MachineSink.cpp revision 360784
1255570Strasz//===- MachineSink.cpp - Sinking for machine instructions -----------------===//
2255570Strasz//
3255570Strasz// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4255570Strasz// See https://llvm.org/LICENSE.txt for license information.
5255570Strasz// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6255570Strasz//
7255570Strasz//===----------------------------------------------------------------------===//
8255570Strasz//
9255570Strasz// This pass moves instructions into successor blocks when possible, so that
10255570Strasz// they aren't executed on paths where their results aren't needed.
11255570Strasz//
12255570Strasz// This pass is not intended to be a replacement or a complete alternative
13255570Strasz// for an LLVM-IR-level sinking pass. It is only designed to sink simple
14255570Strasz// constructs that are not exposed before lowering and instruction selection.
15255570Strasz//
16255570Strasz//===----------------------------------------------------------------------===//
17255570Strasz
18255570Strasz#include "llvm/ADT/DenseSet.h"
19255570Strasz#include "llvm/ADT/PointerIntPair.h"
20255570Strasz#include "llvm/ADT/SetVector.h"
21#include "llvm/ADT/SmallSet.h"
22#include "llvm/ADT/SmallVector.h"
23#include "llvm/ADT/SparseBitVector.h"
24#include "llvm/ADT/Statistic.h"
25#include "llvm/Analysis/AliasAnalysis.h"
26#include "llvm/CodeGen/MachineBasicBlock.h"
27#include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
28#include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
29#include "llvm/CodeGen/MachineDominators.h"
30#include "llvm/CodeGen/MachineFunction.h"
31#include "llvm/CodeGen/MachineFunctionPass.h"
32#include "llvm/CodeGen/MachineInstr.h"
33#include "llvm/CodeGen/MachineLoopInfo.h"
34#include "llvm/CodeGen/MachineOperand.h"
35#include "llvm/CodeGen/MachinePostDominators.h"
36#include "llvm/CodeGen/MachineRegisterInfo.h"
37#include "llvm/CodeGen/TargetInstrInfo.h"
38#include "llvm/CodeGen/TargetRegisterInfo.h"
39#include "llvm/CodeGen/TargetSubtargetInfo.h"
40#include "llvm/IR/BasicBlock.h"
41#include "llvm/IR/DebugInfoMetadata.h"
42#include "llvm/IR/LLVMContext.h"
43#include "llvm/InitializePasses.h"
44#include "llvm/MC/MCRegisterInfo.h"
45#include "llvm/Pass.h"
46#include "llvm/Support/BranchProbability.h"
47#include "llvm/Support/CommandLine.h"
48#include "llvm/Support/Debug.h"
49#include "llvm/Support/raw_ostream.h"
50#include <algorithm>
51#include <cassert>
52#include <cstdint>
53#include <map>
54#include <utility>
55#include <vector>
56
57using namespace llvm;
58
59#define DEBUG_TYPE "machine-sink"
60
61static cl::opt<bool>
62SplitEdges("machine-sink-split",
63           cl::desc("Split critical edges during machine sinking"),
64           cl::init(true), cl::Hidden);
65
66static cl::opt<bool>
67UseBlockFreqInfo("machine-sink-bfi",
68           cl::desc("Use block frequency info to find successors to sink"),
69           cl::init(true), cl::Hidden);
70
71static cl::opt<unsigned> SplitEdgeProbabilityThreshold(
72    "machine-sink-split-probability-threshold",
73    cl::desc(
74        "Percentage threshold for splitting single-instruction critical edge. "
75        "If the branch threshold is higher than this threshold, we allow "
76        "speculative execution of up to 1 instruction to avoid branching to "
77        "splitted critical edge"),
78    cl::init(40), cl::Hidden);
79
80STATISTIC(NumSunk,      "Number of machine instructions sunk");
81STATISTIC(NumSplit,     "Number of critical edges split");
82STATISTIC(NumCoalesces, "Number of copies coalesced");
83STATISTIC(NumPostRACopySink, "Number of copies sunk after RA");
84
85namespace {
86
87  class MachineSinking : public MachineFunctionPass {
88    const TargetInstrInfo *TII;
89    const TargetRegisterInfo *TRI;
90    MachineRegisterInfo  *MRI;     // Machine register information
91    MachineDominatorTree *DT;      // Machine dominator tree
92    MachinePostDominatorTree *PDT; // Machine post dominator tree
93    MachineLoopInfo *LI;
94    const MachineBlockFrequencyInfo *MBFI;
95    const MachineBranchProbabilityInfo *MBPI;
96    AliasAnalysis *AA;
97
98    // Remember which edges have been considered for breaking.
99    SmallSet<std::pair<MachineBasicBlock*, MachineBasicBlock*>, 8>
100    CEBCandidates;
101    // Remember which edges we are about to split.
102    // This is different from CEBCandidates since those edges
103    // will be split.
104    SetVector<std::pair<MachineBasicBlock *, MachineBasicBlock *>> ToSplit;
105
106    SparseBitVector<> RegsToClearKillFlags;
107
108    using AllSuccsCache =
109        std::map<MachineBasicBlock *, SmallVector<MachineBasicBlock *, 4>>;
110
111    /// DBG_VALUE pointer and flag. The flag is true if this DBG_VALUE is
112    /// post-dominated by another DBG_VALUE of the same variable location.
113    /// This is necessary to detect sequences such as:
114    ///     %0 = someinst
115    ///     DBG_VALUE %0, !123, !DIExpression()
116    ///     %1 = anotherinst
117    ///     DBG_VALUE %1, !123, !DIExpression()
118    /// Where if %0 were to sink, the DBG_VAUE should not sink with it, as that
119    /// would re-order assignments.
120    using SeenDbgUser = PointerIntPair<MachineInstr *, 1>;
121
122    /// Record of DBG_VALUE uses of vregs in a block, so that we can identify
123    /// debug instructions to sink.
124    SmallDenseMap<unsigned, TinyPtrVector<SeenDbgUser>> SeenDbgUsers;
125
126    /// Record of debug variables that have had their locations set in the
127    /// current block.
128    DenseSet<DebugVariable> SeenDbgVars;
129
130  public:
131    static char ID; // Pass identification
132
133    MachineSinking() : MachineFunctionPass(ID) {
134      initializeMachineSinkingPass(*PassRegistry::getPassRegistry());
135    }
136
137    bool runOnMachineFunction(MachineFunction &MF) override;
138
139    void getAnalysisUsage(AnalysisUsage &AU) const override {
140      MachineFunctionPass::getAnalysisUsage(AU);
141      AU.addRequired<AAResultsWrapperPass>();
142      AU.addRequired<MachineDominatorTree>();
143      AU.addRequired<MachinePostDominatorTree>();
144      AU.addRequired<MachineLoopInfo>();
145      AU.addRequired<MachineBranchProbabilityInfo>();
146      AU.addPreserved<MachineLoopInfo>();
147      if (UseBlockFreqInfo)
148        AU.addRequired<MachineBlockFrequencyInfo>();
149    }
150
151    void releaseMemory() override {
152      CEBCandidates.clear();
153    }
154
155  private:
156    bool ProcessBlock(MachineBasicBlock &MBB);
157    void ProcessDbgInst(MachineInstr &MI);
158    bool isWorthBreakingCriticalEdge(MachineInstr &MI,
159                                     MachineBasicBlock *From,
160                                     MachineBasicBlock *To);
161
162    /// Postpone the splitting of the given critical
163    /// edge (\p From, \p To).
164    ///
165    /// We do not split the edges on the fly. Indeed, this invalidates
166    /// the dominance information and thus triggers a lot of updates
167    /// of that information underneath.
168    /// Instead, we postpone all the splits after each iteration of
169    /// the main loop. That way, the information is at least valid
170    /// for the lifetime of an iteration.
171    ///
172    /// \return True if the edge is marked as toSplit, false otherwise.
173    /// False can be returned if, for instance, this is not profitable.
174    bool PostponeSplitCriticalEdge(MachineInstr &MI,
175                                   MachineBasicBlock *From,
176                                   MachineBasicBlock *To,
177                                   bool BreakPHIEdge);
178    bool SinkInstruction(MachineInstr &MI, bool &SawStore,
179                         AllSuccsCache &AllSuccessors);
180
181    /// If we sink a COPY inst, some debug users of it's destination may no
182    /// longer be dominated by the COPY, and will eventually be dropped.
183    /// This is easily rectified by forwarding the non-dominated debug uses
184    /// to the copy source.
185    void SalvageUnsunkDebugUsersOfCopy(MachineInstr &,
186                                       MachineBasicBlock *TargetBlock);
187    bool AllUsesDominatedByBlock(unsigned Reg, MachineBasicBlock *MBB,
188                                 MachineBasicBlock *DefMBB,
189                                 bool &BreakPHIEdge, bool &LocalUse) const;
190    MachineBasicBlock *FindSuccToSinkTo(MachineInstr &MI, MachineBasicBlock *MBB,
191               bool &BreakPHIEdge, AllSuccsCache &AllSuccessors);
192    bool isProfitableToSinkTo(unsigned Reg, MachineInstr &MI,
193                              MachineBasicBlock *MBB,
194                              MachineBasicBlock *SuccToSinkTo,
195                              AllSuccsCache &AllSuccessors);
196
197    bool PerformTrivialForwardCoalescing(MachineInstr &MI,
198                                         MachineBasicBlock *MBB);
199
200    SmallVector<MachineBasicBlock *, 4> &
201    GetAllSortedSuccessors(MachineInstr &MI, MachineBasicBlock *MBB,
202                           AllSuccsCache &AllSuccessors) const;
203  };
204
205} // end anonymous namespace
206
207char MachineSinking::ID = 0;
208
209char &llvm::MachineSinkingID = MachineSinking::ID;
210
211INITIALIZE_PASS_BEGIN(MachineSinking, DEBUG_TYPE,
212                      "Machine code sinking", false, false)
213INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)
214INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
215INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
216INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
217INITIALIZE_PASS_END(MachineSinking, DEBUG_TYPE,
218                    "Machine code sinking", false, false)
219
220bool MachineSinking::PerformTrivialForwardCoalescing(MachineInstr &MI,
221                                                     MachineBasicBlock *MBB) {
222  if (!MI.isCopy())
223    return false;
224
225  Register SrcReg = MI.getOperand(1).getReg();
226  Register DstReg = MI.getOperand(0).getReg();
227  if (!Register::isVirtualRegister(SrcReg) ||
228      !Register::isVirtualRegister(DstReg) || !MRI->hasOneNonDBGUse(SrcReg))
229    return false;
230
231  const TargetRegisterClass *SRC = MRI->getRegClass(SrcReg);
232  const TargetRegisterClass *DRC = MRI->getRegClass(DstReg);
233  if (SRC != DRC)
234    return false;
235
236  MachineInstr *DefMI = MRI->getVRegDef(SrcReg);
237  if (DefMI->isCopyLike())
238    return false;
239  LLVM_DEBUG(dbgs() << "Coalescing: " << *DefMI);
240  LLVM_DEBUG(dbgs() << "*** to: " << MI);
241  MRI->replaceRegWith(DstReg, SrcReg);
242  MI.eraseFromParent();
243
244  // Conservatively, clear any kill flags, since it's possible that they are no
245  // longer correct.
246  MRI->clearKillFlags(SrcReg);
247
248  ++NumCoalesces;
249  return true;
250}
251
252/// AllUsesDominatedByBlock - Return true if all uses of the specified register
253/// occur in blocks dominated by the specified block. If any use is in the
254/// definition block, then return false since it is never legal to move def
255/// after uses.
256bool
257MachineSinking::AllUsesDominatedByBlock(unsigned Reg,
258                                        MachineBasicBlock *MBB,
259                                        MachineBasicBlock *DefMBB,
260                                        bool &BreakPHIEdge,
261                                        bool &LocalUse) const {
262  assert(Register::isVirtualRegister(Reg) && "Only makes sense for vregs");
263
264  // Ignore debug uses because debug info doesn't affect the code.
265  if (MRI->use_nodbg_empty(Reg))
266    return true;
267
268  // BreakPHIEdge is true if all the uses are in the successor MBB being sunken
269  // into and they are all PHI nodes. In this case, machine-sink must break
270  // the critical edge first. e.g.
271  //
272  // %bb.1: derived from LLVM BB %bb4.preheader
273  //   Predecessors according to CFG: %bb.0
274  //     ...
275  //     %reg16385 = DEC64_32r %reg16437, implicit-def dead %eflags
276  //     ...
277  //     JE_4 <%bb.37>, implicit %eflags
278  //   Successors according to CFG: %bb.37 %bb.2
279  //
280  // %bb.2: derived from LLVM BB %bb.nph
281  //   Predecessors according to CFG: %bb.0 %bb.1
282  //     %reg16386 = PHI %reg16434, %bb.0, %reg16385, %bb.1
283  BreakPHIEdge = true;
284  for (MachineOperand &MO : MRI->use_nodbg_operands(Reg)) {
285    MachineInstr *UseInst = MO.getParent();
286    unsigned OpNo = &MO - &UseInst->getOperand(0);
287    MachineBasicBlock *UseBlock = UseInst->getParent();
288    if (!(UseBlock == MBB && UseInst->isPHI() &&
289          UseInst->getOperand(OpNo+1).getMBB() == DefMBB)) {
290      BreakPHIEdge = false;
291      break;
292    }
293  }
294  if (BreakPHIEdge)
295    return true;
296
297  for (MachineOperand &MO : MRI->use_nodbg_operands(Reg)) {
298    // Determine the block of the use.
299    MachineInstr *UseInst = MO.getParent();
300    unsigned OpNo = &MO - &UseInst->getOperand(0);
301    MachineBasicBlock *UseBlock = UseInst->getParent();
302    if (UseInst->isPHI()) {
303      // PHI nodes use the operand in the predecessor block, not the block with
304      // the PHI.
305      UseBlock = UseInst->getOperand(OpNo+1).getMBB();
306    } else if (UseBlock == DefMBB) {
307      LocalUse = true;
308      return false;
309    }
310
311    // Check that it dominates.
312    if (!DT->dominates(MBB, UseBlock))
313      return false;
314  }
315
316  return true;
317}
318
319bool MachineSinking::runOnMachineFunction(MachineFunction &MF) {
320  if (skipFunction(MF.getFunction()))
321    return false;
322
323  LLVM_DEBUG(dbgs() << "******** Machine Sinking ********\n");
324
325  TII = MF.getSubtarget().getInstrInfo();
326  TRI = MF.getSubtarget().getRegisterInfo();
327  MRI = &MF.getRegInfo();
328  DT = &getAnalysis<MachineDominatorTree>();
329  PDT = &getAnalysis<MachinePostDominatorTree>();
330  LI = &getAnalysis<MachineLoopInfo>();
331  MBFI = UseBlockFreqInfo ? &getAnalysis<MachineBlockFrequencyInfo>() : nullptr;
332  MBPI = &getAnalysis<MachineBranchProbabilityInfo>();
333  AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
334
335  bool EverMadeChange = false;
336
337  while (true) {
338    bool MadeChange = false;
339
340    // Process all basic blocks.
341    CEBCandidates.clear();
342    ToSplit.clear();
343    for (auto &MBB: MF)
344      MadeChange |= ProcessBlock(MBB);
345
346    // If we have anything we marked as toSplit, split it now.
347    for (auto &Pair : ToSplit) {
348      auto NewSucc = Pair.first->SplitCriticalEdge(Pair.second, *this);
349      if (NewSucc != nullptr) {
350        LLVM_DEBUG(dbgs() << " *** Splitting critical edge: "
351                          << printMBBReference(*Pair.first) << " -- "
352                          << printMBBReference(*NewSucc) << " -- "
353                          << printMBBReference(*Pair.second) << '\n');
354        MadeChange = true;
355        ++NumSplit;
356      } else
357        LLVM_DEBUG(dbgs() << " *** Not legal to break critical edge\n");
358    }
359    // If this iteration over the code changed anything, keep iterating.
360    if (!MadeChange) break;
361    EverMadeChange = true;
362  }
363
364  // Now clear any kill flags for recorded registers.
365  for (auto I : RegsToClearKillFlags)
366    MRI->clearKillFlags(I);
367  RegsToClearKillFlags.clear();
368
369  return EverMadeChange;
370}
371
372bool MachineSinking::ProcessBlock(MachineBasicBlock &MBB) {
373  // Can't sink anything out of a block that has less than two successors.
374  if (MBB.succ_size() <= 1 || MBB.empty()) return false;
375
376  // Don't bother sinking code out of unreachable blocks. In addition to being
377  // unprofitable, it can also lead to infinite looping, because in an
378  // unreachable loop there may be nowhere to stop.
379  if (!DT->isReachableFromEntry(&MBB)) return false;
380
381  bool MadeChange = false;
382
383  // Cache all successors, sorted by frequency info and loop depth.
384  AllSuccsCache AllSuccessors;
385
386  // Walk the basic block bottom-up.  Remember if we saw a store.
387  MachineBasicBlock::iterator I = MBB.end();
388  --I;
389  bool ProcessedBegin, SawStore = false;
390  do {
391    MachineInstr &MI = *I;  // The instruction to sink.
392
393    // Predecrement I (if it's not begin) so that it isn't invalidated by
394    // sinking.
395    ProcessedBegin = I == MBB.begin();
396    if (!ProcessedBegin)
397      --I;
398
399    if (MI.isDebugInstr()) {
400      if (MI.isDebugValue())
401        ProcessDbgInst(MI);
402      continue;
403    }
404
405    bool Joined = PerformTrivialForwardCoalescing(MI, &MBB);
406    if (Joined) {
407      MadeChange = true;
408      continue;
409    }
410
411    if (SinkInstruction(MI, SawStore, AllSuccessors)) {
412      ++NumSunk;
413      MadeChange = true;
414    }
415
416    // If we just processed the first instruction in the block, we're done.
417  } while (!ProcessedBegin);
418
419  SeenDbgUsers.clear();
420  SeenDbgVars.clear();
421
422  return MadeChange;
423}
424
425void MachineSinking::ProcessDbgInst(MachineInstr &MI) {
426  // When we see DBG_VALUEs for registers, record any vreg it reads, so that
427  // we know what to sink if the vreg def sinks.
428  assert(MI.isDebugValue() && "Expected DBG_VALUE for processing");
429
430  DebugVariable Var(MI.getDebugVariable(), MI.getDebugExpression(),
431                    MI.getDebugLoc()->getInlinedAt());
432  bool SeenBefore = SeenDbgVars.count(Var) != 0;
433
434  MachineOperand &MO = MI.getOperand(0);
435  if (MO.isReg() && MO.getReg().isVirtual())
436    SeenDbgUsers[MO.getReg()].push_back(SeenDbgUser(&MI, SeenBefore));
437
438  // Record the variable for any DBG_VALUE, to avoid re-ordering any of them.
439  SeenDbgVars.insert(Var);
440}
441
442bool MachineSinking::isWorthBreakingCriticalEdge(MachineInstr &MI,
443                                                 MachineBasicBlock *From,
444                                                 MachineBasicBlock *To) {
445  // FIXME: Need much better heuristics.
446
447  // If the pass has already considered breaking this edge (during this pass
448  // through the function), then let's go ahead and break it. This means
449  // sinking multiple "cheap" instructions into the same block.
450  if (!CEBCandidates.insert(std::make_pair(From, To)).second)
451    return true;
452
453  if (!MI.isCopy() && !TII->isAsCheapAsAMove(MI))
454    return true;
455
456  if (From->isSuccessor(To) && MBPI->getEdgeProbability(From, To) <=
457      BranchProbability(SplitEdgeProbabilityThreshold, 100))
458    return true;
459
460  // MI is cheap, we probably don't want to break the critical edge for it.
461  // However, if this would allow some definitions of its source operands
462  // to be sunk then it's probably worth it.
463  for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
464    const MachineOperand &MO = MI.getOperand(i);
465    if (!MO.isReg() || !MO.isUse())
466      continue;
467    Register Reg = MO.getReg();
468    if (Reg == 0)
469      continue;
470
471    // We don't move live definitions of physical registers,
472    // so sinking their uses won't enable any opportunities.
473    if (Register::isPhysicalRegister(Reg))
474      continue;
475
476    // If this instruction is the only user of a virtual register,
477    // check if breaking the edge will enable sinking
478    // both this instruction and the defining instruction.
479    if (MRI->hasOneNonDBGUse(Reg)) {
480      // If the definition resides in same MBB,
481      // claim it's likely we can sink these together.
482      // If definition resides elsewhere, we aren't
483      // blocking it from being sunk so don't break the edge.
484      MachineInstr *DefMI = MRI->getVRegDef(Reg);
485      if (DefMI->getParent() == MI.getParent())
486        return true;
487    }
488  }
489
490  return false;
491}
492
493bool MachineSinking::PostponeSplitCriticalEdge(MachineInstr &MI,
494                                               MachineBasicBlock *FromBB,
495                                               MachineBasicBlock *ToBB,
496                                               bool BreakPHIEdge) {
497  if (!isWorthBreakingCriticalEdge(MI, FromBB, ToBB))
498    return false;
499
500  // Avoid breaking back edge. From == To means backedge for single BB loop.
501  if (!SplitEdges || FromBB == ToBB)
502    return false;
503
504  // Check for backedges of more "complex" loops.
505  if (LI->getLoopFor(FromBB) == LI->getLoopFor(ToBB) &&
506      LI->isLoopHeader(ToBB))
507    return false;
508
509  // It's not always legal to break critical edges and sink the computation
510  // to the edge.
511  //
512  // %bb.1:
513  // v1024
514  // Beq %bb.3
515  // <fallthrough>
516  // %bb.2:
517  // ... no uses of v1024
518  // <fallthrough>
519  // %bb.3:
520  // ...
521  //       = v1024
522  //
523  // If %bb.1 -> %bb.3 edge is broken and computation of v1024 is inserted:
524  //
525  // %bb.1:
526  // ...
527  // Bne %bb.2
528  // %bb.4:
529  // v1024 =
530  // B %bb.3
531  // %bb.2:
532  // ... no uses of v1024
533  // <fallthrough>
534  // %bb.3:
535  // ...
536  //       = v1024
537  //
538  // This is incorrect since v1024 is not computed along the %bb.1->%bb.2->%bb.3
539  // flow. We need to ensure the new basic block where the computation is
540  // sunk to dominates all the uses.
541  // It's only legal to break critical edge and sink the computation to the
542  // new block if all the predecessors of "To", except for "From", are
543  // not dominated by "From". Given SSA property, this means these
544  // predecessors are dominated by "To".
545  //
546  // There is no need to do this check if all the uses are PHI nodes. PHI
547  // sources are only defined on the specific predecessor edges.
548  if (!BreakPHIEdge) {
549    for (MachineBasicBlock::pred_iterator PI = ToBB->pred_begin(),
550           E = ToBB->pred_end(); PI != E; ++PI) {
551      if (*PI == FromBB)
552        continue;
553      if (!DT->dominates(ToBB, *PI))
554        return false;
555    }
556  }
557
558  ToSplit.insert(std::make_pair(FromBB, ToBB));
559
560  return true;
561}
562
563/// isProfitableToSinkTo - Return true if it is profitable to sink MI.
564bool MachineSinking::isProfitableToSinkTo(unsigned Reg, MachineInstr &MI,
565                                          MachineBasicBlock *MBB,
566                                          MachineBasicBlock *SuccToSinkTo,
567                                          AllSuccsCache &AllSuccessors) {
568  assert (SuccToSinkTo && "Invalid SinkTo Candidate BB");
569
570  if (MBB == SuccToSinkTo)
571    return false;
572
573  // It is profitable if SuccToSinkTo does not post dominate current block.
574  if (!PDT->dominates(SuccToSinkTo, MBB))
575    return true;
576
577  // It is profitable to sink an instruction from a deeper loop to a shallower
578  // loop, even if the latter post-dominates the former (PR21115).
579  if (LI->getLoopDepth(MBB) > LI->getLoopDepth(SuccToSinkTo))
580    return true;
581
582  // Check if only use in post dominated block is PHI instruction.
583  bool NonPHIUse = false;
584  for (MachineInstr &UseInst : MRI->use_nodbg_instructions(Reg)) {
585    MachineBasicBlock *UseBlock = UseInst.getParent();
586    if (UseBlock == SuccToSinkTo && !UseInst.isPHI())
587      NonPHIUse = true;
588  }
589  if (!NonPHIUse)
590    return true;
591
592  // If SuccToSinkTo post dominates then also it may be profitable if MI
593  // can further profitably sinked into another block in next round.
594  bool BreakPHIEdge = false;
595  // FIXME - If finding successor is compile time expensive then cache results.
596  if (MachineBasicBlock *MBB2 =
597          FindSuccToSinkTo(MI, SuccToSinkTo, BreakPHIEdge, AllSuccessors))
598    return isProfitableToSinkTo(Reg, MI, SuccToSinkTo, MBB2, AllSuccessors);
599
600  // If SuccToSinkTo is final destination and it is a post dominator of current
601  // block then it is not profitable to sink MI into SuccToSinkTo block.
602  return false;
603}
604
605/// Get the sorted sequence of successors for this MachineBasicBlock, possibly
606/// computing it if it was not already cached.
607SmallVector<MachineBasicBlock *, 4> &
608MachineSinking::GetAllSortedSuccessors(MachineInstr &MI, MachineBasicBlock *MBB,
609                                       AllSuccsCache &AllSuccessors) const {
610  // Do we have the sorted successors in cache ?
611  auto Succs = AllSuccessors.find(MBB);
612  if (Succs != AllSuccessors.end())
613    return Succs->second;
614
615  SmallVector<MachineBasicBlock *, 4> AllSuccs(MBB->succ_begin(),
616                                               MBB->succ_end());
617
618  // Handle cases where sinking can happen but where the sink point isn't a
619  // successor. For example:
620  //
621  //   x = computation
622  //   if () {} else {}
623  //   use x
624  //
625  const std::vector<MachineDomTreeNode *> &Children =
626    DT->getNode(MBB)->getChildren();
627  for (const auto &DTChild : Children)
628    // DomTree children of MBB that have MBB as immediate dominator are added.
629    if (DTChild->getIDom()->getBlock() == MI.getParent() &&
630        // Skip MBBs already added to the AllSuccs vector above.
631        !MBB->isSuccessor(DTChild->getBlock()))
632      AllSuccs.push_back(DTChild->getBlock());
633
634  // Sort Successors according to their loop depth or block frequency info.
635  llvm::stable_sort(
636      AllSuccs, [this](const MachineBasicBlock *L, const MachineBasicBlock *R) {
637        uint64_t LHSFreq = MBFI ? MBFI->getBlockFreq(L).getFrequency() : 0;
638        uint64_t RHSFreq = MBFI ? MBFI->getBlockFreq(R).getFrequency() : 0;
639        bool HasBlockFreq = LHSFreq != 0 && RHSFreq != 0;
640        return HasBlockFreq ? LHSFreq < RHSFreq
641                            : LI->getLoopDepth(L) < LI->getLoopDepth(R);
642      });
643
644  auto it = AllSuccessors.insert(std::make_pair(MBB, AllSuccs));
645
646  return it.first->second;
647}
648
649/// FindSuccToSinkTo - Find a successor to sink this instruction to.
650MachineBasicBlock *
651MachineSinking::FindSuccToSinkTo(MachineInstr &MI, MachineBasicBlock *MBB,
652                                 bool &BreakPHIEdge,
653                                 AllSuccsCache &AllSuccessors) {
654  assert (MBB && "Invalid MachineBasicBlock!");
655
656  // Loop over all the operands of the specified instruction.  If there is
657  // anything we can't handle, bail out.
658
659  // SuccToSinkTo - This is the successor to sink this instruction to, once we
660  // decide.
661  MachineBasicBlock *SuccToSinkTo = nullptr;
662  for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
663    const MachineOperand &MO = MI.getOperand(i);
664    if (!MO.isReg()) continue;  // Ignore non-register operands.
665
666    Register Reg = MO.getReg();
667    if (Reg == 0) continue;
668
669    if (Register::isPhysicalRegister(Reg)) {
670      if (MO.isUse()) {
671        // If the physreg has no defs anywhere, it's just an ambient register
672        // and we can freely move its uses. Alternatively, if it's allocatable,
673        // it could get allocated to something with a def during allocation.
674        if (!MRI->isConstantPhysReg(Reg))
675          return nullptr;
676      } else if (!MO.isDead()) {
677        // A def that isn't dead. We can't move it.
678        return nullptr;
679      }
680    } else {
681      // Virtual register uses are always safe to sink.
682      if (MO.isUse()) continue;
683
684      // If it's not safe to move defs of the register class, then abort.
685      if (!TII->isSafeToMoveRegClassDefs(MRI->getRegClass(Reg)))
686        return nullptr;
687
688      // Virtual register defs can only be sunk if all their uses are in blocks
689      // dominated by one of the successors.
690      if (SuccToSinkTo) {
691        // If a previous operand picked a block to sink to, then this operand
692        // must be sinkable to the same block.
693        bool LocalUse = false;
694        if (!AllUsesDominatedByBlock(Reg, SuccToSinkTo, MBB,
695                                     BreakPHIEdge, LocalUse))
696          return nullptr;
697
698        continue;
699      }
700
701      // Otherwise, we should look at all the successors and decide which one
702      // we should sink to. If we have reliable block frequency information
703      // (frequency != 0) available, give successors with smaller frequencies
704      // higher priority, otherwise prioritize smaller loop depths.
705      for (MachineBasicBlock *SuccBlock :
706           GetAllSortedSuccessors(MI, MBB, AllSuccessors)) {
707        bool LocalUse = false;
708        if (AllUsesDominatedByBlock(Reg, SuccBlock, MBB,
709                                    BreakPHIEdge, LocalUse)) {
710          SuccToSinkTo = SuccBlock;
711          break;
712        }
713        if (LocalUse)
714          // Def is used locally, it's never safe to move this def.
715          return nullptr;
716      }
717
718      // If we couldn't find a block to sink to, ignore this instruction.
719      if (!SuccToSinkTo)
720        return nullptr;
721      if (!isProfitableToSinkTo(Reg, MI, MBB, SuccToSinkTo, AllSuccessors))
722        return nullptr;
723    }
724  }
725
726  // It is not possible to sink an instruction into its own block.  This can
727  // happen with loops.
728  if (MBB == SuccToSinkTo)
729    return nullptr;
730
731  // It's not safe to sink instructions to EH landing pad. Control flow into
732  // landing pad is implicitly defined.
733  if (SuccToSinkTo && SuccToSinkTo->isEHPad())
734    return nullptr;
735
736  return SuccToSinkTo;
737}
738
739/// Return true if MI is likely to be usable as a memory operation by the
740/// implicit null check optimization.
741///
742/// This is a "best effort" heuristic, and should not be relied upon for
743/// correctness.  This returning true does not guarantee that the implicit null
744/// check optimization is legal over MI, and this returning false does not
745/// guarantee MI cannot possibly be used to do a null check.
746static bool SinkingPreventsImplicitNullCheck(MachineInstr &MI,
747                                             const TargetInstrInfo *TII,
748                                             const TargetRegisterInfo *TRI) {
749  using MachineBranchPredicate = TargetInstrInfo::MachineBranchPredicate;
750
751  auto *MBB = MI.getParent();
752  if (MBB->pred_size() != 1)
753    return false;
754
755  auto *PredMBB = *MBB->pred_begin();
756  auto *PredBB = PredMBB->getBasicBlock();
757
758  // Frontends that don't use implicit null checks have no reason to emit
759  // branches with make.implicit metadata, and this function should always
760  // return false for them.
761  if (!PredBB ||
762      !PredBB->getTerminator()->getMetadata(LLVMContext::MD_make_implicit))
763    return false;
764
765  const MachineOperand *BaseOp;
766  int64_t Offset;
767  if (!TII->getMemOperandWithOffset(MI, BaseOp, Offset, TRI))
768    return false;
769
770  if (!BaseOp->isReg())
771    return false;
772
773  if (!(MI.mayLoad() && !MI.isPredicable()))
774    return false;
775
776  MachineBranchPredicate MBP;
777  if (TII->analyzeBranchPredicate(*PredMBB, MBP, false))
778    return false;
779
780  return MBP.LHS.isReg() && MBP.RHS.isImm() && MBP.RHS.getImm() == 0 &&
781         (MBP.Predicate == MachineBranchPredicate::PRED_NE ||
782          MBP.Predicate == MachineBranchPredicate::PRED_EQ) &&
783         MBP.LHS.getReg() == BaseOp->getReg();
784}
785
786/// If the sunk instruction is a copy, try to forward the copy instead of
787/// leaving an 'undef' DBG_VALUE in the original location. Don't do this if
788/// there's any subregister weirdness involved. Returns true if copy
789/// propagation occurred.
790static bool attemptDebugCopyProp(MachineInstr &SinkInst, MachineInstr &DbgMI) {
791  const MachineRegisterInfo &MRI = SinkInst.getMF()->getRegInfo();
792  const TargetInstrInfo &TII = *SinkInst.getMF()->getSubtarget().getInstrInfo();
793
794  // Copy DBG_VALUE operand and set the original to undef. We then check to
795  // see whether this is something that can be copy-forwarded. If it isn't,
796  // continue around the loop.
797  MachineOperand DbgMO = DbgMI.getOperand(0);
798
799  const MachineOperand *SrcMO = nullptr, *DstMO = nullptr;
800  auto CopyOperands = TII.isCopyInstr(SinkInst);
801  if (!CopyOperands)
802    return false;
803  SrcMO = CopyOperands->Source;
804  DstMO = CopyOperands->Destination;
805
806  // Check validity of forwarding this copy.
807  bool PostRA = MRI.getNumVirtRegs() == 0;
808
809  // Trying to forward between physical and virtual registers is too hard.
810  if (DbgMO.getReg().isVirtual() != SrcMO->getReg().isVirtual())
811    return false;
812
813  // Only try virtual register copy-forwarding before regalloc, and physical
814  // register copy-forwarding after regalloc.
815  bool arePhysRegs = !DbgMO.getReg().isVirtual();
816  if (arePhysRegs != PostRA)
817    return false;
818
819  // Pre-regalloc, only forward if all subregisters agree (or there are no
820  // subregs at all). More analysis might recover some forwardable copies.
821  if (!PostRA && (DbgMO.getSubReg() != SrcMO->getSubReg() ||
822                  DbgMO.getSubReg() != DstMO->getSubReg()))
823    return false;
824
825  // Post-regalloc, we may be sinking a DBG_VALUE of a sub or super-register
826  // of this copy. Only forward the copy if the DBG_VALUE operand exactly
827  // matches the copy destination.
828  if (PostRA && DbgMO.getReg() != DstMO->getReg())
829    return false;
830
831  DbgMI.getOperand(0).setReg(SrcMO->getReg());
832  DbgMI.getOperand(0).setSubReg(SrcMO->getSubReg());
833  return true;
834}
835
836/// Sink an instruction and its associated debug instructions.
837static void performSink(MachineInstr &MI, MachineBasicBlock &SuccToSinkTo,
838                        MachineBasicBlock::iterator InsertPos,
839                        SmallVectorImpl<MachineInstr *> &DbgValuesToSink) {
840
841  // If we cannot find a location to use (merge with), then we erase the debug
842  // location to prevent debug-info driven tools from potentially reporting
843  // wrong location information.
844  if (!SuccToSinkTo.empty() && InsertPos != SuccToSinkTo.end())
845    MI.setDebugLoc(DILocation::getMergedLocation(MI.getDebugLoc(),
846                                                 InsertPos->getDebugLoc()));
847  else
848    MI.setDebugLoc(DebugLoc());
849
850  // Move the instruction.
851  MachineBasicBlock *ParentBlock = MI.getParent();
852  SuccToSinkTo.splice(InsertPos, ParentBlock, MI,
853                      ++MachineBasicBlock::iterator(MI));
854
855  // Sink a copy of debug users to the insert position. Mark the original
856  // DBG_VALUE location as 'undef', indicating that any earlier variable
857  // location should be terminated as we've optimised away the value at this
858  // point.
859  for (SmallVectorImpl<MachineInstr *>::iterator DBI = DbgValuesToSink.begin(),
860                                                 DBE = DbgValuesToSink.end();
861       DBI != DBE; ++DBI) {
862    MachineInstr *DbgMI = *DBI;
863    MachineInstr *NewDbgMI = DbgMI->getMF()->CloneMachineInstr(*DBI);
864    SuccToSinkTo.insert(InsertPos, NewDbgMI);
865
866    if (!attemptDebugCopyProp(MI, *DbgMI))
867      DbgMI->getOperand(0).setReg(0);
868  }
869}
870
871/// SinkInstruction - Determine whether it is safe to sink the specified machine
872/// instruction out of its current block into a successor.
873bool MachineSinking::SinkInstruction(MachineInstr &MI, bool &SawStore,
874                                     AllSuccsCache &AllSuccessors) {
875  // Don't sink instructions that the target prefers not to sink.
876  if (!TII->shouldSink(MI))
877    return false;
878
879  // Check if it's safe to move the instruction.
880  if (!MI.isSafeToMove(AA, SawStore))
881    return false;
882
883  // Convergent operations may not be made control-dependent on additional
884  // values.
885  if (MI.isConvergent())
886    return false;
887
888  // Don't break implicit null checks.  This is a performance heuristic, and not
889  // required for correctness.
890  if (SinkingPreventsImplicitNullCheck(MI, TII, TRI))
891    return false;
892
893  // FIXME: This should include support for sinking instructions within the
894  // block they are currently in to shorten the live ranges.  We often get
895  // instructions sunk into the top of a large block, but it would be better to
896  // also sink them down before their first use in the block.  This xform has to
897  // be careful not to *increase* register pressure though, e.g. sinking
898  // "x = y + z" down if it kills y and z would increase the live ranges of y
899  // and z and only shrink the live range of x.
900
901  bool BreakPHIEdge = false;
902  MachineBasicBlock *ParentBlock = MI.getParent();
903  MachineBasicBlock *SuccToSinkTo =
904      FindSuccToSinkTo(MI, ParentBlock, BreakPHIEdge, AllSuccessors);
905
906  // If there are no outputs, it must have side-effects.
907  if (!SuccToSinkTo)
908    return false;
909
910  // If the instruction to move defines a dead physical register which is live
911  // when leaving the basic block, don't move it because it could turn into a
912  // "zombie" define of that preg. E.g., EFLAGS. (<rdar://problem/8030636>)
913  for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) {
914    const MachineOperand &MO = MI.getOperand(I);
915    if (!MO.isReg()) continue;
916    Register Reg = MO.getReg();
917    if (Reg == 0 || !Register::isPhysicalRegister(Reg))
918      continue;
919    if (SuccToSinkTo->isLiveIn(Reg))
920      return false;
921  }
922
923  LLVM_DEBUG(dbgs() << "Sink instr " << MI << "\tinto block " << *SuccToSinkTo);
924
925  // If the block has multiple predecessors, this is a critical edge.
926  // Decide if we can sink along it or need to break the edge.
927  if (SuccToSinkTo->pred_size() > 1) {
928    // We cannot sink a load across a critical edge - there may be stores in
929    // other code paths.
930    bool TryBreak = false;
931    bool store = true;
932    if (!MI.isSafeToMove(AA, store)) {
933      LLVM_DEBUG(dbgs() << " *** NOTE: Won't sink load along critical edge.\n");
934      TryBreak = true;
935    }
936
937    // We don't want to sink across a critical edge if we don't dominate the
938    // successor. We could be introducing calculations to new code paths.
939    if (!TryBreak && !DT->dominates(ParentBlock, SuccToSinkTo)) {
940      LLVM_DEBUG(dbgs() << " *** NOTE: Critical edge found\n");
941      TryBreak = true;
942    }
943
944    // Don't sink instructions into a loop.
945    if (!TryBreak && LI->isLoopHeader(SuccToSinkTo)) {
946      LLVM_DEBUG(dbgs() << " *** NOTE: Loop header found\n");
947      TryBreak = true;
948    }
949
950    // Otherwise we are OK with sinking along a critical edge.
951    if (!TryBreak)
952      LLVM_DEBUG(dbgs() << "Sinking along critical edge.\n");
953    else {
954      // Mark this edge as to be split.
955      // If the edge can actually be split, the next iteration of the main loop
956      // will sink MI in the newly created block.
957      bool Status =
958        PostponeSplitCriticalEdge(MI, ParentBlock, SuccToSinkTo, BreakPHIEdge);
959      if (!Status)
960        LLVM_DEBUG(dbgs() << " *** PUNTING: Not legal or profitable to "
961                             "break critical edge\n");
962      // The instruction will not be sunk this time.
963      return false;
964    }
965  }
966
967  if (BreakPHIEdge) {
968    // BreakPHIEdge is true if all the uses are in the successor MBB being
969    // sunken into and they are all PHI nodes. In this case, machine-sink must
970    // break the critical edge first.
971    bool Status = PostponeSplitCriticalEdge(MI, ParentBlock,
972                                            SuccToSinkTo, BreakPHIEdge);
973    if (!Status)
974      LLVM_DEBUG(dbgs() << " *** PUNTING: Not legal or profitable to "
975                           "break critical edge\n");
976    // The instruction will not be sunk this time.
977    return false;
978  }
979
980  // Determine where to insert into. Skip phi nodes.
981  MachineBasicBlock::iterator InsertPos = SuccToSinkTo->begin();
982  while (InsertPos != SuccToSinkTo->end() && InsertPos->isPHI())
983    ++InsertPos;
984
985  // Collect debug users of any vreg that this inst defines.
986  SmallVector<MachineInstr *, 4> DbgUsersToSink;
987  for (auto &MO : MI.operands()) {
988    if (!MO.isReg() || !MO.isDef() || !MO.getReg().isVirtual())
989      continue;
990    if (!SeenDbgUsers.count(MO.getReg()))
991      continue;
992
993    // Sink any users that don't pass any other DBG_VALUEs for this variable.
994    auto &Users = SeenDbgUsers[MO.getReg()];
995    for (auto &User : Users) {
996      MachineInstr *DbgMI = User.getPointer();
997      if (User.getInt()) {
998        // This DBG_VALUE would re-order assignments. If we can't copy-propagate
999        // it, it can't be recovered. Set it undef.
1000        if (!attemptDebugCopyProp(MI, *DbgMI))
1001          DbgMI->getOperand(0).setReg(0);
1002      } else {
1003        DbgUsersToSink.push_back(DbgMI);
1004      }
1005    }
1006  }
1007
1008  // After sinking, some debug users may not be dominated any more. If possible,
1009  // copy-propagate their operands. As it's expensive, don't do this if there's
1010  // no debuginfo in the program.
1011  if (MI.getMF()->getFunction().getSubprogram() && MI.isCopy())
1012    SalvageUnsunkDebugUsersOfCopy(MI, SuccToSinkTo);
1013
1014  performSink(MI, *SuccToSinkTo, InsertPos, DbgUsersToSink);
1015
1016  // Conservatively, clear any kill flags, since it's possible that they are no
1017  // longer correct.
1018  // Note that we have to clear the kill flags for any register this instruction
1019  // uses as we may sink over another instruction which currently kills the
1020  // used registers.
1021  for (MachineOperand &MO : MI.operands()) {
1022    if (MO.isReg() && MO.isUse())
1023      RegsToClearKillFlags.set(MO.getReg()); // Remember to clear kill flags.
1024  }
1025
1026  return true;
1027}
1028
1029void MachineSinking::SalvageUnsunkDebugUsersOfCopy(
1030    MachineInstr &MI, MachineBasicBlock *TargetBlock) {
1031  assert(MI.isCopy());
1032  assert(MI.getOperand(1).isReg());
1033
1034  // Enumerate all users of vreg operands that are def'd. Skip those that will
1035  // be sunk. For the rest, if they are not dominated by the block we will sink
1036  // MI into, propagate the copy source to them.
1037  SmallVector<MachineInstr *, 4> DbgDefUsers;
1038  const MachineRegisterInfo &MRI = MI.getMF()->getRegInfo();
1039  for (auto &MO : MI.operands()) {
1040    if (!MO.isReg() || !MO.isDef() || !MO.getReg().isVirtual())
1041      continue;
1042    for (auto &User : MRI.use_instructions(MO.getReg())) {
1043      if (!User.isDebugValue() || DT->dominates(TargetBlock, User.getParent()))
1044        continue;
1045
1046      // If is in same block, will either sink or be use-before-def.
1047      if (User.getParent() == MI.getParent())
1048        continue;
1049
1050      assert(User.getOperand(0).isReg() &&
1051             "DBG_VALUE user of vreg, but non reg operand?");
1052      DbgDefUsers.push_back(&User);
1053    }
1054  }
1055
1056  // Point the users of this copy that are no longer dominated, at the source
1057  // of the copy.
1058  for (auto *User : DbgDefUsers) {
1059    User->getOperand(0).setReg(MI.getOperand(1).getReg());
1060    User->getOperand(0).setSubReg(MI.getOperand(1).getSubReg());
1061  }
1062}
1063
1064//===----------------------------------------------------------------------===//
1065// This pass is not intended to be a replacement or a complete alternative
1066// for the pre-ra machine sink pass. It is only designed to sink COPY
1067// instructions which should be handled after RA.
1068//
1069// This pass sinks COPY instructions into a successor block, if the COPY is not
1070// used in the current block and the COPY is live-in to a single successor
1071// (i.e., doesn't require the COPY to be duplicated).  This avoids executing the
1072// copy on paths where their results aren't needed.  This also exposes
1073// additional opportunites for dead copy elimination and shrink wrapping.
1074//
1075// These copies were either not handled by or are inserted after the MachineSink
1076// pass. As an example of the former case, the MachineSink pass cannot sink
1077// COPY instructions with allocatable source registers; for AArch64 these type
1078// of copy instructions are frequently used to move function parameters (PhyReg)
1079// into virtual registers in the entry block.
1080//
1081// For the machine IR below, this pass will sink %w19 in the entry into its
1082// successor (%bb.1) because %w19 is only live-in in %bb.1.
1083// %bb.0:
1084//   %wzr = SUBSWri %w1, 1
1085//   %w19 = COPY %w0
1086//   Bcc 11, %bb.2
1087// %bb.1:
1088//   Live Ins: %w19
1089//   BL @fun
1090//   %w0 = ADDWrr %w0, %w19
1091//   RET %w0
1092// %bb.2:
1093//   %w0 = COPY %wzr
1094//   RET %w0
1095// As we sink %w19 (CSR in AArch64) into %bb.1, the shrink-wrapping pass will be
1096// able to see %bb.0 as a candidate.
1097//===----------------------------------------------------------------------===//
1098namespace {
1099
1100class PostRAMachineSinking : public MachineFunctionPass {
1101public:
1102  bool runOnMachineFunction(MachineFunction &MF) override;
1103
1104  static char ID;
1105  PostRAMachineSinking() : MachineFunctionPass(ID) {}
1106  StringRef getPassName() const override { return "PostRA Machine Sink"; }
1107
1108  void getAnalysisUsage(AnalysisUsage &AU) const override {
1109    AU.setPreservesCFG();
1110    MachineFunctionPass::getAnalysisUsage(AU);
1111  }
1112
1113  MachineFunctionProperties getRequiredProperties() const override {
1114    return MachineFunctionProperties().set(
1115        MachineFunctionProperties::Property::NoVRegs);
1116  }
1117
1118private:
1119  /// Track which register units have been modified and used.
1120  LiveRegUnits ModifiedRegUnits, UsedRegUnits;
1121
1122  /// Track DBG_VALUEs of (unmodified) register units. Each DBG_VALUE has an
1123  /// entry in this map for each unit it touches.
1124  DenseMap<unsigned, TinyPtrVector<MachineInstr *>> SeenDbgInstrs;
1125
1126  /// Sink Copy instructions unused in the same block close to their uses in
1127  /// successors.
1128  bool tryToSinkCopy(MachineBasicBlock &BB, MachineFunction &MF,
1129                     const TargetRegisterInfo *TRI, const TargetInstrInfo *TII);
1130};
1131} // namespace
1132
1133char PostRAMachineSinking::ID = 0;
1134char &llvm::PostRAMachineSinkingID = PostRAMachineSinking::ID;
1135
1136INITIALIZE_PASS(PostRAMachineSinking, "postra-machine-sink",
1137                "PostRA Machine Sink", false, false)
1138
1139static bool aliasWithRegsInLiveIn(MachineBasicBlock &MBB, unsigned Reg,
1140                                  const TargetRegisterInfo *TRI) {
1141  LiveRegUnits LiveInRegUnits(*TRI);
1142  LiveInRegUnits.addLiveIns(MBB);
1143  return !LiveInRegUnits.available(Reg);
1144}
1145
1146static MachineBasicBlock *
1147getSingleLiveInSuccBB(MachineBasicBlock &CurBB,
1148                      const SmallPtrSetImpl<MachineBasicBlock *> &SinkableBBs,
1149                      unsigned Reg, const TargetRegisterInfo *TRI) {
1150  // Try to find a single sinkable successor in which Reg is live-in.
1151  MachineBasicBlock *BB = nullptr;
1152  for (auto *SI : SinkableBBs) {
1153    if (aliasWithRegsInLiveIn(*SI, Reg, TRI)) {
1154      // If BB is set here, Reg is live-in to at least two sinkable successors,
1155      // so quit.
1156      if (BB)
1157        return nullptr;
1158      BB = SI;
1159    }
1160  }
1161  // Reg is not live-in to any sinkable successors.
1162  if (!BB)
1163    return nullptr;
1164
1165  // Check if any register aliased with Reg is live-in in other successors.
1166  for (auto *SI : CurBB.successors()) {
1167    if (!SinkableBBs.count(SI) && aliasWithRegsInLiveIn(*SI, Reg, TRI))
1168      return nullptr;
1169  }
1170  return BB;
1171}
1172
1173static MachineBasicBlock *
1174getSingleLiveInSuccBB(MachineBasicBlock &CurBB,
1175                      const SmallPtrSetImpl<MachineBasicBlock *> &SinkableBBs,
1176                      ArrayRef<unsigned> DefedRegsInCopy,
1177                      const TargetRegisterInfo *TRI) {
1178  MachineBasicBlock *SingleBB = nullptr;
1179  for (auto DefReg : DefedRegsInCopy) {
1180    MachineBasicBlock *BB =
1181        getSingleLiveInSuccBB(CurBB, SinkableBBs, DefReg, TRI);
1182    if (!BB || (SingleBB && SingleBB != BB))
1183      return nullptr;
1184    SingleBB = BB;
1185  }
1186  return SingleBB;
1187}
1188
1189static void clearKillFlags(MachineInstr *MI, MachineBasicBlock &CurBB,
1190                           SmallVectorImpl<unsigned> &UsedOpsInCopy,
1191                           LiveRegUnits &UsedRegUnits,
1192                           const TargetRegisterInfo *TRI) {
1193  for (auto U : UsedOpsInCopy) {
1194    MachineOperand &MO = MI->getOperand(U);
1195    Register SrcReg = MO.getReg();
1196    if (!UsedRegUnits.available(SrcReg)) {
1197      MachineBasicBlock::iterator NI = std::next(MI->getIterator());
1198      for (MachineInstr &UI : make_range(NI, CurBB.end())) {
1199        if (UI.killsRegister(SrcReg, TRI)) {
1200          UI.clearRegisterKills(SrcReg, TRI);
1201          MO.setIsKill(true);
1202          break;
1203        }
1204      }
1205    }
1206  }
1207}
1208
1209static void updateLiveIn(MachineInstr *MI, MachineBasicBlock *SuccBB,
1210                         SmallVectorImpl<unsigned> &UsedOpsInCopy,
1211                         SmallVectorImpl<unsigned> &DefedRegsInCopy) {
1212  MachineFunction &MF = *SuccBB->getParent();
1213  const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
1214  for (unsigned DefReg : DefedRegsInCopy)
1215    for (MCSubRegIterator S(DefReg, TRI, true); S.isValid(); ++S)
1216      SuccBB->removeLiveIn(*S);
1217  for (auto U : UsedOpsInCopy) {
1218    Register SrcReg = MI->getOperand(U).getReg();
1219    LaneBitmask Mask;
1220    for (MCRegUnitMaskIterator S(SrcReg, TRI); S.isValid(); ++S) {
1221      Mask |= (*S).second;
1222    }
1223    SuccBB->addLiveIn(SrcReg, Mask.any() ? Mask : LaneBitmask::getAll());
1224  }
1225  SuccBB->sortUniqueLiveIns();
1226}
1227
1228static bool hasRegisterDependency(MachineInstr *MI,
1229                                  SmallVectorImpl<unsigned> &UsedOpsInCopy,
1230                                  SmallVectorImpl<unsigned> &DefedRegsInCopy,
1231                                  LiveRegUnits &ModifiedRegUnits,
1232                                  LiveRegUnits &UsedRegUnits) {
1233  bool HasRegDependency = false;
1234  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1235    MachineOperand &MO = MI->getOperand(i);
1236    if (!MO.isReg())
1237      continue;
1238    Register Reg = MO.getReg();
1239    if (!Reg)
1240      continue;
1241    if (MO.isDef()) {
1242      if (!ModifiedRegUnits.available(Reg) || !UsedRegUnits.available(Reg)) {
1243        HasRegDependency = true;
1244        break;
1245      }
1246      DefedRegsInCopy.push_back(Reg);
1247
1248      // FIXME: instead of isUse(), readsReg() would be a better fix here,
1249      // For example, we can ignore modifications in reg with undef. However,
1250      // it's not perfectly clear if skipping the internal read is safe in all
1251      // other targets.
1252    } else if (MO.isUse()) {
1253      if (!ModifiedRegUnits.available(Reg)) {
1254        HasRegDependency = true;
1255        break;
1256      }
1257      UsedOpsInCopy.push_back(i);
1258    }
1259  }
1260  return HasRegDependency;
1261}
1262
1263static SmallSet<unsigned, 4> getRegUnits(unsigned Reg,
1264                                         const TargetRegisterInfo *TRI) {
1265  SmallSet<unsigned, 4> RegUnits;
1266  for (auto RI = MCRegUnitIterator(Reg, TRI); RI.isValid(); ++RI)
1267    RegUnits.insert(*RI);
1268  return RegUnits;
1269}
1270
1271bool PostRAMachineSinking::tryToSinkCopy(MachineBasicBlock &CurBB,
1272                                         MachineFunction &MF,
1273                                         const TargetRegisterInfo *TRI,
1274                                         const TargetInstrInfo *TII) {
1275  SmallPtrSet<MachineBasicBlock *, 2> SinkableBBs;
1276  // FIXME: For now, we sink only to a successor which has a single predecessor
1277  // so that we can directly sink COPY instructions to the successor without
1278  // adding any new block or branch instruction.
1279  for (MachineBasicBlock *SI : CurBB.successors())
1280    if (!SI->livein_empty() && SI->pred_size() == 1)
1281      SinkableBBs.insert(SI);
1282
1283  if (SinkableBBs.empty())
1284    return false;
1285
1286  bool Changed = false;
1287
1288  // Track which registers have been modified and used between the end of the
1289  // block and the current instruction.
1290  ModifiedRegUnits.clear();
1291  UsedRegUnits.clear();
1292  SeenDbgInstrs.clear();
1293
1294  for (auto I = CurBB.rbegin(), E = CurBB.rend(); I != E;) {
1295    MachineInstr *MI = &*I;
1296    ++I;
1297
1298    // Track the operand index for use in Copy.
1299    SmallVector<unsigned, 2> UsedOpsInCopy;
1300    // Track the register number defed in Copy.
1301    SmallVector<unsigned, 2> DefedRegsInCopy;
1302
1303    // We must sink this DBG_VALUE if its operand is sunk. To avoid searching
1304    // for DBG_VALUEs later, record them when they're encountered.
1305    if (MI->isDebugValue()) {
1306      auto &MO = MI->getOperand(0);
1307      if (MO.isReg() && Register::isPhysicalRegister(MO.getReg())) {
1308        // Bail if we can already tell the sink would be rejected, rather
1309        // than needlessly accumulating lots of DBG_VALUEs.
1310        if (hasRegisterDependency(MI, UsedOpsInCopy, DefedRegsInCopy,
1311                                  ModifiedRegUnits, UsedRegUnits))
1312          continue;
1313
1314        // Record debug use of each reg unit.
1315        SmallSet<unsigned, 4> Units = getRegUnits(MO.getReg(), TRI);
1316        for (unsigned Reg : Units)
1317          SeenDbgInstrs[Reg].push_back(MI);
1318      }
1319      continue;
1320    }
1321
1322    if (MI->isDebugInstr())
1323      continue;
1324
1325    // Do not move any instruction across function call.
1326    if (MI->isCall())
1327      return false;
1328
1329    if (!MI->isCopy() || !MI->getOperand(0).isRenamable()) {
1330      LiveRegUnits::accumulateUsedDefed(*MI, ModifiedRegUnits, UsedRegUnits,
1331                                        TRI);
1332      continue;
1333    }
1334
1335    // Don't sink the COPY if it would violate a register dependency.
1336    if (hasRegisterDependency(MI, UsedOpsInCopy, DefedRegsInCopy,
1337                              ModifiedRegUnits, UsedRegUnits)) {
1338      LiveRegUnits::accumulateUsedDefed(*MI, ModifiedRegUnits, UsedRegUnits,
1339                                        TRI);
1340      continue;
1341    }
1342    assert((!UsedOpsInCopy.empty() && !DefedRegsInCopy.empty()) &&
1343           "Unexpect SrcReg or DefReg");
1344    MachineBasicBlock *SuccBB =
1345        getSingleLiveInSuccBB(CurBB, SinkableBBs, DefedRegsInCopy, TRI);
1346    // Don't sink if we cannot find a single sinkable successor in which Reg
1347    // is live-in.
1348    if (!SuccBB) {
1349      LiveRegUnits::accumulateUsedDefed(*MI, ModifiedRegUnits, UsedRegUnits,
1350                                        TRI);
1351      continue;
1352    }
1353    assert((SuccBB->pred_size() == 1 && *SuccBB->pred_begin() == &CurBB) &&
1354           "Unexpected predecessor");
1355
1356    // Collect DBG_VALUEs that must sink with this copy. We've previously
1357    // recorded which reg units that DBG_VALUEs read, if this instruction
1358    // writes any of those units then the corresponding DBG_VALUEs must sink.
1359    SetVector<MachineInstr *> DbgValsToSinkSet;
1360    SmallVector<MachineInstr *, 4> DbgValsToSink;
1361    for (auto &MO : MI->operands()) {
1362      if (!MO.isReg() || !MO.isDef())
1363        continue;
1364
1365      SmallSet<unsigned, 4> Units = getRegUnits(MO.getReg(), TRI);
1366      for (unsigned Reg : Units)
1367        for (auto *MI : SeenDbgInstrs.lookup(Reg))
1368          DbgValsToSinkSet.insert(MI);
1369    }
1370    DbgValsToSink.insert(DbgValsToSink.begin(), DbgValsToSinkSet.begin(),
1371                         DbgValsToSinkSet.end());
1372
1373    // Clear the kill flag if SrcReg is killed between MI and the end of the
1374    // block.
1375    clearKillFlags(MI, CurBB, UsedOpsInCopy, UsedRegUnits, TRI);
1376    MachineBasicBlock::iterator InsertPos = SuccBB->getFirstNonPHI();
1377    performSink(*MI, *SuccBB, InsertPos, DbgValsToSink);
1378    updateLiveIn(MI, SuccBB, UsedOpsInCopy, DefedRegsInCopy);
1379
1380    Changed = true;
1381    ++NumPostRACopySink;
1382  }
1383  return Changed;
1384}
1385
1386bool PostRAMachineSinking::runOnMachineFunction(MachineFunction &MF) {
1387  if (skipFunction(MF.getFunction()))
1388    return false;
1389
1390  bool Changed = false;
1391  const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
1392  const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo();
1393
1394  ModifiedRegUnits.init(*TRI);
1395  UsedRegUnits.init(*TRI);
1396  for (auto &BB : MF)
1397    Changed |= tryToSinkCopy(BB, MF, TRI, TII);
1398
1399  return Changed;
1400}
1401