PHIElimination.cpp revision 360784
1//===- PhiElimination.cpp - Eliminate PHI nodes by inserting copies -------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This pass eliminates machine instruction PHI nodes by inserting copy
10// instructions.  This destroys SSA information, but is the desired input for
11// some register allocators.
12//
13//===----------------------------------------------------------------------===//
14
15#include "PHIEliminationUtils.h"
16#include "llvm/ADT/DenseMap.h"
17#include "llvm/ADT/SmallPtrSet.h"
18#include "llvm/ADT/Statistic.h"
19#include "llvm/Analysis/LoopInfo.h"
20#include "llvm/CodeGen/LiveInterval.h"
21#include "llvm/CodeGen/LiveIntervals.h"
22#include "llvm/CodeGen/LiveVariables.h"
23#include "llvm/CodeGen/MachineBasicBlock.h"
24#include "llvm/CodeGen/MachineDominators.h"
25#include "llvm/CodeGen/MachineFunction.h"
26#include "llvm/CodeGen/MachineFunctionPass.h"
27#include "llvm/CodeGen/MachineInstr.h"
28#include "llvm/CodeGen/MachineInstrBuilder.h"
29#include "llvm/CodeGen/MachineLoopInfo.h"
30#include "llvm/CodeGen/MachineOperand.h"
31#include "llvm/CodeGen/MachineRegisterInfo.h"
32#include "llvm/CodeGen/SlotIndexes.h"
33#include "llvm/CodeGen/TargetInstrInfo.h"
34#include "llvm/CodeGen/TargetLowering.h"
35#include "llvm/CodeGen/TargetOpcodes.h"
36#include "llvm/CodeGen/TargetPassConfig.h"
37#include "llvm/CodeGen/TargetRegisterInfo.h"
38#include "llvm/CodeGen/TargetSubtargetInfo.h"
39#include "llvm/Pass.h"
40#include "llvm/Support/CommandLine.h"
41#include "llvm/Support/Debug.h"
42#include "llvm/Support/raw_ostream.h"
43#include <cassert>
44#include <iterator>
45#include <utility>
46
47using namespace llvm;
48
49#define DEBUG_TYPE "phi-node-elimination"
50
51static cl::opt<bool>
52DisableEdgeSplitting("disable-phi-elim-edge-splitting", cl::init(false),
53                     cl::Hidden, cl::desc("Disable critical edge splitting "
54                                          "during PHI elimination"));
55
56static cl::opt<bool>
57SplitAllCriticalEdges("phi-elim-split-all-critical-edges", cl::init(false),
58                      cl::Hidden, cl::desc("Split all critical edges during "
59                                           "PHI elimination"));
60
61static cl::opt<bool> NoPhiElimLiveOutEarlyExit(
62    "no-phi-elim-live-out-early-exit", cl::init(false), cl::Hidden,
63    cl::desc("Do not use an early exit if isLiveOutPastPHIs returns true."));
64
65namespace {
66
67  class PHIElimination : public MachineFunctionPass {
68    MachineRegisterInfo *MRI; // Machine register information
69    LiveVariables *LV;
70    LiveIntervals *LIS;
71
72  public:
73    static char ID; // Pass identification, replacement for typeid
74
75    PHIElimination() : MachineFunctionPass(ID) {
76      initializePHIEliminationPass(*PassRegistry::getPassRegistry());
77    }
78
79    bool runOnMachineFunction(MachineFunction &MF) override;
80    void getAnalysisUsage(AnalysisUsage &AU) const override;
81
82  private:
83    /// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions
84    /// in predecessor basic blocks.
85    bool EliminatePHINodes(MachineFunction &MF, MachineBasicBlock &MBB);
86
87    void LowerPHINode(MachineBasicBlock &MBB,
88                      MachineBasicBlock::iterator LastPHIIt);
89
90    /// analyzePHINodes - Gather information about the PHI nodes in
91    /// here. In particular, we want to map the number of uses of a virtual
92    /// register which is used in a PHI node. We map that to the BB the
93    /// vreg is coming from. This is used later to determine when the vreg
94    /// is killed in the BB.
95    void analyzePHINodes(const MachineFunction& MF);
96
97    /// Split critical edges where necessary for good coalescer performance.
98    bool SplitPHIEdges(MachineFunction &MF, MachineBasicBlock &MBB,
99                       MachineLoopInfo *MLI);
100
101    // These functions are temporary abstractions around LiveVariables and
102    // LiveIntervals, so they can go away when LiveVariables does.
103    bool isLiveIn(unsigned Reg, const MachineBasicBlock *MBB);
104    bool isLiveOutPastPHIs(unsigned Reg, const MachineBasicBlock *MBB);
105
106    using BBVRegPair = std::pair<unsigned, unsigned>;
107    using VRegPHIUse = DenseMap<BBVRegPair, unsigned>;
108
109    VRegPHIUse VRegPHIUseCount;
110
111    // Defs of PHI sources which are implicit_def.
112    SmallPtrSet<MachineInstr*, 4> ImpDefs;
113
114    // Map reusable lowered PHI node -> incoming join register.
115    using LoweredPHIMap =
116        DenseMap<MachineInstr*, unsigned, MachineInstrExpressionTrait>;
117    LoweredPHIMap LoweredPHIs;
118  };
119
120} // end anonymous namespace
121
122STATISTIC(NumLowered, "Number of phis lowered");
123STATISTIC(NumCriticalEdgesSplit, "Number of critical edges split");
124STATISTIC(NumReused, "Number of reused lowered phis");
125
126char PHIElimination::ID = 0;
127
128char& llvm::PHIEliminationID = PHIElimination::ID;
129
130INITIALIZE_PASS_BEGIN(PHIElimination, DEBUG_TYPE,
131                      "Eliminate PHI nodes for register allocation",
132                      false, false)
133INITIALIZE_PASS_DEPENDENCY(LiveVariables)
134INITIALIZE_PASS_END(PHIElimination, DEBUG_TYPE,
135                    "Eliminate PHI nodes for register allocation", false, false)
136
137void PHIElimination::getAnalysisUsage(AnalysisUsage &AU) const {
138  AU.addUsedIfAvailable<LiveVariables>();
139  AU.addPreserved<LiveVariables>();
140  AU.addPreserved<SlotIndexes>();
141  AU.addPreserved<LiveIntervals>();
142  AU.addPreserved<MachineDominatorTree>();
143  AU.addPreserved<MachineLoopInfo>();
144  MachineFunctionPass::getAnalysisUsage(AU);
145}
146
147bool PHIElimination::runOnMachineFunction(MachineFunction &MF) {
148  MRI = &MF.getRegInfo();
149  LV = getAnalysisIfAvailable<LiveVariables>();
150  LIS = getAnalysisIfAvailable<LiveIntervals>();
151
152  bool Changed = false;
153
154  // This pass takes the function out of SSA form.
155  MRI->leaveSSA();
156
157  // Split critical edges to help the coalescer.
158  if (!DisableEdgeSplitting && (LV || LIS)) {
159    MachineLoopInfo *MLI = getAnalysisIfAvailable<MachineLoopInfo>();
160    for (auto &MBB : MF)
161      Changed |= SplitPHIEdges(MF, MBB, MLI);
162  }
163
164  // Populate VRegPHIUseCount
165  analyzePHINodes(MF);
166
167  // Eliminate PHI instructions by inserting copies into predecessor blocks.
168  for (auto &MBB : MF)
169    Changed |= EliminatePHINodes(MF, MBB);
170
171  // Remove dead IMPLICIT_DEF instructions.
172  for (MachineInstr *DefMI : ImpDefs) {
173    Register DefReg = DefMI->getOperand(0).getReg();
174    if (MRI->use_nodbg_empty(DefReg)) {
175      if (LIS)
176        LIS->RemoveMachineInstrFromMaps(*DefMI);
177      DefMI->eraseFromParent();
178    }
179  }
180
181  // Clean up the lowered PHI instructions.
182  for (auto &I : LoweredPHIs) {
183    if (LIS)
184      LIS->RemoveMachineInstrFromMaps(*I.first);
185    MF.DeleteMachineInstr(I.first);
186  }
187
188  // TODO: we should use the incremental DomTree updater here.
189  if (Changed)
190    if (auto *MDT = getAnalysisIfAvailable<MachineDominatorTree>())
191      MDT->getBase().recalculate(MF);
192
193  LoweredPHIs.clear();
194  ImpDefs.clear();
195  VRegPHIUseCount.clear();
196
197  MF.getProperties().set(MachineFunctionProperties::Property::NoPHIs);
198
199  return Changed;
200}
201
202/// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions in
203/// predecessor basic blocks.
204bool PHIElimination::EliminatePHINodes(MachineFunction &MF,
205                                       MachineBasicBlock &MBB) {
206  if (MBB.empty() || !MBB.front().isPHI())
207    return false;   // Quick exit for basic blocks without PHIs.
208
209  // Get an iterator to the last PHI node.
210  MachineBasicBlock::iterator LastPHIIt =
211    std::prev(MBB.SkipPHIsAndLabels(MBB.begin()));
212
213  while (MBB.front().isPHI())
214    LowerPHINode(MBB, LastPHIIt);
215
216  return true;
217}
218
219/// Return true if all defs of VirtReg are implicit-defs.
220/// This includes registers with no defs.
221static bool isImplicitlyDefined(unsigned VirtReg,
222                                const MachineRegisterInfo &MRI) {
223  for (MachineInstr &DI : MRI.def_instructions(VirtReg))
224    if (!DI.isImplicitDef())
225      return false;
226  return true;
227}
228
229/// Return true if all sources of the phi node are implicit_def's, or undef's.
230static bool allPhiOperandsUndefined(const MachineInstr &MPhi,
231                                    const MachineRegisterInfo &MRI) {
232  for (unsigned I = 1, E = MPhi.getNumOperands(); I != E; I += 2) {
233    const MachineOperand &MO = MPhi.getOperand(I);
234    if (!isImplicitlyDefined(MO.getReg(), MRI) && !MO.isUndef())
235      return false;
236  }
237  return true;
238}
239/// LowerPHINode - Lower the PHI node at the top of the specified block.
240void PHIElimination::LowerPHINode(MachineBasicBlock &MBB,
241                                  MachineBasicBlock::iterator LastPHIIt) {
242  ++NumLowered;
243
244  MachineBasicBlock::iterator AfterPHIsIt = std::next(LastPHIIt);
245
246  // Unlink the PHI node from the basic block, but don't delete the PHI yet.
247  MachineInstr *MPhi = MBB.remove(&*MBB.begin());
248
249  unsigned NumSrcs = (MPhi->getNumOperands() - 1) / 2;
250  Register DestReg = MPhi->getOperand(0).getReg();
251  assert(MPhi->getOperand(0).getSubReg() == 0 && "Can't handle sub-reg PHIs");
252  bool isDead = MPhi->getOperand(0).isDead();
253
254  // Create a new register for the incoming PHI arguments.
255  MachineFunction &MF = *MBB.getParent();
256  unsigned IncomingReg = 0;
257  bool reusedIncoming = false;  // Is IncomingReg reused from an earlier PHI?
258
259  // Insert a register to register copy at the top of the current block (but
260  // after any remaining phi nodes) which copies the new incoming register
261  // into the phi node destination.
262  MachineInstr *PHICopy = nullptr;
263  const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo();
264  if (allPhiOperandsUndefined(*MPhi, *MRI))
265    // If all sources of a PHI node are implicit_def or undef uses, just emit an
266    // implicit_def instead of a copy.
267    PHICopy = BuildMI(MBB, AfterPHIsIt, MPhi->getDebugLoc(),
268            TII->get(TargetOpcode::IMPLICIT_DEF), DestReg);
269  else {
270    // Can we reuse an earlier PHI node? This only happens for critical edges,
271    // typically those created by tail duplication.
272    unsigned &entry = LoweredPHIs[MPhi];
273    if (entry) {
274      // An identical PHI node was already lowered. Reuse the incoming register.
275      IncomingReg = entry;
276      reusedIncoming = true;
277      ++NumReused;
278      LLVM_DEBUG(dbgs() << "Reusing " << printReg(IncomingReg) << " for "
279                        << *MPhi);
280    } else {
281      const TargetRegisterClass *RC = MF.getRegInfo().getRegClass(DestReg);
282      entry = IncomingReg = MF.getRegInfo().createVirtualRegister(RC);
283    }
284    // Give the target possiblity to handle special cases fallthrough otherwise
285    PHICopy = TII->createPHIDestinationCopy(MBB, AfterPHIsIt, MPhi->getDebugLoc(),
286                                  IncomingReg, DestReg);
287  }
288
289  // Update live variable information if there is any.
290  if (LV) {
291    if (IncomingReg) {
292      LiveVariables::VarInfo &VI = LV->getVarInfo(IncomingReg);
293
294      // Increment use count of the newly created virtual register.
295      LV->setPHIJoin(IncomingReg);
296
297      // When we are reusing the incoming register, it may already have been
298      // killed in this block. The old kill will also have been inserted at
299      // AfterPHIsIt, so it appears before the current PHICopy.
300      if (reusedIncoming)
301        if (MachineInstr *OldKill = VI.findKill(&MBB)) {
302          LLVM_DEBUG(dbgs() << "Remove old kill from " << *OldKill);
303          LV->removeVirtualRegisterKilled(IncomingReg, *OldKill);
304          LLVM_DEBUG(MBB.dump());
305        }
306
307      // Add information to LiveVariables to know that the incoming value is
308      // killed.  Note that because the value is defined in several places (once
309      // each for each incoming block), the "def" block and instruction fields
310      // for the VarInfo is not filled in.
311      LV->addVirtualRegisterKilled(IncomingReg, *PHICopy);
312    }
313
314    // Since we are going to be deleting the PHI node, if it is the last use of
315    // any registers, or if the value itself is dead, we need to move this
316    // information over to the new copy we just inserted.
317    LV->removeVirtualRegistersKilled(*MPhi);
318
319    // If the result is dead, update LV.
320    if (isDead) {
321      LV->addVirtualRegisterDead(DestReg, *PHICopy);
322      LV->removeVirtualRegisterDead(DestReg, *MPhi);
323    }
324  }
325
326  // Update LiveIntervals for the new copy or implicit def.
327  if (LIS) {
328    SlotIndex DestCopyIndex = LIS->InsertMachineInstrInMaps(*PHICopy);
329
330    SlotIndex MBBStartIndex = LIS->getMBBStartIdx(&MBB);
331    if (IncomingReg) {
332      // Add the region from the beginning of MBB to the copy instruction to
333      // IncomingReg's live interval.
334      LiveInterval &IncomingLI = LIS->createEmptyInterval(IncomingReg);
335      VNInfo *IncomingVNI = IncomingLI.getVNInfoAt(MBBStartIndex);
336      if (!IncomingVNI)
337        IncomingVNI = IncomingLI.getNextValue(MBBStartIndex,
338                                              LIS->getVNInfoAllocator());
339      IncomingLI.addSegment(LiveInterval::Segment(MBBStartIndex,
340                                                  DestCopyIndex.getRegSlot(),
341                                                  IncomingVNI));
342    }
343
344    LiveInterval &DestLI = LIS->getInterval(DestReg);
345    assert(DestLI.begin() != DestLI.end() &&
346           "PHIs should have nonempty LiveIntervals.");
347    if (DestLI.endIndex().isDead()) {
348      // A dead PHI's live range begins and ends at the start of the MBB, but
349      // the lowered copy, which will still be dead, needs to begin and end at
350      // the copy instruction.
351      VNInfo *OrigDestVNI = DestLI.getVNInfoAt(MBBStartIndex);
352      assert(OrigDestVNI && "PHI destination should be live at block entry.");
353      DestLI.removeSegment(MBBStartIndex, MBBStartIndex.getDeadSlot());
354      DestLI.createDeadDef(DestCopyIndex.getRegSlot(),
355                           LIS->getVNInfoAllocator());
356      DestLI.removeValNo(OrigDestVNI);
357    } else {
358      // Otherwise, remove the region from the beginning of MBB to the copy
359      // instruction from DestReg's live interval.
360      DestLI.removeSegment(MBBStartIndex, DestCopyIndex.getRegSlot());
361      VNInfo *DestVNI = DestLI.getVNInfoAt(DestCopyIndex.getRegSlot());
362      assert(DestVNI && "PHI destination should be live at its definition.");
363      DestVNI->def = DestCopyIndex.getRegSlot();
364    }
365  }
366
367  // Adjust the VRegPHIUseCount map to account for the removal of this PHI node.
368  for (unsigned i = 1; i != MPhi->getNumOperands(); i += 2)
369    --VRegPHIUseCount[BBVRegPair(MPhi->getOperand(i+1).getMBB()->getNumber(),
370                                 MPhi->getOperand(i).getReg())];
371
372  // Now loop over all of the incoming arguments, changing them to copy into the
373  // IncomingReg register in the corresponding predecessor basic block.
374  SmallPtrSet<MachineBasicBlock*, 8> MBBsInsertedInto;
375  for (int i = NumSrcs - 1; i >= 0; --i) {
376    Register SrcReg = MPhi->getOperand(i * 2 + 1).getReg();
377    unsigned SrcSubReg = MPhi->getOperand(i*2+1).getSubReg();
378    bool SrcUndef = MPhi->getOperand(i*2+1).isUndef() ||
379      isImplicitlyDefined(SrcReg, *MRI);
380    assert(Register::isVirtualRegister(SrcReg) &&
381           "Machine PHI Operands must all be virtual registers!");
382
383    // Get the MachineBasicBlock equivalent of the BasicBlock that is the source
384    // path the PHI.
385    MachineBasicBlock &opBlock = *MPhi->getOperand(i*2+2).getMBB();
386
387    // Check to make sure we haven't already emitted the copy for this block.
388    // This can happen because PHI nodes may have multiple entries for the same
389    // basic block.
390    if (!MBBsInsertedInto.insert(&opBlock).second)
391      continue;  // If the copy has already been emitted, we're done.
392
393    // Find a safe location to insert the copy, this may be the first terminator
394    // in the block (or end()).
395    MachineBasicBlock::iterator InsertPos =
396      findPHICopyInsertPoint(&opBlock, &MBB, SrcReg);
397
398    // Insert the copy.
399    MachineInstr *NewSrcInstr = nullptr;
400    if (!reusedIncoming && IncomingReg) {
401      if (SrcUndef) {
402        // The source register is undefined, so there is no need for a real
403        // COPY, but we still need to ensure joint dominance by defs.
404        // Insert an IMPLICIT_DEF instruction.
405        NewSrcInstr = BuildMI(opBlock, InsertPos, MPhi->getDebugLoc(),
406                              TII->get(TargetOpcode::IMPLICIT_DEF),
407                              IncomingReg);
408
409        // Clean up the old implicit-def, if there even was one.
410        if (MachineInstr *DefMI = MRI->getVRegDef(SrcReg))
411          if (DefMI->isImplicitDef())
412            ImpDefs.insert(DefMI);
413      } else {
414        NewSrcInstr =
415            TII->createPHISourceCopy(opBlock, InsertPos, MPhi->getDebugLoc(),
416                                     SrcReg, SrcSubReg, IncomingReg);
417      }
418    }
419
420    // We only need to update the LiveVariables kill of SrcReg if this was the
421    // last PHI use of SrcReg to be lowered on this CFG edge and it is not live
422    // out of the predecessor. We can also ignore undef sources.
423    if (LV && !SrcUndef &&
424        !VRegPHIUseCount[BBVRegPair(opBlock.getNumber(), SrcReg)] &&
425        !LV->isLiveOut(SrcReg, opBlock)) {
426      // We want to be able to insert a kill of the register if this PHI (aka,
427      // the copy we just inserted) is the last use of the source value. Live
428      // variable analysis conservatively handles this by saying that the value
429      // is live until the end of the block the PHI entry lives in. If the value
430      // really is dead at the PHI copy, there will be no successor blocks which
431      // have the value live-in.
432
433      // Okay, if we now know that the value is not live out of the block, we
434      // can add a kill marker in this block saying that it kills the incoming
435      // value!
436
437      // In our final twist, we have to decide which instruction kills the
438      // register.  In most cases this is the copy, however, terminator
439      // instructions at the end of the block may also use the value. In this
440      // case, we should mark the last such terminator as being the killing
441      // block, not the copy.
442      MachineBasicBlock::iterator KillInst = opBlock.end();
443      MachineBasicBlock::iterator FirstTerm = opBlock.getFirstTerminator();
444      for (MachineBasicBlock::iterator Term = FirstTerm;
445          Term != opBlock.end(); ++Term) {
446        if (Term->readsRegister(SrcReg))
447          KillInst = Term;
448      }
449
450      if (KillInst == opBlock.end()) {
451        // No terminator uses the register.
452
453        if (reusedIncoming || !IncomingReg) {
454          // We may have to rewind a bit if we didn't insert a copy this time.
455          KillInst = FirstTerm;
456          while (KillInst != opBlock.begin()) {
457            --KillInst;
458            if (KillInst->isDebugInstr())
459              continue;
460            if (KillInst->readsRegister(SrcReg))
461              break;
462          }
463        } else {
464          // We just inserted this copy.
465          KillInst = NewSrcInstr;
466        }
467      }
468      assert(KillInst->readsRegister(SrcReg) && "Cannot find kill instruction");
469
470      // Finally, mark it killed.
471      LV->addVirtualRegisterKilled(SrcReg, *KillInst);
472
473      // This vreg no longer lives all of the way through opBlock.
474      unsigned opBlockNum = opBlock.getNumber();
475      LV->getVarInfo(SrcReg).AliveBlocks.reset(opBlockNum);
476    }
477
478    if (LIS) {
479      if (NewSrcInstr) {
480        LIS->InsertMachineInstrInMaps(*NewSrcInstr);
481        LIS->addSegmentToEndOfBlock(IncomingReg, *NewSrcInstr);
482      }
483
484      if (!SrcUndef &&
485          !VRegPHIUseCount[BBVRegPair(opBlock.getNumber(), SrcReg)]) {
486        LiveInterval &SrcLI = LIS->getInterval(SrcReg);
487
488        bool isLiveOut = false;
489        for (MachineBasicBlock::succ_iterator SI = opBlock.succ_begin(),
490             SE = opBlock.succ_end(); SI != SE; ++SI) {
491          SlotIndex startIdx = LIS->getMBBStartIdx(*SI);
492          VNInfo *VNI = SrcLI.getVNInfoAt(startIdx);
493
494          // Definitions by other PHIs are not truly live-in for our purposes.
495          if (VNI && VNI->def != startIdx) {
496            isLiveOut = true;
497            break;
498          }
499        }
500
501        if (!isLiveOut) {
502          MachineBasicBlock::iterator KillInst = opBlock.end();
503          MachineBasicBlock::iterator FirstTerm = opBlock.getFirstTerminator();
504          for (MachineBasicBlock::iterator Term = FirstTerm;
505              Term != opBlock.end(); ++Term) {
506            if (Term->readsRegister(SrcReg))
507              KillInst = Term;
508          }
509
510          if (KillInst == opBlock.end()) {
511            // No terminator uses the register.
512
513            if (reusedIncoming || !IncomingReg) {
514              // We may have to rewind a bit if we didn't just insert a copy.
515              KillInst = FirstTerm;
516              while (KillInst != opBlock.begin()) {
517                --KillInst;
518                if (KillInst->isDebugInstr())
519                  continue;
520                if (KillInst->readsRegister(SrcReg))
521                  break;
522              }
523            } else {
524              // We just inserted this copy.
525              KillInst = std::prev(InsertPos);
526            }
527          }
528          assert(KillInst->readsRegister(SrcReg) &&
529                 "Cannot find kill instruction");
530
531          SlotIndex LastUseIndex = LIS->getInstructionIndex(*KillInst);
532          SrcLI.removeSegment(LastUseIndex.getRegSlot(),
533                              LIS->getMBBEndIdx(&opBlock));
534        }
535      }
536    }
537  }
538
539  // Really delete the PHI instruction now, if it is not in the LoweredPHIs map.
540  if (reusedIncoming || !IncomingReg) {
541    if (LIS)
542      LIS->RemoveMachineInstrFromMaps(*MPhi);
543    MF.DeleteMachineInstr(MPhi);
544  }
545}
546
547/// analyzePHINodes - Gather information about the PHI nodes in here. In
548/// particular, we want to map the number of uses of a virtual register which is
549/// used in a PHI node. We map that to the BB the vreg is coming from. This is
550/// used later to determine when the vreg is killed in the BB.
551void PHIElimination::analyzePHINodes(const MachineFunction& MF) {
552  for (const auto &MBB : MF)
553    for (const auto &BBI : MBB) {
554      if (!BBI.isPHI())
555        break;
556      for (unsigned i = 1, e = BBI.getNumOperands(); i != e; i += 2)
557        ++VRegPHIUseCount[BBVRegPair(BBI.getOperand(i+1).getMBB()->getNumber(),
558                                     BBI.getOperand(i).getReg())];
559    }
560}
561
562bool PHIElimination::SplitPHIEdges(MachineFunction &MF,
563                                   MachineBasicBlock &MBB,
564                                   MachineLoopInfo *MLI) {
565  if (MBB.empty() || !MBB.front().isPHI() || MBB.isEHPad())
566    return false;   // Quick exit for basic blocks without PHIs.
567
568  const MachineLoop *CurLoop = MLI ? MLI->getLoopFor(&MBB) : nullptr;
569  bool IsLoopHeader = CurLoop && &MBB == CurLoop->getHeader();
570
571  bool Changed = false;
572  for (MachineBasicBlock::iterator BBI = MBB.begin(), BBE = MBB.end();
573       BBI != BBE && BBI->isPHI(); ++BBI) {
574    for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2) {
575      Register Reg = BBI->getOperand(i).getReg();
576      MachineBasicBlock *PreMBB = BBI->getOperand(i+1).getMBB();
577      // Is there a critical edge from PreMBB to MBB?
578      if (PreMBB->succ_size() == 1)
579        continue;
580
581      // Avoid splitting backedges of loops. It would introduce small
582      // out-of-line blocks into the loop which is very bad for code placement.
583      if (PreMBB == &MBB && !SplitAllCriticalEdges)
584        continue;
585      const MachineLoop *PreLoop = MLI ? MLI->getLoopFor(PreMBB) : nullptr;
586      if (IsLoopHeader && PreLoop == CurLoop && !SplitAllCriticalEdges)
587        continue;
588
589      // LV doesn't consider a phi use live-out, so isLiveOut only returns true
590      // when the source register is live-out for some other reason than a phi
591      // use. That means the copy we will insert in PreMBB won't be a kill, and
592      // there is a risk it may not be coalesced away.
593      //
594      // If the copy would be a kill, there is no need to split the edge.
595      bool ShouldSplit = isLiveOutPastPHIs(Reg, PreMBB);
596      if (!ShouldSplit && !NoPhiElimLiveOutEarlyExit)
597        continue;
598      if (ShouldSplit) {
599        LLVM_DEBUG(dbgs() << printReg(Reg) << " live-out before critical edge "
600                          << printMBBReference(*PreMBB) << " -> "
601                          << printMBBReference(MBB) << ": " << *BBI);
602      }
603
604      // If Reg is not live-in to MBB, it means it must be live-in to some
605      // other PreMBB successor, and we can avoid the interference by splitting
606      // the edge.
607      //
608      // If Reg *is* live-in to MBB, the interference is inevitable and a copy
609      // is likely to be left after coalescing. If we are looking at a loop
610      // exiting edge, split it so we won't insert code in the loop, otherwise
611      // don't bother.
612      ShouldSplit = ShouldSplit && !isLiveIn(Reg, &MBB);
613
614      // Check for a loop exiting edge.
615      if (!ShouldSplit && CurLoop != PreLoop) {
616        LLVM_DEBUG({
617          dbgs() << "Split wouldn't help, maybe avoid loop copies?\n";
618          if (PreLoop)
619            dbgs() << "PreLoop: " << *PreLoop;
620          if (CurLoop)
621            dbgs() << "CurLoop: " << *CurLoop;
622        });
623        // This edge could be entering a loop, exiting a loop, or it could be
624        // both: Jumping directly form one loop to the header of a sibling
625        // loop.
626        // Split unless this edge is entering CurLoop from an outer loop.
627        ShouldSplit = PreLoop && !PreLoop->contains(CurLoop);
628      }
629      if (!ShouldSplit && !SplitAllCriticalEdges)
630        continue;
631      if (!PreMBB->SplitCriticalEdge(&MBB, *this)) {
632        LLVM_DEBUG(dbgs() << "Failed to split critical edge.\n");
633        continue;
634      }
635      Changed = true;
636      ++NumCriticalEdgesSplit;
637    }
638  }
639  return Changed;
640}
641
642bool PHIElimination::isLiveIn(unsigned Reg, const MachineBasicBlock *MBB) {
643  assert((LV || LIS) &&
644         "isLiveIn() requires either LiveVariables or LiveIntervals");
645  if (LIS)
646    return LIS->isLiveInToMBB(LIS->getInterval(Reg), MBB);
647  else
648    return LV->isLiveIn(Reg, *MBB);
649}
650
651bool PHIElimination::isLiveOutPastPHIs(unsigned Reg,
652                                       const MachineBasicBlock *MBB) {
653  assert((LV || LIS) &&
654         "isLiveOutPastPHIs() requires either LiveVariables or LiveIntervals");
655  // LiveVariables considers uses in PHIs to be in the predecessor basic block,
656  // so that a register used only in a PHI is not live out of the block. In
657  // contrast, LiveIntervals considers uses in PHIs to be on the edge rather than
658  // in the predecessor basic block, so that a register used only in a PHI is live
659  // out of the block.
660  if (LIS) {
661    const LiveInterval &LI = LIS->getInterval(Reg);
662    for (const MachineBasicBlock *SI : MBB->successors())
663      if (LI.liveAt(LIS->getMBBStartIdx(SI)))
664        return true;
665    return false;
666  } else {
667    return LV->isLiveOut(Reg, *MBB);
668  }
669}
670