ShadowStackGCLowering.cpp revision 360784
1//===- ShadowStackGCLowering.cpp - Custom lowering for shadow-stack gc ----===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file contains the custom lowering code required by the shadow-stack GC
10// strategy.
11//
12// This pass implements the code transformation described in this paper:
13//   "Accurate Garbage Collection in an Uncooperative Environment"
14//   Fergus Henderson, ISMM, 2002
15//
16//===----------------------------------------------------------------------===//
17
18#include "llvm/ADT/SmallVector.h"
19#include "llvm/ADT/StringExtras.h"
20#include "llvm/CodeGen/Passes.h"
21#include "llvm/IR/BasicBlock.h"
22#include "llvm/IR/Constant.h"
23#include "llvm/IR/Constants.h"
24#include "llvm/IR/DerivedTypes.h"
25#include "llvm/IR/Function.h"
26#include "llvm/IR/GlobalValue.h"
27#include "llvm/IR/GlobalVariable.h"
28#include "llvm/IR/IRBuilder.h"
29#include "llvm/IR/Instructions.h"
30#include "llvm/IR/IntrinsicInst.h"
31#include "llvm/IR/Intrinsics.h"
32#include "llvm/IR/Module.h"
33#include "llvm/IR/Type.h"
34#include "llvm/IR/Value.h"
35#include "llvm/InitializePasses.h"
36#include "llvm/Pass.h"
37#include "llvm/Support/Casting.h"
38#include "llvm/Transforms/Utils/EscapeEnumerator.h"
39#include <cassert>
40#include <cstddef>
41#include <string>
42#include <utility>
43#include <vector>
44
45using namespace llvm;
46
47#define DEBUG_TYPE "shadow-stack-gc-lowering"
48
49namespace {
50
51class ShadowStackGCLowering : public FunctionPass {
52  /// RootChain - This is the global linked-list that contains the chain of GC
53  /// roots.
54  GlobalVariable *Head = nullptr;
55
56  /// StackEntryTy - Abstract type of a link in the shadow stack.
57  StructType *StackEntryTy = nullptr;
58  StructType *FrameMapTy = nullptr;
59
60  /// Roots - GC roots in the current function. Each is a pair of the
61  /// intrinsic call and its corresponding alloca.
62  std::vector<std::pair<CallInst *, AllocaInst *>> Roots;
63
64public:
65  static char ID;
66
67  ShadowStackGCLowering();
68
69  bool doInitialization(Module &M) override;
70  bool runOnFunction(Function &F) override;
71
72private:
73  bool IsNullValue(Value *V);
74  Constant *GetFrameMap(Function &F);
75  Type *GetConcreteStackEntryType(Function &F);
76  void CollectRoots(Function &F);
77
78  static GetElementPtrInst *CreateGEP(LLVMContext &Context, IRBuilder<> &B,
79                                      Type *Ty, Value *BasePtr, int Idx1,
80                                      const char *Name);
81  static GetElementPtrInst *CreateGEP(LLVMContext &Context, IRBuilder<> &B,
82                                      Type *Ty, Value *BasePtr, int Idx1, int Idx2,
83                                      const char *Name);
84};
85
86} // end anonymous namespace
87
88char ShadowStackGCLowering::ID = 0;
89
90INITIALIZE_PASS_BEGIN(ShadowStackGCLowering, DEBUG_TYPE,
91                      "Shadow Stack GC Lowering", false, false)
92INITIALIZE_PASS_DEPENDENCY(GCModuleInfo)
93INITIALIZE_PASS_END(ShadowStackGCLowering, DEBUG_TYPE,
94                    "Shadow Stack GC Lowering", false, false)
95
96FunctionPass *llvm::createShadowStackGCLoweringPass() { return new ShadowStackGCLowering(); }
97
98ShadowStackGCLowering::ShadowStackGCLowering() : FunctionPass(ID) {
99  initializeShadowStackGCLoweringPass(*PassRegistry::getPassRegistry());
100}
101
102Constant *ShadowStackGCLowering::GetFrameMap(Function &F) {
103  // doInitialization creates the abstract type of this value.
104  Type *VoidPtr = Type::getInt8PtrTy(F.getContext());
105
106  // Truncate the ShadowStackDescriptor if some metadata is null.
107  unsigned NumMeta = 0;
108  SmallVector<Constant *, 16> Metadata;
109  for (unsigned I = 0; I != Roots.size(); ++I) {
110    Constant *C = cast<Constant>(Roots[I].first->getArgOperand(1));
111    if (!C->isNullValue())
112      NumMeta = I + 1;
113    Metadata.push_back(ConstantExpr::getBitCast(C, VoidPtr));
114  }
115  Metadata.resize(NumMeta);
116
117  Type *Int32Ty = Type::getInt32Ty(F.getContext());
118
119  Constant *BaseElts[] = {
120      ConstantInt::get(Int32Ty, Roots.size(), false),
121      ConstantInt::get(Int32Ty, NumMeta, false),
122  };
123
124  Constant *DescriptorElts[] = {
125      ConstantStruct::get(FrameMapTy, BaseElts),
126      ConstantArray::get(ArrayType::get(VoidPtr, NumMeta), Metadata)};
127
128  Type *EltTys[] = {DescriptorElts[0]->getType(), DescriptorElts[1]->getType()};
129  StructType *STy = StructType::create(EltTys, "gc_map." + utostr(NumMeta));
130
131  Constant *FrameMap = ConstantStruct::get(STy, DescriptorElts);
132
133  // FIXME: Is this actually dangerous as WritingAnLLVMPass.html claims? Seems
134  //        that, short of multithreaded LLVM, it should be safe; all that is
135  //        necessary is that a simple Module::iterator loop not be invalidated.
136  //        Appending to the GlobalVariable list is safe in that sense.
137  //
138  //        All of the output passes emit globals last. The ExecutionEngine
139  //        explicitly supports adding globals to the module after
140  //        initialization.
141  //
142  //        Still, if it isn't deemed acceptable, then this transformation needs
143  //        to be a ModulePass (which means it cannot be in the 'llc' pipeline
144  //        (which uses a FunctionPassManager (which segfaults (not asserts) if
145  //        provided a ModulePass))).
146  Constant *GV = new GlobalVariable(*F.getParent(), FrameMap->getType(), true,
147                                    GlobalVariable::InternalLinkage, FrameMap,
148                                    "__gc_" + F.getName());
149
150  Constant *GEPIndices[2] = {
151      ConstantInt::get(Type::getInt32Ty(F.getContext()), 0),
152      ConstantInt::get(Type::getInt32Ty(F.getContext()), 0)};
153  return ConstantExpr::getGetElementPtr(FrameMap->getType(), GV, GEPIndices);
154}
155
156Type *ShadowStackGCLowering::GetConcreteStackEntryType(Function &F) {
157  // doInitialization creates the generic version of this type.
158  std::vector<Type *> EltTys;
159  EltTys.push_back(StackEntryTy);
160  for (size_t I = 0; I != Roots.size(); I++)
161    EltTys.push_back(Roots[I].second->getAllocatedType());
162
163  return StructType::create(EltTys, ("gc_stackentry." + F.getName()).str());
164}
165
166/// doInitialization - If this module uses the GC intrinsics, find them now. If
167/// not, exit fast.
168bool ShadowStackGCLowering::doInitialization(Module &M) {
169  bool Active = false;
170  for (Function &F : M) {
171    if (F.hasGC() && F.getGC() == std::string("shadow-stack")) {
172      Active = true;
173      break;
174    }
175  }
176  if (!Active)
177    return false;
178
179  // struct FrameMap {
180  //   int32_t NumRoots; // Number of roots in stack frame.
181  //   int32_t NumMeta;  // Number of metadata descriptors. May be < NumRoots.
182  //   void *Meta[];     // May be absent for roots without metadata.
183  // };
184  std::vector<Type *> EltTys;
185  // 32 bits is ok up to a 32GB stack frame. :)
186  EltTys.push_back(Type::getInt32Ty(M.getContext()));
187  // Specifies length of variable length array.
188  EltTys.push_back(Type::getInt32Ty(M.getContext()));
189  FrameMapTy = StructType::create(EltTys, "gc_map");
190  PointerType *FrameMapPtrTy = PointerType::getUnqual(FrameMapTy);
191
192  // struct StackEntry {
193  //   ShadowStackEntry *Next; // Caller's stack entry.
194  //   FrameMap *Map;          // Pointer to constant FrameMap.
195  //   void *Roots[];          // Stack roots (in-place array, so we pretend).
196  // };
197
198  StackEntryTy = StructType::create(M.getContext(), "gc_stackentry");
199
200  EltTys.clear();
201  EltTys.push_back(PointerType::getUnqual(StackEntryTy));
202  EltTys.push_back(FrameMapPtrTy);
203  StackEntryTy->setBody(EltTys);
204  PointerType *StackEntryPtrTy = PointerType::getUnqual(StackEntryTy);
205
206  // Get the root chain if it already exists.
207  Head = M.getGlobalVariable("llvm_gc_root_chain");
208  if (!Head) {
209    // If the root chain does not exist, insert a new one with linkonce
210    // linkage!
211    Head = new GlobalVariable(
212        M, StackEntryPtrTy, false, GlobalValue::LinkOnceAnyLinkage,
213        Constant::getNullValue(StackEntryPtrTy), "llvm_gc_root_chain");
214  } else if (Head->hasExternalLinkage() && Head->isDeclaration()) {
215    Head->setInitializer(Constant::getNullValue(StackEntryPtrTy));
216    Head->setLinkage(GlobalValue::LinkOnceAnyLinkage);
217  }
218
219  return true;
220}
221
222bool ShadowStackGCLowering::IsNullValue(Value *V) {
223  if (Constant *C = dyn_cast<Constant>(V))
224    return C->isNullValue();
225  return false;
226}
227
228void ShadowStackGCLowering::CollectRoots(Function &F) {
229  // FIXME: Account for original alignment. Could fragment the root array.
230  //   Approach 1: Null initialize empty slots at runtime. Yuck.
231  //   Approach 2: Emit a map of the array instead of just a count.
232
233  assert(Roots.empty() && "Not cleaned up?");
234
235  SmallVector<std::pair<CallInst *, AllocaInst *>, 16> MetaRoots;
236
237  for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
238    for (BasicBlock::iterator II = BB->begin(), E = BB->end(); II != E;)
239      if (IntrinsicInst *CI = dyn_cast<IntrinsicInst>(II++))
240        if (Function *F = CI->getCalledFunction())
241          if (F->getIntrinsicID() == Intrinsic::gcroot) {
242            std::pair<CallInst *, AllocaInst *> Pair = std::make_pair(
243                CI,
244                cast<AllocaInst>(CI->getArgOperand(0)->stripPointerCasts()));
245            if (IsNullValue(CI->getArgOperand(1)))
246              Roots.push_back(Pair);
247            else
248              MetaRoots.push_back(Pair);
249          }
250
251  // Number roots with metadata (usually empty) at the beginning, so that the
252  // FrameMap::Meta array can be elided.
253  Roots.insert(Roots.begin(), MetaRoots.begin(), MetaRoots.end());
254}
255
256GetElementPtrInst *ShadowStackGCLowering::CreateGEP(LLVMContext &Context,
257                                                    IRBuilder<> &B, Type *Ty,
258                                                    Value *BasePtr, int Idx,
259                                                    int Idx2,
260                                                    const char *Name) {
261  Value *Indices[] = {ConstantInt::get(Type::getInt32Ty(Context), 0),
262                      ConstantInt::get(Type::getInt32Ty(Context), Idx),
263                      ConstantInt::get(Type::getInt32Ty(Context), Idx2)};
264  Value *Val = B.CreateGEP(Ty, BasePtr, Indices, Name);
265
266  assert(isa<GetElementPtrInst>(Val) && "Unexpected folded constant");
267
268  return dyn_cast<GetElementPtrInst>(Val);
269}
270
271GetElementPtrInst *ShadowStackGCLowering::CreateGEP(LLVMContext &Context,
272                                            IRBuilder<> &B, Type *Ty, Value *BasePtr,
273                                            int Idx, const char *Name) {
274  Value *Indices[] = {ConstantInt::get(Type::getInt32Ty(Context), 0),
275                      ConstantInt::get(Type::getInt32Ty(Context), Idx)};
276  Value *Val = B.CreateGEP(Ty, BasePtr, Indices, Name);
277
278  assert(isa<GetElementPtrInst>(Val) && "Unexpected folded constant");
279
280  return dyn_cast<GetElementPtrInst>(Val);
281}
282
283/// runOnFunction - Insert code to maintain the shadow stack.
284bool ShadowStackGCLowering::runOnFunction(Function &F) {
285  // Quick exit for functions that do not use the shadow stack GC.
286  if (!F.hasGC() ||
287      F.getGC() != std::string("shadow-stack"))
288    return false;
289
290  LLVMContext &Context = F.getContext();
291
292  // Find calls to llvm.gcroot.
293  CollectRoots(F);
294
295  // If there are no roots in this function, then there is no need to add a
296  // stack map entry for it.
297  if (Roots.empty())
298    return false;
299
300  // Build the constant map and figure the type of the shadow stack entry.
301  Value *FrameMap = GetFrameMap(F);
302  Type *ConcreteStackEntryTy = GetConcreteStackEntryType(F);
303
304  // Build the shadow stack entry at the very start of the function.
305  BasicBlock::iterator IP = F.getEntryBlock().begin();
306  IRBuilder<> AtEntry(IP->getParent(), IP);
307
308  Instruction *StackEntry =
309      AtEntry.CreateAlloca(ConcreteStackEntryTy, nullptr, "gc_frame");
310
311  while (isa<AllocaInst>(IP))
312    ++IP;
313  AtEntry.SetInsertPoint(IP->getParent(), IP);
314
315  // Initialize the map pointer and load the current head of the shadow stack.
316  Instruction *CurrentHead =
317      AtEntry.CreateLoad(StackEntryTy->getPointerTo(), Head, "gc_currhead");
318  Instruction *EntryMapPtr = CreateGEP(Context, AtEntry, ConcreteStackEntryTy,
319                                       StackEntry, 0, 1, "gc_frame.map");
320  AtEntry.CreateStore(FrameMap, EntryMapPtr);
321
322  // After all the allocas...
323  for (unsigned I = 0, E = Roots.size(); I != E; ++I) {
324    // For each root, find the corresponding slot in the aggregate...
325    Value *SlotPtr = CreateGEP(Context, AtEntry, ConcreteStackEntryTy,
326                               StackEntry, 1 + I, "gc_root");
327
328    // And use it in lieu of the alloca.
329    AllocaInst *OriginalAlloca = Roots[I].second;
330    SlotPtr->takeName(OriginalAlloca);
331    OriginalAlloca->replaceAllUsesWith(SlotPtr);
332  }
333
334  // Move past the original stores inserted by GCStrategy::InitRoots. This isn't
335  // really necessary (the collector would never see the intermediate state at
336  // runtime), but it's nicer not to push the half-initialized entry onto the
337  // shadow stack.
338  while (isa<StoreInst>(IP))
339    ++IP;
340  AtEntry.SetInsertPoint(IP->getParent(), IP);
341
342  // Push the entry onto the shadow stack.
343  Instruction *EntryNextPtr = CreateGEP(Context, AtEntry, ConcreteStackEntryTy,
344                                        StackEntry, 0, 0, "gc_frame.next");
345  Instruction *NewHeadVal = CreateGEP(Context, AtEntry, ConcreteStackEntryTy,
346                                      StackEntry, 0, "gc_newhead");
347  AtEntry.CreateStore(CurrentHead, EntryNextPtr);
348  AtEntry.CreateStore(NewHeadVal, Head);
349
350  // For each instruction that escapes...
351  EscapeEnumerator EE(F, "gc_cleanup");
352  while (IRBuilder<> *AtExit = EE.Next()) {
353    // Pop the entry from the shadow stack. Don't reuse CurrentHead from
354    // AtEntry, since that would make the value live for the entire function.
355    Instruction *EntryNextPtr2 =
356        CreateGEP(Context, *AtExit, ConcreteStackEntryTy, StackEntry, 0, 0,
357                  "gc_frame.next");
358    Value *SavedHead = AtExit->CreateLoad(StackEntryTy->getPointerTo(),
359                                          EntryNextPtr2, "gc_savedhead");
360    AtExit->CreateStore(SavedHead, Head);
361  }
362
363  // Delete the original allocas (which are no longer used) and the intrinsic
364  // calls (which are no longer valid). Doing this last avoids invalidating
365  // iterators.
366  for (unsigned I = 0, E = Roots.size(); I != E; ++I) {
367    Roots[I].first->eraseFromParent();
368    Roots[I].second->eraseFromParent();
369  }
370
371  Roots.clear();
372  return true;
373}
374