FastISel.cpp revision 360784
1//===- FastISel.cpp - Implementation of the FastISel class ----------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file contains the implementation of the FastISel class.
10//
11// "Fast" instruction selection is designed to emit very poor code quickly.
12// Also, it is not designed to be able to do much lowering, so most illegal
13// types (e.g. i64 on 32-bit targets) and operations are not supported.  It is
14// also not intended to be able to do much optimization, except in a few cases
15// where doing optimizations reduces overall compile time.  For example, folding
16// constants into immediate fields is often done, because it's cheap and it
17// reduces the number of instructions later phases have to examine.
18//
19// "Fast" instruction selection is able to fail gracefully and transfer
20// control to the SelectionDAG selector for operations that it doesn't
21// support.  In many cases, this allows us to avoid duplicating a lot of
22// the complicated lowering logic that SelectionDAG currently has.
23//
24// The intended use for "fast" instruction selection is "-O0" mode
25// compilation, where the quality of the generated code is irrelevant when
26// weighed against the speed at which the code can be generated.  Also,
27// at -O0, the LLVM optimizers are not running, and this makes the
28// compile time of codegen a much higher portion of the overall compile
29// time.  Despite its limitations, "fast" instruction selection is able to
30// handle enough code on its own to provide noticeable overall speedups
31// in -O0 compiles.
32//
33// Basic operations are supported in a target-independent way, by reading
34// the same instruction descriptions that the SelectionDAG selector reads,
35// and identifying simple arithmetic operations that can be directly selected
36// from simple operators.  More complicated operations currently require
37// target-specific code.
38//
39//===----------------------------------------------------------------------===//
40
41#include "llvm/CodeGen/FastISel.h"
42#include "llvm/ADT/APFloat.h"
43#include "llvm/ADT/APSInt.h"
44#include "llvm/ADT/DenseMap.h"
45#include "llvm/ADT/Optional.h"
46#include "llvm/ADT/SmallPtrSet.h"
47#include "llvm/ADT/SmallString.h"
48#include "llvm/ADT/SmallVector.h"
49#include "llvm/ADT/Statistic.h"
50#include "llvm/Analysis/BranchProbabilityInfo.h"
51#include "llvm/Analysis/TargetLibraryInfo.h"
52#include "llvm/CodeGen/Analysis.h"
53#include "llvm/CodeGen/FunctionLoweringInfo.h"
54#include "llvm/CodeGen/ISDOpcodes.h"
55#include "llvm/CodeGen/MachineBasicBlock.h"
56#include "llvm/CodeGen/MachineFrameInfo.h"
57#include "llvm/CodeGen/MachineInstr.h"
58#include "llvm/CodeGen/MachineInstrBuilder.h"
59#include "llvm/CodeGen/MachineMemOperand.h"
60#include "llvm/CodeGen/MachineModuleInfo.h"
61#include "llvm/CodeGen/MachineOperand.h"
62#include "llvm/CodeGen/MachineRegisterInfo.h"
63#include "llvm/CodeGen/StackMaps.h"
64#include "llvm/CodeGen/TargetInstrInfo.h"
65#include "llvm/CodeGen/TargetLowering.h"
66#include "llvm/CodeGen/TargetSubtargetInfo.h"
67#include "llvm/CodeGen/ValueTypes.h"
68#include "llvm/IR/Argument.h"
69#include "llvm/IR/Attributes.h"
70#include "llvm/IR/BasicBlock.h"
71#include "llvm/IR/CallSite.h"
72#include "llvm/IR/CallingConv.h"
73#include "llvm/IR/Constant.h"
74#include "llvm/IR/Constants.h"
75#include "llvm/IR/DataLayout.h"
76#include "llvm/IR/DebugInfo.h"
77#include "llvm/IR/DebugLoc.h"
78#include "llvm/IR/DerivedTypes.h"
79#include "llvm/IR/Function.h"
80#include "llvm/IR/GetElementPtrTypeIterator.h"
81#include "llvm/IR/GlobalValue.h"
82#include "llvm/IR/InlineAsm.h"
83#include "llvm/IR/InstrTypes.h"
84#include "llvm/IR/Instruction.h"
85#include "llvm/IR/Instructions.h"
86#include "llvm/IR/IntrinsicInst.h"
87#include "llvm/IR/LLVMContext.h"
88#include "llvm/IR/Mangler.h"
89#include "llvm/IR/Metadata.h"
90#include "llvm/IR/Operator.h"
91#include "llvm/IR/PatternMatch.h"
92#include "llvm/IR/Type.h"
93#include "llvm/IR/User.h"
94#include "llvm/IR/Value.h"
95#include "llvm/MC/MCContext.h"
96#include "llvm/MC/MCInstrDesc.h"
97#include "llvm/MC/MCRegisterInfo.h"
98#include "llvm/Support/Casting.h"
99#include "llvm/Support/Debug.h"
100#include "llvm/Support/ErrorHandling.h"
101#include "llvm/Support/MachineValueType.h"
102#include "llvm/Support/MathExtras.h"
103#include "llvm/Support/raw_ostream.h"
104#include "llvm/Target/TargetMachine.h"
105#include "llvm/Target/TargetOptions.h"
106#include <algorithm>
107#include <cassert>
108#include <cstdint>
109#include <iterator>
110#include <utility>
111
112using namespace llvm;
113using namespace PatternMatch;
114
115#define DEBUG_TYPE "isel"
116
117// FIXME: Remove this after the feature has proven reliable.
118static cl::opt<bool> SinkLocalValues("fast-isel-sink-local-values",
119                                     cl::init(true), cl::Hidden,
120                                     cl::desc("Sink local values in FastISel"));
121
122STATISTIC(NumFastIselSuccessIndependent, "Number of insts selected by "
123                                         "target-independent selector");
124STATISTIC(NumFastIselSuccessTarget, "Number of insts selected by "
125                                    "target-specific selector");
126STATISTIC(NumFastIselDead, "Number of dead insts removed on failure");
127
128/// Set the current block to which generated machine instructions will be
129/// appended.
130void FastISel::startNewBlock() {
131  assert(LocalValueMap.empty() &&
132         "local values should be cleared after finishing a BB");
133
134  // Instructions are appended to FuncInfo.MBB. If the basic block already
135  // contains labels or copies, use the last instruction as the last local
136  // value.
137  EmitStartPt = nullptr;
138  if (!FuncInfo.MBB->empty())
139    EmitStartPt = &FuncInfo.MBB->back();
140  LastLocalValue = EmitStartPt;
141}
142
143/// Flush the local CSE map and sink anything we can.
144void FastISel::finishBasicBlock() { flushLocalValueMap(); }
145
146bool FastISel::lowerArguments() {
147  if (!FuncInfo.CanLowerReturn)
148    // Fallback to SDISel argument lowering code to deal with sret pointer
149    // parameter.
150    return false;
151
152  if (!fastLowerArguments())
153    return false;
154
155  // Enter arguments into ValueMap for uses in non-entry BBs.
156  for (Function::const_arg_iterator I = FuncInfo.Fn->arg_begin(),
157                                    E = FuncInfo.Fn->arg_end();
158       I != E; ++I) {
159    DenseMap<const Value *, unsigned>::iterator VI = LocalValueMap.find(&*I);
160    assert(VI != LocalValueMap.end() && "Missed an argument?");
161    FuncInfo.ValueMap[&*I] = VI->second;
162  }
163  return true;
164}
165
166/// Return the defined register if this instruction defines exactly one
167/// virtual register and uses no other virtual registers. Otherwise return 0.
168static unsigned findSinkableLocalRegDef(MachineInstr &MI) {
169  unsigned RegDef = 0;
170  for (const MachineOperand &MO : MI.operands()) {
171    if (!MO.isReg())
172      continue;
173    if (MO.isDef()) {
174      if (RegDef)
175        return 0;
176      RegDef = MO.getReg();
177    } else if (Register::isVirtualRegister(MO.getReg())) {
178      // This is another use of a vreg. Don't try to sink it.
179      return 0;
180    }
181  }
182  return RegDef;
183}
184
185void FastISel::flushLocalValueMap() {
186  // Try to sink local values down to their first use so that we can give them a
187  // better debug location. This has the side effect of shrinking local value
188  // live ranges, which helps out fast regalloc.
189  if (SinkLocalValues && LastLocalValue != EmitStartPt) {
190    // Sink local value materialization instructions between EmitStartPt and
191    // LastLocalValue. Visit them bottom-up, starting from LastLocalValue, to
192    // avoid inserting into the range that we're iterating over.
193    MachineBasicBlock::reverse_iterator RE =
194        EmitStartPt ? MachineBasicBlock::reverse_iterator(EmitStartPt)
195                    : FuncInfo.MBB->rend();
196    MachineBasicBlock::reverse_iterator RI(LastLocalValue);
197
198    InstOrderMap OrderMap;
199    for (; RI != RE;) {
200      MachineInstr &LocalMI = *RI;
201      ++RI;
202      bool Store = true;
203      if (!LocalMI.isSafeToMove(nullptr, Store))
204        continue;
205      unsigned DefReg = findSinkableLocalRegDef(LocalMI);
206      if (DefReg == 0)
207        continue;
208
209      sinkLocalValueMaterialization(LocalMI, DefReg, OrderMap);
210    }
211  }
212
213  LocalValueMap.clear();
214  LastLocalValue = EmitStartPt;
215  recomputeInsertPt();
216  SavedInsertPt = FuncInfo.InsertPt;
217  LastFlushPoint = FuncInfo.InsertPt;
218}
219
220static bool isRegUsedByPhiNodes(unsigned DefReg,
221                                FunctionLoweringInfo &FuncInfo) {
222  for (auto &P : FuncInfo.PHINodesToUpdate)
223    if (P.second == DefReg)
224      return true;
225  return false;
226}
227
228/// Build a map of instruction orders. Return the first terminator and its
229/// order. Consider EH_LABEL instructions to be terminators as well, since local
230/// values for phis after invokes must be materialized before the call.
231void FastISel::InstOrderMap::initialize(
232    MachineBasicBlock *MBB, MachineBasicBlock::iterator LastFlushPoint) {
233  unsigned Order = 0;
234  for (MachineInstr &I : *MBB) {
235    if (!FirstTerminator &&
236        (I.isTerminator() || (I.isEHLabel() && &I != &MBB->front()))) {
237      FirstTerminator = &I;
238      FirstTerminatorOrder = Order;
239    }
240    Orders[&I] = Order++;
241
242    // We don't need to order instructions past the last flush point.
243    if (I.getIterator() == LastFlushPoint)
244      break;
245  }
246}
247
248void FastISel::sinkLocalValueMaterialization(MachineInstr &LocalMI,
249                                             unsigned DefReg,
250                                             InstOrderMap &OrderMap) {
251  // If this register is used by a register fixup, MRI will not contain all
252  // the uses until after register fixups, so don't attempt to sink or DCE
253  // this instruction. Register fixups typically come from no-op cast
254  // instructions, which replace the cast instruction vreg with the local
255  // value vreg.
256  if (FuncInfo.RegsWithFixups.count(DefReg))
257    return;
258
259  // We can DCE this instruction if there are no uses and it wasn't a
260  // materialized for a successor PHI node.
261  bool UsedByPHI = isRegUsedByPhiNodes(DefReg, FuncInfo);
262  if (!UsedByPHI && MRI.use_nodbg_empty(DefReg)) {
263    if (EmitStartPt == &LocalMI)
264      EmitStartPt = EmitStartPt->getPrevNode();
265    LLVM_DEBUG(dbgs() << "removing dead local value materialization "
266                      << LocalMI);
267    OrderMap.Orders.erase(&LocalMI);
268    LocalMI.eraseFromParent();
269    return;
270  }
271
272  // Number the instructions if we haven't yet so we can efficiently find the
273  // earliest use.
274  if (OrderMap.Orders.empty())
275    OrderMap.initialize(FuncInfo.MBB, LastFlushPoint);
276
277  // Find the first user in the BB.
278  MachineInstr *FirstUser = nullptr;
279  unsigned FirstOrder = std::numeric_limits<unsigned>::max();
280  for (MachineInstr &UseInst : MRI.use_nodbg_instructions(DefReg)) {
281    auto I = OrderMap.Orders.find(&UseInst);
282    assert(I != OrderMap.Orders.end() &&
283           "local value used by instruction outside local region");
284    unsigned UseOrder = I->second;
285    if (UseOrder < FirstOrder) {
286      FirstOrder = UseOrder;
287      FirstUser = &UseInst;
288    }
289  }
290
291  // The insertion point will be the first terminator or the first user,
292  // whichever came first. If there was no terminator, this must be a
293  // fallthrough block and the insertion point is the end of the block.
294  MachineBasicBlock::instr_iterator SinkPos;
295  if (UsedByPHI && OrderMap.FirstTerminatorOrder < FirstOrder) {
296    FirstOrder = OrderMap.FirstTerminatorOrder;
297    SinkPos = OrderMap.FirstTerminator->getIterator();
298  } else if (FirstUser) {
299    SinkPos = FirstUser->getIterator();
300  } else {
301    assert(UsedByPHI && "must be users if not used by a phi");
302    SinkPos = FuncInfo.MBB->instr_end();
303  }
304
305  // Collect all DBG_VALUEs before the new insertion position so that we can
306  // sink them.
307  SmallVector<MachineInstr *, 1> DbgValues;
308  for (MachineInstr &DbgVal : MRI.use_instructions(DefReg)) {
309    if (!DbgVal.isDebugValue())
310      continue;
311    unsigned UseOrder = OrderMap.Orders[&DbgVal];
312    if (UseOrder < FirstOrder)
313      DbgValues.push_back(&DbgVal);
314  }
315
316  // Sink LocalMI before SinkPos and assign it the same DebugLoc.
317  LLVM_DEBUG(dbgs() << "sinking local value to first use " << LocalMI);
318  FuncInfo.MBB->remove(&LocalMI);
319  FuncInfo.MBB->insert(SinkPos, &LocalMI);
320  if (SinkPos != FuncInfo.MBB->end())
321    LocalMI.setDebugLoc(SinkPos->getDebugLoc());
322
323  // Sink any debug values that we've collected.
324  for (MachineInstr *DI : DbgValues) {
325    FuncInfo.MBB->remove(DI);
326    FuncInfo.MBB->insert(SinkPos, DI);
327  }
328}
329
330bool FastISel::hasTrivialKill(const Value *V) {
331  // Don't consider constants or arguments to have trivial kills.
332  const Instruction *I = dyn_cast<Instruction>(V);
333  if (!I)
334    return false;
335
336  // No-op casts are trivially coalesced by fast-isel.
337  if (const auto *Cast = dyn_cast<CastInst>(I))
338    if (Cast->isNoopCast(DL) && !hasTrivialKill(Cast->getOperand(0)))
339      return false;
340
341  // Even the value might have only one use in the LLVM IR, it is possible that
342  // FastISel might fold the use into another instruction and now there is more
343  // than one use at the Machine Instruction level.
344  unsigned Reg = lookUpRegForValue(V);
345  if (Reg && !MRI.use_empty(Reg))
346    return false;
347
348  // GEPs with all zero indices are trivially coalesced by fast-isel.
349  if (const auto *GEP = dyn_cast<GetElementPtrInst>(I))
350    if (GEP->hasAllZeroIndices() && !hasTrivialKill(GEP->getOperand(0)))
351      return false;
352
353  // Only instructions with a single use in the same basic block are considered
354  // to have trivial kills.
355  return I->hasOneUse() &&
356         !(I->getOpcode() == Instruction::BitCast ||
357           I->getOpcode() == Instruction::PtrToInt ||
358           I->getOpcode() == Instruction::IntToPtr) &&
359         cast<Instruction>(*I->user_begin())->getParent() == I->getParent();
360}
361
362unsigned FastISel::getRegForValue(const Value *V) {
363  EVT RealVT = TLI.getValueType(DL, V->getType(), /*AllowUnknown=*/true);
364  // Don't handle non-simple values in FastISel.
365  if (!RealVT.isSimple())
366    return 0;
367
368  // Ignore illegal types. We must do this before looking up the value
369  // in ValueMap because Arguments are given virtual registers regardless
370  // of whether FastISel can handle them.
371  MVT VT = RealVT.getSimpleVT();
372  if (!TLI.isTypeLegal(VT)) {
373    // Handle integer promotions, though, because they're common and easy.
374    if (VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16)
375      VT = TLI.getTypeToTransformTo(V->getContext(), VT).getSimpleVT();
376    else
377      return 0;
378  }
379
380  // Look up the value to see if we already have a register for it.
381  unsigned Reg = lookUpRegForValue(V);
382  if (Reg)
383    return Reg;
384
385  // In bottom-up mode, just create the virtual register which will be used
386  // to hold the value. It will be materialized later.
387  if (isa<Instruction>(V) &&
388      (!isa<AllocaInst>(V) ||
389       !FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(V))))
390    return FuncInfo.InitializeRegForValue(V);
391
392  SavePoint SaveInsertPt = enterLocalValueArea();
393
394  // Materialize the value in a register. Emit any instructions in the
395  // local value area.
396  Reg = materializeRegForValue(V, VT);
397
398  leaveLocalValueArea(SaveInsertPt);
399
400  return Reg;
401}
402
403unsigned FastISel::materializeConstant(const Value *V, MVT VT) {
404  unsigned Reg = 0;
405  if (const auto *CI = dyn_cast<ConstantInt>(V)) {
406    if (CI->getValue().getActiveBits() <= 64)
407      Reg = fastEmit_i(VT, VT, ISD::Constant, CI->getZExtValue());
408  } else if (isa<AllocaInst>(V))
409    Reg = fastMaterializeAlloca(cast<AllocaInst>(V));
410  else if (isa<ConstantPointerNull>(V))
411    // Translate this as an integer zero so that it can be
412    // local-CSE'd with actual integer zeros.
413    Reg =
414        getRegForValue(Constant::getNullValue(DL.getIntPtrType(V->getType())));
415  else if (const auto *CF = dyn_cast<ConstantFP>(V)) {
416    if (CF->isNullValue())
417      Reg = fastMaterializeFloatZero(CF);
418    else
419      // Try to emit the constant directly.
420      Reg = fastEmit_f(VT, VT, ISD::ConstantFP, CF);
421
422    if (!Reg) {
423      // Try to emit the constant by using an integer constant with a cast.
424      const APFloat &Flt = CF->getValueAPF();
425      EVT IntVT = TLI.getPointerTy(DL);
426      uint32_t IntBitWidth = IntVT.getSizeInBits();
427      APSInt SIntVal(IntBitWidth, /*isUnsigned=*/false);
428      bool isExact;
429      (void)Flt.convertToInteger(SIntVal, APFloat::rmTowardZero, &isExact);
430      if (isExact) {
431        unsigned IntegerReg =
432            getRegForValue(ConstantInt::get(V->getContext(), SIntVal));
433        if (IntegerReg != 0)
434          Reg = fastEmit_r(IntVT.getSimpleVT(), VT, ISD::SINT_TO_FP, IntegerReg,
435                           /*Kill=*/false);
436      }
437    }
438  } else if (const auto *Op = dyn_cast<Operator>(V)) {
439    if (!selectOperator(Op, Op->getOpcode()))
440      if (!isa<Instruction>(Op) ||
441          !fastSelectInstruction(cast<Instruction>(Op)))
442        return 0;
443    Reg = lookUpRegForValue(Op);
444  } else if (isa<UndefValue>(V)) {
445    Reg = createResultReg(TLI.getRegClassFor(VT));
446    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
447            TII.get(TargetOpcode::IMPLICIT_DEF), Reg);
448  }
449  return Reg;
450}
451
452/// Helper for getRegForValue. This function is called when the value isn't
453/// already available in a register and must be materialized with new
454/// instructions.
455unsigned FastISel::materializeRegForValue(const Value *V, MVT VT) {
456  unsigned Reg = 0;
457  // Give the target-specific code a try first.
458  if (isa<Constant>(V))
459    Reg = fastMaterializeConstant(cast<Constant>(V));
460
461  // If target-specific code couldn't or didn't want to handle the value, then
462  // give target-independent code a try.
463  if (!Reg)
464    Reg = materializeConstant(V, VT);
465
466  // Don't cache constant materializations in the general ValueMap.
467  // To do so would require tracking what uses they dominate.
468  if (Reg) {
469    LocalValueMap[V] = Reg;
470    LastLocalValue = MRI.getVRegDef(Reg);
471  }
472  return Reg;
473}
474
475unsigned FastISel::lookUpRegForValue(const Value *V) {
476  // Look up the value to see if we already have a register for it. We
477  // cache values defined by Instructions across blocks, and other values
478  // only locally. This is because Instructions already have the SSA
479  // def-dominates-use requirement enforced.
480  DenseMap<const Value *, unsigned>::iterator I = FuncInfo.ValueMap.find(V);
481  if (I != FuncInfo.ValueMap.end())
482    return I->second;
483  return LocalValueMap[V];
484}
485
486void FastISel::updateValueMap(const Value *I, unsigned Reg, unsigned NumRegs) {
487  if (!isa<Instruction>(I)) {
488    LocalValueMap[I] = Reg;
489    return;
490  }
491
492  unsigned &AssignedReg = FuncInfo.ValueMap[I];
493  if (AssignedReg == 0)
494    // Use the new register.
495    AssignedReg = Reg;
496  else if (Reg != AssignedReg) {
497    // Arrange for uses of AssignedReg to be replaced by uses of Reg.
498    for (unsigned i = 0; i < NumRegs; i++) {
499      FuncInfo.RegFixups[AssignedReg + i] = Reg + i;
500      FuncInfo.RegsWithFixups.insert(Reg + i);
501    }
502
503    AssignedReg = Reg;
504  }
505}
506
507std::pair<unsigned, bool> FastISel::getRegForGEPIndex(const Value *Idx) {
508  unsigned IdxN = getRegForValue(Idx);
509  if (IdxN == 0)
510    // Unhandled operand. Halt "fast" selection and bail.
511    return std::pair<unsigned, bool>(0, false);
512
513  bool IdxNIsKill = hasTrivialKill(Idx);
514
515  // If the index is smaller or larger than intptr_t, truncate or extend it.
516  MVT PtrVT = TLI.getPointerTy(DL);
517  EVT IdxVT = EVT::getEVT(Idx->getType(), /*HandleUnknown=*/false);
518  if (IdxVT.bitsLT(PtrVT)) {
519    IdxN = fastEmit_r(IdxVT.getSimpleVT(), PtrVT, ISD::SIGN_EXTEND, IdxN,
520                      IdxNIsKill);
521    IdxNIsKill = true;
522  } else if (IdxVT.bitsGT(PtrVT)) {
523    IdxN =
524        fastEmit_r(IdxVT.getSimpleVT(), PtrVT, ISD::TRUNCATE, IdxN, IdxNIsKill);
525    IdxNIsKill = true;
526  }
527  return std::pair<unsigned, bool>(IdxN, IdxNIsKill);
528}
529
530void FastISel::recomputeInsertPt() {
531  if (getLastLocalValue()) {
532    FuncInfo.InsertPt = getLastLocalValue();
533    FuncInfo.MBB = FuncInfo.InsertPt->getParent();
534    ++FuncInfo.InsertPt;
535  } else
536    FuncInfo.InsertPt = FuncInfo.MBB->getFirstNonPHI();
537
538  // Now skip past any EH_LABELs, which must remain at the beginning.
539  while (FuncInfo.InsertPt != FuncInfo.MBB->end() &&
540         FuncInfo.InsertPt->getOpcode() == TargetOpcode::EH_LABEL)
541    ++FuncInfo.InsertPt;
542}
543
544void FastISel::removeDeadCode(MachineBasicBlock::iterator I,
545                              MachineBasicBlock::iterator E) {
546  assert(I.isValid() && E.isValid() && std::distance(I, E) > 0 &&
547         "Invalid iterator!");
548  while (I != E) {
549    if (LastFlushPoint == I)
550      LastFlushPoint = E;
551    if (SavedInsertPt == I)
552      SavedInsertPt = E;
553    if (EmitStartPt == I)
554      EmitStartPt = E.isValid() ? &*E : nullptr;
555    if (LastLocalValue == I)
556      LastLocalValue = E.isValid() ? &*E : nullptr;
557
558    MachineInstr *Dead = &*I;
559    ++I;
560    Dead->eraseFromParent();
561    ++NumFastIselDead;
562  }
563  recomputeInsertPt();
564}
565
566FastISel::SavePoint FastISel::enterLocalValueArea() {
567  MachineBasicBlock::iterator OldInsertPt = FuncInfo.InsertPt;
568  DebugLoc OldDL = DbgLoc;
569  recomputeInsertPt();
570  DbgLoc = DebugLoc();
571  SavePoint SP = {OldInsertPt, OldDL};
572  return SP;
573}
574
575void FastISel::leaveLocalValueArea(SavePoint OldInsertPt) {
576  if (FuncInfo.InsertPt != FuncInfo.MBB->begin())
577    LastLocalValue = &*std::prev(FuncInfo.InsertPt);
578
579  // Restore the previous insert position.
580  FuncInfo.InsertPt = OldInsertPt.InsertPt;
581  DbgLoc = OldInsertPt.DL;
582}
583
584bool FastISel::selectBinaryOp(const User *I, unsigned ISDOpcode) {
585  EVT VT = EVT::getEVT(I->getType(), /*HandleUnknown=*/true);
586  if (VT == MVT::Other || !VT.isSimple())
587    // Unhandled type. Halt "fast" selection and bail.
588    return false;
589
590  // We only handle legal types. For example, on x86-32 the instruction
591  // selector contains all of the 64-bit instructions from x86-64,
592  // under the assumption that i64 won't be used if the target doesn't
593  // support it.
594  if (!TLI.isTypeLegal(VT)) {
595    // MVT::i1 is special. Allow AND, OR, or XOR because they
596    // don't require additional zeroing, which makes them easy.
597    if (VT == MVT::i1 && (ISDOpcode == ISD::AND || ISDOpcode == ISD::OR ||
598                          ISDOpcode == ISD::XOR))
599      VT = TLI.getTypeToTransformTo(I->getContext(), VT);
600    else
601      return false;
602  }
603
604  // Check if the first operand is a constant, and handle it as "ri".  At -O0,
605  // we don't have anything that canonicalizes operand order.
606  if (const auto *CI = dyn_cast<ConstantInt>(I->getOperand(0)))
607    if (isa<Instruction>(I) && cast<Instruction>(I)->isCommutative()) {
608      unsigned Op1 = getRegForValue(I->getOperand(1));
609      if (!Op1)
610        return false;
611      bool Op1IsKill = hasTrivialKill(I->getOperand(1));
612
613      unsigned ResultReg =
614          fastEmit_ri_(VT.getSimpleVT(), ISDOpcode, Op1, Op1IsKill,
615                       CI->getZExtValue(), VT.getSimpleVT());
616      if (!ResultReg)
617        return false;
618
619      // We successfully emitted code for the given LLVM Instruction.
620      updateValueMap(I, ResultReg);
621      return true;
622    }
623
624  unsigned Op0 = getRegForValue(I->getOperand(0));
625  if (!Op0) // Unhandled operand. Halt "fast" selection and bail.
626    return false;
627  bool Op0IsKill = hasTrivialKill(I->getOperand(0));
628
629  // Check if the second operand is a constant and handle it appropriately.
630  if (const auto *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
631    uint64_t Imm = CI->getSExtValue();
632
633    // Transform "sdiv exact X, 8" -> "sra X, 3".
634    if (ISDOpcode == ISD::SDIV && isa<BinaryOperator>(I) &&
635        cast<BinaryOperator>(I)->isExact() && isPowerOf2_64(Imm)) {
636      Imm = Log2_64(Imm);
637      ISDOpcode = ISD::SRA;
638    }
639
640    // Transform "urem x, pow2" -> "and x, pow2-1".
641    if (ISDOpcode == ISD::UREM && isa<BinaryOperator>(I) &&
642        isPowerOf2_64(Imm)) {
643      --Imm;
644      ISDOpcode = ISD::AND;
645    }
646
647    unsigned ResultReg = fastEmit_ri_(VT.getSimpleVT(), ISDOpcode, Op0,
648                                      Op0IsKill, Imm, VT.getSimpleVT());
649    if (!ResultReg)
650      return false;
651
652    // We successfully emitted code for the given LLVM Instruction.
653    updateValueMap(I, ResultReg);
654    return true;
655  }
656
657  unsigned Op1 = getRegForValue(I->getOperand(1));
658  if (!Op1) // Unhandled operand. Halt "fast" selection and bail.
659    return false;
660  bool Op1IsKill = hasTrivialKill(I->getOperand(1));
661
662  // Now we have both operands in registers. Emit the instruction.
663  unsigned ResultReg = fastEmit_rr(VT.getSimpleVT(), VT.getSimpleVT(),
664                                   ISDOpcode, Op0, Op0IsKill, Op1, Op1IsKill);
665  if (!ResultReg)
666    // Target-specific code wasn't able to find a machine opcode for
667    // the given ISD opcode and type. Halt "fast" selection and bail.
668    return false;
669
670  // We successfully emitted code for the given LLVM Instruction.
671  updateValueMap(I, ResultReg);
672  return true;
673}
674
675bool FastISel::selectGetElementPtr(const User *I) {
676  unsigned N = getRegForValue(I->getOperand(0));
677  if (!N) // Unhandled operand. Halt "fast" selection and bail.
678    return false;
679  bool NIsKill = hasTrivialKill(I->getOperand(0));
680
681  // Keep a running tab of the total offset to coalesce multiple N = N + Offset
682  // into a single N = N + TotalOffset.
683  uint64_t TotalOffs = 0;
684  // FIXME: What's a good SWAG number for MaxOffs?
685  uint64_t MaxOffs = 2048;
686  MVT VT = TLI.getPointerTy(DL);
687  for (gep_type_iterator GTI = gep_type_begin(I), E = gep_type_end(I);
688       GTI != E; ++GTI) {
689    const Value *Idx = GTI.getOperand();
690    if (StructType *StTy = GTI.getStructTypeOrNull()) {
691      uint64_t Field = cast<ConstantInt>(Idx)->getZExtValue();
692      if (Field) {
693        // N = N + Offset
694        TotalOffs += DL.getStructLayout(StTy)->getElementOffset(Field);
695        if (TotalOffs >= MaxOffs) {
696          N = fastEmit_ri_(VT, ISD::ADD, N, NIsKill, TotalOffs, VT);
697          if (!N) // Unhandled operand. Halt "fast" selection and bail.
698            return false;
699          NIsKill = true;
700          TotalOffs = 0;
701        }
702      }
703    } else {
704      Type *Ty = GTI.getIndexedType();
705
706      // If this is a constant subscript, handle it quickly.
707      if (const auto *CI = dyn_cast<ConstantInt>(Idx)) {
708        if (CI->isZero())
709          continue;
710        // N = N + Offset
711        uint64_t IdxN = CI->getValue().sextOrTrunc(64).getSExtValue();
712        TotalOffs += DL.getTypeAllocSize(Ty) * IdxN;
713        if (TotalOffs >= MaxOffs) {
714          N = fastEmit_ri_(VT, ISD::ADD, N, NIsKill, TotalOffs, VT);
715          if (!N) // Unhandled operand. Halt "fast" selection and bail.
716            return false;
717          NIsKill = true;
718          TotalOffs = 0;
719        }
720        continue;
721      }
722      if (TotalOffs) {
723        N = fastEmit_ri_(VT, ISD::ADD, N, NIsKill, TotalOffs, VT);
724        if (!N) // Unhandled operand. Halt "fast" selection and bail.
725          return false;
726        NIsKill = true;
727        TotalOffs = 0;
728      }
729
730      // N = N + Idx * ElementSize;
731      uint64_t ElementSize = DL.getTypeAllocSize(Ty);
732      std::pair<unsigned, bool> Pair = getRegForGEPIndex(Idx);
733      unsigned IdxN = Pair.first;
734      bool IdxNIsKill = Pair.second;
735      if (!IdxN) // Unhandled operand. Halt "fast" selection and bail.
736        return false;
737
738      if (ElementSize != 1) {
739        IdxN = fastEmit_ri_(VT, ISD::MUL, IdxN, IdxNIsKill, ElementSize, VT);
740        if (!IdxN) // Unhandled operand. Halt "fast" selection and bail.
741          return false;
742        IdxNIsKill = true;
743      }
744      N = fastEmit_rr(VT, VT, ISD::ADD, N, NIsKill, IdxN, IdxNIsKill);
745      if (!N) // Unhandled operand. Halt "fast" selection and bail.
746        return false;
747    }
748  }
749  if (TotalOffs) {
750    N = fastEmit_ri_(VT, ISD::ADD, N, NIsKill, TotalOffs, VT);
751    if (!N) // Unhandled operand. Halt "fast" selection and bail.
752      return false;
753  }
754
755  // We successfully emitted code for the given LLVM Instruction.
756  updateValueMap(I, N);
757  return true;
758}
759
760bool FastISel::addStackMapLiveVars(SmallVectorImpl<MachineOperand> &Ops,
761                                   const CallInst *CI, unsigned StartIdx) {
762  for (unsigned i = StartIdx, e = CI->getNumArgOperands(); i != e; ++i) {
763    Value *Val = CI->getArgOperand(i);
764    // Check for constants and encode them with a StackMaps::ConstantOp prefix.
765    if (const auto *C = dyn_cast<ConstantInt>(Val)) {
766      Ops.push_back(MachineOperand::CreateImm(StackMaps::ConstantOp));
767      Ops.push_back(MachineOperand::CreateImm(C->getSExtValue()));
768    } else if (isa<ConstantPointerNull>(Val)) {
769      Ops.push_back(MachineOperand::CreateImm(StackMaps::ConstantOp));
770      Ops.push_back(MachineOperand::CreateImm(0));
771    } else if (auto *AI = dyn_cast<AllocaInst>(Val)) {
772      // Values coming from a stack location also require a special encoding,
773      // but that is added later on by the target specific frame index
774      // elimination implementation.
775      auto SI = FuncInfo.StaticAllocaMap.find(AI);
776      if (SI != FuncInfo.StaticAllocaMap.end())
777        Ops.push_back(MachineOperand::CreateFI(SI->second));
778      else
779        return false;
780    } else {
781      unsigned Reg = getRegForValue(Val);
782      if (!Reg)
783        return false;
784      Ops.push_back(MachineOperand::CreateReg(Reg, /*isDef=*/false));
785    }
786  }
787  return true;
788}
789
790bool FastISel::selectStackmap(const CallInst *I) {
791  // void @llvm.experimental.stackmap(i64 <id>, i32 <numShadowBytes>,
792  //                                  [live variables...])
793  assert(I->getCalledFunction()->getReturnType()->isVoidTy() &&
794         "Stackmap cannot return a value.");
795
796  // The stackmap intrinsic only records the live variables (the arguments
797  // passed to it) and emits NOPS (if requested). Unlike the patchpoint
798  // intrinsic, this won't be lowered to a function call. This means we don't
799  // have to worry about calling conventions and target-specific lowering code.
800  // Instead we perform the call lowering right here.
801  //
802  // CALLSEQ_START(0, 0...)
803  // STACKMAP(id, nbytes, ...)
804  // CALLSEQ_END(0, 0)
805  //
806  SmallVector<MachineOperand, 32> Ops;
807
808  // Add the <id> and <numBytes> constants.
809  assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::IDPos)) &&
810         "Expected a constant integer.");
811  const auto *ID = cast<ConstantInt>(I->getOperand(PatchPointOpers::IDPos));
812  Ops.push_back(MachineOperand::CreateImm(ID->getZExtValue()));
813
814  assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::NBytesPos)) &&
815         "Expected a constant integer.");
816  const auto *NumBytes =
817      cast<ConstantInt>(I->getOperand(PatchPointOpers::NBytesPos));
818  Ops.push_back(MachineOperand::CreateImm(NumBytes->getZExtValue()));
819
820  // Push live variables for the stack map (skipping the first two arguments
821  // <id> and <numBytes>).
822  if (!addStackMapLiveVars(Ops, I, 2))
823    return false;
824
825  // We are not adding any register mask info here, because the stackmap doesn't
826  // clobber anything.
827
828  // Add scratch registers as implicit def and early clobber.
829  CallingConv::ID CC = I->getCallingConv();
830  const MCPhysReg *ScratchRegs = TLI.getScratchRegisters(CC);
831  for (unsigned i = 0; ScratchRegs[i]; ++i)
832    Ops.push_back(MachineOperand::CreateReg(
833        ScratchRegs[i], /*isDef=*/true, /*isImp=*/true, /*isKill=*/false,
834        /*isDead=*/false, /*isUndef=*/false, /*isEarlyClobber=*/true));
835
836  // Issue CALLSEQ_START
837  unsigned AdjStackDown = TII.getCallFrameSetupOpcode();
838  auto Builder =
839      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AdjStackDown));
840  const MCInstrDesc &MCID = Builder.getInstr()->getDesc();
841  for (unsigned I = 0, E = MCID.getNumOperands(); I < E; ++I)
842    Builder.addImm(0);
843
844  // Issue STACKMAP.
845  MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
846                                    TII.get(TargetOpcode::STACKMAP));
847  for (auto const &MO : Ops)
848    MIB.add(MO);
849
850  // Issue CALLSEQ_END
851  unsigned AdjStackUp = TII.getCallFrameDestroyOpcode();
852  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AdjStackUp))
853      .addImm(0)
854      .addImm(0);
855
856  // Inform the Frame Information that we have a stackmap in this function.
857  FuncInfo.MF->getFrameInfo().setHasStackMap();
858
859  return true;
860}
861
862/// Lower an argument list according to the target calling convention.
863///
864/// This is a helper for lowering intrinsics that follow a target calling
865/// convention or require stack pointer adjustment. Only a subset of the
866/// intrinsic's operands need to participate in the calling convention.
867bool FastISel::lowerCallOperands(const CallInst *CI, unsigned ArgIdx,
868                                 unsigned NumArgs, const Value *Callee,
869                                 bool ForceRetVoidTy, CallLoweringInfo &CLI) {
870  ArgListTy Args;
871  Args.reserve(NumArgs);
872
873  // Populate the argument list.
874  ImmutableCallSite CS(CI);
875  for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs; ArgI != ArgE; ++ArgI) {
876    Value *V = CI->getOperand(ArgI);
877
878    assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic.");
879
880    ArgListEntry Entry;
881    Entry.Val = V;
882    Entry.Ty = V->getType();
883    Entry.setAttributes(&CS, ArgI);
884    Args.push_back(Entry);
885  }
886
887  Type *RetTy = ForceRetVoidTy ? Type::getVoidTy(CI->getType()->getContext())
888                               : CI->getType();
889  CLI.setCallee(CI->getCallingConv(), RetTy, Callee, std::move(Args), NumArgs);
890
891  return lowerCallTo(CLI);
892}
893
894FastISel::CallLoweringInfo &FastISel::CallLoweringInfo::setCallee(
895    const DataLayout &DL, MCContext &Ctx, CallingConv::ID CC, Type *ResultTy,
896    StringRef Target, ArgListTy &&ArgsList, unsigned FixedArgs) {
897  SmallString<32> MangledName;
898  Mangler::getNameWithPrefix(MangledName, Target, DL);
899  MCSymbol *Sym = Ctx.getOrCreateSymbol(MangledName);
900  return setCallee(CC, ResultTy, Sym, std::move(ArgsList), FixedArgs);
901}
902
903bool FastISel::selectPatchpoint(const CallInst *I) {
904  // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>,
905  //                                                 i32 <numBytes>,
906  //                                                 i8* <target>,
907  //                                                 i32 <numArgs>,
908  //                                                 [Args...],
909  //                                                 [live variables...])
910  CallingConv::ID CC = I->getCallingConv();
911  bool IsAnyRegCC = CC == CallingConv::AnyReg;
912  bool HasDef = !I->getType()->isVoidTy();
913  Value *Callee = I->getOperand(PatchPointOpers::TargetPos)->stripPointerCasts();
914
915  // Get the real number of arguments participating in the call <numArgs>
916  assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::NArgPos)) &&
917         "Expected a constant integer.");
918  const auto *NumArgsVal =
919      cast<ConstantInt>(I->getOperand(PatchPointOpers::NArgPos));
920  unsigned NumArgs = NumArgsVal->getZExtValue();
921
922  // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs>
923  // This includes all meta-operands up to but not including CC.
924  unsigned NumMetaOpers = PatchPointOpers::CCPos;
925  assert(I->getNumArgOperands() >= NumMetaOpers + NumArgs &&
926         "Not enough arguments provided to the patchpoint intrinsic");
927
928  // For AnyRegCC the arguments are lowered later on manually.
929  unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs;
930  CallLoweringInfo CLI;
931  CLI.setIsPatchPoint();
932  if (!lowerCallOperands(I, NumMetaOpers, NumCallArgs, Callee, IsAnyRegCC, CLI))
933    return false;
934
935  assert(CLI.Call && "No call instruction specified.");
936
937  SmallVector<MachineOperand, 32> Ops;
938
939  // Add an explicit result reg if we use the anyreg calling convention.
940  if (IsAnyRegCC && HasDef) {
941    assert(CLI.NumResultRegs == 0 && "Unexpected result register.");
942    CLI.ResultReg = createResultReg(TLI.getRegClassFor(MVT::i64));
943    CLI.NumResultRegs = 1;
944    Ops.push_back(MachineOperand::CreateReg(CLI.ResultReg, /*isDef=*/true));
945  }
946
947  // Add the <id> and <numBytes> constants.
948  assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::IDPos)) &&
949         "Expected a constant integer.");
950  const auto *ID = cast<ConstantInt>(I->getOperand(PatchPointOpers::IDPos));
951  Ops.push_back(MachineOperand::CreateImm(ID->getZExtValue()));
952
953  assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::NBytesPos)) &&
954         "Expected a constant integer.");
955  const auto *NumBytes =
956      cast<ConstantInt>(I->getOperand(PatchPointOpers::NBytesPos));
957  Ops.push_back(MachineOperand::CreateImm(NumBytes->getZExtValue()));
958
959  // Add the call target.
960  if (const auto *C = dyn_cast<IntToPtrInst>(Callee)) {
961    uint64_t CalleeConstAddr =
962      cast<ConstantInt>(C->getOperand(0))->getZExtValue();
963    Ops.push_back(MachineOperand::CreateImm(CalleeConstAddr));
964  } else if (const auto *C = dyn_cast<ConstantExpr>(Callee)) {
965    if (C->getOpcode() == Instruction::IntToPtr) {
966      uint64_t CalleeConstAddr =
967        cast<ConstantInt>(C->getOperand(0))->getZExtValue();
968      Ops.push_back(MachineOperand::CreateImm(CalleeConstAddr));
969    } else
970      llvm_unreachable("Unsupported ConstantExpr.");
971  } else if (const auto *GV = dyn_cast<GlobalValue>(Callee)) {
972    Ops.push_back(MachineOperand::CreateGA(GV, 0));
973  } else if (isa<ConstantPointerNull>(Callee))
974    Ops.push_back(MachineOperand::CreateImm(0));
975  else
976    llvm_unreachable("Unsupported callee address.");
977
978  // Adjust <numArgs> to account for any arguments that have been passed on
979  // the stack instead.
980  unsigned NumCallRegArgs = IsAnyRegCC ? NumArgs : CLI.OutRegs.size();
981  Ops.push_back(MachineOperand::CreateImm(NumCallRegArgs));
982
983  // Add the calling convention
984  Ops.push_back(MachineOperand::CreateImm((unsigned)CC));
985
986  // Add the arguments we omitted previously. The register allocator should
987  // place these in any free register.
988  if (IsAnyRegCC) {
989    for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) {
990      unsigned Reg = getRegForValue(I->getArgOperand(i));
991      if (!Reg)
992        return false;
993      Ops.push_back(MachineOperand::CreateReg(Reg, /*isDef=*/false));
994    }
995  }
996
997  // Push the arguments from the call instruction.
998  for (auto Reg : CLI.OutRegs)
999    Ops.push_back(MachineOperand::CreateReg(Reg, /*isDef=*/false));
1000
1001  // Push live variables for the stack map.
1002  if (!addStackMapLiveVars(Ops, I, NumMetaOpers + NumArgs))
1003    return false;
1004
1005  // Push the register mask info.
1006  Ops.push_back(MachineOperand::CreateRegMask(
1007      TRI.getCallPreservedMask(*FuncInfo.MF, CC)));
1008
1009  // Add scratch registers as implicit def and early clobber.
1010  const MCPhysReg *ScratchRegs = TLI.getScratchRegisters(CC);
1011  for (unsigned i = 0; ScratchRegs[i]; ++i)
1012    Ops.push_back(MachineOperand::CreateReg(
1013        ScratchRegs[i], /*isDef=*/true, /*isImp=*/true, /*isKill=*/false,
1014        /*isDead=*/false, /*isUndef=*/false, /*isEarlyClobber=*/true));
1015
1016  // Add implicit defs (return values).
1017  for (auto Reg : CLI.InRegs)
1018    Ops.push_back(MachineOperand::CreateReg(Reg, /*isDef=*/true,
1019                                            /*isImp=*/true));
1020
1021  // Insert the patchpoint instruction before the call generated by the target.
1022  MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, CLI.Call, DbgLoc,
1023                                    TII.get(TargetOpcode::PATCHPOINT));
1024
1025  for (auto &MO : Ops)
1026    MIB.add(MO);
1027
1028  MIB->setPhysRegsDeadExcept(CLI.InRegs, TRI);
1029
1030  // Delete the original call instruction.
1031  CLI.Call->eraseFromParent();
1032
1033  // Inform the Frame Information that we have a patchpoint in this function.
1034  FuncInfo.MF->getFrameInfo().setHasPatchPoint();
1035
1036  if (CLI.NumResultRegs)
1037    updateValueMap(I, CLI.ResultReg, CLI.NumResultRegs);
1038  return true;
1039}
1040
1041bool FastISel::selectXRayCustomEvent(const CallInst *I) {
1042  const auto &Triple = TM.getTargetTriple();
1043  if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux())
1044    return true; // don't do anything to this instruction.
1045  SmallVector<MachineOperand, 8> Ops;
1046  Ops.push_back(MachineOperand::CreateReg(getRegForValue(I->getArgOperand(0)),
1047                                          /*isDef=*/false));
1048  Ops.push_back(MachineOperand::CreateReg(getRegForValue(I->getArgOperand(1)),
1049                                          /*isDef=*/false));
1050  MachineInstrBuilder MIB =
1051      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1052              TII.get(TargetOpcode::PATCHABLE_EVENT_CALL));
1053  for (auto &MO : Ops)
1054    MIB.add(MO);
1055
1056  // Insert the Patchable Event Call instruction, that gets lowered properly.
1057  return true;
1058}
1059
1060bool FastISel::selectXRayTypedEvent(const CallInst *I) {
1061  const auto &Triple = TM.getTargetTriple();
1062  if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux())
1063    return true; // don't do anything to this instruction.
1064  SmallVector<MachineOperand, 8> Ops;
1065  Ops.push_back(MachineOperand::CreateReg(getRegForValue(I->getArgOperand(0)),
1066                                          /*isDef=*/false));
1067  Ops.push_back(MachineOperand::CreateReg(getRegForValue(I->getArgOperand(1)),
1068                                          /*isDef=*/false));
1069  Ops.push_back(MachineOperand::CreateReg(getRegForValue(I->getArgOperand(2)),
1070                                          /*isDef=*/false));
1071  MachineInstrBuilder MIB =
1072      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1073              TII.get(TargetOpcode::PATCHABLE_TYPED_EVENT_CALL));
1074  for (auto &MO : Ops)
1075    MIB.add(MO);
1076
1077  // Insert the Patchable Typed Event Call instruction, that gets lowered properly.
1078  return true;
1079}
1080
1081/// Returns an AttributeList representing the attributes applied to the return
1082/// value of the given call.
1083static AttributeList getReturnAttrs(FastISel::CallLoweringInfo &CLI) {
1084  SmallVector<Attribute::AttrKind, 2> Attrs;
1085  if (CLI.RetSExt)
1086    Attrs.push_back(Attribute::SExt);
1087  if (CLI.RetZExt)
1088    Attrs.push_back(Attribute::ZExt);
1089  if (CLI.IsInReg)
1090    Attrs.push_back(Attribute::InReg);
1091
1092  return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex,
1093                            Attrs);
1094}
1095
1096bool FastISel::lowerCallTo(const CallInst *CI, const char *SymName,
1097                           unsigned NumArgs) {
1098  MCContext &Ctx = MF->getContext();
1099  SmallString<32> MangledName;
1100  Mangler::getNameWithPrefix(MangledName, SymName, DL);
1101  MCSymbol *Sym = Ctx.getOrCreateSymbol(MangledName);
1102  return lowerCallTo(CI, Sym, NumArgs);
1103}
1104
1105bool FastISel::lowerCallTo(const CallInst *CI, MCSymbol *Symbol,
1106                           unsigned NumArgs) {
1107  ImmutableCallSite CS(CI);
1108
1109  FunctionType *FTy = CS.getFunctionType();
1110  Type *RetTy = CS.getType();
1111
1112  ArgListTy Args;
1113  Args.reserve(NumArgs);
1114
1115  // Populate the argument list.
1116  // Attributes for args start at offset 1, after the return attribute.
1117  for (unsigned ArgI = 0; ArgI != NumArgs; ++ArgI) {
1118    Value *V = CI->getOperand(ArgI);
1119
1120    assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic.");
1121
1122    ArgListEntry Entry;
1123    Entry.Val = V;
1124    Entry.Ty = V->getType();
1125    Entry.setAttributes(&CS, ArgI);
1126    Args.push_back(Entry);
1127  }
1128  TLI.markLibCallAttributes(MF, CS.getCallingConv(), Args);
1129
1130  CallLoweringInfo CLI;
1131  CLI.setCallee(RetTy, FTy, Symbol, std::move(Args), CS, NumArgs);
1132
1133  return lowerCallTo(CLI);
1134}
1135
1136bool FastISel::lowerCallTo(CallLoweringInfo &CLI) {
1137  // Handle the incoming return values from the call.
1138  CLI.clearIns();
1139  SmallVector<EVT, 4> RetTys;
1140  ComputeValueVTs(TLI, DL, CLI.RetTy, RetTys);
1141
1142  SmallVector<ISD::OutputArg, 4> Outs;
1143  GetReturnInfo(CLI.CallConv, CLI.RetTy, getReturnAttrs(CLI), Outs, TLI, DL);
1144
1145  bool CanLowerReturn = TLI.CanLowerReturn(
1146      CLI.CallConv, *FuncInfo.MF, CLI.IsVarArg, Outs, CLI.RetTy->getContext());
1147
1148  // FIXME: sret demotion isn't supported yet - bail out.
1149  if (!CanLowerReturn)
1150    return false;
1151
1152  for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
1153    EVT VT = RetTys[I];
1154    MVT RegisterVT = TLI.getRegisterType(CLI.RetTy->getContext(), VT);
1155    unsigned NumRegs = TLI.getNumRegisters(CLI.RetTy->getContext(), VT);
1156    for (unsigned i = 0; i != NumRegs; ++i) {
1157      ISD::InputArg MyFlags;
1158      MyFlags.VT = RegisterVT;
1159      MyFlags.ArgVT = VT;
1160      MyFlags.Used = CLI.IsReturnValueUsed;
1161      if (CLI.RetSExt)
1162        MyFlags.Flags.setSExt();
1163      if (CLI.RetZExt)
1164        MyFlags.Flags.setZExt();
1165      if (CLI.IsInReg)
1166        MyFlags.Flags.setInReg();
1167      CLI.Ins.push_back(MyFlags);
1168    }
1169  }
1170
1171  // Handle all of the outgoing arguments.
1172  CLI.clearOuts();
1173  for (auto &Arg : CLI.getArgs()) {
1174    Type *FinalType = Arg.Ty;
1175    if (Arg.IsByVal)
1176      FinalType = cast<PointerType>(Arg.Ty)->getElementType();
1177    bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters(
1178        FinalType, CLI.CallConv, CLI.IsVarArg);
1179
1180    ISD::ArgFlagsTy Flags;
1181    if (Arg.IsZExt)
1182      Flags.setZExt();
1183    if (Arg.IsSExt)
1184      Flags.setSExt();
1185    if (Arg.IsInReg)
1186      Flags.setInReg();
1187    if (Arg.IsSRet)
1188      Flags.setSRet();
1189    if (Arg.IsSwiftSelf)
1190      Flags.setSwiftSelf();
1191    if (Arg.IsSwiftError)
1192      Flags.setSwiftError();
1193    if (Arg.IsCFGuardTarget)
1194      Flags.setCFGuardTarget();
1195    if (Arg.IsByVal)
1196      Flags.setByVal();
1197    if (Arg.IsInAlloca) {
1198      Flags.setInAlloca();
1199      // Set the byval flag for CCAssignFn callbacks that don't know about
1200      // inalloca. This way we can know how many bytes we should've allocated
1201      // and how many bytes a callee cleanup function will pop.  If we port
1202      // inalloca to more targets, we'll have to add custom inalloca handling in
1203      // the various CC lowering callbacks.
1204      Flags.setByVal();
1205    }
1206    if (Arg.IsByVal || Arg.IsInAlloca) {
1207      PointerType *Ty = cast<PointerType>(Arg.Ty);
1208      Type *ElementTy = Ty->getElementType();
1209      unsigned FrameSize =
1210          DL.getTypeAllocSize(Arg.ByValType ? Arg.ByValType : ElementTy);
1211
1212      // For ByVal, alignment should come from FE. BE will guess if this info
1213      // is not there, but there are cases it cannot get right.
1214      unsigned FrameAlign = Arg.Alignment;
1215      if (!FrameAlign)
1216        FrameAlign = TLI.getByValTypeAlignment(ElementTy, DL);
1217      Flags.setByValSize(FrameSize);
1218      Flags.setByValAlign(Align(FrameAlign));
1219    }
1220    if (Arg.IsNest)
1221      Flags.setNest();
1222    if (NeedsRegBlock)
1223      Flags.setInConsecutiveRegs();
1224    Flags.setOrigAlign(Align(DL.getABITypeAlignment(Arg.Ty)));
1225
1226    CLI.OutVals.push_back(Arg.Val);
1227    CLI.OutFlags.push_back(Flags);
1228  }
1229
1230  if (!fastLowerCall(CLI))
1231    return false;
1232
1233  // Set all unused physreg defs as dead.
1234  assert(CLI.Call && "No call instruction specified.");
1235  CLI.Call->setPhysRegsDeadExcept(CLI.InRegs, TRI);
1236
1237  if (CLI.NumResultRegs && CLI.CS)
1238    updateValueMap(CLI.CS->getInstruction(), CLI.ResultReg, CLI.NumResultRegs);
1239
1240  // Set labels for heapallocsite call.
1241  if (CLI.CS)
1242    if (MDNode *MD = CLI.CS->getInstruction()->getMetadata("heapallocsite"))
1243      CLI.Call->setHeapAllocMarker(*MF, MD);
1244
1245  return true;
1246}
1247
1248bool FastISel::lowerCall(const CallInst *CI) {
1249  ImmutableCallSite CS(CI);
1250
1251  FunctionType *FuncTy = CS.getFunctionType();
1252  Type *RetTy = CS.getType();
1253
1254  ArgListTy Args;
1255  ArgListEntry Entry;
1256  Args.reserve(CS.arg_size());
1257
1258  for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
1259       i != e; ++i) {
1260    Value *V = *i;
1261
1262    // Skip empty types
1263    if (V->getType()->isEmptyTy())
1264      continue;
1265
1266    Entry.Val = V;
1267    Entry.Ty = V->getType();
1268
1269    // Skip the first return-type Attribute to get to params.
1270    Entry.setAttributes(&CS, i - CS.arg_begin());
1271    Args.push_back(Entry);
1272  }
1273
1274  // Check if target-independent constraints permit a tail call here.
1275  // Target-dependent constraints are checked within fastLowerCall.
1276  bool IsTailCall = CI->isTailCall();
1277  if (IsTailCall && !isInTailCallPosition(CS, TM))
1278    IsTailCall = false;
1279  if (IsTailCall && MF->getFunction()
1280                            .getFnAttribute("disable-tail-calls")
1281                            .getValueAsString() == "true")
1282    IsTailCall = false;
1283
1284  CallLoweringInfo CLI;
1285  CLI.setCallee(RetTy, FuncTy, CI->getCalledValue(), std::move(Args), CS)
1286      .setTailCall(IsTailCall);
1287
1288  return lowerCallTo(CLI);
1289}
1290
1291bool FastISel::selectCall(const User *I) {
1292  const CallInst *Call = cast<CallInst>(I);
1293
1294  // Handle simple inline asms.
1295  if (const InlineAsm *IA = dyn_cast<InlineAsm>(Call->getCalledValue())) {
1296    // If the inline asm has side effects, then make sure that no local value
1297    // lives across by flushing the local value map.
1298    if (IA->hasSideEffects())
1299      flushLocalValueMap();
1300
1301    // Don't attempt to handle constraints.
1302    if (!IA->getConstraintString().empty())
1303      return false;
1304
1305    unsigned ExtraInfo = 0;
1306    if (IA->hasSideEffects())
1307      ExtraInfo |= InlineAsm::Extra_HasSideEffects;
1308    if (IA->isAlignStack())
1309      ExtraInfo |= InlineAsm::Extra_IsAlignStack;
1310    ExtraInfo |= IA->getDialect() * InlineAsm::Extra_AsmDialect;
1311
1312    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1313            TII.get(TargetOpcode::INLINEASM))
1314        .addExternalSymbol(IA->getAsmString().c_str())
1315        .addImm(ExtraInfo);
1316    return true;
1317  }
1318
1319  // Handle intrinsic function calls.
1320  if (const auto *II = dyn_cast<IntrinsicInst>(Call))
1321    return selectIntrinsicCall(II);
1322
1323  // Usually, it does not make sense to initialize a value,
1324  // make an unrelated function call and use the value, because
1325  // it tends to be spilled on the stack. So, we move the pointer
1326  // to the last local value to the beginning of the block, so that
1327  // all the values which have already been materialized,
1328  // appear after the call. It also makes sense to skip intrinsics
1329  // since they tend to be inlined.
1330  flushLocalValueMap();
1331
1332  return lowerCall(Call);
1333}
1334
1335bool FastISel::selectIntrinsicCall(const IntrinsicInst *II) {
1336  switch (II->getIntrinsicID()) {
1337  default:
1338    break;
1339  // At -O0 we don't care about the lifetime intrinsics.
1340  case Intrinsic::lifetime_start:
1341  case Intrinsic::lifetime_end:
1342  // The donothing intrinsic does, well, nothing.
1343  case Intrinsic::donothing:
1344  // Neither does the sideeffect intrinsic.
1345  case Intrinsic::sideeffect:
1346  // Neither does the assume intrinsic; it's also OK not to codegen its operand.
1347  case Intrinsic::assume:
1348    return true;
1349  case Intrinsic::dbg_declare: {
1350    const DbgDeclareInst *DI = cast<DbgDeclareInst>(II);
1351    assert(DI->getVariable() && "Missing variable");
1352    if (!FuncInfo.MF->getMMI().hasDebugInfo()) {
1353      LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
1354      return true;
1355    }
1356
1357    const Value *Address = DI->getAddress();
1358    if (!Address || isa<UndefValue>(Address)) {
1359      LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
1360      return true;
1361    }
1362
1363    // Byval arguments with frame indices were already handled after argument
1364    // lowering and before isel.
1365    const auto *Arg =
1366        dyn_cast<Argument>(Address->stripInBoundsConstantOffsets());
1367    if (Arg && FuncInfo.getArgumentFrameIndex(Arg) != INT_MAX)
1368      return true;
1369
1370    Optional<MachineOperand> Op;
1371    if (unsigned Reg = lookUpRegForValue(Address))
1372      Op = MachineOperand::CreateReg(Reg, false);
1373
1374    // If we have a VLA that has a "use" in a metadata node that's then used
1375    // here but it has no other uses, then we have a problem. E.g.,
1376    //
1377    //   int foo (const int *x) {
1378    //     char a[*x];
1379    //     return 0;
1380    //   }
1381    //
1382    // If we assign 'a' a vreg and fast isel later on has to use the selection
1383    // DAG isel, it will want to copy the value to the vreg. However, there are
1384    // no uses, which goes counter to what selection DAG isel expects.
1385    if (!Op && !Address->use_empty() && isa<Instruction>(Address) &&
1386        (!isa<AllocaInst>(Address) ||
1387         !FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(Address))))
1388      Op = MachineOperand::CreateReg(FuncInfo.InitializeRegForValue(Address),
1389                                     false);
1390
1391    if (Op) {
1392      assert(DI->getVariable()->isValidLocationForIntrinsic(DbgLoc) &&
1393             "Expected inlined-at fields to agree");
1394      // A dbg.declare describes the address of a source variable, so lower it
1395      // into an indirect DBG_VALUE.
1396      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1397              TII.get(TargetOpcode::DBG_VALUE), /*IsIndirect*/ true,
1398              *Op, DI->getVariable(), DI->getExpression());
1399    } else {
1400      // We can't yet handle anything else here because it would require
1401      // generating code, thus altering codegen because of debug info.
1402      LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
1403    }
1404    return true;
1405  }
1406  case Intrinsic::dbg_value: {
1407    // This form of DBG_VALUE is target-independent.
1408    const DbgValueInst *DI = cast<DbgValueInst>(II);
1409    const MCInstrDesc &II = TII.get(TargetOpcode::DBG_VALUE);
1410    const Value *V = DI->getValue();
1411    assert(DI->getVariable()->isValidLocationForIntrinsic(DbgLoc) &&
1412           "Expected inlined-at fields to agree");
1413    if (!V) {
1414      // Currently the optimizer can produce this; insert an undef to
1415      // help debugging.  Probably the optimizer should not do this.
1416      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, false, 0U,
1417              DI->getVariable(), DI->getExpression());
1418    } else if (const auto *CI = dyn_cast<ConstantInt>(V)) {
1419      if (CI->getBitWidth() > 64)
1420        BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
1421            .addCImm(CI)
1422            .addImm(0U)
1423            .addMetadata(DI->getVariable())
1424            .addMetadata(DI->getExpression());
1425      else
1426        BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
1427            .addImm(CI->getZExtValue())
1428            .addImm(0U)
1429            .addMetadata(DI->getVariable())
1430            .addMetadata(DI->getExpression());
1431    } else if (const auto *CF = dyn_cast<ConstantFP>(V)) {
1432      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
1433          .addFPImm(CF)
1434          .addImm(0U)
1435          .addMetadata(DI->getVariable())
1436          .addMetadata(DI->getExpression());
1437    } else if (unsigned Reg = lookUpRegForValue(V)) {
1438      // FIXME: This does not handle register-indirect values at offset 0.
1439      bool IsIndirect = false;
1440      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, IsIndirect, Reg,
1441              DI->getVariable(), DI->getExpression());
1442    } else {
1443      // We can't yet handle anything else here because it would require
1444      // generating code, thus altering codegen because of debug info.
1445      LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
1446    }
1447    return true;
1448  }
1449  case Intrinsic::dbg_label: {
1450    const DbgLabelInst *DI = cast<DbgLabelInst>(II);
1451    assert(DI->getLabel() && "Missing label");
1452    if (!FuncInfo.MF->getMMI().hasDebugInfo()) {
1453      LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
1454      return true;
1455    }
1456
1457    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1458            TII.get(TargetOpcode::DBG_LABEL)).addMetadata(DI->getLabel());
1459    return true;
1460  }
1461  case Intrinsic::objectsize:
1462    llvm_unreachable("llvm.objectsize.* should have been lowered already");
1463
1464  case Intrinsic::is_constant:
1465    llvm_unreachable("llvm.is.constant.* should have been lowered already");
1466
1467  case Intrinsic::launder_invariant_group:
1468  case Intrinsic::strip_invariant_group:
1469  case Intrinsic::expect: {
1470    unsigned ResultReg = getRegForValue(II->getArgOperand(0));
1471    if (!ResultReg)
1472      return false;
1473    updateValueMap(II, ResultReg);
1474    return true;
1475  }
1476  case Intrinsic::experimental_stackmap:
1477    return selectStackmap(II);
1478  case Intrinsic::experimental_patchpoint_void:
1479  case Intrinsic::experimental_patchpoint_i64:
1480    return selectPatchpoint(II);
1481
1482  case Intrinsic::xray_customevent:
1483    return selectXRayCustomEvent(II);
1484  case Intrinsic::xray_typedevent:
1485    return selectXRayTypedEvent(II);
1486  }
1487
1488  return fastLowerIntrinsicCall(II);
1489}
1490
1491bool FastISel::selectCast(const User *I, unsigned Opcode) {
1492  EVT SrcVT = TLI.getValueType(DL, I->getOperand(0)->getType());
1493  EVT DstVT = TLI.getValueType(DL, I->getType());
1494
1495  if (SrcVT == MVT::Other || !SrcVT.isSimple() || DstVT == MVT::Other ||
1496      !DstVT.isSimple())
1497    // Unhandled type. Halt "fast" selection and bail.
1498    return false;
1499
1500  // Check if the destination type is legal.
1501  if (!TLI.isTypeLegal(DstVT))
1502    return false;
1503
1504  // Check if the source operand is legal.
1505  if (!TLI.isTypeLegal(SrcVT))
1506    return false;
1507
1508  unsigned InputReg = getRegForValue(I->getOperand(0));
1509  if (!InputReg)
1510    // Unhandled operand.  Halt "fast" selection and bail.
1511    return false;
1512
1513  bool InputRegIsKill = hasTrivialKill(I->getOperand(0));
1514
1515  unsigned ResultReg = fastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(),
1516                                  Opcode, InputReg, InputRegIsKill);
1517  if (!ResultReg)
1518    return false;
1519
1520  updateValueMap(I, ResultReg);
1521  return true;
1522}
1523
1524bool FastISel::selectBitCast(const User *I) {
1525  // If the bitcast doesn't change the type, just use the operand value.
1526  if (I->getType() == I->getOperand(0)->getType()) {
1527    unsigned Reg = getRegForValue(I->getOperand(0));
1528    if (!Reg)
1529      return false;
1530    updateValueMap(I, Reg);
1531    return true;
1532  }
1533
1534  // Bitcasts of other values become reg-reg copies or BITCAST operators.
1535  EVT SrcEVT = TLI.getValueType(DL, I->getOperand(0)->getType());
1536  EVT DstEVT = TLI.getValueType(DL, I->getType());
1537  if (SrcEVT == MVT::Other || DstEVT == MVT::Other ||
1538      !TLI.isTypeLegal(SrcEVT) || !TLI.isTypeLegal(DstEVT))
1539    // Unhandled type. Halt "fast" selection and bail.
1540    return false;
1541
1542  MVT SrcVT = SrcEVT.getSimpleVT();
1543  MVT DstVT = DstEVT.getSimpleVT();
1544  unsigned Op0 = getRegForValue(I->getOperand(0));
1545  if (!Op0) // Unhandled operand. Halt "fast" selection and bail.
1546    return false;
1547  bool Op0IsKill = hasTrivialKill(I->getOperand(0));
1548
1549  // First, try to perform the bitcast by inserting a reg-reg copy.
1550  unsigned ResultReg = 0;
1551  if (SrcVT == DstVT) {
1552    const TargetRegisterClass *SrcClass = TLI.getRegClassFor(SrcVT);
1553    const TargetRegisterClass *DstClass = TLI.getRegClassFor(DstVT);
1554    // Don't attempt a cross-class copy. It will likely fail.
1555    if (SrcClass == DstClass) {
1556      ResultReg = createResultReg(DstClass);
1557      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1558              TII.get(TargetOpcode::COPY), ResultReg).addReg(Op0);
1559    }
1560  }
1561
1562  // If the reg-reg copy failed, select a BITCAST opcode.
1563  if (!ResultReg)
1564    ResultReg = fastEmit_r(SrcVT, DstVT, ISD::BITCAST, Op0, Op0IsKill);
1565
1566  if (!ResultReg)
1567    return false;
1568
1569  updateValueMap(I, ResultReg);
1570  return true;
1571}
1572
1573// Remove local value instructions starting from the instruction after
1574// SavedLastLocalValue to the current function insert point.
1575void FastISel::removeDeadLocalValueCode(MachineInstr *SavedLastLocalValue)
1576{
1577  MachineInstr *CurLastLocalValue = getLastLocalValue();
1578  if (CurLastLocalValue != SavedLastLocalValue) {
1579    // Find the first local value instruction to be deleted.
1580    // This is the instruction after SavedLastLocalValue if it is non-NULL.
1581    // Otherwise it's the first instruction in the block.
1582    MachineBasicBlock::iterator FirstDeadInst(SavedLastLocalValue);
1583    if (SavedLastLocalValue)
1584      ++FirstDeadInst;
1585    else
1586      FirstDeadInst = FuncInfo.MBB->getFirstNonPHI();
1587    setLastLocalValue(SavedLastLocalValue);
1588    removeDeadCode(FirstDeadInst, FuncInfo.InsertPt);
1589  }
1590}
1591
1592bool FastISel::selectInstruction(const Instruction *I) {
1593  MachineInstr *SavedLastLocalValue = getLastLocalValue();
1594  // Just before the terminator instruction, insert instructions to
1595  // feed PHI nodes in successor blocks.
1596  if (I->isTerminator()) {
1597    if (!handlePHINodesInSuccessorBlocks(I->getParent())) {
1598      // PHI node handling may have generated local value instructions,
1599      // even though it failed to handle all PHI nodes.
1600      // We remove these instructions because SelectionDAGISel will generate
1601      // them again.
1602      removeDeadLocalValueCode(SavedLastLocalValue);
1603      return false;
1604    }
1605  }
1606
1607  // FastISel does not handle any operand bundles except OB_funclet.
1608  if (ImmutableCallSite CS = ImmutableCallSite(I))
1609    for (unsigned i = 0, e = CS.getNumOperandBundles(); i != e; ++i)
1610      if (CS.getOperandBundleAt(i).getTagID() != LLVMContext::OB_funclet)
1611        return false;
1612
1613  DbgLoc = I->getDebugLoc();
1614
1615  SavedInsertPt = FuncInfo.InsertPt;
1616
1617  if (const auto *Call = dyn_cast<CallInst>(I)) {
1618    const Function *F = Call->getCalledFunction();
1619    LibFunc Func;
1620
1621    // As a special case, don't handle calls to builtin library functions that
1622    // may be translated directly to target instructions.
1623    if (F && !F->hasLocalLinkage() && F->hasName() &&
1624        LibInfo->getLibFunc(F->getName(), Func) &&
1625        LibInfo->hasOptimizedCodeGen(Func))
1626      return false;
1627
1628    // Don't handle Intrinsic::trap if a trap function is specified.
1629    if (F && F->getIntrinsicID() == Intrinsic::trap &&
1630        Call->hasFnAttr("trap-func-name"))
1631      return false;
1632  }
1633
1634  // First, try doing target-independent selection.
1635  if (!SkipTargetIndependentISel) {
1636    if (selectOperator(I, I->getOpcode())) {
1637      ++NumFastIselSuccessIndependent;
1638      DbgLoc = DebugLoc();
1639      return true;
1640    }
1641    // Remove dead code.
1642    recomputeInsertPt();
1643    if (SavedInsertPt != FuncInfo.InsertPt)
1644      removeDeadCode(FuncInfo.InsertPt, SavedInsertPt);
1645    SavedInsertPt = FuncInfo.InsertPt;
1646  }
1647  // Next, try calling the target to attempt to handle the instruction.
1648  if (fastSelectInstruction(I)) {
1649    ++NumFastIselSuccessTarget;
1650    DbgLoc = DebugLoc();
1651    return true;
1652  }
1653  // Remove dead code.
1654  recomputeInsertPt();
1655  if (SavedInsertPt != FuncInfo.InsertPt)
1656    removeDeadCode(FuncInfo.InsertPt, SavedInsertPt);
1657
1658  DbgLoc = DebugLoc();
1659  // Undo phi node updates, because they will be added again by SelectionDAG.
1660  if (I->isTerminator()) {
1661    // PHI node handling may have generated local value instructions.
1662    // We remove them because SelectionDAGISel will generate them again.
1663    removeDeadLocalValueCode(SavedLastLocalValue);
1664    FuncInfo.PHINodesToUpdate.resize(FuncInfo.OrigNumPHINodesToUpdate);
1665  }
1666  return false;
1667}
1668
1669/// Emit an unconditional branch to the given block, unless it is the immediate
1670/// (fall-through) successor, and update the CFG.
1671void FastISel::fastEmitBranch(MachineBasicBlock *MSucc,
1672                              const DebugLoc &DbgLoc) {
1673  if (FuncInfo.MBB->getBasicBlock()->sizeWithoutDebug() > 1 &&
1674      FuncInfo.MBB->isLayoutSuccessor(MSucc)) {
1675    // For more accurate line information if this is the only non-debug
1676    // instruction in the block then emit it, otherwise we have the
1677    // unconditional fall-through case, which needs no instructions.
1678  } else {
1679    // The unconditional branch case.
1680    TII.insertBranch(*FuncInfo.MBB, MSucc, nullptr,
1681                     SmallVector<MachineOperand, 0>(), DbgLoc);
1682  }
1683  if (FuncInfo.BPI) {
1684    auto BranchProbability = FuncInfo.BPI->getEdgeProbability(
1685        FuncInfo.MBB->getBasicBlock(), MSucc->getBasicBlock());
1686    FuncInfo.MBB->addSuccessor(MSucc, BranchProbability);
1687  } else
1688    FuncInfo.MBB->addSuccessorWithoutProb(MSucc);
1689}
1690
1691void FastISel::finishCondBranch(const BasicBlock *BranchBB,
1692                                MachineBasicBlock *TrueMBB,
1693                                MachineBasicBlock *FalseMBB) {
1694  // Add TrueMBB as successor unless it is equal to the FalseMBB: This can
1695  // happen in degenerate IR and MachineIR forbids to have a block twice in the
1696  // successor/predecessor lists.
1697  if (TrueMBB != FalseMBB) {
1698    if (FuncInfo.BPI) {
1699      auto BranchProbability =
1700          FuncInfo.BPI->getEdgeProbability(BranchBB, TrueMBB->getBasicBlock());
1701      FuncInfo.MBB->addSuccessor(TrueMBB, BranchProbability);
1702    } else
1703      FuncInfo.MBB->addSuccessorWithoutProb(TrueMBB);
1704  }
1705
1706  fastEmitBranch(FalseMBB, DbgLoc);
1707}
1708
1709/// Emit an FNeg operation.
1710bool FastISel::selectFNeg(const User *I, const Value *In) {
1711  unsigned OpReg = getRegForValue(In);
1712  if (!OpReg)
1713    return false;
1714  bool OpRegIsKill = hasTrivialKill(In);
1715
1716  // If the target has ISD::FNEG, use it.
1717  EVT VT = TLI.getValueType(DL, I->getType());
1718  unsigned ResultReg = fastEmit_r(VT.getSimpleVT(), VT.getSimpleVT(), ISD::FNEG,
1719                                  OpReg, OpRegIsKill);
1720  if (ResultReg) {
1721    updateValueMap(I, ResultReg);
1722    return true;
1723  }
1724
1725  // Bitcast the value to integer, twiddle the sign bit with xor,
1726  // and then bitcast it back to floating-point.
1727  if (VT.getSizeInBits() > 64)
1728    return false;
1729  EVT IntVT = EVT::getIntegerVT(I->getContext(), VT.getSizeInBits());
1730  if (!TLI.isTypeLegal(IntVT))
1731    return false;
1732
1733  unsigned IntReg = fastEmit_r(VT.getSimpleVT(), IntVT.getSimpleVT(),
1734                               ISD::BITCAST, OpReg, OpRegIsKill);
1735  if (!IntReg)
1736    return false;
1737
1738  unsigned IntResultReg = fastEmit_ri_(
1739      IntVT.getSimpleVT(), ISD::XOR, IntReg, /*IsKill=*/true,
1740      UINT64_C(1) << (VT.getSizeInBits() - 1), IntVT.getSimpleVT());
1741  if (!IntResultReg)
1742    return false;
1743
1744  ResultReg = fastEmit_r(IntVT.getSimpleVT(), VT.getSimpleVT(), ISD::BITCAST,
1745                         IntResultReg, /*IsKill=*/true);
1746  if (!ResultReg)
1747    return false;
1748
1749  updateValueMap(I, ResultReg);
1750  return true;
1751}
1752
1753bool FastISel::selectExtractValue(const User *U) {
1754  const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(U);
1755  if (!EVI)
1756    return false;
1757
1758  // Make sure we only try to handle extracts with a legal result.  But also
1759  // allow i1 because it's easy.
1760  EVT RealVT = TLI.getValueType(DL, EVI->getType(), /*AllowUnknown=*/true);
1761  if (!RealVT.isSimple())
1762    return false;
1763  MVT VT = RealVT.getSimpleVT();
1764  if (!TLI.isTypeLegal(VT) && VT != MVT::i1)
1765    return false;
1766
1767  const Value *Op0 = EVI->getOperand(0);
1768  Type *AggTy = Op0->getType();
1769
1770  // Get the base result register.
1771  unsigned ResultReg;
1772  DenseMap<const Value *, unsigned>::iterator I = FuncInfo.ValueMap.find(Op0);
1773  if (I != FuncInfo.ValueMap.end())
1774    ResultReg = I->second;
1775  else if (isa<Instruction>(Op0))
1776    ResultReg = FuncInfo.InitializeRegForValue(Op0);
1777  else
1778    return false; // fast-isel can't handle aggregate constants at the moment
1779
1780  // Get the actual result register, which is an offset from the base register.
1781  unsigned VTIndex = ComputeLinearIndex(AggTy, EVI->getIndices());
1782
1783  SmallVector<EVT, 4> AggValueVTs;
1784  ComputeValueVTs(TLI, DL, AggTy, AggValueVTs);
1785
1786  for (unsigned i = 0; i < VTIndex; i++)
1787    ResultReg += TLI.getNumRegisters(FuncInfo.Fn->getContext(), AggValueVTs[i]);
1788
1789  updateValueMap(EVI, ResultReg);
1790  return true;
1791}
1792
1793bool FastISel::selectOperator(const User *I, unsigned Opcode) {
1794  switch (Opcode) {
1795  case Instruction::Add:
1796    return selectBinaryOp(I, ISD::ADD);
1797  case Instruction::FAdd:
1798    return selectBinaryOp(I, ISD::FADD);
1799  case Instruction::Sub:
1800    return selectBinaryOp(I, ISD::SUB);
1801  case Instruction::FSub: {
1802    // FNeg is currently represented in LLVM IR as a special case of FSub.
1803    Value *X;
1804    if (match(I, m_FNeg(m_Value(X))))
1805       return selectFNeg(I, X);
1806    return selectBinaryOp(I, ISD::FSUB);
1807  }
1808  case Instruction::Mul:
1809    return selectBinaryOp(I, ISD::MUL);
1810  case Instruction::FMul:
1811    return selectBinaryOp(I, ISD::FMUL);
1812  case Instruction::SDiv:
1813    return selectBinaryOp(I, ISD::SDIV);
1814  case Instruction::UDiv:
1815    return selectBinaryOp(I, ISD::UDIV);
1816  case Instruction::FDiv:
1817    return selectBinaryOp(I, ISD::FDIV);
1818  case Instruction::SRem:
1819    return selectBinaryOp(I, ISD::SREM);
1820  case Instruction::URem:
1821    return selectBinaryOp(I, ISD::UREM);
1822  case Instruction::FRem:
1823    return selectBinaryOp(I, ISD::FREM);
1824  case Instruction::Shl:
1825    return selectBinaryOp(I, ISD::SHL);
1826  case Instruction::LShr:
1827    return selectBinaryOp(I, ISD::SRL);
1828  case Instruction::AShr:
1829    return selectBinaryOp(I, ISD::SRA);
1830  case Instruction::And:
1831    return selectBinaryOp(I, ISD::AND);
1832  case Instruction::Or:
1833    return selectBinaryOp(I, ISD::OR);
1834  case Instruction::Xor:
1835    return selectBinaryOp(I, ISD::XOR);
1836
1837  case Instruction::FNeg:
1838    return selectFNeg(I, I->getOperand(0));
1839
1840  case Instruction::GetElementPtr:
1841    return selectGetElementPtr(I);
1842
1843  case Instruction::Br: {
1844    const BranchInst *BI = cast<BranchInst>(I);
1845
1846    if (BI->isUnconditional()) {
1847      const BasicBlock *LLVMSucc = BI->getSuccessor(0);
1848      MachineBasicBlock *MSucc = FuncInfo.MBBMap[LLVMSucc];
1849      fastEmitBranch(MSucc, BI->getDebugLoc());
1850      return true;
1851    }
1852
1853    // Conditional branches are not handed yet.
1854    // Halt "fast" selection and bail.
1855    return false;
1856  }
1857
1858  case Instruction::Unreachable:
1859    if (TM.Options.TrapUnreachable)
1860      return fastEmit_(MVT::Other, MVT::Other, ISD::TRAP) != 0;
1861    else
1862      return true;
1863
1864  case Instruction::Alloca:
1865    // FunctionLowering has the static-sized case covered.
1866    if (FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(I)))
1867      return true;
1868
1869    // Dynamic-sized alloca is not handled yet.
1870    return false;
1871
1872  case Instruction::Call:
1873    // On AIX, call lowering uses the DAG-ISEL path currently so that the
1874    // callee of the direct function call instruction will be mapped to the
1875    // symbol for the function's entry point, which is distinct from the
1876    // function descriptor symbol. The latter is the symbol whose XCOFF symbol
1877    // name is the C-linkage name of the source level function.
1878    if (TM.getTargetTriple().isOSAIX())
1879      return false;
1880    return selectCall(I);
1881
1882  case Instruction::BitCast:
1883    return selectBitCast(I);
1884
1885  case Instruction::FPToSI:
1886    return selectCast(I, ISD::FP_TO_SINT);
1887  case Instruction::ZExt:
1888    return selectCast(I, ISD::ZERO_EXTEND);
1889  case Instruction::SExt:
1890    return selectCast(I, ISD::SIGN_EXTEND);
1891  case Instruction::Trunc:
1892    return selectCast(I, ISD::TRUNCATE);
1893  case Instruction::SIToFP:
1894    return selectCast(I, ISD::SINT_TO_FP);
1895
1896  case Instruction::IntToPtr: // Deliberate fall-through.
1897  case Instruction::PtrToInt: {
1898    EVT SrcVT = TLI.getValueType(DL, I->getOperand(0)->getType());
1899    EVT DstVT = TLI.getValueType(DL, I->getType());
1900    if (DstVT.bitsGT(SrcVT))
1901      return selectCast(I, ISD::ZERO_EXTEND);
1902    if (DstVT.bitsLT(SrcVT))
1903      return selectCast(I, ISD::TRUNCATE);
1904    unsigned Reg = getRegForValue(I->getOperand(0));
1905    if (!Reg)
1906      return false;
1907    updateValueMap(I, Reg);
1908    return true;
1909  }
1910
1911  case Instruction::ExtractValue:
1912    return selectExtractValue(I);
1913
1914  case Instruction::PHI:
1915    llvm_unreachable("FastISel shouldn't visit PHI nodes!");
1916
1917  default:
1918    // Unhandled instruction. Halt "fast" selection and bail.
1919    return false;
1920  }
1921}
1922
1923FastISel::FastISel(FunctionLoweringInfo &FuncInfo,
1924                   const TargetLibraryInfo *LibInfo,
1925                   bool SkipTargetIndependentISel)
1926    : FuncInfo(FuncInfo), MF(FuncInfo.MF), MRI(FuncInfo.MF->getRegInfo()),
1927      MFI(FuncInfo.MF->getFrameInfo()), MCP(*FuncInfo.MF->getConstantPool()),
1928      TM(FuncInfo.MF->getTarget()), DL(MF->getDataLayout()),
1929      TII(*MF->getSubtarget().getInstrInfo()),
1930      TLI(*MF->getSubtarget().getTargetLowering()),
1931      TRI(*MF->getSubtarget().getRegisterInfo()), LibInfo(LibInfo),
1932      SkipTargetIndependentISel(SkipTargetIndependentISel),
1933      LastLocalValue(nullptr), EmitStartPt(nullptr) {}
1934
1935FastISel::~FastISel() = default;
1936
1937bool FastISel::fastLowerArguments() { return false; }
1938
1939bool FastISel::fastLowerCall(CallLoweringInfo & /*CLI*/) { return false; }
1940
1941bool FastISel::fastLowerIntrinsicCall(const IntrinsicInst * /*II*/) {
1942  return false;
1943}
1944
1945unsigned FastISel::fastEmit_(MVT, MVT, unsigned) { return 0; }
1946
1947unsigned FastISel::fastEmit_r(MVT, MVT, unsigned, unsigned /*Op0*/,
1948                              bool /*Op0IsKill*/) {
1949  return 0;
1950}
1951
1952unsigned FastISel::fastEmit_rr(MVT, MVT, unsigned, unsigned /*Op0*/,
1953                               bool /*Op0IsKill*/, unsigned /*Op1*/,
1954                               bool /*Op1IsKill*/) {
1955  return 0;
1956}
1957
1958unsigned FastISel::fastEmit_i(MVT, MVT, unsigned, uint64_t /*Imm*/) {
1959  return 0;
1960}
1961
1962unsigned FastISel::fastEmit_f(MVT, MVT, unsigned,
1963                              const ConstantFP * /*FPImm*/) {
1964  return 0;
1965}
1966
1967unsigned FastISel::fastEmit_ri(MVT, MVT, unsigned, unsigned /*Op0*/,
1968                               bool /*Op0IsKill*/, uint64_t /*Imm*/) {
1969  return 0;
1970}
1971
1972/// This method is a wrapper of fastEmit_ri. It first tries to emit an
1973/// instruction with an immediate operand using fastEmit_ri.
1974/// If that fails, it materializes the immediate into a register and try
1975/// fastEmit_rr instead.
1976unsigned FastISel::fastEmit_ri_(MVT VT, unsigned Opcode, unsigned Op0,
1977                                bool Op0IsKill, uint64_t Imm, MVT ImmType) {
1978  // If this is a multiply by a power of two, emit this as a shift left.
1979  if (Opcode == ISD::MUL && isPowerOf2_64(Imm)) {
1980    Opcode = ISD::SHL;
1981    Imm = Log2_64(Imm);
1982  } else if (Opcode == ISD::UDIV && isPowerOf2_64(Imm)) {
1983    // div x, 8 -> srl x, 3
1984    Opcode = ISD::SRL;
1985    Imm = Log2_64(Imm);
1986  }
1987
1988  // Horrible hack (to be removed), check to make sure shift amounts are
1989  // in-range.
1990  if ((Opcode == ISD::SHL || Opcode == ISD::SRA || Opcode == ISD::SRL) &&
1991      Imm >= VT.getSizeInBits())
1992    return 0;
1993
1994  // First check if immediate type is legal. If not, we can't use the ri form.
1995  unsigned ResultReg = fastEmit_ri(VT, VT, Opcode, Op0, Op0IsKill, Imm);
1996  if (ResultReg)
1997    return ResultReg;
1998  unsigned MaterialReg = fastEmit_i(ImmType, ImmType, ISD::Constant, Imm);
1999  bool IsImmKill = true;
2000  if (!MaterialReg) {
2001    // This is a bit ugly/slow, but failing here means falling out of
2002    // fast-isel, which would be very slow.
2003    IntegerType *ITy =
2004        IntegerType::get(FuncInfo.Fn->getContext(), VT.getSizeInBits());
2005    MaterialReg = getRegForValue(ConstantInt::get(ITy, Imm));
2006    if (!MaterialReg)
2007      return 0;
2008    // FIXME: If the materialized register here has no uses yet then this
2009    // will be the first use and we should be able to mark it as killed.
2010    // However, the local value area for materialising constant expressions
2011    // grows down, not up, which means that any constant expressions we generate
2012    // later which also use 'Imm' could be after this instruction and therefore
2013    // after this kill.
2014    IsImmKill = false;
2015  }
2016  return fastEmit_rr(VT, VT, Opcode, Op0, Op0IsKill, MaterialReg, IsImmKill);
2017}
2018
2019unsigned FastISel::createResultReg(const TargetRegisterClass *RC) {
2020  return MRI.createVirtualRegister(RC);
2021}
2022
2023unsigned FastISel::constrainOperandRegClass(const MCInstrDesc &II, unsigned Op,
2024                                            unsigned OpNum) {
2025  if (Register::isVirtualRegister(Op)) {
2026    const TargetRegisterClass *RegClass =
2027        TII.getRegClass(II, OpNum, &TRI, *FuncInfo.MF);
2028    if (!MRI.constrainRegClass(Op, RegClass)) {
2029      // If it's not legal to COPY between the register classes, something
2030      // has gone very wrong before we got here.
2031      unsigned NewOp = createResultReg(RegClass);
2032      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2033              TII.get(TargetOpcode::COPY), NewOp).addReg(Op);
2034      return NewOp;
2035    }
2036  }
2037  return Op;
2038}
2039
2040unsigned FastISel::fastEmitInst_(unsigned MachineInstOpcode,
2041                                 const TargetRegisterClass *RC) {
2042  unsigned ResultReg = createResultReg(RC);
2043  const MCInstrDesc &II = TII.get(MachineInstOpcode);
2044
2045  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg);
2046  return ResultReg;
2047}
2048
2049unsigned FastISel::fastEmitInst_r(unsigned MachineInstOpcode,
2050                                  const TargetRegisterClass *RC, unsigned Op0,
2051                                  bool Op0IsKill) {
2052  const MCInstrDesc &II = TII.get(MachineInstOpcode);
2053
2054  unsigned ResultReg = createResultReg(RC);
2055  Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs());
2056
2057  if (II.getNumDefs() >= 1)
2058    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
2059        .addReg(Op0, getKillRegState(Op0IsKill));
2060  else {
2061    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
2062        .addReg(Op0, getKillRegState(Op0IsKill));
2063    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2064            TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]);
2065  }
2066
2067  return ResultReg;
2068}
2069
2070unsigned FastISel::fastEmitInst_rr(unsigned MachineInstOpcode,
2071                                   const TargetRegisterClass *RC, unsigned Op0,
2072                                   bool Op0IsKill, unsigned Op1,
2073                                   bool Op1IsKill) {
2074  const MCInstrDesc &II = TII.get(MachineInstOpcode);
2075
2076  unsigned ResultReg = createResultReg(RC);
2077  Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs());
2078  Op1 = constrainOperandRegClass(II, Op1, II.getNumDefs() + 1);
2079
2080  if (II.getNumDefs() >= 1)
2081    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
2082        .addReg(Op0, getKillRegState(Op0IsKill))
2083        .addReg(Op1, getKillRegState(Op1IsKill));
2084  else {
2085    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
2086        .addReg(Op0, getKillRegState(Op0IsKill))
2087        .addReg(Op1, getKillRegState(Op1IsKill));
2088    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2089            TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]);
2090  }
2091  return ResultReg;
2092}
2093
2094unsigned FastISel::fastEmitInst_rrr(unsigned MachineInstOpcode,
2095                                    const TargetRegisterClass *RC, unsigned Op0,
2096                                    bool Op0IsKill, unsigned Op1,
2097                                    bool Op1IsKill, unsigned Op2,
2098                                    bool Op2IsKill) {
2099  const MCInstrDesc &II = TII.get(MachineInstOpcode);
2100
2101  unsigned ResultReg = createResultReg(RC);
2102  Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs());
2103  Op1 = constrainOperandRegClass(II, Op1, II.getNumDefs() + 1);
2104  Op2 = constrainOperandRegClass(II, Op2, II.getNumDefs() + 2);
2105
2106  if (II.getNumDefs() >= 1)
2107    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
2108        .addReg(Op0, getKillRegState(Op0IsKill))
2109        .addReg(Op1, getKillRegState(Op1IsKill))
2110        .addReg(Op2, getKillRegState(Op2IsKill));
2111  else {
2112    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
2113        .addReg(Op0, getKillRegState(Op0IsKill))
2114        .addReg(Op1, getKillRegState(Op1IsKill))
2115        .addReg(Op2, getKillRegState(Op2IsKill));
2116    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2117            TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]);
2118  }
2119  return ResultReg;
2120}
2121
2122unsigned FastISel::fastEmitInst_ri(unsigned MachineInstOpcode,
2123                                   const TargetRegisterClass *RC, unsigned Op0,
2124                                   bool Op0IsKill, uint64_t Imm) {
2125  const MCInstrDesc &II = TII.get(MachineInstOpcode);
2126
2127  unsigned ResultReg = createResultReg(RC);
2128  Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs());
2129
2130  if (II.getNumDefs() >= 1)
2131    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
2132        .addReg(Op0, getKillRegState(Op0IsKill))
2133        .addImm(Imm);
2134  else {
2135    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
2136        .addReg(Op0, getKillRegState(Op0IsKill))
2137        .addImm(Imm);
2138    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2139            TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]);
2140  }
2141  return ResultReg;
2142}
2143
2144unsigned FastISel::fastEmitInst_rii(unsigned MachineInstOpcode,
2145                                    const TargetRegisterClass *RC, unsigned Op0,
2146                                    bool Op0IsKill, uint64_t Imm1,
2147                                    uint64_t Imm2) {
2148  const MCInstrDesc &II = TII.get(MachineInstOpcode);
2149
2150  unsigned ResultReg = createResultReg(RC);
2151  Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs());
2152
2153  if (II.getNumDefs() >= 1)
2154    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
2155        .addReg(Op0, getKillRegState(Op0IsKill))
2156        .addImm(Imm1)
2157        .addImm(Imm2);
2158  else {
2159    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
2160        .addReg(Op0, getKillRegState(Op0IsKill))
2161        .addImm(Imm1)
2162        .addImm(Imm2);
2163    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2164            TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]);
2165  }
2166  return ResultReg;
2167}
2168
2169unsigned FastISel::fastEmitInst_f(unsigned MachineInstOpcode,
2170                                  const TargetRegisterClass *RC,
2171                                  const ConstantFP *FPImm) {
2172  const MCInstrDesc &II = TII.get(MachineInstOpcode);
2173
2174  unsigned ResultReg = createResultReg(RC);
2175
2176  if (II.getNumDefs() >= 1)
2177    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
2178        .addFPImm(FPImm);
2179  else {
2180    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
2181        .addFPImm(FPImm);
2182    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2183            TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]);
2184  }
2185  return ResultReg;
2186}
2187
2188unsigned FastISel::fastEmitInst_rri(unsigned MachineInstOpcode,
2189                                    const TargetRegisterClass *RC, unsigned Op0,
2190                                    bool Op0IsKill, unsigned Op1,
2191                                    bool Op1IsKill, uint64_t Imm) {
2192  const MCInstrDesc &II = TII.get(MachineInstOpcode);
2193
2194  unsigned ResultReg = createResultReg(RC);
2195  Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs());
2196  Op1 = constrainOperandRegClass(II, Op1, II.getNumDefs() + 1);
2197
2198  if (II.getNumDefs() >= 1)
2199    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
2200        .addReg(Op0, getKillRegState(Op0IsKill))
2201        .addReg(Op1, getKillRegState(Op1IsKill))
2202        .addImm(Imm);
2203  else {
2204    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
2205        .addReg(Op0, getKillRegState(Op0IsKill))
2206        .addReg(Op1, getKillRegState(Op1IsKill))
2207        .addImm(Imm);
2208    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2209            TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]);
2210  }
2211  return ResultReg;
2212}
2213
2214unsigned FastISel::fastEmitInst_i(unsigned MachineInstOpcode,
2215                                  const TargetRegisterClass *RC, uint64_t Imm) {
2216  unsigned ResultReg = createResultReg(RC);
2217  const MCInstrDesc &II = TII.get(MachineInstOpcode);
2218
2219  if (II.getNumDefs() >= 1)
2220    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
2221        .addImm(Imm);
2222  else {
2223    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II).addImm(Imm);
2224    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2225            TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]);
2226  }
2227  return ResultReg;
2228}
2229
2230unsigned FastISel::fastEmitInst_extractsubreg(MVT RetVT, unsigned Op0,
2231                                              bool Op0IsKill, uint32_t Idx) {
2232  unsigned ResultReg = createResultReg(TLI.getRegClassFor(RetVT));
2233  assert(Register::isVirtualRegister(Op0) &&
2234         "Cannot yet extract from physregs");
2235  const TargetRegisterClass *RC = MRI.getRegClass(Op0);
2236  MRI.constrainRegClass(Op0, TRI.getSubClassWithSubReg(RC, Idx));
2237  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TargetOpcode::COPY),
2238          ResultReg).addReg(Op0, getKillRegState(Op0IsKill), Idx);
2239  return ResultReg;
2240}
2241
2242/// Emit MachineInstrs to compute the value of Op with all but the least
2243/// significant bit set to zero.
2244unsigned FastISel::fastEmitZExtFromI1(MVT VT, unsigned Op0, bool Op0IsKill) {
2245  return fastEmit_ri(VT, VT, ISD::AND, Op0, Op0IsKill, 1);
2246}
2247
2248/// HandlePHINodesInSuccessorBlocks - Handle PHI nodes in successor blocks.
2249/// Emit code to ensure constants are copied into registers when needed.
2250/// Remember the virtual registers that need to be added to the Machine PHI
2251/// nodes as input.  We cannot just directly add them, because expansion
2252/// might result in multiple MBB's for one BB.  As such, the start of the
2253/// BB might correspond to a different MBB than the end.
2254bool FastISel::handlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
2255  const Instruction *TI = LLVMBB->getTerminator();
2256
2257  SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
2258  FuncInfo.OrigNumPHINodesToUpdate = FuncInfo.PHINodesToUpdate.size();
2259
2260  // Check successor nodes' PHI nodes that expect a constant to be available
2261  // from this block.
2262  for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
2263    const BasicBlock *SuccBB = TI->getSuccessor(succ);
2264    if (!isa<PHINode>(SuccBB->begin()))
2265      continue;
2266    MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
2267
2268    // If this terminator has multiple identical successors (common for
2269    // switches), only handle each succ once.
2270    if (!SuccsHandled.insert(SuccMBB).second)
2271      continue;
2272
2273    MachineBasicBlock::iterator MBBI = SuccMBB->begin();
2274
2275    // At this point we know that there is a 1-1 correspondence between LLVM PHI
2276    // nodes and Machine PHI nodes, but the incoming operands have not been
2277    // emitted yet.
2278    for (const PHINode &PN : SuccBB->phis()) {
2279      // Ignore dead phi's.
2280      if (PN.use_empty())
2281        continue;
2282
2283      // Only handle legal types. Two interesting things to note here. First,
2284      // by bailing out early, we may leave behind some dead instructions,
2285      // since SelectionDAG's HandlePHINodesInSuccessorBlocks will insert its
2286      // own moves. Second, this check is necessary because FastISel doesn't
2287      // use CreateRegs to create registers, so it always creates
2288      // exactly one register for each non-void instruction.
2289      EVT VT = TLI.getValueType(DL, PN.getType(), /*AllowUnknown=*/true);
2290      if (VT == MVT::Other || !TLI.isTypeLegal(VT)) {
2291        // Handle integer promotions, though, because they're common and easy.
2292        if (!(VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16)) {
2293          FuncInfo.PHINodesToUpdate.resize(FuncInfo.OrigNumPHINodesToUpdate);
2294          return false;
2295        }
2296      }
2297
2298      const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB);
2299
2300      // Set the DebugLoc for the copy. Prefer the location of the operand
2301      // if there is one; use the location of the PHI otherwise.
2302      DbgLoc = PN.getDebugLoc();
2303      if (const auto *Inst = dyn_cast<Instruction>(PHIOp))
2304        DbgLoc = Inst->getDebugLoc();
2305
2306      unsigned Reg = getRegForValue(PHIOp);
2307      if (!Reg) {
2308        FuncInfo.PHINodesToUpdate.resize(FuncInfo.OrigNumPHINodesToUpdate);
2309        return false;
2310      }
2311      FuncInfo.PHINodesToUpdate.push_back(std::make_pair(&*MBBI++, Reg));
2312      DbgLoc = DebugLoc();
2313    }
2314  }
2315
2316  return true;
2317}
2318
2319bool FastISel::tryToFoldLoad(const LoadInst *LI, const Instruction *FoldInst) {
2320  assert(LI->hasOneUse() &&
2321         "tryToFoldLoad expected a LoadInst with a single use");
2322  // We know that the load has a single use, but don't know what it is.  If it
2323  // isn't one of the folded instructions, then we can't succeed here.  Handle
2324  // this by scanning the single-use users of the load until we get to FoldInst.
2325  unsigned MaxUsers = 6; // Don't scan down huge single-use chains of instrs.
2326
2327  const Instruction *TheUser = LI->user_back();
2328  while (TheUser != FoldInst && // Scan up until we find FoldInst.
2329         // Stay in the right block.
2330         TheUser->getParent() == FoldInst->getParent() &&
2331         --MaxUsers) { // Don't scan too far.
2332    // If there are multiple or no uses of this instruction, then bail out.
2333    if (!TheUser->hasOneUse())
2334      return false;
2335
2336    TheUser = TheUser->user_back();
2337  }
2338
2339  // If we didn't find the fold instruction, then we failed to collapse the
2340  // sequence.
2341  if (TheUser != FoldInst)
2342    return false;
2343
2344  // Don't try to fold volatile loads.  Target has to deal with alignment
2345  // constraints.
2346  if (LI->isVolatile())
2347    return false;
2348
2349  // Figure out which vreg this is going into.  If there is no assigned vreg yet
2350  // then there actually was no reference to it.  Perhaps the load is referenced
2351  // by a dead instruction.
2352  unsigned LoadReg = getRegForValue(LI);
2353  if (!LoadReg)
2354    return false;
2355
2356  // We can't fold if this vreg has no uses or more than one use.  Multiple uses
2357  // may mean that the instruction got lowered to multiple MIs, or the use of
2358  // the loaded value ended up being multiple operands of the result.
2359  if (!MRI.hasOneUse(LoadReg))
2360    return false;
2361
2362  MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(LoadReg);
2363  MachineInstr *User = RI->getParent();
2364
2365  // Set the insertion point properly.  Folding the load can cause generation of
2366  // other random instructions (like sign extends) for addressing modes; make
2367  // sure they get inserted in a logical place before the new instruction.
2368  FuncInfo.InsertPt = User;
2369  FuncInfo.MBB = User->getParent();
2370
2371  // Ask the target to try folding the load.
2372  return tryToFoldLoadIntoMI(User, RI.getOperandNo(), LI);
2373}
2374
2375bool FastISel::canFoldAddIntoGEP(const User *GEP, const Value *Add) {
2376  // Must be an add.
2377  if (!isa<AddOperator>(Add))
2378    return false;
2379  // Type size needs to match.
2380  if (DL.getTypeSizeInBits(GEP->getType()) !=
2381      DL.getTypeSizeInBits(Add->getType()))
2382    return false;
2383  // Must be in the same basic block.
2384  if (isa<Instruction>(Add) &&
2385      FuncInfo.MBBMap[cast<Instruction>(Add)->getParent()] != FuncInfo.MBB)
2386    return false;
2387  // Must have a constant operand.
2388  return isa<ConstantInt>(cast<AddOperator>(Add)->getOperand(1));
2389}
2390
2391MachineMemOperand *
2392FastISel::createMachineMemOperandFor(const Instruction *I) const {
2393  const Value *Ptr;
2394  Type *ValTy;
2395  unsigned Alignment;
2396  MachineMemOperand::Flags Flags;
2397  bool IsVolatile;
2398
2399  if (const auto *LI = dyn_cast<LoadInst>(I)) {
2400    Alignment = LI->getAlignment();
2401    IsVolatile = LI->isVolatile();
2402    Flags = MachineMemOperand::MOLoad;
2403    Ptr = LI->getPointerOperand();
2404    ValTy = LI->getType();
2405  } else if (const auto *SI = dyn_cast<StoreInst>(I)) {
2406    Alignment = SI->getAlignment();
2407    IsVolatile = SI->isVolatile();
2408    Flags = MachineMemOperand::MOStore;
2409    Ptr = SI->getPointerOperand();
2410    ValTy = SI->getValueOperand()->getType();
2411  } else
2412    return nullptr;
2413
2414  bool IsNonTemporal = I->hasMetadata(LLVMContext::MD_nontemporal);
2415  bool IsInvariant = I->hasMetadata(LLVMContext::MD_invariant_load);
2416  bool IsDereferenceable = I->hasMetadata(LLVMContext::MD_dereferenceable);
2417  const MDNode *Ranges = I->getMetadata(LLVMContext::MD_range);
2418
2419  AAMDNodes AAInfo;
2420  I->getAAMetadata(AAInfo);
2421
2422  if (Alignment == 0) // Ensure that codegen never sees alignment 0.
2423    Alignment = DL.getABITypeAlignment(ValTy);
2424
2425  unsigned Size = DL.getTypeStoreSize(ValTy);
2426
2427  if (IsVolatile)
2428    Flags |= MachineMemOperand::MOVolatile;
2429  if (IsNonTemporal)
2430    Flags |= MachineMemOperand::MONonTemporal;
2431  if (IsDereferenceable)
2432    Flags |= MachineMemOperand::MODereferenceable;
2433  if (IsInvariant)
2434    Flags |= MachineMemOperand::MOInvariant;
2435
2436  return FuncInfo.MF->getMachineMemOperand(MachinePointerInfo(Ptr), Flags, Size,
2437                                           Alignment, AAInfo, Ranges);
2438}
2439
2440CmpInst::Predicate FastISel::optimizeCmpPredicate(const CmpInst *CI) const {
2441  // If both operands are the same, then try to optimize or fold the cmp.
2442  CmpInst::Predicate Predicate = CI->getPredicate();
2443  if (CI->getOperand(0) != CI->getOperand(1))
2444    return Predicate;
2445
2446  switch (Predicate) {
2447  default: llvm_unreachable("Invalid predicate!");
2448  case CmpInst::FCMP_FALSE: Predicate = CmpInst::FCMP_FALSE; break;
2449  case CmpInst::FCMP_OEQ:   Predicate = CmpInst::FCMP_ORD;   break;
2450  case CmpInst::FCMP_OGT:   Predicate = CmpInst::FCMP_FALSE; break;
2451  case CmpInst::FCMP_OGE:   Predicate = CmpInst::FCMP_ORD;   break;
2452  case CmpInst::FCMP_OLT:   Predicate = CmpInst::FCMP_FALSE; break;
2453  case CmpInst::FCMP_OLE:   Predicate = CmpInst::FCMP_ORD;   break;
2454  case CmpInst::FCMP_ONE:   Predicate = CmpInst::FCMP_FALSE; break;
2455  case CmpInst::FCMP_ORD:   Predicate = CmpInst::FCMP_ORD;   break;
2456  case CmpInst::FCMP_UNO:   Predicate = CmpInst::FCMP_UNO;   break;
2457  case CmpInst::FCMP_UEQ:   Predicate = CmpInst::FCMP_TRUE;  break;
2458  case CmpInst::FCMP_UGT:   Predicate = CmpInst::FCMP_UNO;   break;
2459  case CmpInst::FCMP_UGE:   Predicate = CmpInst::FCMP_TRUE;  break;
2460  case CmpInst::FCMP_ULT:   Predicate = CmpInst::FCMP_UNO;   break;
2461  case CmpInst::FCMP_ULE:   Predicate = CmpInst::FCMP_TRUE;  break;
2462  case CmpInst::FCMP_UNE:   Predicate = CmpInst::FCMP_UNO;   break;
2463  case CmpInst::FCMP_TRUE:  Predicate = CmpInst::FCMP_TRUE;  break;
2464
2465  case CmpInst::ICMP_EQ:    Predicate = CmpInst::FCMP_TRUE;  break;
2466  case CmpInst::ICMP_NE:    Predicate = CmpInst::FCMP_FALSE; break;
2467  case CmpInst::ICMP_UGT:   Predicate = CmpInst::FCMP_FALSE; break;
2468  case CmpInst::ICMP_UGE:   Predicate = CmpInst::FCMP_TRUE;  break;
2469  case CmpInst::ICMP_ULT:   Predicate = CmpInst::FCMP_FALSE; break;
2470  case CmpInst::ICMP_ULE:   Predicate = CmpInst::FCMP_TRUE;  break;
2471  case CmpInst::ICMP_SGT:   Predicate = CmpInst::FCMP_FALSE; break;
2472  case CmpInst::ICMP_SGE:   Predicate = CmpInst::FCMP_TRUE;  break;
2473  case CmpInst::ICMP_SLT:   Predicate = CmpInst::FCMP_FALSE; break;
2474  case CmpInst::ICMP_SLE:   Predicate = CmpInst::FCMP_TRUE;  break;
2475  }
2476
2477  return Predicate;
2478}
2479