SelectionDAGBuilder.h revision 360784
1//===- SelectionDAGBuilder.h - Selection-DAG building -----------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This implements routines for translating from LLVM IR into SelectionDAG IR.
10//
11//===----------------------------------------------------------------------===//
12
13#ifndef LLVM_LIB_CODEGEN_SELECTIONDAG_SELECTIONDAGBUILDER_H
14#define LLVM_LIB_CODEGEN_SELECTIONDAG_SELECTIONDAGBUILDER_H
15
16#include "StatepointLowering.h"
17#include "llvm/ADT/APInt.h"
18#include "llvm/ADT/ArrayRef.h"
19#include "llvm/ADT/DenseMap.h"
20#include "llvm/ADT/MapVector.h"
21#include "llvm/ADT/SmallVector.h"
22#include "llvm/Analysis/AliasAnalysis.h"
23#include "llvm/CodeGen/ISDOpcodes.h"
24#include "llvm/CodeGen/SelectionDAG.h"
25#include "llvm/CodeGen/SelectionDAGNodes.h"
26#include "llvm/CodeGen/SwitchLoweringUtils.h"
27#include "llvm/CodeGen/TargetLowering.h"
28#include "llvm/CodeGen/ValueTypes.h"
29#include "llvm/IR/CallSite.h"
30#include "llvm/IR/DebugLoc.h"
31#include "llvm/IR/Instruction.h"
32#include "llvm/IR/Statepoint.h"
33#include "llvm/Support/BranchProbability.h"
34#include "llvm/Support/CodeGen.h"
35#include "llvm/Support/ErrorHandling.h"
36#include "llvm/Support/MachineValueType.h"
37#include <algorithm>
38#include <cassert>
39#include <cstdint>
40#include <utility>
41#include <vector>
42
43namespace llvm {
44
45class AllocaInst;
46class AtomicCmpXchgInst;
47class AtomicRMWInst;
48class BasicBlock;
49class BranchInst;
50class CallInst;
51class CallBrInst;
52class CatchPadInst;
53class CatchReturnInst;
54class CatchSwitchInst;
55class CleanupPadInst;
56class CleanupReturnInst;
57class Constant;
58class ConstantInt;
59class ConstrainedFPIntrinsic;
60class DbgValueInst;
61class DataLayout;
62class DIExpression;
63class DILocalVariable;
64class DILocation;
65class FenceInst;
66class FunctionLoweringInfo;
67class GCFunctionInfo;
68class GCRelocateInst;
69class GCResultInst;
70class IndirectBrInst;
71class InvokeInst;
72class LandingPadInst;
73class LLVMContext;
74class LoadInst;
75class MachineBasicBlock;
76class PHINode;
77class ResumeInst;
78class ReturnInst;
79class SDDbgValue;
80class StoreInst;
81class SwiftErrorValueTracking;
82class SwitchInst;
83class TargetLibraryInfo;
84class TargetMachine;
85class Type;
86class VAArgInst;
87class UnreachableInst;
88class Use;
89class User;
90class Value;
91
92//===----------------------------------------------------------------------===//
93/// SelectionDAGBuilder - This is the common target-independent lowering
94/// implementation that is parameterized by a TargetLowering object.
95///
96class SelectionDAGBuilder {
97  /// The current instruction being visited.
98  const Instruction *CurInst = nullptr;
99
100  DenseMap<const Value*, SDValue> NodeMap;
101
102  /// Maps argument value for unused arguments. This is used
103  /// to preserve debug information for incoming arguments.
104  DenseMap<const Value*, SDValue> UnusedArgNodeMap;
105
106  /// Helper type for DanglingDebugInfoMap.
107  class DanglingDebugInfo {
108    const DbgValueInst* DI = nullptr;
109    DebugLoc dl;
110    unsigned SDNodeOrder = 0;
111
112  public:
113    DanglingDebugInfo() = default;
114    DanglingDebugInfo(const DbgValueInst *di, DebugLoc DL, unsigned SDNO)
115        : DI(di), dl(std::move(DL)), SDNodeOrder(SDNO) {}
116
117    const DbgValueInst* getDI() { return DI; }
118    DebugLoc getdl() { return dl; }
119    unsigned getSDNodeOrder() { return SDNodeOrder; }
120  };
121
122  /// Helper type for DanglingDebugInfoMap.
123  typedef std::vector<DanglingDebugInfo> DanglingDebugInfoVector;
124
125  /// Keeps track of dbg_values for which we have not yet seen the referent.
126  /// We defer handling these until we do see it.
127  MapVector<const Value*, DanglingDebugInfoVector> DanglingDebugInfoMap;
128
129public:
130  /// Loads are not emitted to the program immediately.  We bunch them up and
131  /// then emit token factor nodes when possible.  This allows us to get simple
132  /// disambiguation between loads without worrying about alias analysis.
133  SmallVector<SDValue, 8> PendingLoads;
134
135  /// State used while lowering a statepoint sequence (gc_statepoint,
136  /// gc_relocate, and gc_result).  See StatepointLowering.hpp/cpp for details.
137  StatepointLoweringState StatepointLowering;
138
139private:
140  /// CopyToReg nodes that copy values to virtual registers for export to other
141  /// blocks need to be emitted before any terminator instruction, but they have
142  /// no other ordering requirements. We bunch them up and the emit a single
143  /// tokenfactor for them just before terminator instructions.
144  SmallVector<SDValue, 8> PendingExports;
145
146  /// Similar to loads, nodes corresponding to constrained FP intrinsics are
147  /// bunched up and emitted when necessary.  These can be moved across each
148  /// other and any (normal) memory operation (load or store), but not across
149  /// calls or instructions having unspecified side effects.  As a special
150  /// case, constrained FP intrinsics using fpexcept.strict may not be deleted
151  /// even if otherwise unused, so they need to be chained before any
152  /// terminator instruction (like PendingExports).  We track the latter
153  /// set of nodes in a separate list.
154  SmallVector<SDValue, 8> PendingConstrainedFP;
155  SmallVector<SDValue, 8> PendingConstrainedFPStrict;
156
157  /// Update root to include all chains from the Pending list.
158  SDValue updateRoot(SmallVectorImpl<SDValue> &Pending);
159
160  /// A unique monotonically increasing number used to order the SDNodes we
161  /// create.
162  unsigned SDNodeOrder;
163
164  /// Determine the rank by weight of CC in [First,Last]. If CC has more weight
165  /// than each cluster in the range, its rank is 0.
166  unsigned caseClusterRank(const SwitchCG::CaseCluster &CC,
167                           SwitchCG::CaseClusterIt First,
168                           SwitchCG::CaseClusterIt Last);
169
170  /// Emit comparison and split W into two subtrees.
171  void splitWorkItem(SwitchCG::SwitchWorkList &WorkList,
172                     const SwitchCG::SwitchWorkListItem &W, Value *Cond,
173                     MachineBasicBlock *SwitchMBB);
174
175  /// Lower W.
176  void lowerWorkItem(SwitchCG::SwitchWorkListItem W, Value *Cond,
177                     MachineBasicBlock *SwitchMBB,
178                     MachineBasicBlock *DefaultMBB);
179
180  /// Peel the top probability case if it exceeds the threshold
181  MachineBasicBlock *
182  peelDominantCaseCluster(const SwitchInst &SI,
183                          SwitchCG::CaseClusterVector &Clusters,
184                          BranchProbability &PeeledCaseProb);
185
186  /// A class which encapsulates all of the information needed to generate a
187  /// stack protector check and signals to isel via its state being initialized
188  /// that a stack protector needs to be generated.
189  ///
190  /// *NOTE* The following is a high level documentation of SelectionDAG Stack
191  /// Protector Generation. The reason that it is placed here is for a lack of
192  /// other good places to stick it.
193  ///
194  /// High Level Overview of SelectionDAG Stack Protector Generation:
195  ///
196  /// Previously, generation of stack protectors was done exclusively in the
197  /// pre-SelectionDAG Codegen LLVM IR Pass "Stack Protector". This necessitated
198  /// splitting basic blocks at the IR level to create the success/failure basic
199  /// blocks in the tail of the basic block in question. As a result of this,
200  /// calls that would have qualified for the sibling call optimization were no
201  /// longer eligible for optimization since said calls were no longer right in
202  /// the "tail position" (i.e. the immediate predecessor of a ReturnInst
203  /// instruction).
204  ///
205  /// Then it was noticed that since the sibling call optimization causes the
206  /// callee to reuse the caller's stack, if we could delay the generation of
207  /// the stack protector check until later in CodeGen after the sibling call
208  /// decision was made, we get both the tail call optimization and the stack
209  /// protector check!
210  ///
211  /// A few goals in solving this problem were:
212  ///
213  ///   1. Preserve the architecture independence of stack protector generation.
214  ///
215  ///   2. Preserve the normal IR level stack protector check for platforms like
216  ///      OpenBSD for which we support platform-specific stack protector
217  ///      generation.
218  ///
219  /// The main problem that guided the present solution is that one can not
220  /// solve this problem in an architecture independent manner at the IR level
221  /// only. This is because:
222  ///
223  ///   1. The decision on whether or not to perform a sibling call on certain
224  ///      platforms (for instance i386) requires lower level information
225  ///      related to available registers that can not be known at the IR level.
226  ///
227  ///   2. Even if the previous point were not true, the decision on whether to
228  ///      perform a tail call is done in LowerCallTo in SelectionDAG which
229  ///      occurs after the Stack Protector Pass. As a result, one would need to
230  ///      put the relevant callinst into the stack protector check success
231  ///      basic block (where the return inst is placed) and then move it back
232  ///      later at SelectionDAG/MI time before the stack protector check if the
233  ///      tail call optimization failed. The MI level option was nixed
234  ///      immediately since it would require platform-specific pattern
235  ///      matching. The SelectionDAG level option was nixed because
236  ///      SelectionDAG only processes one IR level basic block at a time
237  ///      implying one could not create a DAG Combine to move the callinst.
238  ///
239  /// To get around this problem a few things were realized:
240  ///
241  ///   1. While one can not handle multiple IR level basic blocks at the
242  ///      SelectionDAG Level, one can generate multiple machine basic blocks
243  ///      for one IR level basic block. This is how we handle bit tests and
244  ///      switches.
245  ///
246  ///   2. At the MI level, tail calls are represented via a special return
247  ///      MIInst called "tcreturn". Thus if we know the basic block in which we
248  ///      wish to insert the stack protector check, we get the correct behavior
249  ///      by always inserting the stack protector check right before the return
250  ///      statement. This is a "magical transformation" since no matter where
251  ///      the stack protector check intrinsic is, we always insert the stack
252  ///      protector check code at the end of the BB.
253  ///
254  /// Given the aforementioned constraints, the following solution was devised:
255  ///
256  ///   1. On platforms that do not support SelectionDAG stack protector check
257  ///      generation, allow for the normal IR level stack protector check
258  ///      generation to continue.
259  ///
260  ///   2. On platforms that do support SelectionDAG stack protector check
261  ///      generation:
262  ///
263  ///     a. Use the IR level stack protector pass to decide if a stack
264  ///        protector is required/which BB we insert the stack protector check
265  ///        in by reusing the logic already therein. If we wish to generate a
266  ///        stack protector check in a basic block, we place a special IR
267  ///        intrinsic called llvm.stackprotectorcheck right before the BB's
268  ///        returninst or if there is a callinst that could potentially be
269  ///        sibling call optimized, before the call inst.
270  ///
271  ///     b. Then when a BB with said intrinsic is processed, we codegen the BB
272  ///        normally via SelectBasicBlock. In said process, when we visit the
273  ///        stack protector check, we do not actually emit anything into the
274  ///        BB. Instead, we just initialize the stack protector descriptor
275  ///        class (which involves stashing information/creating the success
276  ///        mbbb and the failure mbb if we have not created one for this
277  ///        function yet) and export the guard variable that we are going to
278  ///        compare.
279  ///
280  ///     c. After we finish selecting the basic block, in FinishBasicBlock if
281  ///        the StackProtectorDescriptor attached to the SelectionDAGBuilder is
282  ///        initialized, we produce the validation code with one of these
283  ///        techniques:
284  ///          1) with a call to a guard check function
285  ///          2) with inlined instrumentation
286  ///
287  ///        1) We insert a call to the check function before the terminator.
288  ///
289  ///        2) We first find a splice point in the parent basic block
290  ///        before the terminator and then splice the terminator of said basic
291  ///        block into the success basic block. Then we code-gen a new tail for
292  ///        the parent basic block consisting of the two loads, the comparison,
293  ///        and finally two branches to the success/failure basic blocks. We
294  ///        conclude by code-gening the failure basic block if we have not
295  ///        code-gened it already (all stack protector checks we generate in
296  ///        the same function, use the same failure basic block).
297  class StackProtectorDescriptor {
298  public:
299    StackProtectorDescriptor() = default;
300
301    /// Returns true if all fields of the stack protector descriptor are
302    /// initialized implying that we should/are ready to emit a stack protector.
303    bool shouldEmitStackProtector() const {
304      return ParentMBB && SuccessMBB && FailureMBB;
305    }
306
307    bool shouldEmitFunctionBasedCheckStackProtector() const {
308      return ParentMBB && !SuccessMBB && !FailureMBB;
309    }
310
311    /// Initialize the stack protector descriptor structure for a new basic
312    /// block.
313    void initialize(const BasicBlock *BB, MachineBasicBlock *MBB,
314                    bool FunctionBasedInstrumentation) {
315      // Make sure we are not initialized yet.
316      assert(!shouldEmitStackProtector() && "Stack Protector Descriptor is "
317             "already initialized!");
318      ParentMBB = MBB;
319      if (!FunctionBasedInstrumentation) {
320        SuccessMBB = AddSuccessorMBB(BB, MBB, /* IsLikely */ true);
321        FailureMBB = AddSuccessorMBB(BB, MBB, /* IsLikely */ false, FailureMBB);
322      }
323    }
324
325    /// Reset state that changes when we handle different basic blocks.
326    ///
327    /// This currently includes:
328    ///
329    /// 1. The specific basic block we are generating a
330    /// stack protector for (ParentMBB).
331    ///
332    /// 2. The successor machine basic block that will contain the tail of
333    /// parent mbb after we create the stack protector check (SuccessMBB). This
334    /// BB is visited only on stack protector check success.
335    void resetPerBBState() {
336      ParentMBB = nullptr;
337      SuccessMBB = nullptr;
338    }
339
340    /// Reset state that only changes when we switch functions.
341    ///
342    /// This currently includes:
343    ///
344    /// 1. FailureMBB since we reuse the failure code path for all stack
345    /// protector checks created in an individual function.
346    ///
347    /// 2.The guard variable since the guard variable we are checking against is
348    /// always the same.
349    void resetPerFunctionState() {
350      FailureMBB = nullptr;
351    }
352
353    MachineBasicBlock *getParentMBB() { return ParentMBB; }
354    MachineBasicBlock *getSuccessMBB() { return SuccessMBB; }
355    MachineBasicBlock *getFailureMBB() { return FailureMBB; }
356
357  private:
358    /// The basic block for which we are generating the stack protector.
359    ///
360    /// As a result of stack protector generation, we will splice the
361    /// terminators of this basic block into the successor mbb SuccessMBB and
362    /// replace it with a compare/branch to the successor mbbs
363    /// SuccessMBB/FailureMBB depending on whether or not the stack protector
364    /// was violated.
365    MachineBasicBlock *ParentMBB = nullptr;
366
367    /// A basic block visited on stack protector check success that contains the
368    /// terminators of ParentMBB.
369    MachineBasicBlock *SuccessMBB = nullptr;
370
371    /// This basic block visited on stack protector check failure that will
372    /// contain a call to __stack_chk_fail().
373    MachineBasicBlock *FailureMBB = nullptr;
374
375    /// Add a successor machine basic block to ParentMBB. If the successor mbb
376    /// has not been created yet (i.e. if SuccMBB = 0), then the machine basic
377    /// block will be created. Assign a large weight if IsLikely is true.
378    MachineBasicBlock *AddSuccessorMBB(const BasicBlock *BB,
379                                       MachineBasicBlock *ParentMBB,
380                                       bool IsLikely,
381                                       MachineBasicBlock *SuccMBB = nullptr);
382  };
383
384private:
385  const TargetMachine &TM;
386
387public:
388  /// Lowest valid SDNodeOrder. The special case 0 is reserved for scheduling
389  /// nodes without a corresponding SDNode.
390  static const unsigned LowestSDNodeOrder = 1;
391
392  SelectionDAG &DAG;
393  const DataLayout *DL = nullptr;
394  AliasAnalysis *AA = nullptr;
395  const TargetLibraryInfo *LibInfo;
396
397  class SDAGSwitchLowering : public SwitchCG::SwitchLowering {
398  public:
399    SDAGSwitchLowering(SelectionDAGBuilder *sdb, FunctionLoweringInfo &funcinfo)
400        : SwitchCG::SwitchLowering(funcinfo), SDB(sdb) {}
401
402    virtual void addSuccessorWithProb(
403        MachineBasicBlock *Src, MachineBasicBlock *Dst,
404        BranchProbability Prob = BranchProbability::getUnknown()) override {
405      SDB->addSuccessorWithProb(Src, Dst, Prob);
406    }
407
408  private:
409    SelectionDAGBuilder *SDB;
410  };
411
412  std::unique_ptr<SDAGSwitchLowering> SL;
413
414  /// A StackProtectorDescriptor structure used to communicate stack protector
415  /// information in between SelectBasicBlock and FinishBasicBlock.
416  StackProtectorDescriptor SPDescriptor;
417
418  // Emit PHI-node-operand constants only once even if used by multiple
419  // PHI nodes.
420  DenseMap<const Constant *, unsigned> ConstantsOut;
421
422  /// Information about the function as a whole.
423  FunctionLoweringInfo &FuncInfo;
424
425  /// Information about the swifterror values used throughout the function.
426  SwiftErrorValueTracking &SwiftError;
427
428  /// Garbage collection metadata for the function.
429  GCFunctionInfo *GFI;
430
431  /// Map a landing pad to the call site indexes.
432  DenseMap<MachineBasicBlock *, SmallVector<unsigned, 4>> LPadToCallSiteMap;
433
434  /// This is set to true if a call in the current block has been translated as
435  /// a tail call. In this case, no subsequent DAG nodes should be created.
436  bool HasTailCall = false;
437
438  LLVMContext *Context;
439
440  SelectionDAGBuilder(SelectionDAG &dag, FunctionLoweringInfo &funcinfo,
441                      SwiftErrorValueTracking &swifterror, CodeGenOpt::Level ol)
442      : SDNodeOrder(LowestSDNodeOrder), TM(dag.getTarget()), DAG(dag),
443        SL(std::make_unique<SDAGSwitchLowering>(this, funcinfo)), FuncInfo(funcinfo),
444        SwiftError(swifterror) {}
445
446  void init(GCFunctionInfo *gfi, AliasAnalysis *AA,
447            const TargetLibraryInfo *li);
448
449  /// Clear out the current SelectionDAG and the associated state and prepare
450  /// this SelectionDAGBuilder object to be used for a new block. This doesn't
451  /// clear out information about additional blocks that are needed to complete
452  /// switch lowering or PHI node updating; that information is cleared out as
453  /// it is consumed.
454  void clear();
455
456  /// Clear the dangling debug information map. This function is separated from
457  /// the clear so that debug information that is dangling in a basic block can
458  /// be properly resolved in a different basic block. This allows the
459  /// SelectionDAG to resolve dangling debug information attached to PHI nodes.
460  void clearDanglingDebugInfo();
461
462  /// Return the current virtual root of the Selection DAG, flushing any
463  /// PendingLoad items. This must be done before emitting a store or any other
464  /// memory node that may need to be ordered after any prior load instructions.
465  SDValue getMemoryRoot();
466
467  /// Similar to getMemoryRoot, but also flushes PendingConstrainedFP(Strict)
468  /// items. This must be done before emitting any call other any other node
469  /// that may need to be ordered after FP instructions due to other side
470  /// effects.
471  SDValue getRoot();
472
473  /// Similar to getRoot, but instead of flushing all the PendingLoad items,
474  /// flush all the PendingExports (and PendingConstrainedFPStrict) items.
475  /// It is necessary to do this before emitting a terminator instruction.
476  SDValue getControlRoot();
477
478  SDLoc getCurSDLoc() const {
479    return SDLoc(CurInst, SDNodeOrder);
480  }
481
482  DebugLoc getCurDebugLoc() const {
483    return CurInst ? CurInst->getDebugLoc() : DebugLoc();
484  }
485
486  void CopyValueToVirtualRegister(const Value *V, unsigned Reg);
487
488  void visit(const Instruction &I);
489
490  void visit(unsigned Opcode, const User &I);
491
492  /// If there was virtual register allocated for the value V emit CopyFromReg
493  /// of the specified type Ty. Return empty SDValue() otherwise.
494  SDValue getCopyFromRegs(const Value *V, Type *Ty);
495
496  /// If we have dangling debug info that describes \p Variable, or an
497  /// overlapping part of variable considering the \p Expr, then this method
498  /// will drop that debug info as it isn't valid any longer.
499  void dropDanglingDebugInfo(const DILocalVariable *Variable,
500                             const DIExpression *Expr);
501
502  /// If we saw an earlier dbg_value referring to V, generate the debug data
503  /// structures now that we've seen its definition.
504  void resolveDanglingDebugInfo(const Value *V, SDValue Val);
505
506  /// For the given dangling debuginfo record, perform last-ditch efforts to
507  /// resolve the debuginfo to something that is represented in this DAG. If
508  /// this cannot be done, produce an Undef debug value record.
509  void salvageUnresolvedDbgValue(DanglingDebugInfo &DDI);
510
511  /// For a given Value, attempt to create and record a SDDbgValue in the
512  /// SelectionDAG.
513  bool handleDebugValue(const Value *V, DILocalVariable *Var,
514                        DIExpression *Expr, DebugLoc CurDL,
515                        DebugLoc InstDL, unsigned Order);
516
517  /// Evict any dangling debug information, attempting to salvage it first.
518  void resolveOrClearDbgInfo();
519
520  SDValue getValue(const Value *V);
521  bool findValue(const Value *V) const;
522
523  /// Return the SDNode for the specified IR value if it exists.
524  SDNode *getNodeForIRValue(const Value *V) {
525    if (NodeMap.find(V) == NodeMap.end())
526      return nullptr;
527    return NodeMap[V].getNode();
528  }
529
530  SDValue getNonRegisterValue(const Value *V);
531  SDValue getValueImpl(const Value *V);
532
533  void setValue(const Value *V, SDValue NewN) {
534    SDValue &N = NodeMap[V];
535    assert(!N.getNode() && "Already set a value for this node!");
536    N = NewN;
537  }
538
539  void setUnusedArgValue(const Value *V, SDValue NewN) {
540    SDValue &N = UnusedArgNodeMap[V];
541    assert(!N.getNode() && "Already set a value for this node!");
542    N = NewN;
543  }
544
545  void FindMergedConditions(const Value *Cond, MachineBasicBlock *TBB,
546                            MachineBasicBlock *FBB, MachineBasicBlock *CurBB,
547                            MachineBasicBlock *SwitchBB,
548                            Instruction::BinaryOps Opc, BranchProbability TProb,
549                            BranchProbability FProb, bool InvertCond);
550  void EmitBranchForMergedCondition(const Value *Cond, MachineBasicBlock *TBB,
551                                    MachineBasicBlock *FBB,
552                                    MachineBasicBlock *CurBB,
553                                    MachineBasicBlock *SwitchBB,
554                                    BranchProbability TProb, BranchProbability FProb,
555                                    bool InvertCond);
556  bool ShouldEmitAsBranches(const std::vector<SwitchCG::CaseBlock> &Cases);
557  bool isExportableFromCurrentBlock(const Value *V, const BasicBlock *FromBB);
558  void CopyToExportRegsIfNeeded(const Value *V);
559  void ExportFromCurrentBlock(const Value *V);
560  void LowerCallTo(ImmutableCallSite CS, SDValue Callee, bool IsTailCall,
561                   const BasicBlock *EHPadBB = nullptr);
562
563  // Lower range metadata from 0 to N to assert zext to an integer of nearest
564  // floor power of two.
565  SDValue lowerRangeToAssertZExt(SelectionDAG &DAG, const Instruction &I,
566                                 SDValue Op);
567
568  void populateCallLoweringInfo(TargetLowering::CallLoweringInfo &CLI,
569                                const CallBase *Call, unsigned ArgIdx,
570                                unsigned NumArgs, SDValue Callee,
571                                Type *ReturnTy, bool IsPatchPoint);
572
573  std::pair<SDValue, SDValue>
574  lowerInvokable(TargetLowering::CallLoweringInfo &CLI,
575                 const BasicBlock *EHPadBB = nullptr);
576
577  /// When an MBB was split during scheduling, update the
578  /// references that need to refer to the last resulting block.
579  void UpdateSplitBlock(MachineBasicBlock *First, MachineBasicBlock *Last);
580
581  /// Describes a gc.statepoint or a gc.statepoint like thing for the purposes
582  /// of lowering into a STATEPOINT node.
583  struct StatepointLoweringInfo {
584    /// Bases[i] is the base pointer for Ptrs[i].  Together they denote the set
585    /// of gc pointers this STATEPOINT has to relocate.
586    SmallVector<const Value *, 16> Bases;
587    SmallVector<const Value *, 16> Ptrs;
588
589    /// The set of gc.relocate calls associated with this gc.statepoint.
590    SmallVector<const GCRelocateInst *, 16> GCRelocates;
591
592    /// The full list of gc arguments to the gc.statepoint being lowered.
593    ArrayRef<const Use> GCArgs;
594
595    /// The gc.statepoint instruction.
596    const Instruction *StatepointInstr = nullptr;
597
598    /// The list of gc transition arguments present in the gc.statepoint being
599    /// lowered.
600    ArrayRef<const Use> GCTransitionArgs;
601
602    /// The ID that the resulting STATEPOINT instruction has to report.
603    unsigned ID = -1;
604
605    /// Information regarding the underlying call instruction.
606    TargetLowering::CallLoweringInfo CLI;
607
608    /// The deoptimization state associated with this gc.statepoint call, if
609    /// any.
610    ArrayRef<const Use> DeoptState;
611
612    /// Flags associated with the meta arguments being lowered.
613    uint64_t StatepointFlags = -1;
614
615    /// The number of patchable bytes the call needs to get lowered into.
616    unsigned NumPatchBytes = -1;
617
618    /// The exception handling unwind destination, in case this represents an
619    /// invoke of gc.statepoint.
620    const BasicBlock *EHPadBB = nullptr;
621
622    explicit StatepointLoweringInfo(SelectionDAG &DAG) : CLI(DAG) {}
623  };
624
625  /// Lower \p SLI into a STATEPOINT instruction.
626  SDValue LowerAsSTATEPOINT(StatepointLoweringInfo &SI);
627
628  // This function is responsible for the whole statepoint lowering process.
629  // It uniformly handles invoke and call statepoints.
630  void LowerStatepoint(ImmutableStatepoint ISP,
631                       const BasicBlock *EHPadBB = nullptr);
632
633  void LowerCallSiteWithDeoptBundle(const CallBase *Call, SDValue Callee,
634                                    const BasicBlock *EHPadBB);
635
636  void LowerDeoptimizeCall(const CallInst *CI);
637  void LowerDeoptimizingReturn();
638
639  void LowerCallSiteWithDeoptBundleImpl(const CallBase *Call, SDValue Callee,
640                                        const BasicBlock *EHPadBB,
641                                        bool VarArgDisallowed,
642                                        bool ForceVoidReturnTy);
643
644  /// Returns the type of FrameIndex and TargetFrameIndex nodes.
645  MVT getFrameIndexTy() {
646    return DAG.getTargetLoweringInfo().getFrameIndexTy(DAG.getDataLayout());
647  }
648
649private:
650  // Terminator instructions.
651  void visitRet(const ReturnInst &I);
652  void visitBr(const BranchInst &I);
653  void visitSwitch(const SwitchInst &I);
654  void visitIndirectBr(const IndirectBrInst &I);
655  void visitUnreachable(const UnreachableInst &I);
656  void visitCleanupRet(const CleanupReturnInst &I);
657  void visitCatchSwitch(const CatchSwitchInst &I);
658  void visitCatchRet(const CatchReturnInst &I);
659  void visitCatchPad(const CatchPadInst &I);
660  void visitCleanupPad(const CleanupPadInst &CPI);
661
662  BranchProbability getEdgeProbability(const MachineBasicBlock *Src,
663                                       const MachineBasicBlock *Dst) const;
664  void addSuccessorWithProb(
665      MachineBasicBlock *Src, MachineBasicBlock *Dst,
666      BranchProbability Prob = BranchProbability::getUnknown());
667
668public:
669  void visitSwitchCase(SwitchCG::CaseBlock &CB, MachineBasicBlock *SwitchBB);
670  void visitSPDescriptorParent(StackProtectorDescriptor &SPD,
671                               MachineBasicBlock *ParentBB);
672  void visitSPDescriptorFailure(StackProtectorDescriptor &SPD);
673  void visitBitTestHeader(SwitchCG::BitTestBlock &B,
674                          MachineBasicBlock *SwitchBB);
675  void visitBitTestCase(SwitchCG::BitTestBlock &BB, MachineBasicBlock *NextMBB,
676                        BranchProbability BranchProbToNext, unsigned Reg,
677                        SwitchCG::BitTestCase &B, MachineBasicBlock *SwitchBB);
678  void visitJumpTable(SwitchCG::JumpTable &JT);
679  void visitJumpTableHeader(SwitchCG::JumpTable &JT,
680                            SwitchCG::JumpTableHeader &JTH,
681                            MachineBasicBlock *SwitchBB);
682
683private:
684  // These all get lowered before this pass.
685  void visitInvoke(const InvokeInst &I);
686  void visitCallBr(const CallBrInst &I);
687  void visitResume(const ResumeInst &I);
688
689  void visitUnary(const User &I, unsigned Opcode);
690  void visitFNeg(const User &I) { visitUnary(I, ISD::FNEG); }
691
692  void visitBinary(const User &I, unsigned Opcode);
693  void visitShift(const User &I, unsigned Opcode);
694  void visitAdd(const User &I)  { visitBinary(I, ISD::ADD); }
695  void visitFAdd(const User &I) { visitBinary(I, ISD::FADD); }
696  void visitSub(const User &I)  { visitBinary(I, ISD::SUB); }
697  void visitFSub(const User &I);
698  void visitMul(const User &I)  { visitBinary(I, ISD::MUL); }
699  void visitFMul(const User &I) { visitBinary(I, ISD::FMUL); }
700  void visitURem(const User &I) { visitBinary(I, ISD::UREM); }
701  void visitSRem(const User &I) { visitBinary(I, ISD::SREM); }
702  void visitFRem(const User &I) { visitBinary(I, ISD::FREM); }
703  void visitUDiv(const User &I) { visitBinary(I, ISD::UDIV); }
704  void visitSDiv(const User &I);
705  void visitFDiv(const User &I) { visitBinary(I, ISD::FDIV); }
706  void visitAnd (const User &I) { visitBinary(I, ISD::AND); }
707  void visitOr  (const User &I) { visitBinary(I, ISD::OR); }
708  void visitXor (const User &I) { visitBinary(I, ISD::XOR); }
709  void visitShl (const User &I) { visitShift(I, ISD::SHL); }
710  void visitLShr(const User &I) { visitShift(I, ISD::SRL); }
711  void visitAShr(const User &I) { visitShift(I, ISD::SRA); }
712  void visitICmp(const User &I);
713  void visitFCmp(const User &I);
714  // Visit the conversion instructions
715  void visitTrunc(const User &I);
716  void visitZExt(const User &I);
717  void visitSExt(const User &I);
718  void visitFPTrunc(const User &I);
719  void visitFPExt(const User &I);
720  void visitFPToUI(const User &I);
721  void visitFPToSI(const User &I);
722  void visitUIToFP(const User &I);
723  void visitSIToFP(const User &I);
724  void visitPtrToInt(const User &I);
725  void visitIntToPtr(const User &I);
726  void visitBitCast(const User &I);
727  void visitAddrSpaceCast(const User &I);
728
729  void visitExtractElement(const User &I);
730  void visitInsertElement(const User &I);
731  void visitShuffleVector(const User &I);
732
733  void visitExtractValue(const User &I);
734  void visitInsertValue(const User &I);
735  void visitLandingPad(const LandingPadInst &LP);
736
737  void visitGetElementPtr(const User &I);
738  void visitSelect(const User &I);
739
740  void visitAlloca(const AllocaInst &I);
741  void visitLoad(const LoadInst &I);
742  void visitStore(const StoreInst &I);
743  void visitMaskedLoad(const CallInst &I, bool IsExpanding = false);
744  void visitMaskedStore(const CallInst &I, bool IsCompressing = false);
745  void visitMaskedGather(const CallInst &I);
746  void visitMaskedScatter(const CallInst &I);
747  void visitAtomicCmpXchg(const AtomicCmpXchgInst &I);
748  void visitAtomicRMW(const AtomicRMWInst &I);
749  void visitFence(const FenceInst &I);
750  void visitPHI(const PHINode &I);
751  void visitCall(const CallInst &I);
752  bool visitMemCmpCall(const CallInst &I);
753  bool visitMemPCpyCall(const CallInst &I);
754  bool visitMemChrCall(const CallInst &I);
755  bool visitStrCpyCall(const CallInst &I, bool isStpcpy);
756  bool visitStrCmpCall(const CallInst &I);
757  bool visitStrLenCall(const CallInst &I);
758  bool visitStrNLenCall(const CallInst &I);
759  bool visitUnaryFloatCall(const CallInst &I, unsigned Opcode);
760  bool visitBinaryFloatCall(const CallInst &I, unsigned Opcode);
761  void visitAtomicLoad(const LoadInst &I);
762  void visitAtomicStore(const StoreInst &I);
763  void visitLoadFromSwiftError(const LoadInst &I);
764  void visitStoreToSwiftError(const StoreInst &I);
765  void visitFreeze(const FreezeInst &I);
766
767  void visitInlineAsm(ImmutableCallSite CS);
768  void visitIntrinsicCall(const CallInst &I, unsigned Intrinsic);
769  void visitTargetIntrinsic(const CallInst &I, unsigned Intrinsic);
770  void visitConstrainedFPIntrinsic(const ConstrainedFPIntrinsic &FPI);
771
772  void visitVAStart(const CallInst &I);
773  void visitVAArg(const VAArgInst &I);
774  void visitVAEnd(const CallInst &I);
775  void visitVACopy(const CallInst &I);
776  void visitStackmap(const CallInst &I);
777  void visitPatchpoint(ImmutableCallSite CS,
778                       const BasicBlock *EHPadBB = nullptr);
779
780  // These two are implemented in StatepointLowering.cpp
781  void visitGCRelocate(const GCRelocateInst &Relocate);
782  void visitGCResult(const GCResultInst &I);
783
784  void visitVectorReduce(const CallInst &I, unsigned Intrinsic);
785
786  void visitUserOp1(const Instruction &I) {
787    llvm_unreachable("UserOp1 should not exist at instruction selection time!");
788  }
789  void visitUserOp2(const Instruction &I) {
790    llvm_unreachable("UserOp2 should not exist at instruction selection time!");
791  }
792
793  void processIntegerCallValue(const Instruction &I,
794                               SDValue Value, bool IsSigned);
795
796  void HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB);
797
798  void emitInlineAsmError(ImmutableCallSite CS, const Twine &Message);
799
800  /// If V is an function argument then create corresponding DBG_VALUE machine
801  /// instruction for it now. At the end of instruction selection, they will be
802  /// inserted to the entry BB.
803  bool EmitFuncArgumentDbgValue(const Value *V, DILocalVariable *Variable,
804                                DIExpression *Expr, DILocation *DL,
805                                bool IsDbgDeclare, const SDValue &N);
806
807  /// Return the next block after MBB, or nullptr if there is none.
808  MachineBasicBlock *NextBlock(MachineBasicBlock *MBB);
809
810  /// Update the DAG and DAG builder with the relevant information after
811  /// a new root node has been created which could be a tail call.
812  void updateDAGForMaybeTailCall(SDValue MaybeTC);
813
814  /// Return the appropriate SDDbgValue based on N.
815  SDDbgValue *getDbgValue(SDValue N, DILocalVariable *Variable,
816                          DIExpression *Expr, const DebugLoc &dl,
817                          unsigned DbgSDNodeOrder);
818
819  /// Lowers CallInst to an external symbol.
820  void lowerCallToExternalSymbol(const CallInst &I, const char *FunctionName);
821};
822
823/// This struct represents the registers (physical or virtual)
824/// that a particular set of values is assigned, and the type information about
825/// the value. The most common situation is to represent one value at a time,
826/// but struct or array values are handled element-wise as multiple values.  The
827/// splitting of aggregates is performed recursively, so that we never have
828/// aggregate-typed registers. The values at this point do not necessarily have
829/// legal types, so each value may require one or more registers of some legal
830/// type.
831///
832struct RegsForValue {
833  /// The value types of the values, which may not be legal, and
834  /// may need be promoted or synthesized from one or more registers.
835  SmallVector<EVT, 4> ValueVTs;
836
837  /// The value types of the registers. This is the same size as ValueVTs and it
838  /// records, for each value, what the type of the assigned register or
839  /// registers are. (Individual values are never synthesized from more than one
840  /// type of register.)
841  ///
842  /// With virtual registers, the contents of RegVTs is redundant with TLI's
843  /// getRegisterType member function, however when with physical registers
844  /// it is necessary to have a separate record of the types.
845  SmallVector<MVT, 4> RegVTs;
846
847  /// This list holds the registers assigned to the values.
848  /// Each legal or promoted value requires one register, and each
849  /// expanded value requires multiple registers.
850  SmallVector<unsigned, 4> Regs;
851
852  /// This list holds the number of registers for each value.
853  SmallVector<unsigned, 4> RegCount;
854
855  /// Records if this value needs to be treated in an ABI dependant manner,
856  /// different to normal type legalization.
857  Optional<CallingConv::ID> CallConv;
858
859  RegsForValue() = default;
860  RegsForValue(const SmallVector<unsigned, 4> &regs, MVT regvt, EVT valuevt,
861               Optional<CallingConv::ID> CC = None);
862  RegsForValue(LLVMContext &Context, const TargetLowering &TLI,
863               const DataLayout &DL, unsigned Reg, Type *Ty,
864               Optional<CallingConv::ID> CC);
865
866  bool isABIMangled() const {
867    return CallConv.hasValue();
868  }
869
870  /// Add the specified values to this one.
871  void append(const RegsForValue &RHS) {
872    ValueVTs.append(RHS.ValueVTs.begin(), RHS.ValueVTs.end());
873    RegVTs.append(RHS.RegVTs.begin(), RHS.RegVTs.end());
874    Regs.append(RHS.Regs.begin(), RHS.Regs.end());
875    RegCount.push_back(RHS.Regs.size());
876  }
877
878  /// Emit a series of CopyFromReg nodes that copies from this value and returns
879  /// the result as a ValueVTs value. This uses Chain/Flag as the input and
880  /// updates them for the output Chain/Flag. If the Flag pointer is NULL, no
881  /// flag is used.
882  SDValue getCopyFromRegs(SelectionDAG &DAG, FunctionLoweringInfo &FuncInfo,
883                          const SDLoc &dl, SDValue &Chain, SDValue *Flag,
884                          const Value *V = nullptr) const;
885
886  /// Emit a series of CopyToReg nodes that copies the specified value into the
887  /// registers specified by this object. This uses Chain/Flag as the input and
888  /// updates them for the output Chain/Flag. If the Flag pointer is nullptr, no
889  /// flag is used. If V is not nullptr, then it is used in printing better
890  /// diagnostic messages on error.
891  void getCopyToRegs(SDValue Val, SelectionDAG &DAG, const SDLoc &dl,
892                     SDValue &Chain, SDValue *Flag, const Value *V = nullptr,
893                     ISD::NodeType PreferredExtendType = ISD::ANY_EXTEND) const;
894
895  /// Add this value to the specified inlineasm node operand list. This adds the
896  /// code marker, matching input operand index (if applicable), and includes
897  /// the number of values added into it.
898  void AddInlineAsmOperands(unsigned Code, bool HasMatching,
899                            unsigned MatchingIdx, const SDLoc &dl,
900                            SelectionDAG &DAG, std::vector<SDValue> &Ops) const;
901
902  /// Check if the total RegCount is greater than one.
903  bool occupiesMultipleRegs() const {
904    return std::accumulate(RegCount.begin(), RegCount.end(), 0) > 1;
905  }
906
907  /// Return a list of registers and their sizes.
908  SmallVector<std::pair<unsigned, unsigned>, 4> getRegsAndSizes() const;
909};
910
911} // end namespace llvm
912
913#endif // LLVM_LIB_CODEGEN_SELECTIONDAG_SELECTIONDAGBUILDER_H
914