MachineOutliner.cpp revision 360784
1//===---- MachineOutliner.cpp - Outline instructions -----------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8///
9/// \file
10/// Replaces repeated sequences of instructions with function calls.
11///
12/// This works by placing every instruction from every basic block in a
13/// suffix tree, and repeatedly querying that tree for repeated sequences of
14/// instructions. If a sequence of instructions appears often, then it ought
15/// to be beneficial to pull out into a function.
16///
17/// The MachineOutliner communicates with a given target using hooks defined in
18/// TargetInstrInfo.h. The target supplies the outliner with information on how
19/// a specific sequence of instructions should be outlined. This information
20/// is used to deduce the number of instructions necessary to
21///
22/// * Create an outlined function
23/// * Call that outlined function
24///
25/// Targets must implement
26///   * getOutliningCandidateInfo
27///   * buildOutlinedFrame
28///   * insertOutlinedCall
29///   * isFunctionSafeToOutlineFrom
30///
31/// in order to make use of the MachineOutliner.
32///
33/// This was originally presented at the 2016 LLVM Developers' Meeting in the
34/// talk "Reducing Code Size Using Outlining". For a high-level overview of
35/// how this pass works, the talk is available on YouTube at
36///
37/// https://www.youtube.com/watch?v=yorld-WSOeU
38///
39/// The slides for the talk are available at
40///
41/// http://www.llvm.org/devmtg/2016-11/Slides/Paquette-Outliner.pdf
42///
43/// The talk provides an overview of how the outliner finds candidates and
44/// ultimately outlines them. It describes how the main data structure for this
45/// pass, the suffix tree, is queried and purged for candidates. It also gives
46/// a simplified suffix tree construction algorithm for suffix trees based off
47/// of the algorithm actually used here, Ukkonen's algorithm.
48///
49/// For the original RFC for this pass, please see
50///
51/// http://lists.llvm.org/pipermail/llvm-dev/2016-August/104170.html
52///
53/// For more information on the suffix tree data structure, please see
54/// https://www.cs.helsinki.fi/u/ukkonen/SuffixT1withFigs.pdf
55///
56//===----------------------------------------------------------------------===//
57#include "llvm/CodeGen/MachineOutliner.h"
58#include "llvm/ADT/DenseMap.h"
59#include "llvm/ADT/Statistic.h"
60#include "llvm/ADT/Twine.h"
61#include "llvm/CodeGen/MachineFunction.h"
62#include "llvm/CodeGen/MachineModuleInfo.h"
63#include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h"
64#include "llvm/CodeGen/MachineRegisterInfo.h"
65#include "llvm/CodeGen/Passes.h"
66#include "llvm/CodeGen/TargetInstrInfo.h"
67#include "llvm/CodeGen/TargetSubtargetInfo.h"
68#include "llvm/IR/DIBuilder.h"
69#include "llvm/IR/IRBuilder.h"
70#include "llvm/IR/Mangler.h"
71#include "llvm/InitializePasses.h"
72#include "llvm/Support/Allocator.h"
73#include "llvm/Support/CommandLine.h"
74#include "llvm/Support/Debug.h"
75#include "llvm/Support/raw_ostream.h"
76#include <functional>
77#include <tuple>
78#include <vector>
79
80#define DEBUG_TYPE "machine-outliner"
81
82using namespace llvm;
83using namespace ore;
84using namespace outliner;
85
86STATISTIC(NumOutlined, "Number of candidates outlined");
87STATISTIC(FunctionsCreated, "Number of functions created");
88
89// Set to true if the user wants the outliner to run on linkonceodr linkage
90// functions. This is false by default because the linker can dedupe linkonceodr
91// functions. Since the outliner is confined to a single module (modulo LTO),
92// this is off by default. It should, however, be the default behaviour in
93// LTO.
94static cl::opt<bool> EnableLinkOnceODROutlining(
95    "enable-linkonceodr-outlining", cl::Hidden,
96    cl::desc("Enable the machine outliner on linkonceodr functions"),
97    cl::init(false));
98
99namespace {
100
101/// Represents an undefined index in the suffix tree.
102const unsigned EmptyIdx = -1;
103
104/// A node in a suffix tree which represents a substring or suffix.
105///
106/// Each node has either no children or at least two children, with the root
107/// being a exception in the empty tree.
108///
109/// Children are represented as a map between unsigned integers and nodes. If
110/// a node N has a child M on unsigned integer k, then the mapping represented
111/// by N is a proper prefix of the mapping represented by M. Note that this,
112/// although similar to a trie is somewhat different: each node stores a full
113/// substring of the full mapping rather than a single character state.
114///
115/// Each internal node contains a pointer to the internal node representing
116/// the same string, but with the first character chopped off. This is stored
117/// in \p Link. Each leaf node stores the start index of its respective
118/// suffix in \p SuffixIdx.
119struct SuffixTreeNode {
120
121  /// The children of this node.
122  ///
123  /// A child existing on an unsigned integer implies that from the mapping
124  /// represented by the current node, there is a way to reach another
125  /// mapping by tacking that character on the end of the current string.
126  DenseMap<unsigned, SuffixTreeNode *> Children;
127
128  /// The start index of this node's substring in the main string.
129  unsigned StartIdx = EmptyIdx;
130
131  /// The end index of this node's substring in the main string.
132  ///
133  /// Every leaf node must have its \p EndIdx incremented at the end of every
134  /// step in the construction algorithm. To avoid having to update O(N)
135  /// nodes individually at the end of every step, the end index is stored
136  /// as a pointer.
137  unsigned *EndIdx = nullptr;
138
139  /// For leaves, the start index of the suffix represented by this node.
140  ///
141  /// For all other nodes, this is ignored.
142  unsigned SuffixIdx = EmptyIdx;
143
144  /// For internal nodes, a pointer to the internal node representing
145  /// the same sequence with the first character chopped off.
146  ///
147  /// This acts as a shortcut in Ukkonen's algorithm. One of the things that
148  /// Ukkonen's algorithm does to achieve linear-time construction is
149  /// keep track of which node the next insert should be at. This makes each
150  /// insert O(1), and there are a total of O(N) inserts. The suffix link
151  /// helps with inserting children of internal nodes.
152  ///
153  /// Say we add a child to an internal node with associated mapping S. The
154  /// next insertion must be at the node representing S - its first character.
155  /// This is given by the way that we iteratively build the tree in Ukkonen's
156  /// algorithm. The main idea is to look at the suffixes of each prefix in the
157  /// string, starting with the longest suffix of the prefix, and ending with
158  /// the shortest. Therefore, if we keep pointers between such nodes, we can
159  /// move to the next insertion point in O(1) time. If we don't, then we'd
160  /// have to query from the root, which takes O(N) time. This would make the
161  /// construction algorithm O(N^2) rather than O(N).
162  SuffixTreeNode *Link = nullptr;
163
164  /// The length of the string formed by concatenating the edge labels from the
165  /// root to this node.
166  unsigned ConcatLen = 0;
167
168  /// Returns true if this node is a leaf.
169  bool isLeaf() const { return SuffixIdx != EmptyIdx; }
170
171  /// Returns true if this node is the root of its owning \p SuffixTree.
172  bool isRoot() const { return StartIdx == EmptyIdx; }
173
174  /// Return the number of elements in the substring associated with this node.
175  size_t size() const {
176
177    // Is it the root? If so, it's the empty string so return 0.
178    if (isRoot())
179      return 0;
180
181    assert(*EndIdx != EmptyIdx && "EndIdx is undefined!");
182
183    // Size = the number of elements in the string.
184    // For example, [0 1 2 3] has length 4, not 3. 3-0 = 3, so we have 3-0+1.
185    return *EndIdx - StartIdx + 1;
186  }
187
188  SuffixTreeNode(unsigned StartIdx, unsigned *EndIdx, SuffixTreeNode *Link)
189      : StartIdx(StartIdx), EndIdx(EndIdx), Link(Link) {}
190
191  SuffixTreeNode() {}
192};
193
194/// A data structure for fast substring queries.
195///
196/// Suffix trees represent the suffixes of their input strings in their leaves.
197/// A suffix tree is a type of compressed trie structure where each node
198/// represents an entire substring rather than a single character. Each leaf
199/// of the tree is a suffix.
200///
201/// A suffix tree can be seen as a type of state machine where each state is a
202/// substring of the full string. The tree is structured so that, for a string
203/// of length N, there are exactly N leaves in the tree. This structure allows
204/// us to quickly find repeated substrings of the input string.
205///
206/// In this implementation, a "string" is a vector of unsigned integers.
207/// These integers may result from hashing some data type. A suffix tree can
208/// contain 1 or many strings, which can then be queried as one large string.
209///
210/// The suffix tree is implemented using Ukkonen's algorithm for linear-time
211/// suffix tree construction. Ukkonen's algorithm is explained in more detail
212/// in the paper by Esko Ukkonen "On-line construction of suffix trees. The
213/// paper is available at
214///
215/// https://www.cs.helsinki.fi/u/ukkonen/SuffixT1withFigs.pdf
216class SuffixTree {
217public:
218  /// Each element is an integer representing an instruction in the module.
219  ArrayRef<unsigned> Str;
220
221  /// A repeated substring in the tree.
222  struct RepeatedSubstring {
223    /// The length of the string.
224    unsigned Length;
225
226    /// The start indices of each occurrence.
227    std::vector<unsigned> StartIndices;
228  };
229
230private:
231  /// Maintains each node in the tree.
232  SpecificBumpPtrAllocator<SuffixTreeNode> NodeAllocator;
233
234  /// The root of the suffix tree.
235  ///
236  /// The root represents the empty string. It is maintained by the
237  /// \p NodeAllocator like every other node in the tree.
238  SuffixTreeNode *Root = nullptr;
239
240  /// Maintains the end indices of the internal nodes in the tree.
241  ///
242  /// Each internal node is guaranteed to never have its end index change
243  /// during the construction algorithm; however, leaves must be updated at
244  /// every step. Therefore, we need to store leaf end indices by reference
245  /// to avoid updating O(N) leaves at every step of construction. Thus,
246  /// every internal node must be allocated its own end index.
247  BumpPtrAllocator InternalEndIdxAllocator;
248
249  /// The end index of each leaf in the tree.
250  unsigned LeafEndIdx = -1;
251
252  /// Helper struct which keeps track of the next insertion point in
253  /// Ukkonen's algorithm.
254  struct ActiveState {
255    /// The next node to insert at.
256    SuffixTreeNode *Node = nullptr;
257
258    /// The index of the first character in the substring currently being added.
259    unsigned Idx = EmptyIdx;
260
261    /// The length of the substring we have to add at the current step.
262    unsigned Len = 0;
263  };
264
265  /// The point the next insertion will take place at in the
266  /// construction algorithm.
267  ActiveState Active;
268
269  /// Allocate a leaf node and add it to the tree.
270  ///
271  /// \param Parent The parent of this node.
272  /// \param StartIdx The start index of this node's associated string.
273  /// \param Edge The label on the edge leaving \p Parent to this node.
274  ///
275  /// \returns A pointer to the allocated leaf node.
276  SuffixTreeNode *insertLeaf(SuffixTreeNode &Parent, unsigned StartIdx,
277                             unsigned Edge) {
278
279    assert(StartIdx <= LeafEndIdx && "String can't start after it ends!");
280
281    SuffixTreeNode *N = new (NodeAllocator.Allocate())
282        SuffixTreeNode(StartIdx, &LeafEndIdx, nullptr);
283    Parent.Children[Edge] = N;
284
285    return N;
286  }
287
288  /// Allocate an internal node and add it to the tree.
289  ///
290  /// \param Parent The parent of this node. Only null when allocating the root.
291  /// \param StartIdx The start index of this node's associated string.
292  /// \param EndIdx The end index of this node's associated string.
293  /// \param Edge The label on the edge leaving \p Parent to this node.
294  ///
295  /// \returns A pointer to the allocated internal node.
296  SuffixTreeNode *insertInternalNode(SuffixTreeNode *Parent, unsigned StartIdx,
297                                     unsigned EndIdx, unsigned Edge) {
298
299    assert(StartIdx <= EndIdx && "String can't start after it ends!");
300    assert(!(!Parent && StartIdx != EmptyIdx) &&
301           "Non-root internal nodes must have parents!");
302
303    unsigned *E = new (InternalEndIdxAllocator) unsigned(EndIdx);
304    SuffixTreeNode *N =
305        new (NodeAllocator.Allocate()) SuffixTreeNode(StartIdx, E, Root);
306    if (Parent)
307      Parent->Children[Edge] = N;
308
309    return N;
310  }
311
312  /// Set the suffix indices of the leaves to the start indices of their
313  /// respective suffixes.
314  void setSuffixIndices() {
315    // List of nodes we need to visit along with the current length of the
316    // string.
317    std::vector<std::pair<SuffixTreeNode *, unsigned>> ToVisit;
318
319    // Current node being visited.
320    SuffixTreeNode *CurrNode = Root;
321
322    // Sum of the lengths of the nodes down the path to the current one.
323    unsigned CurrNodeLen = 0;
324    ToVisit.push_back({CurrNode, CurrNodeLen});
325    while (!ToVisit.empty()) {
326      std::tie(CurrNode, CurrNodeLen) = ToVisit.back();
327      ToVisit.pop_back();
328      CurrNode->ConcatLen = CurrNodeLen;
329      for (auto &ChildPair : CurrNode->Children) {
330        assert(ChildPair.second && "Node had a null child!");
331        ToVisit.push_back(
332            {ChildPair.second, CurrNodeLen + ChildPair.second->size()});
333      }
334
335      // No children, so we are at the end of the string.
336      if (CurrNode->Children.size() == 0 && !CurrNode->isRoot())
337        CurrNode->SuffixIdx = Str.size() - CurrNodeLen;
338    }
339  }
340
341  /// Construct the suffix tree for the prefix of the input ending at
342  /// \p EndIdx.
343  ///
344  /// Used to construct the full suffix tree iteratively. At the end of each
345  /// step, the constructed suffix tree is either a valid suffix tree, or a
346  /// suffix tree with implicit suffixes. At the end of the final step, the
347  /// suffix tree is a valid tree.
348  ///
349  /// \param EndIdx The end index of the current prefix in the main string.
350  /// \param SuffixesToAdd The number of suffixes that must be added
351  /// to complete the suffix tree at the current phase.
352  ///
353  /// \returns The number of suffixes that have not been added at the end of
354  /// this step.
355  unsigned extend(unsigned EndIdx, unsigned SuffixesToAdd) {
356    SuffixTreeNode *NeedsLink = nullptr;
357
358    while (SuffixesToAdd > 0) {
359
360      // Are we waiting to add anything other than just the last character?
361      if (Active.Len == 0) {
362        // If not, then say the active index is the end index.
363        Active.Idx = EndIdx;
364      }
365
366      assert(Active.Idx <= EndIdx && "Start index can't be after end index!");
367
368      // The first character in the current substring we're looking at.
369      unsigned FirstChar = Str[Active.Idx];
370
371      // Have we inserted anything starting with FirstChar at the current node?
372      if (Active.Node->Children.count(FirstChar) == 0) {
373        // If not, then we can just insert a leaf and move too the next step.
374        insertLeaf(*Active.Node, EndIdx, FirstChar);
375
376        // The active node is an internal node, and we visited it, so it must
377        // need a link if it doesn't have one.
378        if (NeedsLink) {
379          NeedsLink->Link = Active.Node;
380          NeedsLink = nullptr;
381        }
382      } else {
383        // There's a match with FirstChar, so look for the point in the tree to
384        // insert a new node.
385        SuffixTreeNode *NextNode = Active.Node->Children[FirstChar];
386
387        unsigned SubstringLen = NextNode->size();
388
389        // Is the current suffix we're trying to insert longer than the size of
390        // the child we want to move to?
391        if (Active.Len >= SubstringLen) {
392          // If yes, then consume the characters we've seen and move to the next
393          // node.
394          Active.Idx += SubstringLen;
395          Active.Len -= SubstringLen;
396          Active.Node = NextNode;
397          continue;
398        }
399
400        // Otherwise, the suffix we're trying to insert must be contained in the
401        // next node we want to move to.
402        unsigned LastChar = Str[EndIdx];
403
404        // Is the string we're trying to insert a substring of the next node?
405        if (Str[NextNode->StartIdx + Active.Len] == LastChar) {
406          // If yes, then we're done for this step. Remember our insertion point
407          // and move to the next end index. At this point, we have an implicit
408          // suffix tree.
409          if (NeedsLink && !Active.Node->isRoot()) {
410            NeedsLink->Link = Active.Node;
411            NeedsLink = nullptr;
412          }
413
414          Active.Len++;
415          break;
416        }
417
418        // The string we're trying to insert isn't a substring of the next node,
419        // but matches up to a point. Split the node.
420        //
421        // For example, say we ended our search at a node n and we're trying to
422        // insert ABD. Then we'll create a new node s for AB, reduce n to just
423        // representing C, and insert a new leaf node l to represent d. This
424        // allows us to ensure that if n was a leaf, it remains a leaf.
425        //
426        //   | ABC  ---split--->  | AB
427        //   n                    s
428        //                     C / \ D
429        //                      n   l
430
431        // The node s from the diagram
432        SuffixTreeNode *SplitNode =
433            insertInternalNode(Active.Node, NextNode->StartIdx,
434                               NextNode->StartIdx + Active.Len - 1, FirstChar);
435
436        // Insert the new node representing the new substring into the tree as
437        // a child of the split node. This is the node l from the diagram.
438        insertLeaf(*SplitNode, EndIdx, LastChar);
439
440        // Make the old node a child of the split node and update its start
441        // index. This is the node n from the diagram.
442        NextNode->StartIdx += Active.Len;
443        SplitNode->Children[Str[NextNode->StartIdx]] = NextNode;
444
445        // SplitNode is an internal node, update the suffix link.
446        if (NeedsLink)
447          NeedsLink->Link = SplitNode;
448
449        NeedsLink = SplitNode;
450      }
451
452      // We've added something new to the tree, so there's one less suffix to
453      // add.
454      SuffixesToAdd--;
455
456      if (Active.Node->isRoot()) {
457        if (Active.Len > 0) {
458          Active.Len--;
459          Active.Idx = EndIdx - SuffixesToAdd + 1;
460        }
461      } else {
462        // Start the next phase at the next smallest suffix.
463        Active.Node = Active.Node->Link;
464      }
465    }
466
467    return SuffixesToAdd;
468  }
469
470public:
471  /// Construct a suffix tree from a sequence of unsigned integers.
472  ///
473  /// \param Str The string to construct the suffix tree for.
474  SuffixTree(const std::vector<unsigned> &Str) : Str(Str) {
475    Root = insertInternalNode(nullptr, EmptyIdx, EmptyIdx, 0);
476    Active.Node = Root;
477
478    // Keep track of the number of suffixes we have to add of the current
479    // prefix.
480    unsigned SuffixesToAdd = 0;
481
482    // Construct the suffix tree iteratively on each prefix of the string.
483    // PfxEndIdx is the end index of the current prefix.
484    // End is one past the last element in the string.
485    for (unsigned PfxEndIdx = 0, End = Str.size(); PfxEndIdx < End;
486         PfxEndIdx++) {
487      SuffixesToAdd++;
488      LeafEndIdx = PfxEndIdx; // Extend each of the leaves.
489      SuffixesToAdd = extend(PfxEndIdx, SuffixesToAdd);
490    }
491
492    // Set the suffix indices of each leaf.
493    assert(Root && "Root node can't be nullptr!");
494    setSuffixIndices();
495  }
496
497  /// Iterator for finding all repeated substrings in the suffix tree.
498  struct RepeatedSubstringIterator {
499  private:
500    /// The current node we're visiting.
501    SuffixTreeNode *N = nullptr;
502
503    /// The repeated substring associated with this node.
504    RepeatedSubstring RS;
505
506    /// The nodes left to visit.
507    std::vector<SuffixTreeNode *> ToVisit;
508
509    /// The minimum length of a repeated substring to find.
510    /// Since we're outlining, we want at least two instructions in the range.
511    /// FIXME: This may not be true for targets like X86 which support many
512    /// instruction lengths.
513    const unsigned MinLength = 2;
514
515    /// Move the iterator to the next repeated substring.
516    void advance() {
517      // Clear the current state. If we're at the end of the range, then this
518      // is the state we want to be in.
519      RS = RepeatedSubstring();
520      N = nullptr;
521
522      // Each leaf node represents a repeat of a string.
523      std::vector<SuffixTreeNode *> LeafChildren;
524
525      // Continue visiting nodes until we find one which repeats more than once.
526      while (!ToVisit.empty()) {
527        SuffixTreeNode *Curr = ToVisit.back();
528        ToVisit.pop_back();
529        LeafChildren.clear();
530
531        // Keep track of the length of the string associated with the node. If
532        // it's too short, we'll quit.
533        unsigned Length = Curr->ConcatLen;
534
535        // Iterate over each child, saving internal nodes for visiting, and
536        // leaf nodes in LeafChildren. Internal nodes represent individual
537        // strings, which may repeat.
538        for (auto &ChildPair : Curr->Children) {
539          // Save all of this node's children for processing.
540          if (!ChildPair.second->isLeaf())
541            ToVisit.push_back(ChildPair.second);
542
543          // It's not an internal node, so it must be a leaf. If we have a
544          // long enough string, then save the leaf children.
545          else if (Length >= MinLength)
546            LeafChildren.push_back(ChildPair.second);
547        }
548
549        // The root never represents a repeated substring. If we're looking at
550        // that, then skip it.
551        if (Curr->isRoot())
552          continue;
553
554        // Do we have any repeated substrings?
555        if (LeafChildren.size() >= 2) {
556          // Yes. Update the state to reflect this, and then bail out.
557          N = Curr;
558          RS.Length = Length;
559          for (SuffixTreeNode *Leaf : LeafChildren)
560            RS.StartIndices.push_back(Leaf->SuffixIdx);
561          break;
562        }
563      }
564
565      // At this point, either NewRS is an empty RepeatedSubstring, or it was
566      // set in the above loop. Similarly, N is either nullptr, or the node
567      // associated with NewRS.
568    }
569
570  public:
571    /// Return the current repeated substring.
572    RepeatedSubstring &operator*() { return RS; }
573
574    RepeatedSubstringIterator &operator++() {
575      advance();
576      return *this;
577    }
578
579    RepeatedSubstringIterator operator++(int I) {
580      RepeatedSubstringIterator It(*this);
581      advance();
582      return It;
583    }
584
585    bool operator==(const RepeatedSubstringIterator &Other) {
586      return N == Other.N;
587    }
588    bool operator!=(const RepeatedSubstringIterator &Other) {
589      return !(*this == Other);
590    }
591
592    RepeatedSubstringIterator(SuffixTreeNode *N) : N(N) {
593      // Do we have a non-null node?
594      if (N) {
595        // Yes. At the first step, we need to visit all of N's children.
596        // Note: This means that we visit N last.
597        ToVisit.push_back(N);
598        advance();
599      }
600    }
601  };
602
603  typedef RepeatedSubstringIterator iterator;
604  iterator begin() { return iterator(Root); }
605  iterator end() { return iterator(nullptr); }
606};
607
608/// Maps \p MachineInstrs to unsigned integers and stores the mappings.
609struct InstructionMapper {
610
611  /// The next available integer to assign to a \p MachineInstr that
612  /// cannot be outlined.
613  ///
614  /// Set to -3 for compatability with \p DenseMapInfo<unsigned>.
615  unsigned IllegalInstrNumber = -3;
616
617  /// The next available integer to assign to a \p MachineInstr that can
618  /// be outlined.
619  unsigned LegalInstrNumber = 0;
620
621  /// Correspondence from \p MachineInstrs to unsigned integers.
622  DenseMap<MachineInstr *, unsigned, MachineInstrExpressionTrait>
623      InstructionIntegerMap;
624
625  /// Correspondence between \p MachineBasicBlocks and target-defined flags.
626  DenseMap<MachineBasicBlock *, unsigned> MBBFlagsMap;
627
628  /// The vector of unsigned integers that the module is mapped to.
629  std::vector<unsigned> UnsignedVec;
630
631  /// Stores the location of the instruction associated with the integer
632  /// at index i in \p UnsignedVec for each index i.
633  std::vector<MachineBasicBlock::iterator> InstrList;
634
635  // Set if we added an illegal number in the previous step.
636  // Since each illegal number is unique, we only need one of them between
637  // each range of legal numbers. This lets us make sure we don't add more
638  // than one illegal number per range.
639  bool AddedIllegalLastTime = false;
640
641  /// Maps \p *It to a legal integer.
642  ///
643  /// Updates \p CanOutlineWithPrevInstr, \p HaveLegalRange, \p InstrListForMBB,
644  /// \p UnsignedVecForMBB, \p InstructionIntegerMap, and \p LegalInstrNumber.
645  ///
646  /// \returns The integer that \p *It was mapped to.
647  unsigned mapToLegalUnsigned(
648      MachineBasicBlock::iterator &It, bool &CanOutlineWithPrevInstr,
649      bool &HaveLegalRange, unsigned &NumLegalInBlock,
650      std::vector<unsigned> &UnsignedVecForMBB,
651      std::vector<MachineBasicBlock::iterator> &InstrListForMBB) {
652    // We added something legal, so we should unset the AddedLegalLastTime
653    // flag.
654    AddedIllegalLastTime = false;
655
656    // If we have at least two adjacent legal instructions (which may have
657    // invisible instructions in between), remember that.
658    if (CanOutlineWithPrevInstr)
659      HaveLegalRange = true;
660    CanOutlineWithPrevInstr = true;
661
662    // Keep track of the number of legal instructions we insert.
663    NumLegalInBlock++;
664
665    // Get the integer for this instruction or give it the current
666    // LegalInstrNumber.
667    InstrListForMBB.push_back(It);
668    MachineInstr &MI = *It;
669    bool WasInserted;
670    DenseMap<MachineInstr *, unsigned, MachineInstrExpressionTrait>::iterator
671        ResultIt;
672    std::tie(ResultIt, WasInserted) =
673        InstructionIntegerMap.insert(std::make_pair(&MI, LegalInstrNumber));
674    unsigned MINumber = ResultIt->second;
675
676    // There was an insertion.
677    if (WasInserted)
678      LegalInstrNumber++;
679
680    UnsignedVecForMBB.push_back(MINumber);
681
682    // Make sure we don't overflow or use any integers reserved by the DenseMap.
683    if (LegalInstrNumber >= IllegalInstrNumber)
684      report_fatal_error("Instruction mapping overflow!");
685
686    assert(LegalInstrNumber != DenseMapInfo<unsigned>::getEmptyKey() &&
687           "Tried to assign DenseMap tombstone or empty key to instruction.");
688    assert(LegalInstrNumber != DenseMapInfo<unsigned>::getTombstoneKey() &&
689           "Tried to assign DenseMap tombstone or empty key to instruction.");
690
691    return MINumber;
692  }
693
694  /// Maps \p *It to an illegal integer.
695  ///
696  /// Updates \p InstrListForMBB, \p UnsignedVecForMBB, and \p
697  /// IllegalInstrNumber.
698  ///
699  /// \returns The integer that \p *It was mapped to.
700  unsigned mapToIllegalUnsigned(
701      MachineBasicBlock::iterator &It, bool &CanOutlineWithPrevInstr,
702      std::vector<unsigned> &UnsignedVecForMBB,
703      std::vector<MachineBasicBlock::iterator> &InstrListForMBB) {
704    // Can't outline an illegal instruction. Set the flag.
705    CanOutlineWithPrevInstr = false;
706
707    // Only add one illegal number per range of legal numbers.
708    if (AddedIllegalLastTime)
709      return IllegalInstrNumber;
710
711    // Remember that we added an illegal number last time.
712    AddedIllegalLastTime = true;
713    unsigned MINumber = IllegalInstrNumber;
714
715    InstrListForMBB.push_back(It);
716    UnsignedVecForMBB.push_back(IllegalInstrNumber);
717    IllegalInstrNumber--;
718
719    assert(LegalInstrNumber < IllegalInstrNumber &&
720           "Instruction mapping overflow!");
721
722    assert(IllegalInstrNumber != DenseMapInfo<unsigned>::getEmptyKey() &&
723           "IllegalInstrNumber cannot be DenseMap tombstone or empty key!");
724
725    assert(IllegalInstrNumber != DenseMapInfo<unsigned>::getTombstoneKey() &&
726           "IllegalInstrNumber cannot be DenseMap tombstone or empty key!");
727
728    return MINumber;
729  }
730
731  /// Transforms a \p MachineBasicBlock into a \p vector of \p unsigneds
732  /// and appends it to \p UnsignedVec and \p InstrList.
733  ///
734  /// Two instructions are assigned the same integer if they are identical.
735  /// If an instruction is deemed unsafe to outline, then it will be assigned an
736  /// unique integer. The resulting mapping is placed into a suffix tree and
737  /// queried for candidates.
738  ///
739  /// \param MBB The \p MachineBasicBlock to be translated into integers.
740  /// \param TII \p TargetInstrInfo for the function.
741  void convertToUnsignedVec(MachineBasicBlock &MBB,
742                            const TargetInstrInfo &TII) {
743    unsigned Flags = 0;
744
745    // Don't even map in this case.
746    if (!TII.isMBBSafeToOutlineFrom(MBB, Flags))
747      return;
748
749    // Store info for the MBB for later outlining.
750    MBBFlagsMap[&MBB] = Flags;
751
752    MachineBasicBlock::iterator It = MBB.begin();
753
754    // The number of instructions in this block that will be considered for
755    // outlining.
756    unsigned NumLegalInBlock = 0;
757
758    // True if we have at least two legal instructions which aren't separated
759    // by an illegal instruction.
760    bool HaveLegalRange = false;
761
762    // True if we can perform outlining given the last mapped (non-invisible)
763    // instruction. This lets us know if we have a legal range.
764    bool CanOutlineWithPrevInstr = false;
765
766    // FIXME: Should this all just be handled in the target, rather than using
767    // repeated calls to getOutliningType?
768    std::vector<unsigned> UnsignedVecForMBB;
769    std::vector<MachineBasicBlock::iterator> InstrListForMBB;
770
771    for (MachineBasicBlock::iterator Et = MBB.end(); It != Et; ++It) {
772      // Keep track of where this instruction is in the module.
773      switch (TII.getOutliningType(It, Flags)) {
774      case InstrType::Illegal:
775        mapToIllegalUnsigned(It, CanOutlineWithPrevInstr, UnsignedVecForMBB,
776                             InstrListForMBB);
777        break;
778
779      case InstrType::Legal:
780        mapToLegalUnsigned(It, CanOutlineWithPrevInstr, HaveLegalRange,
781                           NumLegalInBlock, UnsignedVecForMBB, InstrListForMBB);
782        break;
783
784      case InstrType::LegalTerminator:
785        mapToLegalUnsigned(It, CanOutlineWithPrevInstr, HaveLegalRange,
786                           NumLegalInBlock, UnsignedVecForMBB, InstrListForMBB);
787        // The instruction also acts as a terminator, so we have to record that
788        // in the string.
789        mapToIllegalUnsigned(It, CanOutlineWithPrevInstr, UnsignedVecForMBB,
790                             InstrListForMBB);
791        break;
792
793      case InstrType::Invisible:
794        // Normally this is set by mapTo(Blah)Unsigned, but we just want to
795        // skip this instruction. So, unset the flag here.
796        AddedIllegalLastTime = false;
797        break;
798      }
799    }
800
801    // Are there enough legal instructions in the block for outlining to be
802    // possible?
803    if (HaveLegalRange) {
804      // After we're done every insertion, uniquely terminate this part of the
805      // "string". This makes sure we won't match across basic block or function
806      // boundaries since the "end" is encoded uniquely and thus appears in no
807      // repeated substring.
808      mapToIllegalUnsigned(It, CanOutlineWithPrevInstr, UnsignedVecForMBB,
809                           InstrListForMBB);
810      InstrList.insert(InstrList.end(), InstrListForMBB.begin(),
811                       InstrListForMBB.end());
812      UnsignedVec.insert(UnsignedVec.end(), UnsignedVecForMBB.begin(),
813                         UnsignedVecForMBB.end());
814    }
815  }
816
817  InstructionMapper() {
818    // Make sure that the implementation of DenseMapInfo<unsigned> hasn't
819    // changed.
820    assert(DenseMapInfo<unsigned>::getEmptyKey() == (unsigned)-1 &&
821           "DenseMapInfo<unsigned>'s empty key isn't -1!");
822    assert(DenseMapInfo<unsigned>::getTombstoneKey() == (unsigned)-2 &&
823           "DenseMapInfo<unsigned>'s tombstone key isn't -2!");
824  }
825};
826
827/// An interprocedural pass which finds repeated sequences of
828/// instructions and replaces them with calls to functions.
829///
830/// Each instruction is mapped to an unsigned integer and placed in a string.
831/// The resulting mapping is then placed in a \p SuffixTree. The \p SuffixTree
832/// is then repeatedly queried for repeated sequences of instructions. Each
833/// non-overlapping repeated sequence is then placed in its own
834/// \p MachineFunction and each instance is then replaced with a call to that
835/// function.
836struct MachineOutliner : public ModulePass {
837
838  static char ID;
839
840  /// Set to true if the outliner should consider functions with
841  /// linkonceodr linkage.
842  bool OutlineFromLinkOnceODRs = false;
843
844  /// Set to true if the outliner should run on all functions in the module
845  /// considered safe for outlining.
846  /// Set to true by default for compatibility with llc's -run-pass option.
847  /// Set when the pass is constructed in TargetPassConfig.
848  bool RunOnAllFunctions = true;
849
850  StringRef getPassName() const override { return "Machine Outliner"; }
851
852  void getAnalysisUsage(AnalysisUsage &AU) const override {
853    AU.addRequired<MachineModuleInfoWrapperPass>();
854    AU.addPreserved<MachineModuleInfoWrapperPass>();
855    AU.setPreservesAll();
856    ModulePass::getAnalysisUsage(AU);
857  }
858
859  MachineOutliner() : ModulePass(ID) {
860    initializeMachineOutlinerPass(*PassRegistry::getPassRegistry());
861  }
862
863  /// Remark output explaining that not outlining a set of candidates would be
864  /// better than outlining that set.
865  void emitNotOutliningCheaperRemark(
866      unsigned StringLen, std::vector<Candidate> &CandidatesForRepeatedSeq,
867      OutlinedFunction &OF);
868
869  /// Remark output explaining that a function was outlined.
870  void emitOutlinedFunctionRemark(OutlinedFunction &OF);
871
872  /// Find all repeated substrings that satisfy the outlining cost model by
873  /// constructing a suffix tree.
874  ///
875  /// If a substring appears at least twice, then it must be represented by
876  /// an internal node which appears in at least two suffixes. Each suffix
877  /// is represented by a leaf node. To do this, we visit each internal node
878  /// in the tree, using the leaf children of each internal node. If an
879  /// internal node represents a beneficial substring, then we use each of
880  /// its leaf children to find the locations of its substring.
881  ///
882  /// \param Mapper Contains outlining mapping information.
883  /// \param[out] FunctionList Filled with a list of \p OutlinedFunctions
884  /// each type of candidate.
885  void findCandidates(InstructionMapper &Mapper,
886                      std::vector<OutlinedFunction> &FunctionList);
887
888  /// Replace the sequences of instructions represented by \p OutlinedFunctions
889  /// with calls to functions.
890  ///
891  /// \param M The module we are outlining from.
892  /// \param FunctionList A list of functions to be inserted into the module.
893  /// \param Mapper Contains the instruction mappings for the module.
894  bool outline(Module &M, std::vector<OutlinedFunction> &FunctionList,
895               InstructionMapper &Mapper, unsigned &OutlinedFunctionNum);
896
897  /// Creates a function for \p OF and inserts it into the module.
898  MachineFunction *createOutlinedFunction(Module &M, OutlinedFunction &OF,
899                                          InstructionMapper &Mapper,
900                                          unsigned Name);
901
902  /// Calls 'doOutline()'.
903  bool runOnModule(Module &M) override;
904
905  /// Construct a suffix tree on the instructions in \p M and outline repeated
906  /// strings from that tree.
907  bool doOutline(Module &M, unsigned &OutlinedFunctionNum);
908
909  /// Return a DISubprogram for OF if one exists, and null otherwise. Helper
910  /// function for remark emission.
911  DISubprogram *getSubprogramOrNull(const OutlinedFunction &OF) {
912    for (const Candidate &C : OF.Candidates)
913      if (MachineFunction *MF = C.getMF())
914        if (DISubprogram *SP = MF->getFunction().getSubprogram())
915          return SP;
916    return nullptr;
917  }
918
919  /// Populate and \p InstructionMapper with instruction-to-integer mappings.
920  /// These are used to construct a suffix tree.
921  void populateMapper(InstructionMapper &Mapper, Module &M,
922                      MachineModuleInfo &MMI);
923
924  /// Initialize information necessary to output a size remark.
925  /// FIXME: This should be handled by the pass manager, not the outliner.
926  /// FIXME: This is nearly identical to the initSizeRemarkInfo in the legacy
927  /// pass manager.
928  void initSizeRemarkInfo(const Module &M, const MachineModuleInfo &MMI,
929                          StringMap<unsigned> &FunctionToInstrCount);
930
931  /// Emit the remark.
932  // FIXME: This should be handled by the pass manager, not the outliner.
933  void
934  emitInstrCountChangedRemark(const Module &M, const MachineModuleInfo &MMI,
935                              const StringMap<unsigned> &FunctionToInstrCount);
936};
937} // Anonymous namespace.
938
939char MachineOutliner::ID = 0;
940
941namespace llvm {
942ModulePass *createMachineOutlinerPass(bool RunOnAllFunctions) {
943  MachineOutliner *OL = new MachineOutliner();
944  OL->RunOnAllFunctions = RunOnAllFunctions;
945  return OL;
946}
947
948} // namespace llvm
949
950INITIALIZE_PASS(MachineOutliner, DEBUG_TYPE, "Machine Function Outliner", false,
951                false)
952
953void MachineOutliner::emitNotOutliningCheaperRemark(
954    unsigned StringLen, std::vector<Candidate> &CandidatesForRepeatedSeq,
955    OutlinedFunction &OF) {
956  // FIXME: Right now, we arbitrarily choose some Candidate from the
957  // OutlinedFunction. This isn't necessarily fixed, nor does it have to be.
958  // We should probably sort these by function name or something to make sure
959  // the remarks are stable.
960  Candidate &C = CandidatesForRepeatedSeq.front();
961  MachineOptimizationRemarkEmitter MORE(*(C.getMF()), nullptr);
962  MORE.emit([&]() {
963    MachineOptimizationRemarkMissed R(DEBUG_TYPE, "NotOutliningCheaper",
964                                      C.front()->getDebugLoc(), C.getMBB());
965    R << "Did not outline " << NV("Length", StringLen) << " instructions"
966      << " from " << NV("NumOccurrences", CandidatesForRepeatedSeq.size())
967      << " locations."
968      << " Bytes from outlining all occurrences ("
969      << NV("OutliningCost", OF.getOutliningCost()) << ")"
970      << " >= Unoutlined instruction bytes ("
971      << NV("NotOutliningCost", OF.getNotOutlinedCost()) << ")"
972      << " (Also found at: ";
973
974    // Tell the user the other places the candidate was found.
975    for (unsigned i = 1, e = CandidatesForRepeatedSeq.size(); i < e; i++) {
976      R << NV((Twine("OtherStartLoc") + Twine(i)).str(),
977              CandidatesForRepeatedSeq[i].front()->getDebugLoc());
978      if (i != e - 1)
979        R << ", ";
980    }
981
982    R << ")";
983    return R;
984  });
985}
986
987void MachineOutliner::emitOutlinedFunctionRemark(OutlinedFunction &OF) {
988  MachineBasicBlock *MBB = &*OF.MF->begin();
989  MachineOptimizationRemarkEmitter MORE(*OF.MF, nullptr);
990  MachineOptimizationRemark R(DEBUG_TYPE, "OutlinedFunction",
991                              MBB->findDebugLoc(MBB->begin()), MBB);
992  R << "Saved " << NV("OutliningBenefit", OF.getBenefit()) << " bytes by "
993    << "outlining " << NV("Length", OF.getNumInstrs()) << " instructions "
994    << "from " << NV("NumOccurrences", OF.getOccurrenceCount())
995    << " locations. "
996    << "(Found at: ";
997
998  // Tell the user the other places the candidate was found.
999  for (size_t i = 0, e = OF.Candidates.size(); i < e; i++) {
1000
1001    R << NV((Twine("StartLoc") + Twine(i)).str(),
1002            OF.Candidates[i].front()->getDebugLoc());
1003    if (i != e - 1)
1004      R << ", ";
1005  }
1006
1007  R << ")";
1008
1009  MORE.emit(R);
1010}
1011
1012void MachineOutliner::findCandidates(
1013    InstructionMapper &Mapper, std::vector<OutlinedFunction> &FunctionList) {
1014  FunctionList.clear();
1015  SuffixTree ST(Mapper.UnsignedVec);
1016
1017  // First, find all of the repeated substrings in the tree of minimum length
1018  // 2.
1019  std::vector<Candidate> CandidatesForRepeatedSeq;
1020  for (auto It = ST.begin(), Et = ST.end(); It != Et; ++It) {
1021    CandidatesForRepeatedSeq.clear();
1022    SuffixTree::RepeatedSubstring RS = *It;
1023    unsigned StringLen = RS.Length;
1024    for (const unsigned &StartIdx : RS.StartIndices) {
1025      unsigned EndIdx = StartIdx + StringLen - 1;
1026      // Trick: Discard some candidates that would be incompatible with the
1027      // ones we've already found for this sequence. This will save us some
1028      // work in candidate selection.
1029      //
1030      // If two candidates overlap, then we can't outline them both. This
1031      // happens when we have candidates that look like, say
1032      //
1033      // AA (where each "A" is an instruction).
1034      //
1035      // We might have some portion of the module that looks like this:
1036      // AAAAAA (6 A's)
1037      //
1038      // In this case, there are 5 different copies of "AA" in this range, but
1039      // at most 3 can be outlined. If only outlining 3 of these is going to
1040      // be unbeneficial, then we ought to not bother.
1041      //
1042      // Note that two things DON'T overlap when they look like this:
1043      // start1...end1 .... start2...end2
1044      // That is, one must either
1045      // * End before the other starts
1046      // * Start after the other ends
1047      if (std::all_of(
1048              CandidatesForRepeatedSeq.begin(), CandidatesForRepeatedSeq.end(),
1049              [&StartIdx, &EndIdx](const Candidate &C) {
1050                return (EndIdx < C.getStartIdx() || StartIdx > C.getEndIdx());
1051              })) {
1052        // It doesn't overlap with anything, so we can outline it.
1053        // Each sequence is over [StartIt, EndIt].
1054        // Save the candidate and its location.
1055
1056        MachineBasicBlock::iterator StartIt = Mapper.InstrList[StartIdx];
1057        MachineBasicBlock::iterator EndIt = Mapper.InstrList[EndIdx];
1058        MachineBasicBlock *MBB = StartIt->getParent();
1059
1060        CandidatesForRepeatedSeq.emplace_back(StartIdx, StringLen, StartIt,
1061                                              EndIt, MBB, FunctionList.size(),
1062                                              Mapper.MBBFlagsMap[MBB]);
1063      }
1064    }
1065
1066    // We've found something we might want to outline.
1067    // Create an OutlinedFunction to store it and check if it'd be beneficial
1068    // to outline.
1069    if (CandidatesForRepeatedSeq.size() < 2)
1070      continue;
1071
1072    // Arbitrarily choose a TII from the first candidate.
1073    // FIXME: Should getOutliningCandidateInfo move to TargetMachine?
1074    const TargetInstrInfo *TII =
1075        CandidatesForRepeatedSeq[0].getMF()->getSubtarget().getInstrInfo();
1076
1077    OutlinedFunction OF =
1078        TII->getOutliningCandidateInfo(CandidatesForRepeatedSeq);
1079
1080    // If we deleted too many candidates, then there's nothing worth outlining.
1081    // FIXME: This should take target-specified instruction sizes into account.
1082    if (OF.Candidates.size() < 2)
1083      continue;
1084
1085    // Is it better to outline this candidate than not?
1086    if (OF.getBenefit() < 1) {
1087      emitNotOutliningCheaperRemark(StringLen, CandidatesForRepeatedSeq, OF);
1088      continue;
1089    }
1090
1091    FunctionList.push_back(OF);
1092  }
1093}
1094
1095MachineFunction *MachineOutliner::createOutlinedFunction(
1096    Module &M, OutlinedFunction &OF, InstructionMapper &Mapper, unsigned Name) {
1097
1098  // Create the function name. This should be unique.
1099  // FIXME: We should have a better naming scheme. This should be stable,
1100  // regardless of changes to the outliner's cost model/traversal order.
1101  std::string FunctionName = ("OUTLINED_FUNCTION_" + Twine(Name)).str();
1102
1103  // Create the function using an IR-level function.
1104  LLVMContext &C = M.getContext();
1105  Function *F = Function::Create(FunctionType::get(Type::getVoidTy(C), false),
1106                                 Function::ExternalLinkage, FunctionName, M);
1107
1108  // NOTE: If this is linkonceodr, then we can take advantage of linker deduping
1109  // which gives us better results when we outline from linkonceodr functions.
1110  F->setLinkage(GlobalValue::InternalLinkage);
1111  F->setUnnamedAddr(GlobalValue::UnnamedAddr::Global);
1112
1113  // FIXME: Set nounwind, so we don't generate eh_frame? Haven't verified it's
1114  // necessary.
1115
1116  // Set optsize/minsize, so we don't insert padding between outlined
1117  // functions.
1118  F->addFnAttr(Attribute::OptimizeForSize);
1119  F->addFnAttr(Attribute::MinSize);
1120
1121  // Include target features from an arbitrary candidate for the outlined
1122  // function. This makes sure the outlined function knows what kinds of
1123  // instructions are going into it. This is fine, since all parent functions
1124  // must necessarily support the instructions that are in the outlined region.
1125  Candidate &FirstCand = OF.Candidates.front();
1126  const Function &ParentFn = FirstCand.getMF()->getFunction();
1127  if (ParentFn.hasFnAttribute("target-features"))
1128    F->addFnAttr(ParentFn.getFnAttribute("target-features"));
1129
1130  BasicBlock *EntryBB = BasicBlock::Create(C, "entry", F);
1131  IRBuilder<> Builder(EntryBB);
1132  Builder.CreateRetVoid();
1133
1134  MachineModuleInfo &MMI = getAnalysis<MachineModuleInfoWrapperPass>().getMMI();
1135  MachineFunction &MF = MMI.getOrCreateMachineFunction(*F);
1136  MachineBasicBlock &MBB = *MF.CreateMachineBasicBlock();
1137  const TargetSubtargetInfo &STI = MF.getSubtarget();
1138  const TargetInstrInfo &TII = *STI.getInstrInfo();
1139
1140  // Insert the new function into the module.
1141  MF.insert(MF.begin(), &MBB);
1142
1143  for (auto I = FirstCand.front(), E = std::next(FirstCand.back()); I != E;
1144       ++I) {
1145    MachineInstr *NewMI = MF.CloneMachineInstr(&*I);
1146    NewMI->dropMemRefs(MF);
1147
1148    // Don't keep debug information for outlined instructions.
1149    NewMI->setDebugLoc(DebugLoc());
1150    MBB.insert(MBB.end(), NewMI);
1151  }
1152
1153  TII.buildOutlinedFrame(MBB, MF, OF);
1154
1155  // Outlined functions shouldn't preserve liveness.
1156  MF.getProperties().reset(MachineFunctionProperties::Property::TracksLiveness);
1157  MF.getRegInfo().freezeReservedRegs(MF);
1158
1159  // If there's a DISubprogram associated with this outlined function, then
1160  // emit debug info for the outlined function.
1161  if (DISubprogram *SP = getSubprogramOrNull(OF)) {
1162    // We have a DISubprogram. Get its DICompileUnit.
1163    DICompileUnit *CU = SP->getUnit();
1164    DIBuilder DB(M, true, CU);
1165    DIFile *Unit = SP->getFile();
1166    Mangler Mg;
1167    // Get the mangled name of the function for the linkage name.
1168    std::string Dummy;
1169    llvm::raw_string_ostream MangledNameStream(Dummy);
1170    Mg.getNameWithPrefix(MangledNameStream, F, false);
1171
1172    DISubprogram *OutlinedSP = DB.createFunction(
1173        Unit /* Context */, F->getName(), StringRef(MangledNameStream.str()),
1174        Unit /* File */,
1175        0 /* Line 0 is reserved for compiler-generated code. */,
1176        DB.createSubroutineType(DB.getOrCreateTypeArray(None)), /* void type */
1177        0, /* Line 0 is reserved for compiler-generated code. */
1178        DINode::DIFlags::FlagArtificial /* Compiler-generated code. */,
1179        /* Outlined code is optimized code by definition. */
1180        DISubprogram::SPFlagDefinition | DISubprogram::SPFlagOptimized);
1181
1182    // Don't add any new variables to the subprogram.
1183    DB.finalizeSubprogram(OutlinedSP);
1184
1185    // Attach subprogram to the function.
1186    F->setSubprogram(OutlinedSP);
1187    // We're done with the DIBuilder.
1188    DB.finalize();
1189  }
1190
1191  return &MF;
1192}
1193
1194bool MachineOutliner::outline(Module &M,
1195                              std::vector<OutlinedFunction> &FunctionList,
1196                              InstructionMapper &Mapper,
1197                              unsigned &OutlinedFunctionNum) {
1198
1199  bool OutlinedSomething = false;
1200
1201  // Sort by benefit. The most beneficial functions should be outlined first.
1202  llvm::stable_sort(FunctionList, [](const OutlinedFunction &LHS,
1203                                     const OutlinedFunction &RHS) {
1204    return LHS.getBenefit() > RHS.getBenefit();
1205  });
1206
1207  // Walk over each function, outlining them as we go along. Functions are
1208  // outlined greedily, based off the sort above.
1209  for (OutlinedFunction &OF : FunctionList) {
1210    // If we outlined something that overlapped with a candidate in a previous
1211    // step, then we can't outline from it.
1212    erase_if(OF.Candidates, [&Mapper](Candidate &C) {
1213      return std::any_of(
1214          Mapper.UnsignedVec.begin() + C.getStartIdx(),
1215          Mapper.UnsignedVec.begin() + C.getEndIdx() + 1,
1216          [](unsigned I) { return (I == static_cast<unsigned>(-1)); });
1217    });
1218
1219    // If we made it unbeneficial to outline this function, skip it.
1220    if (OF.getBenefit() < 1)
1221      continue;
1222
1223    // It's beneficial. Create the function and outline its sequence's
1224    // occurrences.
1225    OF.MF = createOutlinedFunction(M, OF, Mapper, OutlinedFunctionNum);
1226    emitOutlinedFunctionRemark(OF);
1227    FunctionsCreated++;
1228    OutlinedFunctionNum++; // Created a function, move to the next name.
1229    MachineFunction *MF = OF.MF;
1230    const TargetSubtargetInfo &STI = MF->getSubtarget();
1231    const TargetInstrInfo &TII = *STI.getInstrInfo();
1232
1233    // Replace occurrences of the sequence with calls to the new function.
1234    for (Candidate &C : OF.Candidates) {
1235      MachineBasicBlock &MBB = *C.getMBB();
1236      MachineBasicBlock::iterator StartIt = C.front();
1237      MachineBasicBlock::iterator EndIt = C.back();
1238
1239      // Insert the call.
1240      auto CallInst = TII.insertOutlinedCall(M, MBB, StartIt, *MF, C);
1241
1242      // If the caller tracks liveness, then we need to make sure that
1243      // anything we outline doesn't break liveness assumptions. The outlined
1244      // functions themselves currently don't track liveness, but we should
1245      // make sure that the ranges we yank things out of aren't wrong.
1246      if (MBB.getParent()->getProperties().hasProperty(
1247              MachineFunctionProperties::Property::TracksLiveness)) {
1248        // Helper lambda for adding implicit def operands to the call
1249        // instruction. It also updates call site information for moved
1250        // code.
1251        auto CopyDefsAndUpdateCalls = [&CallInst](MachineInstr &MI) {
1252          for (MachineOperand &MOP : MI.operands()) {
1253            // Skip over anything that isn't a register.
1254            if (!MOP.isReg())
1255              continue;
1256
1257            // If it's a def, add it to the call instruction.
1258            if (MOP.isDef())
1259              CallInst->addOperand(MachineOperand::CreateReg(
1260                  MOP.getReg(), true, /* isDef = true */
1261                  true /* isImp = true */));
1262          }
1263          if (MI.isCall())
1264            MI.getMF()->eraseCallSiteInfo(&MI);
1265        };
1266        // Copy over the defs in the outlined range.
1267        // First inst in outlined range <-- Anything that's defined in this
1268        // ...                           .. range has to be added as an
1269        // implicit Last inst in outlined range  <-- def to the call
1270        // instruction. Also remove call site information for outlined block
1271        // of code.
1272        std::for_each(CallInst, std::next(EndIt), CopyDefsAndUpdateCalls);
1273      }
1274
1275      // Erase from the point after where the call was inserted up to, and
1276      // including, the final instruction in the sequence.
1277      // Erase needs one past the end, so we need std::next there too.
1278      MBB.erase(std::next(StartIt), std::next(EndIt));
1279
1280      // Keep track of what we removed by marking them all as -1.
1281      std::for_each(Mapper.UnsignedVec.begin() + C.getStartIdx(),
1282                    Mapper.UnsignedVec.begin() + C.getEndIdx() + 1,
1283                    [](unsigned &I) { I = static_cast<unsigned>(-1); });
1284      OutlinedSomething = true;
1285
1286      // Statistics.
1287      NumOutlined++;
1288    }
1289  }
1290
1291  LLVM_DEBUG(dbgs() << "OutlinedSomething = " << OutlinedSomething << "\n";);
1292
1293  return OutlinedSomething;
1294}
1295
1296void MachineOutliner::populateMapper(InstructionMapper &Mapper, Module &M,
1297                                     MachineModuleInfo &MMI) {
1298  // Build instruction mappings for each function in the module. Start by
1299  // iterating over each Function in M.
1300  for (Function &F : M) {
1301
1302    // If there's nothing in F, then there's no reason to try and outline from
1303    // it.
1304    if (F.empty())
1305      continue;
1306
1307    // There's something in F. Check if it has a MachineFunction associated with
1308    // it.
1309    MachineFunction *MF = MMI.getMachineFunction(F);
1310
1311    // If it doesn't, then there's nothing to outline from. Move to the next
1312    // Function.
1313    if (!MF)
1314      continue;
1315
1316    const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
1317
1318    if (!RunOnAllFunctions && !TII->shouldOutlineFromFunctionByDefault(*MF))
1319      continue;
1320
1321    // We have a MachineFunction. Ask the target if it's suitable for outlining.
1322    // If it isn't, then move on to the next Function in the module.
1323    if (!TII->isFunctionSafeToOutlineFrom(*MF, OutlineFromLinkOnceODRs))
1324      continue;
1325
1326    // We have a function suitable for outlining. Iterate over every
1327    // MachineBasicBlock in MF and try to map its instructions to a list of
1328    // unsigned integers.
1329    for (MachineBasicBlock &MBB : *MF) {
1330      // If there isn't anything in MBB, then there's no point in outlining from
1331      // it.
1332      // If there are fewer than 2 instructions in the MBB, then it can't ever
1333      // contain something worth outlining.
1334      // FIXME: This should be based off of the maximum size in B of an outlined
1335      // call versus the size in B of the MBB.
1336      if (MBB.empty() || MBB.size() < 2)
1337        continue;
1338
1339      // Check if MBB could be the target of an indirect branch. If it is, then
1340      // we don't want to outline from it.
1341      if (MBB.hasAddressTaken())
1342        continue;
1343
1344      // MBB is suitable for outlining. Map it to a list of unsigneds.
1345      Mapper.convertToUnsignedVec(MBB, *TII);
1346    }
1347  }
1348}
1349
1350void MachineOutliner::initSizeRemarkInfo(
1351    const Module &M, const MachineModuleInfo &MMI,
1352    StringMap<unsigned> &FunctionToInstrCount) {
1353  // Collect instruction counts for every function. We'll use this to emit
1354  // per-function size remarks later.
1355  for (const Function &F : M) {
1356    MachineFunction *MF = MMI.getMachineFunction(F);
1357
1358    // We only care about MI counts here. If there's no MachineFunction at this
1359    // point, then there won't be after the outliner runs, so let's move on.
1360    if (!MF)
1361      continue;
1362    FunctionToInstrCount[F.getName().str()] = MF->getInstructionCount();
1363  }
1364}
1365
1366void MachineOutliner::emitInstrCountChangedRemark(
1367    const Module &M, const MachineModuleInfo &MMI,
1368    const StringMap<unsigned> &FunctionToInstrCount) {
1369  // Iterate over each function in the module and emit remarks.
1370  // Note that we won't miss anything by doing this, because the outliner never
1371  // deletes functions.
1372  for (const Function &F : M) {
1373    MachineFunction *MF = MMI.getMachineFunction(F);
1374
1375    // The outliner never deletes functions. If we don't have a MF here, then we
1376    // didn't have one prior to outlining either.
1377    if (!MF)
1378      continue;
1379
1380    std::string Fname = F.getName();
1381    unsigned FnCountAfter = MF->getInstructionCount();
1382    unsigned FnCountBefore = 0;
1383
1384    // Check if the function was recorded before.
1385    auto It = FunctionToInstrCount.find(Fname);
1386
1387    // Did we have a previously-recorded size? If yes, then set FnCountBefore
1388    // to that.
1389    if (It != FunctionToInstrCount.end())
1390      FnCountBefore = It->second;
1391
1392    // Compute the delta and emit a remark if there was a change.
1393    int64_t FnDelta = static_cast<int64_t>(FnCountAfter) -
1394                      static_cast<int64_t>(FnCountBefore);
1395    if (FnDelta == 0)
1396      continue;
1397
1398    MachineOptimizationRemarkEmitter MORE(*MF, nullptr);
1399    MORE.emit([&]() {
1400      MachineOptimizationRemarkAnalysis R("size-info", "FunctionMISizeChange",
1401                                          DiagnosticLocation(), &MF->front());
1402      R << DiagnosticInfoOptimizationBase::Argument("Pass", "Machine Outliner")
1403        << ": Function: "
1404        << DiagnosticInfoOptimizationBase::Argument("Function", F.getName())
1405        << ": MI instruction count changed from "
1406        << DiagnosticInfoOptimizationBase::Argument("MIInstrsBefore",
1407                                                    FnCountBefore)
1408        << " to "
1409        << DiagnosticInfoOptimizationBase::Argument("MIInstrsAfter",
1410                                                    FnCountAfter)
1411        << "; Delta: "
1412        << DiagnosticInfoOptimizationBase::Argument("Delta", FnDelta);
1413      return R;
1414    });
1415  }
1416}
1417
1418bool MachineOutliner::runOnModule(Module &M) {
1419  // Check if there's anything in the module. If it's empty, then there's
1420  // nothing to outline.
1421  if (M.empty())
1422    return false;
1423
1424  // Number to append to the current outlined function.
1425  unsigned OutlinedFunctionNum = 0;
1426
1427  if (!doOutline(M, OutlinedFunctionNum))
1428    return false;
1429  return true;
1430}
1431
1432bool MachineOutliner::doOutline(Module &M, unsigned &OutlinedFunctionNum) {
1433  MachineModuleInfo &MMI = getAnalysis<MachineModuleInfoWrapperPass>().getMMI();
1434
1435  // If the user passed -enable-machine-outliner=always or
1436  // -enable-machine-outliner, the pass will run on all functions in the module.
1437  // Otherwise, if the target supports default outlining, it will run on all
1438  // functions deemed by the target to be worth outlining from by default. Tell
1439  // the user how the outliner is running.
1440  LLVM_DEBUG({
1441    dbgs() << "Machine Outliner: Running on ";
1442    if (RunOnAllFunctions)
1443      dbgs() << "all functions";
1444    else
1445      dbgs() << "target-default functions";
1446    dbgs() << "\n";
1447  });
1448
1449  // If the user specifies that they want to outline from linkonceodrs, set
1450  // it here.
1451  OutlineFromLinkOnceODRs = EnableLinkOnceODROutlining;
1452  InstructionMapper Mapper;
1453
1454  // Prepare instruction mappings for the suffix tree.
1455  populateMapper(Mapper, M, MMI);
1456  std::vector<OutlinedFunction> FunctionList;
1457
1458  // Find all of the outlining candidates.
1459  findCandidates(Mapper, FunctionList);
1460
1461  // If we've requested size remarks, then collect the MI counts of every
1462  // function before outlining, and the MI counts after outlining.
1463  // FIXME: This shouldn't be in the outliner at all; it should ultimately be
1464  // the pass manager's responsibility.
1465  // This could pretty easily be placed in outline instead, but because we
1466  // really ultimately *don't* want this here, it's done like this for now
1467  // instead.
1468
1469  // Check if we want size remarks.
1470  bool ShouldEmitSizeRemarks = M.shouldEmitInstrCountChangedRemark();
1471  StringMap<unsigned> FunctionToInstrCount;
1472  if (ShouldEmitSizeRemarks)
1473    initSizeRemarkInfo(M, MMI, FunctionToInstrCount);
1474
1475  // Outline each of the candidates and return true if something was outlined.
1476  bool OutlinedSomething =
1477      outline(M, FunctionList, Mapper, OutlinedFunctionNum);
1478
1479  // If we outlined something, we definitely changed the MI count of the
1480  // module. If we've asked for size remarks, then output them.
1481  // FIXME: This should be in the pass manager.
1482  if (ShouldEmitSizeRemarks && OutlinedSomething)
1483    emitInstrCountChangedRemark(M, MMI, FunctionToInstrCount);
1484
1485  return OutlinedSomething;
1486}
1487