PeepholeOptimizer.cpp revision 360784
117680Spst//===- PeepholeOptimizer.cpp - Peephole Optimizations ---------------------===//
217680Spst//
317680Spst// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
417680Spst// See https://llvm.org/LICENSE.txt for license information.
517680Spst// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
617680Spst//
717680Spst//===----------------------------------------------------------------------===//
817680Spst//
917680Spst// Perform peephole optimizations on the machine code:
1017680Spst//
1117680Spst// - Optimize Extensions
1217680Spst//
1317680Spst//     Optimization of sign / zero extension instructions. It may be extended to
1417680Spst//     handle other instructions with similar properties.
1517680Spst//
1617680Spst//     On some targets, some instructions, e.g. X86 sign / zero extension, may
1717680Spst//     leave the source value in the lower part of the result. This optimization
1817680Spst//     will replace some uses of the pre-extension value with uses of the
1917680Spst//     sub-register of the results.
2017680Spst//
2117680Spst// - Optimize Comparisons
2217680Spst//
2317680Spst//     Optimization of comparison instructions. For instance, in this code:
2417680Spst//
2517680Spst//       sub r1, 1
2617680Spst//       cmp r1, 0
2717680Spst//       bz  L1
2817680Spst//
2917680Spst//     If the "sub" instruction all ready sets (or could be modified to set) the
3017680Spst//     same flag that the "cmp" instruction sets and that "bz" uses, then we can
3117680Spst//     eliminate the "cmp" instruction.
3217680Spst//
3317680Spst//     Another instance, in this code:
3417680Spst//
3517680Spst//       sub r1, r3 | sub r1, imm
3617680Spst//       cmp r3, r1 or cmp r1, r3 | cmp r1, imm
3717680Spst//       bge L1
3817680Spst//
3917680Spst//     If the branch instruction can use flag from "sub", then we can replace
4017680Spst//     "sub" with "subs" and eliminate the "cmp" instruction.
4117680Spst//
4217680Spst// - Optimize Loads:
4317680Spst//
4417680Spst//     Loads that can be folded into a later instruction. A load is foldable
4517680Spst//     if it loads to virtual registers and the virtual register defined has
4617680Spst//     a single use.
4717680Spst//
4817680Spst// - Optimize Copies and Bitcast (more generally, target specific copies):
4917680Spst//
5017680Spst//     Rewrite copies and bitcasts to avoid cross register bank copies
5117680Spst//     when possible.
5217680Spst//     E.g., Consider the following example, where capital and lower
5317680Spst//     letters denote different register file:
5417680Spst//     b = copy A <-- cross-bank copy
5517680Spst//     C = copy b <-- cross-bank copy
5617680Spst//   =>
5717680Spst//     b = copy A <-- cross-bank copy
5817680Spst//     C = copy A <-- same-bank copy
5917680Spst//
6017680Spst//     E.g., for bitcast:
6117680Spst//     b = bitcast A <-- cross-bank copy
62//     C = bitcast b <-- cross-bank copy
63//   =>
64//     b = bitcast A <-- cross-bank copy
65//     C = copy A    <-- same-bank copy
66//===----------------------------------------------------------------------===//
67
68#include "llvm/ADT/DenseMap.h"
69#include "llvm/ADT/Optional.h"
70#include "llvm/ADT/SmallPtrSet.h"
71#include "llvm/ADT/SmallSet.h"
72#include "llvm/ADT/SmallVector.h"
73#include "llvm/ADT/Statistic.h"
74#include "llvm/CodeGen/MachineBasicBlock.h"
75#include "llvm/CodeGen/MachineDominators.h"
76#include "llvm/CodeGen/MachineFunction.h"
77#include "llvm/CodeGen/MachineFunctionPass.h"
78#include "llvm/CodeGen/MachineInstr.h"
79#include "llvm/CodeGen/MachineInstrBuilder.h"
80#include "llvm/CodeGen/MachineLoopInfo.h"
81#include "llvm/CodeGen/MachineOperand.h"
82#include "llvm/CodeGen/MachineRegisterInfo.h"
83#include "llvm/CodeGen/TargetInstrInfo.h"
84#include "llvm/CodeGen/TargetOpcodes.h"
85#include "llvm/CodeGen/TargetRegisterInfo.h"
86#include "llvm/CodeGen/TargetSubtargetInfo.h"
87#include "llvm/InitializePasses.h"
88#include "llvm/MC/LaneBitmask.h"
89#include "llvm/MC/MCInstrDesc.h"
90#include "llvm/Pass.h"
91#include "llvm/Support/CommandLine.h"
92#include "llvm/Support/Debug.h"
93#include "llvm/Support/ErrorHandling.h"
94#include "llvm/Support/raw_ostream.h"
95#include <cassert>
96#include <cstdint>
97#include <memory>
98#include <utility>
99
100using namespace llvm;
101using RegSubRegPair = TargetInstrInfo::RegSubRegPair;
102using RegSubRegPairAndIdx = TargetInstrInfo::RegSubRegPairAndIdx;
103
104#define DEBUG_TYPE "peephole-opt"
105
106// Optimize Extensions
107static cl::opt<bool>
108Aggressive("aggressive-ext-opt", cl::Hidden,
109           cl::desc("Aggressive extension optimization"));
110
111static cl::opt<bool>
112DisablePeephole("disable-peephole", cl::Hidden, cl::init(false),
113                cl::desc("Disable the peephole optimizer"));
114
115/// Specifiy whether or not the value tracking looks through
116/// complex instructions. When this is true, the value tracker
117/// bails on everything that is not a copy or a bitcast.
118static cl::opt<bool>
119DisableAdvCopyOpt("disable-adv-copy-opt", cl::Hidden, cl::init(false),
120                  cl::desc("Disable advanced copy optimization"));
121
122static cl::opt<bool> DisableNAPhysCopyOpt(
123    "disable-non-allocatable-phys-copy-opt", cl::Hidden, cl::init(false),
124    cl::desc("Disable non-allocatable physical register copy optimization"));
125
126// Limit the number of PHI instructions to process
127// in PeepholeOptimizer::getNextSource.
128static cl::opt<unsigned> RewritePHILimit(
129    "rewrite-phi-limit", cl::Hidden, cl::init(10),
130    cl::desc("Limit the length of PHI chains to lookup"));
131
132// Limit the length of recurrence chain when evaluating the benefit of
133// commuting operands.
134static cl::opt<unsigned> MaxRecurrenceChain(
135    "recurrence-chain-limit", cl::Hidden, cl::init(3),
136    cl::desc("Maximum length of recurrence chain when evaluating the benefit "
137             "of commuting operands"));
138
139
140STATISTIC(NumReuse, "Number of extension results reused");
141STATISTIC(NumCmps, "Number of compares eliminated");
142STATISTIC(NumImmFold, "Number of move immediate folded");
143STATISTIC(NumLoadFold, "Number of loads folded");
144STATISTIC(NumSelects, "Number of selects optimized");
145STATISTIC(NumUncoalescableCopies, "Number of uncoalescable copies optimized");
146STATISTIC(NumRewrittenCopies, "Number of copies rewritten");
147STATISTIC(NumNAPhysCopies, "Number of non-allocatable physical copies removed");
148
149namespace {
150
151  class ValueTrackerResult;
152  class RecurrenceInstr;
153
154  class PeepholeOptimizer : public MachineFunctionPass {
155    const TargetInstrInfo *TII;
156    const TargetRegisterInfo *TRI;
157    MachineRegisterInfo *MRI;
158    MachineDominatorTree *DT;  // Machine dominator tree
159    MachineLoopInfo *MLI;
160
161  public:
162    static char ID; // Pass identification
163
164    PeepholeOptimizer() : MachineFunctionPass(ID) {
165      initializePeepholeOptimizerPass(*PassRegistry::getPassRegistry());
166    }
167
168    bool runOnMachineFunction(MachineFunction &MF) override;
169
170    void getAnalysisUsage(AnalysisUsage &AU) const override {
171      AU.setPreservesCFG();
172      MachineFunctionPass::getAnalysisUsage(AU);
173      AU.addRequired<MachineLoopInfo>();
174      AU.addPreserved<MachineLoopInfo>();
175      if (Aggressive) {
176        AU.addRequired<MachineDominatorTree>();
177        AU.addPreserved<MachineDominatorTree>();
178      }
179    }
180
181    /// Track Def -> Use info used for rewriting copies.
182    using RewriteMapTy = SmallDenseMap<RegSubRegPair, ValueTrackerResult>;
183
184    /// Sequence of instructions that formulate recurrence cycle.
185    using RecurrenceCycle = SmallVector<RecurrenceInstr, 4>;
186
187  private:
188    bool optimizeCmpInstr(MachineInstr &MI);
189    bool optimizeExtInstr(MachineInstr &MI, MachineBasicBlock &MBB,
190                          SmallPtrSetImpl<MachineInstr*> &LocalMIs);
191    bool optimizeSelect(MachineInstr &MI,
192                        SmallPtrSetImpl<MachineInstr *> &LocalMIs);
193    bool optimizeCondBranch(MachineInstr &MI);
194    bool optimizeCoalescableCopy(MachineInstr &MI);
195    bool optimizeUncoalescableCopy(MachineInstr &MI,
196                                   SmallPtrSetImpl<MachineInstr *> &LocalMIs);
197    bool optimizeRecurrence(MachineInstr &PHI);
198    bool findNextSource(RegSubRegPair RegSubReg, RewriteMapTy &RewriteMap);
199    bool isMoveImmediate(MachineInstr &MI,
200                         SmallSet<unsigned, 4> &ImmDefRegs,
201                         DenseMap<unsigned, MachineInstr*> &ImmDefMIs);
202    bool foldImmediate(MachineInstr &MI, SmallSet<unsigned, 4> &ImmDefRegs,
203                       DenseMap<unsigned, MachineInstr*> &ImmDefMIs);
204
205    /// Finds recurrence cycles, but only ones that formulated around
206    /// a def operand and a use operand that are tied. If there is a use
207    /// operand commutable with the tied use operand, find recurrence cycle
208    /// along that operand as well.
209    bool findTargetRecurrence(unsigned Reg,
210                              const SmallSet<unsigned, 2> &TargetReg,
211                              RecurrenceCycle &RC);
212
213    /// If copy instruction \p MI is a virtual register copy, track it in
214    /// the set \p CopySrcRegs and \p CopyMIs. If this virtual register was
215    /// previously seen as a copy, replace the uses of this copy with the
216    /// previously seen copy's destination register.
217    bool foldRedundantCopy(MachineInstr &MI,
218                           SmallSet<unsigned, 4> &CopySrcRegs,
219                           DenseMap<unsigned, MachineInstr *> &CopyMIs);
220
221    /// Is the register \p Reg a non-allocatable physical register?
222    bool isNAPhysCopy(unsigned Reg);
223
224    /// If copy instruction \p MI is a non-allocatable virtual<->physical
225    /// register copy, track it in the \p NAPhysToVirtMIs map. If this
226    /// non-allocatable physical register was previously copied to a virtual
227    /// registered and hasn't been clobbered, the virt->phys copy can be
228    /// deleted.
229    bool foldRedundantNAPhysCopy(MachineInstr &MI,
230        DenseMap<unsigned, MachineInstr *> &NAPhysToVirtMIs);
231
232    bool isLoadFoldable(MachineInstr &MI,
233                        SmallSet<unsigned, 16> &FoldAsLoadDefCandidates);
234
235    /// Check whether \p MI is understood by the register coalescer
236    /// but may require some rewriting.
237    bool isCoalescableCopy(const MachineInstr &MI) {
238      // SubregToRegs are not interesting, because they are already register
239      // coalescer friendly.
240      return MI.isCopy() || (!DisableAdvCopyOpt &&
241                             (MI.isRegSequence() || MI.isInsertSubreg() ||
242                              MI.isExtractSubreg()));
243    }
244
245    /// Check whether \p MI is a copy like instruction that is
246    /// not recognized by the register coalescer.
247    bool isUncoalescableCopy(const MachineInstr &MI) {
248      return MI.isBitcast() ||
249             (!DisableAdvCopyOpt &&
250              (MI.isRegSequenceLike() || MI.isInsertSubregLike() ||
251               MI.isExtractSubregLike()));
252    }
253
254    MachineInstr &rewriteSource(MachineInstr &CopyLike,
255                                RegSubRegPair Def, RewriteMapTy &RewriteMap);
256  };
257
258  /// Helper class to hold instructions that are inside recurrence cycles.
259  /// The recurrence cycle is formulated around 1) a def operand and its
260  /// tied use operand, or 2) a def operand and a use operand that is commutable
261  /// with another use operand which is tied to the def operand. In the latter
262  /// case, index of the tied use operand and the commutable use operand are
263  /// maintained with CommutePair.
264  class RecurrenceInstr {
265  public:
266    using IndexPair = std::pair<unsigned, unsigned>;
267
268    RecurrenceInstr(MachineInstr *MI) : MI(MI) {}
269    RecurrenceInstr(MachineInstr *MI, unsigned Idx1, unsigned Idx2)
270      : MI(MI), CommutePair(std::make_pair(Idx1, Idx2)) {}
271
272    MachineInstr *getMI() const { return MI; }
273    Optional<IndexPair> getCommutePair() const { return CommutePair; }
274
275  private:
276    MachineInstr *MI;
277    Optional<IndexPair> CommutePair;
278  };
279
280  /// Helper class to hold a reply for ValueTracker queries.
281  /// Contains the returned sources for a given search and the instructions
282  /// where the sources were tracked from.
283  class ValueTrackerResult {
284  private:
285    /// Track all sources found by one ValueTracker query.
286    SmallVector<RegSubRegPair, 2> RegSrcs;
287
288    /// Instruction using the sources in 'RegSrcs'.
289    const MachineInstr *Inst = nullptr;
290
291  public:
292    ValueTrackerResult() = default;
293
294    ValueTrackerResult(unsigned Reg, unsigned SubReg) {
295      addSource(Reg, SubReg);
296    }
297
298    bool isValid() const { return getNumSources() > 0; }
299
300    void setInst(const MachineInstr *I) { Inst = I; }
301    const MachineInstr *getInst() const { return Inst; }
302
303    void clear() {
304      RegSrcs.clear();
305      Inst = nullptr;
306    }
307
308    void addSource(unsigned SrcReg, unsigned SrcSubReg) {
309      RegSrcs.push_back(RegSubRegPair(SrcReg, SrcSubReg));
310    }
311
312    void setSource(int Idx, unsigned SrcReg, unsigned SrcSubReg) {
313      assert(Idx < getNumSources() && "Reg pair source out of index");
314      RegSrcs[Idx] = RegSubRegPair(SrcReg, SrcSubReg);
315    }
316
317    int getNumSources() const { return RegSrcs.size(); }
318
319    RegSubRegPair getSrc(int Idx) const {
320      return RegSrcs[Idx];
321    }
322
323    unsigned getSrcReg(int Idx) const {
324      assert(Idx < getNumSources() && "Reg source out of index");
325      return RegSrcs[Idx].Reg;
326    }
327
328    unsigned getSrcSubReg(int Idx) const {
329      assert(Idx < getNumSources() && "SubReg source out of index");
330      return RegSrcs[Idx].SubReg;
331    }
332
333    bool operator==(const ValueTrackerResult &Other) {
334      if (Other.getInst() != getInst())
335        return false;
336
337      if (Other.getNumSources() != getNumSources())
338        return false;
339
340      for (int i = 0, e = Other.getNumSources(); i != e; ++i)
341        if (Other.getSrcReg(i) != getSrcReg(i) ||
342            Other.getSrcSubReg(i) != getSrcSubReg(i))
343          return false;
344      return true;
345    }
346  };
347
348  /// Helper class to track the possible sources of a value defined by
349  /// a (chain of) copy related instructions.
350  /// Given a definition (instruction and definition index), this class
351  /// follows the use-def chain to find successive suitable sources.
352  /// The given source can be used to rewrite the definition into
353  /// def = COPY src.
354  ///
355  /// For instance, let us consider the following snippet:
356  /// v0 =
357  /// v2 = INSERT_SUBREG v1, v0, sub0
358  /// def = COPY v2.sub0
359  ///
360  /// Using a ValueTracker for def = COPY v2.sub0 will give the following
361  /// suitable sources:
362  /// v2.sub0 and v0.
363  /// Then, def can be rewritten into def = COPY v0.
364  class ValueTracker {
365  private:
366    /// The current point into the use-def chain.
367    const MachineInstr *Def = nullptr;
368
369    /// The index of the definition in Def.
370    unsigned DefIdx = 0;
371
372    /// The sub register index of the definition.
373    unsigned DefSubReg;
374
375    /// The register where the value can be found.
376    unsigned Reg;
377
378    /// MachineRegisterInfo used to perform tracking.
379    const MachineRegisterInfo &MRI;
380
381    /// Optional TargetInstrInfo used to perform some complex tracking.
382    const TargetInstrInfo *TII;
383
384    /// Dispatcher to the right underlying implementation of getNextSource.
385    ValueTrackerResult getNextSourceImpl();
386
387    /// Specialized version of getNextSource for Copy instructions.
388    ValueTrackerResult getNextSourceFromCopy();
389
390    /// Specialized version of getNextSource for Bitcast instructions.
391    ValueTrackerResult getNextSourceFromBitcast();
392
393    /// Specialized version of getNextSource for RegSequence instructions.
394    ValueTrackerResult getNextSourceFromRegSequence();
395
396    /// Specialized version of getNextSource for InsertSubreg instructions.
397    ValueTrackerResult getNextSourceFromInsertSubreg();
398
399    /// Specialized version of getNextSource for ExtractSubreg instructions.
400    ValueTrackerResult getNextSourceFromExtractSubreg();
401
402    /// Specialized version of getNextSource for SubregToReg instructions.
403    ValueTrackerResult getNextSourceFromSubregToReg();
404
405    /// Specialized version of getNextSource for PHI instructions.
406    ValueTrackerResult getNextSourceFromPHI();
407
408  public:
409    /// Create a ValueTracker instance for the value defined by \p Reg.
410    /// \p DefSubReg represents the sub register index the value tracker will
411    /// track. It does not need to match the sub register index used in the
412    /// definition of \p Reg.
413    /// If \p Reg is a physical register, a value tracker constructed with
414    /// this constructor will not find any alternative source.
415    /// Indeed, when \p Reg is a physical register that constructor does not
416    /// know which definition of \p Reg it should track.
417    /// Use the next constructor to track a physical register.
418    ValueTracker(unsigned Reg, unsigned DefSubReg,
419                 const MachineRegisterInfo &MRI,
420                 const TargetInstrInfo *TII = nullptr)
421        : DefSubReg(DefSubReg), Reg(Reg), MRI(MRI), TII(TII) {
422      if (!Register::isPhysicalRegister(Reg)) {
423        Def = MRI.getVRegDef(Reg);
424        DefIdx = MRI.def_begin(Reg).getOperandNo();
425      }
426    }
427
428    /// Following the use-def chain, get the next available source
429    /// for the tracked value.
430    /// \return A ValueTrackerResult containing a set of registers
431    /// and sub registers with tracked values. A ValueTrackerResult with
432    /// an empty set of registers means no source was found.
433    ValueTrackerResult getNextSource();
434  };
435
436} // end anonymous namespace
437
438char PeepholeOptimizer::ID = 0;
439
440char &llvm::PeepholeOptimizerID = PeepholeOptimizer::ID;
441
442INITIALIZE_PASS_BEGIN(PeepholeOptimizer, DEBUG_TYPE,
443                      "Peephole Optimizations", false, false)
444INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
445INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
446INITIALIZE_PASS_END(PeepholeOptimizer, DEBUG_TYPE,
447                    "Peephole Optimizations", false, false)
448
449/// If instruction is a copy-like instruction, i.e. it reads a single register
450/// and writes a single register and it does not modify the source, and if the
451/// source value is preserved as a sub-register of the result, then replace all
452/// reachable uses of the source with the subreg of the result.
453///
454/// Do not generate an EXTRACT that is used only in a debug use, as this changes
455/// the code. Since this code does not currently share EXTRACTs, just ignore all
456/// debug uses.
457bool PeepholeOptimizer::
458optimizeExtInstr(MachineInstr &MI, MachineBasicBlock &MBB,
459                 SmallPtrSetImpl<MachineInstr*> &LocalMIs) {
460  unsigned SrcReg, DstReg, SubIdx;
461  if (!TII->isCoalescableExtInstr(MI, SrcReg, DstReg, SubIdx))
462    return false;
463
464  if (Register::isPhysicalRegister(DstReg) ||
465      Register::isPhysicalRegister(SrcReg))
466    return false;
467
468  if (MRI->hasOneNonDBGUse(SrcReg))
469    // No other uses.
470    return false;
471
472  // Ensure DstReg can get a register class that actually supports
473  // sub-registers. Don't change the class until we commit.
474  const TargetRegisterClass *DstRC = MRI->getRegClass(DstReg);
475  DstRC = TRI->getSubClassWithSubReg(DstRC, SubIdx);
476  if (!DstRC)
477    return false;
478
479  // The ext instr may be operating on a sub-register of SrcReg as well.
480  // PPC::EXTSW is a 32 -> 64-bit sign extension, but it reads a 64-bit
481  // register.
482  // If UseSrcSubIdx is Set, SubIdx also applies to SrcReg, and only uses of
483  // SrcReg:SubIdx should be replaced.
484  bool UseSrcSubIdx =
485      TRI->getSubClassWithSubReg(MRI->getRegClass(SrcReg), SubIdx) != nullptr;
486
487  // The source has other uses. See if we can replace the other uses with use of
488  // the result of the extension.
489  SmallPtrSet<MachineBasicBlock*, 4> ReachedBBs;
490  for (MachineInstr &UI : MRI->use_nodbg_instructions(DstReg))
491    ReachedBBs.insert(UI.getParent());
492
493  // Uses that are in the same BB of uses of the result of the instruction.
494  SmallVector<MachineOperand*, 8> Uses;
495
496  // Uses that the result of the instruction can reach.
497  SmallVector<MachineOperand*, 8> ExtendedUses;
498
499  bool ExtendLife = true;
500  for (MachineOperand &UseMO : MRI->use_nodbg_operands(SrcReg)) {
501    MachineInstr *UseMI = UseMO.getParent();
502    if (UseMI == &MI)
503      continue;
504
505    if (UseMI->isPHI()) {
506      ExtendLife = false;
507      continue;
508    }
509
510    // Only accept uses of SrcReg:SubIdx.
511    if (UseSrcSubIdx && UseMO.getSubReg() != SubIdx)
512      continue;
513
514    // It's an error to translate this:
515    //
516    //    %reg1025 = <sext> %reg1024
517    //     ...
518    //    %reg1026 = SUBREG_TO_REG 0, %reg1024, 4
519    //
520    // into this:
521    //
522    //    %reg1025 = <sext> %reg1024
523    //     ...
524    //    %reg1027 = COPY %reg1025:4
525    //    %reg1026 = SUBREG_TO_REG 0, %reg1027, 4
526    //
527    // The problem here is that SUBREG_TO_REG is there to assert that an
528    // implicit zext occurs. It doesn't insert a zext instruction. If we allow
529    // the COPY here, it will give us the value after the <sext>, not the
530    // original value of %reg1024 before <sext>.
531    if (UseMI->getOpcode() == TargetOpcode::SUBREG_TO_REG)
532      continue;
533
534    MachineBasicBlock *UseMBB = UseMI->getParent();
535    if (UseMBB == &MBB) {
536      // Local uses that come after the extension.
537      if (!LocalMIs.count(UseMI))
538        Uses.push_back(&UseMO);
539    } else if (ReachedBBs.count(UseMBB)) {
540      // Non-local uses where the result of the extension is used. Always
541      // replace these unless it's a PHI.
542      Uses.push_back(&UseMO);
543    } else if (Aggressive && DT->dominates(&MBB, UseMBB)) {
544      // We may want to extend the live range of the extension result in order
545      // to replace these uses.
546      ExtendedUses.push_back(&UseMO);
547    } else {
548      // Both will be live out of the def MBB anyway. Don't extend live range of
549      // the extension result.
550      ExtendLife = false;
551      break;
552    }
553  }
554
555  if (ExtendLife && !ExtendedUses.empty())
556    // Extend the liveness of the extension result.
557    Uses.append(ExtendedUses.begin(), ExtendedUses.end());
558
559  // Now replace all uses.
560  bool Changed = false;
561  if (!Uses.empty()) {
562    SmallPtrSet<MachineBasicBlock*, 4> PHIBBs;
563
564    // Look for PHI uses of the extended result, we don't want to extend the
565    // liveness of a PHI input. It breaks all kinds of assumptions down
566    // stream. A PHI use is expected to be the kill of its source values.
567    for (MachineInstr &UI : MRI->use_nodbg_instructions(DstReg))
568      if (UI.isPHI())
569        PHIBBs.insert(UI.getParent());
570
571    const TargetRegisterClass *RC = MRI->getRegClass(SrcReg);
572    for (unsigned i = 0, e = Uses.size(); i != e; ++i) {
573      MachineOperand *UseMO = Uses[i];
574      MachineInstr *UseMI = UseMO->getParent();
575      MachineBasicBlock *UseMBB = UseMI->getParent();
576      if (PHIBBs.count(UseMBB))
577        continue;
578
579      // About to add uses of DstReg, clear DstReg's kill flags.
580      if (!Changed) {
581        MRI->clearKillFlags(DstReg);
582        MRI->constrainRegClass(DstReg, DstRC);
583      }
584
585      Register NewVR = MRI->createVirtualRegister(RC);
586      MachineInstr *Copy = BuildMI(*UseMBB, UseMI, UseMI->getDebugLoc(),
587                                   TII->get(TargetOpcode::COPY), NewVR)
588        .addReg(DstReg, 0, SubIdx);
589      // SubIdx applies to both SrcReg and DstReg when UseSrcSubIdx is set.
590      if (UseSrcSubIdx) {
591        Copy->getOperand(0).setSubReg(SubIdx);
592        Copy->getOperand(0).setIsUndef();
593      }
594      UseMO->setReg(NewVR);
595      ++NumReuse;
596      Changed = true;
597    }
598  }
599
600  return Changed;
601}
602
603/// If the instruction is a compare and the previous instruction it's comparing
604/// against already sets (or could be modified to set) the same flag as the
605/// compare, then we can remove the comparison and use the flag from the
606/// previous instruction.
607bool PeepholeOptimizer::optimizeCmpInstr(MachineInstr &MI) {
608  // If this instruction is a comparison against zero and isn't comparing a
609  // physical register, we can try to optimize it.
610  unsigned SrcReg, SrcReg2;
611  int CmpMask, CmpValue;
612  if (!TII->analyzeCompare(MI, SrcReg, SrcReg2, CmpMask, CmpValue) ||
613      Register::isPhysicalRegister(SrcReg) ||
614      (SrcReg2 != 0 && Register::isPhysicalRegister(SrcReg2)))
615    return false;
616
617  // Attempt to optimize the comparison instruction.
618  if (TII->optimizeCompareInstr(MI, SrcReg, SrcReg2, CmpMask, CmpValue, MRI)) {
619    ++NumCmps;
620    return true;
621  }
622
623  return false;
624}
625
626/// Optimize a select instruction.
627bool PeepholeOptimizer::optimizeSelect(MachineInstr &MI,
628                            SmallPtrSetImpl<MachineInstr *> &LocalMIs) {
629  unsigned TrueOp = 0;
630  unsigned FalseOp = 0;
631  bool Optimizable = false;
632  SmallVector<MachineOperand, 4> Cond;
633  if (TII->analyzeSelect(MI, Cond, TrueOp, FalseOp, Optimizable))
634    return false;
635  if (!Optimizable)
636    return false;
637  if (!TII->optimizeSelect(MI, LocalMIs))
638    return false;
639  MI.eraseFromParent();
640  ++NumSelects;
641  return true;
642}
643
644/// Check if a simpler conditional branch can be generated.
645bool PeepholeOptimizer::optimizeCondBranch(MachineInstr &MI) {
646  return TII->optimizeCondBranch(MI);
647}
648
649/// Try to find the next source that share the same register file
650/// for the value defined by \p Reg and \p SubReg.
651/// When true is returned, the \p RewriteMap can be used by the client to
652/// retrieve all Def -> Use along the way up to the next source. Any found
653/// Use that is not itself a key for another entry, is the next source to
654/// use. During the search for the next source, multiple sources can be found
655/// given multiple incoming sources of a PHI instruction. In this case, we
656/// look in each PHI source for the next source; all found next sources must
657/// share the same register file as \p Reg and \p SubReg. The client should
658/// then be capable to rewrite all intermediate PHIs to get the next source.
659/// \return False if no alternative sources are available. True otherwise.
660bool PeepholeOptimizer::findNextSource(RegSubRegPair RegSubReg,
661                                       RewriteMapTy &RewriteMap) {
662  // Do not try to find a new source for a physical register.
663  // So far we do not have any motivating example for doing that.
664  // Thus, instead of maintaining untested code, we will revisit that if
665  // that changes at some point.
666  unsigned Reg = RegSubReg.Reg;
667  if (Register::isPhysicalRegister(Reg))
668    return false;
669  const TargetRegisterClass *DefRC = MRI->getRegClass(Reg);
670
671  SmallVector<RegSubRegPair, 4> SrcToLook;
672  RegSubRegPair CurSrcPair = RegSubReg;
673  SrcToLook.push_back(CurSrcPair);
674
675  unsigned PHICount = 0;
676  do {
677    CurSrcPair = SrcToLook.pop_back_val();
678    // As explained above, do not handle physical registers
679    if (Register::isPhysicalRegister(CurSrcPair.Reg))
680      return false;
681
682    ValueTracker ValTracker(CurSrcPair.Reg, CurSrcPair.SubReg, *MRI, TII);
683
684    // Follow the chain of copies until we find a more suitable source, a phi
685    // or have to abort.
686    while (true) {
687      ValueTrackerResult Res = ValTracker.getNextSource();
688      // Abort at the end of a chain (without finding a suitable source).
689      if (!Res.isValid())
690        return false;
691
692      // Insert the Def -> Use entry for the recently found source.
693      ValueTrackerResult CurSrcRes = RewriteMap.lookup(CurSrcPair);
694      if (CurSrcRes.isValid()) {
695        assert(CurSrcRes == Res && "ValueTrackerResult found must match");
696        // An existent entry with multiple sources is a PHI cycle we must avoid.
697        // Otherwise it's an entry with a valid next source we already found.
698        if (CurSrcRes.getNumSources() > 1) {
699          LLVM_DEBUG(dbgs()
700                     << "findNextSource: found PHI cycle, aborting...\n");
701          return false;
702        }
703        break;
704      }
705      RewriteMap.insert(std::make_pair(CurSrcPair, Res));
706
707      // ValueTrackerResult usually have one source unless it's the result from
708      // a PHI instruction. Add the found PHI edges to be looked up further.
709      unsigned NumSrcs = Res.getNumSources();
710      if (NumSrcs > 1) {
711        PHICount++;
712        if (PHICount >= RewritePHILimit) {
713          LLVM_DEBUG(dbgs() << "findNextSource: PHI limit reached\n");
714          return false;
715        }
716
717        for (unsigned i = 0; i < NumSrcs; ++i)
718          SrcToLook.push_back(Res.getSrc(i));
719        break;
720      }
721
722      CurSrcPair = Res.getSrc(0);
723      // Do not extend the live-ranges of physical registers as they add
724      // constraints to the register allocator. Moreover, if we want to extend
725      // the live-range of a physical register, unlike SSA virtual register,
726      // we will have to check that they aren't redefine before the related use.
727      if (Register::isPhysicalRegister(CurSrcPair.Reg))
728        return false;
729
730      // Keep following the chain if the value isn't any better yet.
731      const TargetRegisterClass *SrcRC = MRI->getRegClass(CurSrcPair.Reg);
732      if (!TRI->shouldRewriteCopySrc(DefRC, RegSubReg.SubReg, SrcRC,
733                                     CurSrcPair.SubReg))
734        continue;
735
736      // We currently cannot deal with subreg operands on PHI instructions
737      // (see insertPHI()).
738      if (PHICount > 0 && CurSrcPair.SubReg != 0)
739        continue;
740
741      // We found a suitable source, and are done with this chain.
742      break;
743    }
744  } while (!SrcToLook.empty());
745
746  // If we did not find a more suitable source, there is nothing to optimize.
747  return CurSrcPair.Reg != Reg;
748}
749
750/// Insert a PHI instruction with incoming edges \p SrcRegs that are
751/// guaranteed to have the same register class. This is necessary whenever we
752/// successfully traverse a PHI instruction and find suitable sources coming
753/// from its edges. By inserting a new PHI, we provide a rewritten PHI def
754/// suitable to be used in a new COPY instruction.
755static MachineInstr &
756insertPHI(MachineRegisterInfo &MRI, const TargetInstrInfo &TII,
757          const SmallVectorImpl<RegSubRegPair> &SrcRegs,
758          MachineInstr &OrigPHI) {
759  assert(!SrcRegs.empty() && "No sources to create a PHI instruction?");
760
761  const TargetRegisterClass *NewRC = MRI.getRegClass(SrcRegs[0].Reg);
762  // NewRC is only correct if no subregisters are involved. findNextSource()
763  // should have rejected those cases already.
764  assert(SrcRegs[0].SubReg == 0 && "should not have subreg operand");
765  Register NewVR = MRI.createVirtualRegister(NewRC);
766  MachineBasicBlock *MBB = OrigPHI.getParent();
767  MachineInstrBuilder MIB = BuildMI(*MBB, &OrigPHI, OrigPHI.getDebugLoc(),
768                                    TII.get(TargetOpcode::PHI), NewVR);
769
770  unsigned MBBOpIdx = 2;
771  for (const RegSubRegPair &RegPair : SrcRegs) {
772    MIB.addReg(RegPair.Reg, 0, RegPair.SubReg);
773    MIB.addMBB(OrigPHI.getOperand(MBBOpIdx).getMBB());
774    // Since we're extended the lifetime of RegPair.Reg, clear the
775    // kill flags to account for that and make RegPair.Reg reaches
776    // the new PHI.
777    MRI.clearKillFlags(RegPair.Reg);
778    MBBOpIdx += 2;
779  }
780
781  return *MIB;
782}
783
784namespace {
785
786/// Interface to query instructions amenable to copy rewriting.
787class Rewriter {
788protected:
789  MachineInstr &CopyLike;
790  unsigned CurrentSrcIdx = 0;   ///< The index of the source being rewritten.
791public:
792  Rewriter(MachineInstr &CopyLike) : CopyLike(CopyLike) {}
793  virtual ~Rewriter() {}
794
795  /// Get the next rewritable source (SrcReg, SrcSubReg) and
796  /// the related value that it affects (DstReg, DstSubReg).
797  /// A source is considered rewritable if its register class and the
798  /// register class of the related DstReg may not be register
799  /// coalescer friendly. In other words, given a copy-like instruction
800  /// not all the arguments may be returned at rewritable source, since
801  /// some arguments are none to be register coalescer friendly.
802  ///
803  /// Each call of this method moves the current source to the next
804  /// rewritable source.
805  /// For instance, let CopyLike be the instruction to rewrite.
806  /// CopyLike has one definition and one source:
807  /// dst.dstSubIdx = CopyLike src.srcSubIdx.
808  ///
809  /// The first call will give the first rewritable source, i.e.,
810  /// the only source this instruction has:
811  /// (SrcReg, SrcSubReg) = (src, srcSubIdx).
812  /// This source defines the whole definition, i.e.,
813  /// (DstReg, DstSubReg) = (dst, dstSubIdx).
814  ///
815  /// The second and subsequent calls will return false, as there is only one
816  /// rewritable source.
817  ///
818  /// \return True if a rewritable source has been found, false otherwise.
819  /// The output arguments are valid if and only if true is returned.
820  virtual bool getNextRewritableSource(RegSubRegPair &Src,
821                                       RegSubRegPair &Dst) = 0;
822
823  /// Rewrite the current source with \p NewReg and \p NewSubReg if possible.
824  /// \return True if the rewriting was possible, false otherwise.
825  virtual bool RewriteCurrentSource(unsigned NewReg, unsigned NewSubReg) = 0;
826};
827
828/// Rewriter for COPY instructions.
829class CopyRewriter : public Rewriter {
830public:
831  CopyRewriter(MachineInstr &MI) : Rewriter(MI) {
832    assert(MI.isCopy() && "Expected copy instruction");
833  }
834  virtual ~CopyRewriter() = default;
835
836  bool getNextRewritableSource(RegSubRegPair &Src,
837                               RegSubRegPair &Dst) override {
838    // CurrentSrcIdx > 0 means this function has already been called.
839    if (CurrentSrcIdx > 0)
840      return false;
841    // This is the first call to getNextRewritableSource.
842    // Move the CurrentSrcIdx to remember that we made that call.
843    CurrentSrcIdx = 1;
844    // The rewritable source is the argument.
845    const MachineOperand &MOSrc = CopyLike.getOperand(1);
846    Src = RegSubRegPair(MOSrc.getReg(), MOSrc.getSubReg());
847    // What we track are the alternative sources of the definition.
848    const MachineOperand &MODef = CopyLike.getOperand(0);
849    Dst = RegSubRegPair(MODef.getReg(), MODef.getSubReg());
850    return true;
851  }
852
853  bool RewriteCurrentSource(unsigned NewReg, unsigned NewSubReg) override {
854    if (CurrentSrcIdx != 1)
855      return false;
856    MachineOperand &MOSrc = CopyLike.getOperand(CurrentSrcIdx);
857    MOSrc.setReg(NewReg);
858    MOSrc.setSubReg(NewSubReg);
859    return true;
860  }
861};
862
863/// Helper class to rewrite uncoalescable copy like instructions
864/// into new COPY (coalescable friendly) instructions.
865class UncoalescableRewriter : public Rewriter {
866  unsigned NumDefs;  ///< Number of defs in the bitcast.
867
868public:
869  UncoalescableRewriter(MachineInstr &MI) : Rewriter(MI) {
870    NumDefs = MI.getDesc().getNumDefs();
871  }
872
873  /// \see See Rewriter::getNextRewritableSource()
874  /// All such sources need to be considered rewritable in order to
875  /// rewrite a uncoalescable copy-like instruction. This method return
876  /// each definition that must be checked if rewritable.
877  bool getNextRewritableSource(RegSubRegPair &Src,
878                               RegSubRegPair &Dst) override {
879    // Find the next non-dead definition and continue from there.
880    if (CurrentSrcIdx == NumDefs)
881      return false;
882
883    while (CopyLike.getOperand(CurrentSrcIdx).isDead()) {
884      ++CurrentSrcIdx;
885      if (CurrentSrcIdx == NumDefs)
886        return false;
887    }
888
889    // What we track are the alternative sources of the definition.
890    Src = RegSubRegPair(0, 0);
891    const MachineOperand &MODef = CopyLike.getOperand(CurrentSrcIdx);
892    Dst = RegSubRegPair(MODef.getReg(), MODef.getSubReg());
893
894    CurrentSrcIdx++;
895    return true;
896  }
897
898  bool RewriteCurrentSource(unsigned NewReg, unsigned NewSubReg) override {
899    return false;
900  }
901};
902
903/// Specialized rewriter for INSERT_SUBREG instruction.
904class InsertSubregRewriter : public Rewriter {
905public:
906  InsertSubregRewriter(MachineInstr &MI) : Rewriter(MI) {
907    assert(MI.isInsertSubreg() && "Invalid instruction");
908  }
909
910  /// \see See Rewriter::getNextRewritableSource()
911  /// Here CopyLike has the following form:
912  /// dst = INSERT_SUBREG Src1, Src2.src2SubIdx, subIdx.
913  /// Src1 has the same register class has dst, hence, there is
914  /// nothing to rewrite.
915  /// Src2.src2SubIdx, may not be register coalescer friendly.
916  /// Therefore, the first call to this method returns:
917  /// (SrcReg, SrcSubReg) = (Src2, src2SubIdx).
918  /// (DstReg, DstSubReg) = (dst, subIdx).
919  ///
920  /// Subsequence calls will return false.
921  bool getNextRewritableSource(RegSubRegPair &Src,
922                               RegSubRegPair &Dst) override {
923    // If we already get the only source we can rewrite, return false.
924    if (CurrentSrcIdx == 2)
925      return false;
926    // We are looking at v2 = INSERT_SUBREG v0, v1, sub0.
927    CurrentSrcIdx = 2;
928    const MachineOperand &MOInsertedReg = CopyLike.getOperand(2);
929    Src = RegSubRegPair(MOInsertedReg.getReg(), MOInsertedReg.getSubReg());
930    const MachineOperand &MODef = CopyLike.getOperand(0);
931
932    // We want to track something that is compatible with the
933    // partial definition.
934    if (MODef.getSubReg())
935      // Bail if we have to compose sub-register indices.
936      return false;
937    Dst = RegSubRegPair(MODef.getReg(),
938                        (unsigned)CopyLike.getOperand(3).getImm());
939    return true;
940  }
941
942  bool RewriteCurrentSource(unsigned NewReg, unsigned NewSubReg) override {
943    if (CurrentSrcIdx != 2)
944      return false;
945    // We are rewriting the inserted reg.
946    MachineOperand &MO = CopyLike.getOperand(CurrentSrcIdx);
947    MO.setReg(NewReg);
948    MO.setSubReg(NewSubReg);
949    return true;
950  }
951};
952
953/// Specialized rewriter for EXTRACT_SUBREG instruction.
954class ExtractSubregRewriter : public Rewriter {
955  const TargetInstrInfo &TII;
956
957public:
958  ExtractSubregRewriter(MachineInstr &MI, const TargetInstrInfo &TII)
959      : Rewriter(MI), TII(TII) {
960    assert(MI.isExtractSubreg() && "Invalid instruction");
961  }
962
963  /// \see Rewriter::getNextRewritableSource()
964  /// Here CopyLike has the following form:
965  /// dst.dstSubIdx = EXTRACT_SUBREG Src, subIdx.
966  /// There is only one rewritable source: Src.subIdx,
967  /// which defines dst.dstSubIdx.
968  bool getNextRewritableSource(RegSubRegPair &Src,
969                               RegSubRegPair &Dst) override {
970    // If we already get the only source we can rewrite, return false.
971    if (CurrentSrcIdx == 1)
972      return false;
973    // We are looking at v1 = EXTRACT_SUBREG v0, sub0.
974    CurrentSrcIdx = 1;
975    const MachineOperand &MOExtractedReg = CopyLike.getOperand(1);
976    // If we have to compose sub-register indices, bail out.
977    if (MOExtractedReg.getSubReg())
978      return false;
979
980    Src = RegSubRegPair(MOExtractedReg.getReg(),
981                        CopyLike.getOperand(2).getImm());
982
983    // We want to track something that is compatible with the definition.
984    const MachineOperand &MODef = CopyLike.getOperand(0);
985    Dst = RegSubRegPair(MODef.getReg(), MODef.getSubReg());
986    return true;
987  }
988
989  bool RewriteCurrentSource(unsigned NewReg, unsigned NewSubReg) override {
990    // The only source we can rewrite is the input register.
991    if (CurrentSrcIdx != 1)
992      return false;
993
994    CopyLike.getOperand(CurrentSrcIdx).setReg(NewReg);
995
996    // If we find a source that does not require to extract something,
997    // rewrite the operation with a copy.
998    if (!NewSubReg) {
999      // Move the current index to an invalid position.
1000      // We do not want another call to this method to be able
1001      // to do any change.
1002      CurrentSrcIdx = -1;
1003      // Rewrite the operation as a COPY.
1004      // Get rid of the sub-register index.
1005      CopyLike.RemoveOperand(2);
1006      // Morph the operation into a COPY.
1007      CopyLike.setDesc(TII.get(TargetOpcode::COPY));
1008      return true;
1009    }
1010    CopyLike.getOperand(CurrentSrcIdx + 1).setImm(NewSubReg);
1011    return true;
1012  }
1013};
1014
1015/// Specialized rewriter for REG_SEQUENCE instruction.
1016class RegSequenceRewriter : public Rewriter {
1017public:
1018  RegSequenceRewriter(MachineInstr &MI) : Rewriter(MI) {
1019    assert(MI.isRegSequence() && "Invalid instruction");
1020  }
1021
1022  /// \see Rewriter::getNextRewritableSource()
1023  /// Here CopyLike has the following form:
1024  /// dst = REG_SEQUENCE Src1.src1SubIdx, subIdx1, Src2.src2SubIdx, subIdx2.
1025  /// Each call will return a different source, walking all the available
1026  /// source.
1027  ///
1028  /// The first call returns:
1029  /// (SrcReg, SrcSubReg) = (Src1, src1SubIdx).
1030  /// (DstReg, DstSubReg) = (dst, subIdx1).
1031  ///
1032  /// The second call returns:
1033  /// (SrcReg, SrcSubReg) = (Src2, src2SubIdx).
1034  /// (DstReg, DstSubReg) = (dst, subIdx2).
1035  ///
1036  /// And so on, until all the sources have been traversed, then
1037  /// it returns false.
1038  bool getNextRewritableSource(RegSubRegPair &Src,
1039                               RegSubRegPair &Dst) override {
1040    // We are looking at v0 = REG_SEQUENCE v1, sub1, v2, sub2, etc.
1041
1042    // If this is the first call, move to the first argument.
1043    if (CurrentSrcIdx == 0) {
1044      CurrentSrcIdx = 1;
1045    } else {
1046      // Otherwise, move to the next argument and check that it is valid.
1047      CurrentSrcIdx += 2;
1048      if (CurrentSrcIdx >= CopyLike.getNumOperands())
1049        return false;
1050    }
1051    const MachineOperand &MOInsertedReg = CopyLike.getOperand(CurrentSrcIdx);
1052    Src.Reg = MOInsertedReg.getReg();
1053    // If we have to compose sub-register indices, bail out.
1054    if ((Src.SubReg = MOInsertedReg.getSubReg()))
1055      return false;
1056
1057    // We want to track something that is compatible with the related
1058    // partial definition.
1059    Dst.SubReg = CopyLike.getOperand(CurrentSrcIdx + 1).getImm();
1060
1061    const MachineOperand &MODef = CopyLike.getOperand(0);
1062    Dst.Reg = MODef.getReg();
1063    // If we have to compose sub-registers, bail.
1064    return MODef.getSubReg() == 0;
1065  }
1066
1067  bool RewriteCurrentSource(unsigned NewReg, unsigned NewSubReg) override {
1068    // We cannot rewrite out of bound operands.
1069    // Moreover, rewritable sources are at odd positions.
1070    if ((CurrentSrcIdx & 1) != 1 || CurrentSrcIdx > CopyLike.getNumOperands())
1071      return false;
1072
1073    MachineOperand &MO = CopyLike.getOperand(CurrentSrcIdx);
1074    MO.setReg(NewReg);
1075    MO.setSubReg(NewSubReg);
1076    return true;
1077  }
1078};
1079
1080} // end anonymous namespace
1081
1082/// Get the appropriated Rewriter for \p MI.
1083/// \return A pointer to a dynamically allocated Rewriter or nullptr if no
1084/// rewriter works for \p MI.
1085static Rewriter *getCopyRewriter(MachineInstr &MI, const TargetInstrInfo &TII) {
1086  // Handle uncoalescable copy-like instructions.
1087  if (MI.isBitcast() || MI.isRegSequenceLike() || MI.isInsertSubregLike() ||
1088      MI.isExtractSubregLike())
1089    return new UncoalescableRewriter(MI);
1090
1091  switch (MI.getOpcode()) {
1092  default:
1093    return nullptr;
1094  case TargetOpcode::COPY:
1095    return new CopyRewriter(MI);
1096  case TargetOpcode::INSERT_SUBREG:
1097    return new InsertSubregRewriter(MI);
1098  case TargetOpcode::EXTRACT_SUBREG:
1099    return new ExtractSubregRewriter(MI, TII);
1100  case TargetOpcode::REG_SEQUENCE:
1101    return new RegSequenceRewriter(MI);
1102  }
1103}
1104
1105/// Given a \p Def.Reg and Def.SubReg  pair, use \p RewriteMap to find
1106/// the new source to use for rewrite. If \p HandleMultipleSources is true and
1107/// multiple sources for a given \p Def are found along the way, we found a
1108/// PHI instructions that needs to be rewritten.
1109/// TODO: HandleMultipleSources should be removed once we test PHI handling
1110/// with coalescable copies.
1111static RegSubRegPair
1112getNewSource(MachineRegisterInfo *MRI, const TargetInstrInfo *TII,
1113             RegSubRegPair Def,
1114             const PeepholeOptimizer::RewriteMapTy &RewriteMap,
1115             bool HandleMultipleSources = true) {
1116  RegSubRegPair LookupSrc(Def.Reg, Def.SubReg);
1117  while (true) {
1118    ValueTrackerResult Res = RewriteMap.lookup(LookupSrc);
1119    // If there are no entries on the map, LookupSrc is the new source.
1120    if (!Res.isValid())
1121      return LookupSrc;
1122
1123    // There's only one source for this definition, keep searching...
1124    unsigned NumSrcs = Res.getNumSources();
1125    if (NumSrcs == 1) {
1126      LookupSrc.Reg = Res.getSrcReg(0);
1127      LookupSrc.SubReg = Res.getSrcSubReg(0);
1128      continue;
1129    }
1130
1131    // TODO: Remove once multiple srcs w/ coalescable copies are supported.
1132    if (!HandleMultipleSources)
1133      break;
1134
1135    // Multiple sources, recurse into each source to find a new source
1136    // for it. Then, rewrite the PHI accordingly to its new edges.
1137    SmallVector<RegSubRegPair, 4> NewPHISrcs;
1138    for (unsigned i = 0; i < NumSrcs; ++i) {
1139      RegSubRegPair PHISrc(Res.getSrcReg(i), Res.getSrcSubReg(i));
1140      NewPHISrcs.push_back(
1141          getNewSource(MRI, TII, PHISrc, RewriteMap, HandleMultipleSources));
1142    }
1143
1144    // Build the new PHI node and return its def register as the new source.
1145    MachineInstr &OrigPHI = const_cast<MachineInstr &>(*Res.getInst());
1146    MachineInstr &NewPHI = insertPHI(*MRI, *TII, NewPHISrcs, OrigPHI);
1147    LLVM_DEBUG(dbgs() << "-- getNewSource\n");
1148    LLVM_DEBUG(dbgs() << "   Replacing: " << OrigPHI);
1149    LLVM_DEBUG(dbgs() << "        With: " << NewPHI);
1150    const MachineOperand &MODef = NewPHI.getOperand(0);
1151    return RegSubRegPair(MODef.getReg(), MODef.getSubReg());
1152  }
1153
1154  return RegSubRegPair(0, 0);
1155}
1156
1157/// Optimize generic copy instructions to avoid cross register bank copy.
1158/// The optimization looks through a chain of copies and tries to find a source
1159/// that has a compatible register class.
1160/// Two register classes are considered to be compatible if they share the same
1161/// register bank.
1162/// New copies issued by this optimization are register allocator
1163/// friendly. This optimization does not remove any copy as it may
1164/// overconstrain the register allocator, but replaces some operands
1165/// when possible.
1166/// \pre isCoalescableCopy(*MI) is true.
1167/// \return True, when \p MI has been rewritten. False otherwise.
1168bool PeepholeOptimizer::optimizeCoalescableCopy(MachineInstr &MI) {
1169  assert(isCoalescableCopy(MI) && "Invalid argument");
1170  assert(MI.getDesc().getNumDefs() == 1 &&
1171         "Coalescer can understand multiple defs?!");
1172  const MachineOperand &MODef = MI.getOperand(0);
1173  // Do not rewrite physical definitions.
1174  if (Register::isPhysicalRegister(MODef.getReg()))
1175    return false;
1176
1177  bool Changed = false;
1178  // Get the right rewriter for the current copy.
1179  std::unique_ptr<Rewriter> CpyRewriter(getCopyRewriter(MI, *TII));
1180  // If none exists, bail out.
1181  if (!CpyRewriter)
1182    return false;
1183  // Rewrite each rewritable source.
1184  RegSubRegPair Src;
1185  RegSubRegPair TrackPair;
1186  while (CpyRewriter->getNextRewritableSource(Src, TrackPair)) {
1187    // Keep track of PHI nodes and its incoming edges when looking for sources.
1188    RewriteMapTy RewriteMap;
1189    // Try to find a more suitable source. If we failed to do so, or get the
1190    // actual source, move to the next source.
1191    if (!findNextSource(TrackPair, RewriteMap))
1192      continue;
1193
1194    // Get the new source to rewrite. TODO: Only enable handling of multiple
1195    // sources (PHIs) once we have a motivating example and testcases for it.
1196    RegSubRegPair NewSrc = getNewSource(MRI, TII, TrackPair, RewriteMap,
1197                                        /*HandleMultipleSources=*/false);
1198    if (Src.Reg == NewSrc.Reg || NewSrc.Reg == 0)
1199      continue;
1200
1201    // Rewrite source.
1202    if (CpyRewriter->RewriteCurrentSource(NewSrc.Reg, NewSrc.SubReg)) {
1203      // We may have extended the live-range of NewSrc, account for that.
1204      MRI->clearKillFlags(NewSrc.Reg);
1205      Changed = true;
1206    }
1207  }
1208  // TODO: We could have a clean-up method to tidy the instruction.
1209  // E.g., v0 = INSERT_SUBREG v1, v1.sub0, sub0
1210  // => v0 = COPY v1
1211  // Currently we haven't seen motivating example for that and we
1212  // want to avoid untested code.
1213  NumRewrittenCopies += Changed;
1214  return Changed;
1215}
1216
1217/// Rewrite the source found through \p Def, by using the \p RewriteMap
1218/// and create a new COPY instruction. More info about RewriteMap in
1219/// PeepholeOptimizer::findNextSource. Right now this is only used to handle
1220/// Uncoalescable copies, since they are copy like instructions that aren't
1221/// recognized by the register allocator.
1222MachineInstr &
1223PeepholeOptimizer::rewriteSource(MachineInstr &CopyLike,
1224                                 RegSubRegPair Def, RewriteMapTy &RewriteMap) {
1225  assert(!Register::isPhysicalRegister(Def.Reg) &&
1226         "We do not rewrite physical registers");
1227
1228  // Find the new source to use in the COPY rewrite.
1229  RegSubRegPair NewSrc = getNewSource(MRI, TII, Def, RewriteMap);
1230
1231  // Insert the COPY.
1232  const TargetRegisterClass *DefRC = MRI->getRegClass(Def.Reg);
1233  Register NewVReg = MRI->createVirtualRegister(DefRC);
1234
1235  MachineInstr *NewCopy =
1236      BuildMI(*CopyLike.getParent(), &CopyLike, CopyLike.getDebugLoc(),
1237              TII->get(TargetOpcode::COPY), NewVReg)
1238          .addReg(NewSrc.Reg, 0, NewSrc.SubReg);
1239
1240  if (Def.SubReg) {
1241    NewCopy->getOperand(0).setSubReg(Def.SubReg);
1242    NewCopy->getOperand(0).setIsUndef();
1243  }
1244
1245  LLVM_DEBUG(dbgs() << "-- RewriteSource\n");
1246  LLVM_DEBUG(dbgs() << "   Replacing: " << CopyLike);
1247  LLVM_DEBUG(dbgs() << "        With: " << *NewCopy);
1248  MRI->replaceRegWith(Def.Reg, NewVReg);
1249  MRI->clearKillFlags(NewVReg);
1250
1251  // We extended the lifetime of NewSrc.Reg, clear the kill flags to
1252  // account for that.
1253  MRI->clearKillFlags(NewSrc.Reg);
1254
1255  return *NewCopy;
1256}
1257
1258/// Optimize copy-like instructions to create
1259/// register coalescer friendly instruction.
1260/// The optimization tries to kill-off the \p MI by looking
1261/// through a chain of copies to find a source that has a compatible
1262/// register class.
1263/// If such a source is found, it replace \p MI by a generic COPY
1264/// operation.
1265/// \pre isUncoalescableCopy(*MI) is true.
1266/// \return True, when \p MI has been optimized. In that case, \p MI has
1267/// been removed from its parent.
1268/// All COPY instructions created, are inserted in \p LocalMIs.
1269bool PeepholeOptimizer::optimizeUncoalescableCopy(
1270    MachineInstr &MI, SmallPtrSetImpl<MachineInstr *> &LocalMIs) {
1271  assert(isUncoalescableCopy(MI) && "Invalid argument");
1272  UncoalescableRewriter CpyRewriter(MI);
1273
1274  // Rewrite each rewritable source by generating new COPYs. This works
1275  // differently from optimizeCoalescableCopy since it first makes sure that all
1276  // definitions can be rewritten.
1277  RewriteMapTy RewriteMap;
1278  RegSubRegPair Src;
1279  RegSubRegPair Def;
1280  SmallVector<RegSubRegPair, 4> RewritePairs;
1281  while (CpyRewriter.getNextRewritableSource(Src, Def)) {
1282    // If a physical register is here, this is probably for a good reason.
1283    // Do not rewrite that.
1284    if (Register::isPhysicalRegister(Def.Reg))
1285      return false;
1286
1287    // If we do not know how to rewrite this definition, there is no point
1288    // in trying to kill this instruction.
1289    if (!findNextSource(Def, RewriteMap))
1290      return false;
1291
1292    RewritePairs.push_back(Def);
1293  }
1294
1295  // The change is possible for all defs, do it.
1296  for (const RegSubRegPair &Def : RewritePairs) {
1297    // Rewrite the "copy" in a way the register coalescer understands.
1298    MachineInstr &NewCopy = rewriteSource(MI, Def, RewriteMap);
1299    LocalMIs.insert(&NewCopy);
1300  }
1301
1302  // MI is now dead.
1303  MI.eraseFromParent();
1304  ++NumUncoalescableCopies;
1305  return true;
1306}
1307
1308/// Check whether MI is a candidate for folding into a later instruction.
1309/// We only fold loads to virtual registers and the virtual register defined
1310/// has a single user.
1311bool PeepholeOptimizer::isLoadFoldable(
1312    MachineInstr &MI, SmallSet<unsigned, 16> &FoldAsLoadDefCandidates) {
1313  if (!MI.canFoldAsLoad() || !MI.mayLoad())
1314    return false;
1315  const MCInstrDesc &MCID = MI.getDesc();
1316  if (MCID.getNumDefs() != 1)
1317    return false;
1318
1319  Register Reg = MI.getOperand(0).getReg();
1320  // To reduce compilation time, we check MRI->hasOneNonDBGUser when inserting
1321  // loads. It should be checked when processing uses of the load, since
1322  // uses can be removed during peephole.
1323  if (!MI.getOperand(0).getSubReg() && Register::isVirtualRegister(Reg) &&
1324      MRI->hasOneNonDBGUser(Reg)) {
1325    FoldAsLoadDefCandidates.insert(Reg);
1326    return true;
1327  }
1328  return false;
1329}
1330
1331bool PeepholeOptimizer::isMoveImmediate(
1332    MachineInstr &MI, SmallSet<unsigned, 4> &ImmDefRegs,
1333    DenseMap<unsigned, MachineInstr *> &ImmDefMIs) {
1334  const MCInstrDesc &MCID = MI.getDesc();
1335  if (!MI.isMoveImmediate())
1336    return false;
1337  if (MCID.getNumDefs() != 1)
1338    return false;
1339  Register Reg = MI.getOperand(0).getReg();
1340  if (Register::isVirtualRegister(Reg)) {
1341    ImmDefMIs.insert(std::make_pair(Reg, &MI));
1342    ImmDefRegs.insert(Reg);
1343    return true;
1344  }
1345
1346  return false;
1347}
1348
1349/// Try folding register operands that are defined by move immediate
1350/// instructions, i.e. a trivial constant folding optimization, if
1351/// and only if the def and use are in the same BB.
1352bool PeepholeOptimizer::foldImmediate(MachineInstr &MI,
1353    SmallSet<unsigned, 4> &ImmDefRegs,
1354    DenseMap<unsigned, MachineInstr *> &ImmDefMIs) {
1355  for (unsigned i = 0, e = MI.getDesc().getNumOperands(); i != e; ++i) {
1356    MachineOperand &MO = MI.getOperand(i);
1357    if (!MO.isReg() || MO.isDef())
1358      continue;
1359    // Ignore dead implicit defs.
1360    if (MO.isImplicit() && MO.isDead())
1361      continue;
1362    Register Reg = MO.getReg();
1363    if (!Register::isVirtualRegister(Reg))
1364      continue;
1365    if (ImmDefRegs.count(Reg) == 0)
1366      continue;
1367    DenseMap<unsigned, MachineInstr*>::iterator II = ImmDefMIs.find(Reg);
1368    assert(II != ImmDefMIs.end() && "couldn't find immediate definition");
1369    if (TII->FoldImmediate(MI, *II->second, Reg, MRI)) {
1370      ++NumImmFold;
1371      return true;
1372    }
1373  }
1374  return false;
1375}
1376
1377// FIXME: This is very simple and misses some cases which should be handled when
1378// motivating examples are found.
1379//
1380// The copy rewriting logic should look at uses as well as defs and be able to
1381// eliminate copies across blocks.
1382//
1383// Later copies that are subregister extracts will also not be eliminated since
1384// only the first copy is considered.
1385//
1386// e.g.
1387// %1 = COPY %0
1388// %2 = COPY %0:sub1
1389//
1390// Should replace %2 uses with %1:sub1
1391bool PeepholeOptimizer::foldRedundantCopy(MachineInstr &MI,
1392    SmallSet<unsigned, 4> &CopySrcRegs,
1393    DenseMap<unsigned, MachineInstr *> &CopyMIs) {
1394  assert(MI.isCopy() && "expected a COPY machine instruction");
1395
1396  Register SrcReg = MI.getOperand(1).getReg();
1397  if (!Register::isVirtualRegister(SrcReg))
1398    return false;
1399
1400  Register DstReg = MI.getOperand(0).getReg();
1401  if (!Register::isVirtualRegister(DstReg))
1402    return false;
1403
1404  if (CopySrcRegs.insert(SrcReg).second) {
1405    // First copy of this reg seen.
1406    CopyMIs.insert(std::make_pair(SrcReg, &MI));
1407    return false;
1408  }
1409
1410  MachineInstr *PrevCopy = CopyMIs.find(SrcReg)->second;
1411
1412  unsigned SrcSubReg = MI.getOperand(1).getSubReg();
1413  unsigned PrevSrcSubReg = PrevCopy->getOperand(1).getSubReg();
1414
1415  // Can't replace different subregister extracts.
1416  if (SrcSubReg != PrevSrcSubReg)
1417    return false;
1418
1419  Register PrevDstReg = PrevCopy->getOperand(0).getReg();
1420
1421  // Only replace if the copy register class is the same.
1422  //
1423  // TODO: If we have multiple copies to different register classes, we may want
1424  // to track multiple copies of the same source register.
1425  if (MRI->getRegClass(DstReg) != MRI->getRegClass(PrevDstReg))
1426    return false;
1427
1428  MRI->replaceRegWith(DstReg, PrevDstReg);
1429
1430  // Lifetime of the previous copy has been extended.
1431  MRI->clearKillFlags(PrevDstReg);
1432  return true;
1433}
1434
1435bool PeepholeOptimizer::isNAPhysCopy(unsigned Reg) {
1436  return Register::isPhysicalRegister(Reg) && !MRI->isAllocatable(Reg);
1437}
1438
1439bool PeepholeOptimizer::foldRedundantNAPhysCopy(
1440    MachineInstr &MI, DenseMap<unsigned, MachineInstr *> &NAPhysToVirtMIs) {
1441  assert(MI.isCopy() && "expected a COPY machine instruction");
1442
1443  if (DisableNAPhysCopyOpt)
1444    return false;
1445
1446  Register DstReg = MI.getOperand(0).getReg();
1447  Register SrcReg = MI.getOperand(1).getReg();
1448  if (isNAPhysCopy(SrcReg) && Register::isVirtualRegister(DstReg)) {
1449    // %vreg = COPY %physreg
1450    // Avoid using a datastructure which can track multiple live non-allocatable
1451    // phys->virt copies since LLVM doesn't seem to do this.
1452    NAPhysToVirtMIs.insert({SrcReg, &MI});
1453    return false;
1454  }
1455
1456  if (!(Register::isVirtualRegister(SrcReg) && isNAPhysCopy(DstReg)))
1457    return false;
1458
1459  // %physreg = COPY %vreg
1460  auto PrevCopy = NAPhysToVirtMIs.find(DstReg);
1461  if (PrevCopy == NAPhysToVirtMIs.end()) {
1462    // We can't remove the copy: there was an intervening clobber of the
1463    // non-allocatable physical register after the copy to virtual.
1464    LLVM_DEBUG(dbgs() << "NAPhysCopy: intervening clobber forbids erasing "
1465                      << MI);
1466    return false;
1467  }
1468
1469  Register PrevDstReg = PrevCopy->second->getOperand(0).getReg();
1470  if (PrevDstReg == SrcReg) {
1471    // Remove the virt->phys copy: we saw the virtual register definition, and
1472    // the non-allocatable physical register's state hasn't changed since then.
1473    LLVM_DEBUG(dbgs() << "NAPhysCopy: erasing " << MI);
1474    ++NumNAPhysCopies;
1475    return true;
1476  }
1477
1478  // Potential missed optimization opportunity: we saw a different virtual
1479  // register get a copy of the non-allocatable physical register, and we only
1480  // track one such copy. Avoid getting confused by this new non-allocatable
1481  // physical register definition, and remove it from the tracked copies.
1482  LLVM_DEBUG(dbgs() << "NAPhysCopy: missed opportunity " << MI);
1483  NAPhysToVirtMIs.erase(PrevCopy);
1484  return false;
1485}
1486
1487/// \bried Returns true if \p MO is a virtual register operand.
1488static bool isVirtualRegisterOperand(MachineOperand &MO) {
1489  if (!MO.isReg())
1490    return false;
1491  return Register::isVirtualRegister(MO.getReg());
1492}
1493
1494bool PeepholeOptimizer::findTargetRecurrence(
1495    unsigned Reg, const SmallSet<unsigned, 2> &TargetRegs,
1496    RecurrenceCycle &RC) {
1497  // Recurrence found if Reg is in TargetRegs.
1498  if (TargetRegs.count(Reg))
1499    return true;
1500
1501  // TODO: Curerntly, we only allow the last instruction of the recurrence
1502  // cycle (the instruction that feeds the PHI instruction) to have more than
1503  // one uses to guarantee that commuting operands does not tie registers
1504  // with overlapping live range. Once we have actual live range info of
1505  // each register, this constraint can be relaxed.
1506  if (!MRI->hasOneNonDBGUse(Reg))
1507    return false;
1508
1509  // Give up if the reccurrence chain length is longer than the limit.
1510  if (RC.size() >= MaxRecurrenceChain)
1511    return false;
1512
1513  MachineInstr &MI = *(MRI->use_instr_nodbg_begin(Reg));
1514  unsigned Idx = MI.findRegisterUseOperandIdx(Reg);
1515
1516  // Only interested in recurrences whose instructions have only one def, which
1517  // is a virtual register.
1518  if (MI.getDesc().getNumDefs() != 1)
1519    return false;
1520
1521  MachineOperand &DefOp = MI.getOperand(0);
1522  if (!isVirtualRegisterOperand(DefOp))
1523    return false;
1524
1525  // Check if def operand of MI is tied to any use operand. We are only
1526  // interested in the case that all the instructions in the recurrence chain
1527  // have there def operand tied with one of the use operand.
1528  unsigned TiedUseIdx;
1529  if (!MI.isRegTiedToUseOperand(0, &TiedUseIdx))
1530    return false;
1531
1532  if (Idx == TiedUseIdx) {
1533    RC.push_back(RecurrenceInstr(&MI));
1534    return findTargetRecurrence(DefOp.getReg(), TargetRegs, RC);
1535  } else {
1536    // If Idx is not TiedUseIdx, check if Idx is commutable with TiedUseIdx.
1537    unsigned CommIdx = TargetInstrInfo::CommuteAnyOperandIndex;
1538    if (TII->findCommutedOpIndices(MI, Idx, CommIdx) && CommIdx == TiedUseIdx) {
1539      RC.push_back(RecurrenceInstr(&MI, Idx, CommIdx));
1540      return findTargetRecurrence(DefOp.getReg(), TargetRegs, RC);
1541    }
1542  }
1543
1544  return false;
1545}
1546
1547/// Phi instructions will eventually be lowered to copy instructions.
1548/// If phi is in a loop header, a recurrence may formulated around the source
1549/// and destination of the phi. For such case commuting operands of the
1550/// instructions in the recurrence may enable coalescing of the copy instruction
1551/// generated from the phi. For example, if there is a recurrence of
1552///
1553/// LoopHeader:
1554///   %1 = phi(%0, %100)
1555/// LoopLatch:
1556///   %0<def, tied1> = ADD %2<def, tied0>, %1
1557///
1558/// , the fact that %0 and %2 are in the same tied operands set makes
1559/// the coalescing of copy instruction generated from the phi in
1560/// LoopHeader(i.e. %1 = COPY %0) impossible, because %1 and
1561/// %2 have overlapping live range. This introduces additional move
1562/// instruction to the final assembly. However, if we commute %2 and
1563/// %1 of ADD instruction, the redundant move instruction can be
1564/// avoided.
1565bool PeepholeOptimizer::optimizeRecurrence(MachineInstr &PHI) {
1566  SmallSet<unsigned, 2> TargetRegs;
1567  for (unsigned Idx = 1; Idx < PHI.getNumOperands(); Idx += 2) {
1568    MachineOperand &MO = PHI.getOperand(Idx);
1569    assert(isVirtualRegisterOperand(MO) && "Invalid PHI instruction");
1570    TargetRegs.insert(MO.getReg());
1571  }
1572
1573  bool Changed = false;
1574  RecurrenceCycle RC;
1575  if (findTargetRecurrence(PHI.getOperand(0).getReg(), TargetRegs, RC)) {
1576    // Commutes operands of instructions in RC if necessary so that the copy to
1577    // be generated from PHI can be coalesced.
1578    LLVM_DEBUG(dbgs() << "Optimize recurrence chain from " << PHI);
1579    for (auto &RI : RC) {
1580      LLVM_DEBUG(dbgs() << "\tInst: " << *(RI.getMI()));
1581      auto CP = RI.getCommutePair();
1582      if (CP) {
1583        Changed = true;
1584        TII->commuteInstruction(*(RI.getMI()), false, (*CP).first,
1585                                (*CP).second);
1586        LLVM_DEBUG(dbgs() << "\t\tCommuted: " << *(RI.getMI()));
1587      }
1588    }
1589  }
1590
1591  return Changed;
1592}
1593
1594bool PeepholeOptimizer::runOnMachineFunction(MachineFunction &MF) {
1595  if (skipFunction(MF.getFunction()))
1596    return false;
1597
1598  LLVM_DEBUG(dbgs() << "********** PEEPHOLE OPTIMIZER **********\n");
1599  LLVM_DEBUG(dbgs() << "********** Function: " << MF.getName() << '\n');
1600
1601  if (DisablePeephole)
1602    return false;
1603
1604  TII = MF.getSubtarget().getInstrInfo();
1605  TRI = MF.getSubtarget().getRegisterInfo();
1606  MRI = &MF.getRegInfo();
1607  DT  = Aggressive ? &getAnalysis<MachineDominatorTree>() : nullptr;
1608  MLI = &getAnalysis<MachineLoopInfo>();
1609
1610  bool Changed = false;
1611
1612  for (MachineBasicBlock &MBB : MF) {
1613    bool SeenMoveImm = false;
1614
1615    // During this forward scan, at some point it needs to answer the question
1616    // "given a pointer to an MI in the current BB, is it located before or
1617    // after the current instruction".
1618    // To perform this, the following set keeps track of the MIs already seen
1619    // during the scan, if a MI is not in the set, it is assumed to be located
1620    // after. Newly created MIs have to be inserted in the set as well.
1621    SmallPtrSet<MachineInstr*, 16> LocalMIs;
1622    SmallSet<unsigned, 4> ImmDefRegs;
1623    DenseMap<unsigned, MachineInstr*> ImmDefMIs;
1624    SmallSet<unsigned, 16> FoldAsLoadDefCandidates;
1625
1626    // Track when a non-allocatable physical register is copied to a virtual
1627    // register so that useless moves can be removed.
1628    //
1629    // %physreg is the map index; MI is the last valid `%vreg = COPY %physreg`
1630    // without any intervening re-definition of %physreg.
1631    DenseMap<unsigned, MachineInstr *> NAPhysToVirtMIs;
1632
1633    // Set of virtual registers that are copied from.
1634    SmallSet<unsigned, 4> CopySrcRegs;
1635    DenseMap<unsigned, MachineInstr *> CopySrcMIs;
1636
1637    bool IsLoopHeader = MLI->isLoopHeader(&MBB);
1638
1639    for (MachineBasicBlock::iterator MII = MBB.begin(), MIE = MBB.end();
1640         MII != MIE; ) {
1641      MachineInstr *MI = &*MII;
1642      // We may be erasing MI below, increment MII now.
1643      ++MII;
1644      LocalMIs.insert(MI);
1645
1646      // Skip debug instructions. They should not affect this peephole optimization.
1647      if (MI->isDebugInstr())
1648          continue;
1649
1650      if (MI->isPosition())
1651        continue;
1652
1653      if (IsLoopHeader && MI->isPHI()) {
1654        if (optimizeRecurrence(*MI)) {
1655          Changed = true;
1656          continue;
1657        }
1658      }
1659
1660      if (!MI->isCopy()) {
1661        for (const MachineOperand &MO : MI->operands()) {
1662          // Visit all operands: definitions can be implicit or explicit.
1663          if (MO.isReg()) {
1664            Register Reg = MO.getReg();
1665            if (MO.isDef() && isNAPhysCopy(Reg)) {
1666              const auto &Def = NAPhysToVirtMIs.find(Reg);
1667              if (Def != NAPhysToVirtMIs.end()) {
1668                // A new definition of the non-allocatable physical register
1669                // invalidates previous copies.
1670                LLVM_DEBUG(dbgs()
1671                           << "NAPhysCopy: invalidating because of " << *MI);
1672                NAPhysToVirtMIs.erase(Def);
1673              }
1674            }
1675          } else if (MO.isRegMask()) {
1676            const uint32_t *RegMask = MO.getRegMask();
1677            for (auto &RegMI : NAPhysToVirtMIs) {
1678              unsigned Def = RegMI.first;
1679              if (MachineOperand::clobbersPhysReg(RegMask, Def)) {
1680                LLVM_DEBUG(dbgs()
1681                           << "NAPhysCopy: invalidating because of " << *MI);
1682                NAPhysToVirtMIs.erase(Def);
1683              }
1684            }
1685          }
1686        }
1687      }
1688
1689      if (MI->isImplicitDef() || MI->isKill())
1690        continue;
1691
1692      if (MI->isInlineAsm() || MI->hasUnmodeledSideEffects()) {
1693        // Blow away all non-allocatable physical registers knowledge since we
1694        // don't know what's correct anymore.
1695        //
1696        // FIXME: handle explicit asm clobbers.
1697        LLVM_DEBUG(dbgs() << "NAPhysCopy: blowing away all info due to "
1698                          << *MI);
1699        NAPhysToVirtMIs.clear();
1700      }
1701
1702      if ((isUncoalescableCopy(*MI) &&
1703           optimizeUncoalescableCopy(*MI, LocalMIs)) ||
1704          (MI->isCompare() && optimizeCmpInstr(*MI)) ||
1705          (MI->isSelect() && optimizeSelect(*MI, LocalMIs))) {
1706        // MI is deleted.
1707        LocalMIs.erase(MI);
1708        Changed = true;
1709        continue;
1710      }
1711
1712      if (MI->isConditionalBranch() && optimizeCondBranch(*MI)) {
1713        Changed = true;
1714        continue;
1715      }
1716
1717      if (isCoalescableCopy(*MI) && optimizeCoalescableCopy(*MI)) {
1718        // MI is just rewritten.
1719        Changed = true;
1720        continue;
1721      }
1722
1723      if (MI->isCopy() &&
1724          (foldRedundantCopy(*MI, CopySrcRegs, CopySrcMIs) ||
1725           foldRedundantNAPhysCopy(*MI, NAPhysToVirtMIs))) {
1726        LocalMIs.erase(MI);
1727        MI->eraseFromParent();
1728        Changed = true;
1729        continue;
1730      }
1731
1732      if (isMoveImmediate(*MI, ImmDefRegs, ImmDefMIs)) {
1733        SeenMoveImm = true;
1734      } else {
1735        Changed |= optimizeExtInstr(*MI, MBB, LocalMIs);
1736        // optimizeExtInstr might have created new instructions after MI
1737        // and before the already incremented MII. Adjust MII so that the
1738        // next iteration sees the new instructions.
1739        MII = MI;
1740        ++MII;
1741        if (SeenMoveImm)
1742          Changed |= foldImmediate(*MI, ImmDefRegs, ImmDefMIs);
1743      }
1744
1745      // Check whether MI is a load candidate for folding into a later
1746      // instruction. If MI is not a candidate, check whether we can fold an
1747      // earlier load into MI.
1748      if (!isLoadFoldable(*MI, FoldAsLoadDefCandidates) &&
1749          !FoldAsLoadDefCandidates.empty()) {
1750
1751        // We visit each operand even after successfully folding a previous
1752        // one.  This allows us to fold multiple loads into a single
1753        // instruction.  We do assume that optimizeLoadInstr doesn't insert
1754        // foldable uses earlier in the argument list.  Since we don't restart
1755        // iteration, we'd miss such cases.
1756        const MCInstrDesc &MIDesc = MI->getDesc();
1757        for (unsigned i = MIDesc.getNumDefs(); i != MI->getNumOperands();
1758             ++i) {
1759          const MachineOperand &MOp = MI->getOperand(i);
1760          if (!MOp.isReg())
1761            continue;
1762          unsigned FoldAsLoadDefReg = MOp.getReg();
1763          if (FoldAsLoadDefCandidates.count(FoldAsLoadDefReg)) {
1764            // We need to fold load after optimizeCmpInstr, since
1765            // optimizeCmpInstr can enable folding by converting SUB to CMP.
1766            // Save FoldAsLoadDefReg because optimizeLoadInstr() resets it and
1767            // we need it for markUsesInDebugValueAsUndef().
1768            unsigned FoldedReg = FoldAsLoadDefReg;
1769            MachineInstr *DefMI = nullptr;
1770            if (MachineInstr *FoldMI =
1771                    TII->optimizeLoadInstr(*MI, MRI, FoldAsLoadDefReg, DefMI)) {
1772              // Update LocalMIs since we replaced MI with FoldMI and deleted
1773              // DefMI.
1774              LLVM_DEBUG(dbgs() << "Replacing: " << *MI);
1775              LLVM_DEBUG(dbgs() << "     With: " << *FoldMI);
1776              LocalMIs.erase(MI);
1777              LocalMIs.erase(DefMI);
1778              LocalMIs.insert(FoldMI);
1779              if (MI->isCall())
1780                MI->getMF()->moveCallSiteInfo(MI, FoldMI);
1781              MI->eraseFromParent();
1782              DefMI->eraseFromParent();
1783              MRI->markUsesInDebugValueAsUndef(FoldedReg);
1784              FoldAsLoadDefCandidates.erase(FoldedReg);
1785              ++NumLoadFold;
1786
1787              // MI is replaced with FoldMI so we can continue trying to fold
1788              Changed = true;
1789              MI = FoldMI;
1790            }
1791          }
1792        }
1793      }
1794
1795      // If we run into an instruction we can't fold across, discard
1796      // the load candidates.  Note: We might be able to fold *into* this
1797      // instruction, so this needs to be after the folding logic.
1798      if (MI->isLoadFoldBarrier()) {
1799        LLVM_DEBUG(dbgs() << "Encountered load fold barrier on " << *MI);
1800        FoldAsLoadDefCandidates.clear();
1801      }
1802    }
1803  }
1804
1805  return Changed;
1806}
1807
1808ValueTrackerResult ValueTracker::getNextSourceFromCopy() {
1809  assert(Def->isCopy() && "Invalid definition");
1810  // Copy instruction are supposed to be: Def = Src.
1811  // If someone breaks this assumption, bad things will happen everywhere.
1812  // There may be implicit uses preventing the copy to be moved across
1813  // some target specific register definitions
1814  assert(Def->getNumOperands() - Def->getNumImplicitOperands() == 2 &&
1815         "Invalid number of operands");
1816  assert(!Def->hasImplicitDef() && "Only implicit uses are allowed");
1817
1818  if (Def->getOperand(DefIdx).getSubReg() != DefSubReg)
1819    // If we look for a different subreg, it means we want a subreg of src.
1820    // Bails as we do not support composing subregs yet.
1821    return ValueTrackerResult();
1822  // Otherwise, we want the whole source.
1823  const MachineOperand &Src = Def->getOperand(1);
1824  if (Src.isUndef())
1825    return ValueTrackerResult();
1826  return ValueTrackerResult(Src.getReg(), Src.getSubReg());
1827}
1828
1829ValueTrackerResult ValueTracker::getNextSourceFromBitcast() {
1830  assert(Def->isBitcast() && "Invalid definition");
1831
1832  // Bail if there are effects that a plain copy will not expose.
1833  if (Def->mayRaiseFPException() || Def->hasUnmodeledSideEffects())
1834    return ValueTrackerResult();
1835
1836  // Bitcasts with more than one def are not supported.
1837  if (Def->getDesc().getNumDefs() != 1)
1838    return ValueTrackerResult();
1839  const MachineOperand DefOp = Def->getOperand(DefIdx);
1840  if (DefOp.getSubReg() != DefSubReg)
1841    // If we look for a different subreg, it means we want a subreg of the src.
1842    // Bails as we do not support composing subregs yet.
1843    return ValueTrackerResult();
1844
1845  unsigned SrcIdx = Def->getNumOperands();
1846  for (unsigned OpIdx = DefIdx + 1, EndOpIdx = SrcIdx; OpIdx != EndOpIdx;
1847       ++OpIdx) {
1848    const MachineOperand &MO = Def->getOperand(OpIdx);
1849    if (!MO.isReg() || !MO.getReg())
1850      continue;
1851    // Ignore dead implicit defs.
1852    if (MO.isImplicit() && MO.isDead())
1853      continue;
1854    assert(!MO.isDef() && "We should have skipped all the definitions by now");
1855    if (SrcIdx != EndOpIdx)
1856      // Multiple sources?
1857      return ValueTrackerResult();
1858    SrcIdx = OpIdx;
1859  }
1860
1861  // In some rare case, Def has no input, SrcIdx is out of bound,
1862  // getOperand(SrcIdx) will fail below.
1863  if (SrcIdx >= Def->getNumOperands())
1864    return ValueTrackerResult();
1865
1866  // Stop when any user of the bitcast is a SUBREG_TO_REG, replacing with a COPY
1867  // will break the assumed guarantees for the upper bits.
1868  for (const MachineInstr &UseMI : MRI.use_nodbg_instructions(DefOp.getReg())) {
1869    if (UseMI.isSubregToReg())
1870      return ValueTrackerResult();
1871  }
1872
1873  const MachineOperand &Src = Def->getOperand(SrcIdx);
1874  if (Src.isUndef())
1875    return ValueTrackerResult();
1876  return ValueTrackerResult(Src.getReg(), Src.getSubReg());
1877}
1878
1879ValueTrackerResult ValueTracker::getNextSourceFromRegSequence() {
1880  assert((Def->isRegSequence() || Def->isRegSequenceLike()) &&
1881         "Invalid definition");
1882
1883  if (Def->getOperand(DefIdx).getSubReg())
1884    // If we are composing subregs, bail out.
1885    // The case we are checking is Def.<subreg> = REG_SEQUENCE.
1886    // This should almost never happen as the SSA property is tracked at
1887    // the register level (as opposed to the subreg level).
1888    // I.e.,
1889    // Def.sub0 =
1890    // Def.sub1 =
1891    // is a valid SSA representation for Def.sub0 and Def.sub1, but not for
1892    // Def. Thus, it must not be generated.
1893    // However, some code could theoretically generates a single
1894    // Def.sub0 (i.e, not defining the other subregs) and we would
1895    // have this case.
1896    // If we can ascertain (or force) that this never happens, we could
1897    // turn that into an assertion.
1898    return ValueTrackerResult();
1899
1900  if (!TII)
1901    // We could handle the REG_SEQUENCE here, but we do not want to
1902    // duplicate the code from the generic TII.
1903    return ValueTrackerResult();
1904
1905  SmallVector<RegSubRegPairAndIdx, 8> RegSeqInputRegs;
1906  if (!TII->getRegSequenceInputs(*Def, DefIdx, RegSeqInputRegs))
1907    return ValueTrackerResult();
1908
1909  // We are looking at:
1910  // Def = REG_SEQUENCE v0, sub0, v1, sub1, ...
1911  // Check if one of the operand defines the subreg we are interested in.
1912  for (const RegSubRegPairAndIdx &RegSeqInput : RegSeqInputRegs) {
1913    if (RegSeqInput.SubIdx == DefSubReg)
1914      return ValueTrackerResult(RegSeqInput.Reg, RegSeqInput.SubReg);
1915  }
1916
1917  // If the subreg we are tracking is super-defined by another subreg,
1918  // we could follow this value. However, this would require to compose
1919  // the subreg and we do not do that for now.
1920  return ValueTrackerResult();
1921}
1922
1923ValueTrackerResult ValueTracker::getNextSourceFromInsertSubreg() {
1924  assert((Def->isInsertSubreg() || Def->isInsertSubregLike()) &&
1925         "Invalid definition");
1926
1927  if (Def->getOperand(DefIdx).getSubReg())
1928    // If we are composing subreg, bail out.
1929    // Same remark as getNextSourceFromRegSequence.
1930    // I.e., this may be turned into an assert.
1931    return ValueTrackerResult();
1932
1933  if (!TII)
1934    // We could handle the REG_SEQUENCE here, but we do not want to
1935    // duplicate the code from the generic TII.
1936    return ValueTrackerResult();
1937
1938  RegSubRegPair BaseReg;
1939  RegSubRegPairAndIdx InsertedReg;
1940  if (!TII->getInsertSubregInputs(*Def, DefIdx, BaseReg, InsertedReg))
1941    return ValueTrackerResult();
1942
1943  // We are looking at:
1944  // Def = INSERT_SUBREG v0, v1, sub1
1945  // There are two cases:
1946  // 1. DefSubReg == sub1, get v1.
1947  // 2. DefSubReg != sub1, the value may be available through v0.
1948
1949  // #1 Check if the inserted register matches the required sub index.
1950  if (InsertedReg.SubIdx == DefSubReg) {
1951    return ValueTrackerResult(InsertedReg.Reg, InsertedReg.SubReg);
1952  }
1953  // #2 Otherwise, if the sub register we are looking for is not partial
1954  // defined by the inserted element, we can look through the main
1955  // register (v0).
1956  const MachineOperand &MODef = Def->getOperand(DefIdx);
1957  // If the result register (Def) and the base register (v0) do not
1958  // have the same register class or if we have to compose
1959  // subregisters, bail out.
1960  if (MRI.getRegClass(MODef.getReg()) != MRI.getRegClass(BaseReg.Reg) ||
1961      BaseReg.SubReg)
1962    return ValueTrackerResult();
1963
1964  // Get the TRI and check if the inserted sub-register overlaps with the
1965  // sub-register we are tracking.
1966  const TargetRegisterInfo *TRI = MRI.getTargetRegisterInfo();
1967  if (!TRI ||
1968      !(TRI->getSubRegIndexLaneMask(DefSubReg) &
1969        TRI->getSubRegIndexLaneMask(InsertedReg.SubIdx)).none())
1970    return ValueTrackerResult();
1971  // At this point, the value is available in v0 via the same subreg
1972  // we used for Def.
1973  return ValueTrackerResult(BaseReg.Reg, DefSubReg);
1974}
1975
1976ValueTrackerResult ValueTracker::getNextSourceFromExtractSubreg() {
1977  assert((Def->isExtractSubreg() ||
1978          Def->isExtractSubregLike()) && "Invalid definition");
1979  // We are looking at:
1980  // Def = EXTRACT_SUBREG v0, sub0
1981
1982  // Bail if we have to compose sub registers.
1983  // Indeed, if DefSubReg != 0, we would have to compose it with sub0.
1984  if (DefSubReg)
1985    return ValueTrackerResult();
1986
1987  if (!TII)
1988    // We could handle the EXTRACT_SUBREG here, but we do not want to
1989    // duplicate the code from the generic TII.
1990    return ValueTrackerResult();
1991
1992  RegSubRegPairAndIdx ExtractSubregInputReg;
1993  if (!TII->getExtractSubregInputs(*Def, DefIdx, ExtractSubregInputReg))
1994    return ValueTrackerResult();
1995
1996  // Bail if we have to compose sub registers.
1997  // Likewise, if v0.subreg != 0, we would have to compose v0.subreg with sub0.
1998  if (ExtractSubregInputReg.SubReg)
1999    return ValueTrackerResult();
2000  // Otherwise, the value is available in the v0.sub0.
2001  return ValueTrackerResult(ExtractSubregInputReg.Reg,
2002                            ExtractSubregInputReg.SubIdx);
2003}
2004
2005ValueTrackerResult ValueTracker::getNextSourceFromSubregToReg() {
2006  assert(Def->isSubregToReg() && "Invalid definition");
2007  // We are looking at:
2008  // Def = SUBREG_TO_REG Imm, v0, sub0
2009
2010  // Bail if we have to compose sub registers.
2011  // If DefSubReg != sub0, we would have to check that all the bits
2012  // we track are included in sub0 and if yes, we would have to
2013  // determine the right subreg in v0.
2014  if (DefSubReg != Def->getOperand(3).getImm())
2015    return ValueTrackerResult();
2016  // Bail if we have to compose sub registers.
2017  // Likewise, if v0.subreg != 0, we would have to compose it with sub0.
2018  if (Def->getOperand(2).getSubReg())
2019    return ValueTrackerResult();
2020
2021  return ValueTrackerResult(Def->getOperand(2).getReg(),
2022                            Def->getOperand(3).getImm());
2023}
2024
2025/// Explore each PHI incoming operand and return its sources.
2026ValueTrackerResult ValueTracker::getNextSourceFromPHI() {
2027  assert(Def->isPHI() && "Invalid definition");
2028  ValueTrackerResult Res;
2029
2030  // If we look for a different subreg, bail as we do not support composing
2031  // subregs yet.
2032  if (Def->getOperand(0).getSubReg() != DefSubReg)
2033    return ValueTrackerResult();
2034
2035  // Return all register sources for PHI instructions.
2036  for (unsigned i = 1, e = Def->getNumOperands(); i < e; i += 2) {
2037    const MachineOperand &MO = Def->getOperand(i);
2038    assert(MO.isReg() && "Invalid PHI instruction");
2039    // We have no code to deal with undef operands. They shouldn't happen in
2040    // normal programs anyway.
2041    if (MO.isUndef())
2042      return ValueTrackerResult();
2043    Res.addSource(MO.getReg(), MO.getSubReg());
2044  }
2045
2046  return Res;
2047}
2048
2049ValueTrackerResult ValueTracker::getNextSourceImpl() {
2050  assert(Def && "This method needs a valid definition");
2051
2052  assert(((Def->getOperand(DefIdx).isDef() &&
2053           (DefIdx < Def->getDesc().getNumDefs() ||
2054            Def->getDesc().isVariadic())) ||
2055          Def->getOperand(DefIdx).isImplicit()) &&
2056         "Invalid DefIdx");
2057  if (Def->isCopy())
2058    return getNextSourceFromCopy();
2059  if (Def->isBitcast())
2060    return getNextSourceFromBitcast();
2061  // All the remaining cases involve "complex" instructions.
2062  // Bail if we did not ask for the advanced tracking.
2063  if (DisableAdvCopyOpt)
2064    return ValueTrackerResult();
2065  if (Def->isRegSequence() || Def->isRegSequenceLike())
2066    return getNextSourceFromRegSequence();
2067  if (Def->isInsertSubreg() || Def->isInsertSubregLike())
2068    return getNextSourceFromInsertSubreg();
2069  if (Def->isExtractSubreg() || Def->isExtractSubregLike())
2070    return getNextSourceFromExtractSubreg();
2071  if (Def->isSubregToReg())
2072    return getNextSourceFromSubregToReg();
2073  if (Def->isPHI())
2074    return getNextSourceFromPHI();
2075  return ValueTrackerResult();
2076}
2077
2078ValueTrackerResult ValueTracker::getNextSource() {
2079  // If we reach a point where we cannot move up in the use-def chain,
2080  // there is nothing we can get.
2081  if (!Def)
2082    return ValueTrackerResult();
2083
2084  ValueTrackerResult Res = getNextSourceImpl();
2085  if (Res.isValid()) {
2086    // Update definition, definition index, and subregister for the
2087    // next call of getNextSource.
2088    // Update the current register.
2089    bool OneRegSrc = Res.getNumSources() == 1;
2090    if (OneRegSrc)
2091      Reg = Res.getSrcReg(0);
2092    // Update the result before moving up in the use-def chain
2093    // with the instruction containing the last found sources.
2094    Res.setInst(Def);
2095
2096    // If we can still move up in the use-def chain, move to the next
2097    // definition.
2098    if (!Register::isPhysicalRegister(Reg) && OneRegSrc) {
2099      MachineRegisterInfo::def_iterator DI = MRI.def_begin(Reg);
2100      if (DI != MRI.def_end()) {
2101        Def = DI->getParent();
2102        DefIdx = DI.getOperandNo();
2103        DefSubReg = Res.getSrcSubReg(0);
2104      } else {
2105        Def = nullptr;
2106      }
2107      return Res;
2108    }
2109  }
2110  // If we end up here, this means we will not be able to find another source
2111  // for the next iteration. Make sure any new call to getNextSource bails out
2112  // early by cutting the use-def chain.
2113  Def = nullptr;
2114  return Res;
2115}
2116