
721}
722
723/// We disallow booleans to make life easier when dealing with icmps but allow
724/// any other integer that fits in a scalar register. Void types are accepted
725/// so we can handle switches.
726bool TypePromotion::isSupportedType(Value *V) {
727  Type *Ty = V->getType();
728
729  // Allow voids and pointers, these won't be promoted.
730  if (Ty->isVoidTy() || Ty->isPointerTy())
731    return true;
732
733  if (!isa<IntegerType>(Ty) ||
734      cast<IntegerType>(Ty)->getBitWidth() == 1 ||
735      cast<IntegerType>(Ty)->getBitWidth() > RegisterBitWidth)
736    return false;
737
738  return LessOrEqualTypeSize(V);
739}
740
741/// We accept most instructions, as well as Arguments and ConstantInsts. We
742/// Disallow casts other than zext and truncs and only allow calls if their
743/// return value is zeroext. We don't allow opcodes that can introduce sign
744/// bits.
745bool TypePromotion::isSupportedValue(Value *V) {
746  if (auto *I = dyn_cast<Instruction>(V)) {
747    switch (I->getOpcode()) {
748    default:
749      return isa<BinaryOperator>(I) && isSupportedType(I) &&
750             !GenerateSignBits(I);
751    case Instruction::GetElementPtr:
752    case Instruction::Store:
753    case Instruction::Br:
754    case Instruction::Switch:
755      return true;
756    case Instruction::PHI:
757    case Instruction::Select:
758    case Instruction::Ret:
759    case Instruction::Load:
760    case Instruction::Trunc:
761    case Instruction::BitCast:
762      return isSupportedType(I);
763    case Instruction::ZExt:
764      return isSupportedType(I->getOperand(0));
765    case Instruction::ICmp:
766      // Now that we allow small types than TypeSize, only allow icmp of
767      // TypeSize because they will require a trunc to be legalised.
768      // TODO: Allow icmp of smaller types, and calculate at the end
769      // whether the transform would be beneficial.
770      if (isa<PointerType>(I->getOperand(0)->getType()))
771        return true;
772      return EqualTypeSize(I->getOperand(0));
773    case Instruction::Call: {
774      // Special cases for calls as we need to check for zeroext
775      // TODO We should accept calls even if they don't have zeroext, as they
776      // can still be sinks.
777      auto *Call = cast<CallInst>(I);
778      return isSupportedType(Call) &&
779             Call->hasRetAttr(Attribute::AttrKind::ZExt);
780    }
781    }
782  } else if (isa<Constant>(V) && !isa<ConstantExpr>(V)) {
783    return isSupportedType(V);
784  } else if (isa<Argument>(V))
785    return isSupportedType(V);
786
787  return isa<BasicBlock>(V);
788}
789
790/// Check that the type of V would be promoted and that the original type is
791/// smaller than the targeted promoted type. Check that we're not trying to
792/// promote something larger than our base 'TypeSize' type.
793bool TypePromotion::isLegalToPromote(Value *V) {
794
795  auto *I = dyn_cast<Instruction>(V);
796  if (!I)
797    return true;
798
799  if (SafeToPromote.count(I))
800   return true;
801
802  if (isPromotedResultSafe(V) || isSafeWrap(I)) {
803    SafeToPromote.insert(I);
804    return true;
805  }
806  return false;
807}
808
809bool TypePromotion::TryToPromote(Value *V, unsigned PromotedWidth) {
810  Type *OrigTy = V->getType();
811  TypeSize = OrigTy->getPrimitiveSizeInBits();
812  SafeToPromote.clear();
813  SafeWrap.clear();
814
815  if (!isSupportedValue(V) || !shouldPromote(V) || !isLegalToPromote(V))
816    return false;
817
818  LLVM_DEBUG(dbgs() << "IR Promotion: TryToPromote: " << *V << ", from "
819             << TypeSize << " bits to " << PromotedWidth << "\n");
820
821  SetVector<Value*> WorkList;
822  SetVector<Value*> Sources;
823  SetVector<Instruction*> Sinks;
824  SetVector<Value*> CurrentVisited;
825  WorkList.insert(V);
826
827  // Return true if V was added to the worklist as a supported instruction,
828  // if it was already visited, or if we don't need to explore it (e.g.
829  // pointer values and GEPs), and false otherwise.
830  auto AddLegalInst = [&](Value *V) {
831    if (CurrentVisited.count(V))
832      return true;
833
834    // Ignore GEPs because they don't need promoting and the constant indices
835    // will prevent the transformation.
836    if (isa<GetElementPtrInst>(V))
837      return true;
838
839    if (!isSupportedValue(V) || (shouldPromote(V) && !isLegalToPromote(V))) {
840      LLVM_DEBUG(dbgs() << "IR Promotion: Can't handle: " << *V << "\n");
841      return false;
842    }
843
844    WorkList.insert(V);
845    return true;
846  };
847
848  // Iterate through, and add to, a tree of operands and users in the use-def.
849  while (!WorkList.empty()) {
850    Value *V = WorkList.pop_back_val();
851    if (CurrentVisited.count(V))
852      continue;
853
854    // Ignore non-instructions, other than arguments.
855    if (!isa<Instruction>(V) && !isSource(V))
856      continue;
857
858    // If we've already visited this value from somewhere, bail now because
859    // the tree has already been explored.
860    // TODO: This could limit the transform, ie if we try to promote something
861    // from an i8 and fail first, before trying an i16.
862    if (AllVisited.count(V))
863      return false;
864
865    CurrentVisited.insert(V);
866    AllVisited.insert(V);
867
868    // Calls can be both sources and sinks.
869    if (isSink(V))
870      Sinks.insert(cast<Instruction>(V));
871
872    if (isSource(V))
873      Sources.insert(V);
874
875    if (!isSink(V) && !isSource(V)) {
876      if (auto *I = dyn_cast<Instruction>(V)) {
877        // Visit operands of any instruction visited.
878        for (auto &U : I->operands()) {
879          if (!AddLegalInst(U))
880            return false;
881        }
882      }
883    }
884
885    // Don't visit users of a node which isn't going to be mutated unless its a
886    // source.
887    if (isSource(V) || shouldPromote(V)) {
888      for (Use &U : V->uses()) {
889        if (!AddLegalInst(U.getUser()))
890          return false;
891      }
892    }
893  }
894
895  LLVM_DEBUG(dbgs() << "IR Promotion: Visited nodes:\n";
896             for (auto *I : CurrentVisited)
897               I->dump();
898             );
899
900  unsigned ToPromote = 0;
901  unsigned NonFreeArgs = 0;
902  SmallPtrSet<BasicBlock*, 4> Blocks;
903  for (auto *V : CurrentVisited) {
904    if (auto *I = dyn_cast<Instruction>(V))
905      Blocks.insert(I->getParent());
906
907    if (Sources.count(V)) {
908      if (auto *Arg = dyn_cast<Argument>(V))
909        if (!Arg->hasZExtAttr() && !Arg->hasSExtAttr())
910          ++NonFreeArgs;
911      continue;
912    }
913
914    if (Sinks.count(cast<Instruction>(V)))
915      continue;
916     ++ToPromote;
917   }
918
919  // DAG optimizations should be able to handle these cases better, especially
920  // for function arguments.
921  if (ToPromote < 2 || (Blocks.size() == 1 && (NonFreeArgs > SafeWrap.size())))
922    return false;
923
924  if (ToPromote < 2)
925    return false;
926
927  IRPromoter Promoter(*Ctx, cast<IntegerType>(OrigTy), PromotedWidth,
928                      CurrentVisited, Sources, Sinks, SafeWrap);
929  Promoter.Mutate();
930  return true;
931}
932
933bool TypePromotion::runOnFunction(Function &F) {
934  if (skipFunction(F) || DisablePromotion)
935    return false;
936
937  LLVM_DEBUG(dbgs() << "IR Promotion: Running on " << F.getName() << "\n");
938
939  auto *TPC = getAnalysisIfAvailable<TargetPassConfig>();
940  if (!TPC)
941    return false;
942
943  AllVisited.clear();
944  SafeToPromote.clear();
945  SafeWrap.clear();
946  bool MadeChange = false;
947  const DataLayout &DL = F.getParent()->getDataLayout();
948  const TargetMachine &TM = TPC->getTM<TargetMachine>();
949  const TargetSubtargetInfo *SubtargetInfo = TM.getSubtargetImpl(F);
950  const TargetLowering *TLI = SubtargetInfo->getTargetLowering();
951  const TargetTransformInfo &TII =
952    getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
953  RegisterBitWidth = TII.getRegisterBitWidth(false);
954  Ctx = &F.getParent()->getContext();
955
956  // Search up from icmps to try to promote their operands.
957  for (BasicBlock &BB : F) {
958    for (auto &I : BB) {
959      if (AllVisited.count(&I))
960        continue;
961
962      if (!isa<ICmpInst>(&I))
963        continue;
964
965      auto *ICmp = cast<ICmpInst>(&I);
966      // Skip signed or pointer compares
967      if (ICmp->isSigned() ||
968          !isa<IntegerType>(ICmp->getOperand(0)->getType()))
969        continue;
970
971      LLVM_DEBUG(dbgs() << "IR Promotion: Searching from: " << *ICmp << "\n");
972
973      for (auto &Op : ICmp->operands()) {
974        if (auto *I = dyn_cast<Instruction>(Op)) {
975          EVT SrcVT = TLI->getValueType(DL, I->getType());
976          if (SrcVT.isSimple() && TLI->isTypeLegal(SrcVT.getSimpleVT()))
977            break;
978
979          if (TLI->getTypeAction(ICmp->getContext(), SrcVT) !=
980              TargetLowering::TypePromoteInteger)
981            break;
982
983          EVT PromotedVT = TLI->getTypeToTransformTo(ICmp->getContext(), SrcVT);
984          if (RegisterBitWidth < PromotedVT.getSizeInBits()) {
985            LLVM_DEBUG(dbgs() << "IR Promotion: Couldn't find target register "
986                       << "for promoted type\n");
987            break;
988          }
989
990          MadeChange |= TryToPromote(I, PromotedVT.getSizeInBits());
991          break;
992        }
993      }
994    }
995    LLVM_DEBUG(if (verifyFunction(F, &dbgs())) {
996                dbgs() << F;
997                report_fatal_error("Broken function after type promotion");
998               });
999  }
1000  if (MadeChange)
1001    LLVM_DEBUG(dbgs() << "After TypePromotion: " << F << "\n");
1002
1003  AllVisited.clear();
1004  SafeToPromote.clear();
1005  SafeWrap.clear();
1006
1007  return MadeChange;
1008}
1009
1010INITIALIZE_PASS_BEGIN(TypePromotion, DEBUG_TYPE, PASS_NAME, false, false)
1011INITIALIZE_PASS_END(TypePromotion, DEBUG_TYPE, PASS_NAME, false, false)
1012
1013char TypePromotion::ID = 0;
1014
1015FunctionPass *llvm::createTypePromotionPass() {
1016  return new TypePromotion();
1017}
1018