MachineInstr.cpp revision 360784
1//===- lib/CodeGen/MachineInstr.cpp ---------------------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// Methods common to all machine instructions.
10//
11//===----------------------------------------------------------------------===//
12
13#include "llvm/CodeGen/MachineInstr.h"
14#include "llvm/ADT/APFloat.h"
15#include "llvm/ADT/ArrayRef.h"
16#include "llvm/ADT/FoldingSet.h"
17#include "llvm/ADT/Hashing.h"
18#include "llvm/ADT/None.h"
19#include "llvm/ADT/STLExtras.h"
20#include "llvm/ADT/SmallBitVector.h"
21#include "llvm/ADT/SmallString.h"
22#include "llvm/ADT/SmallVector.h"
23#include "llvm/Analysis/AliasAnalysis.h"
24#include "llvm/Analysis/Loads.h"
25#include "llvm/Analysis/MemoryLocation.h"
26#include "llvm/CodeGen/GlobalISel/RegisterBank.h"
27#include "llvm/CodeGen/MachineBasicBlock.h"
28#include "llvm/CodeGen/MachineFrameInfo.h"
29#include "llvm/CodeGen/MachineFunction.h"
30#include "llvm/CodeGen/MachineInstrBuilder.h"
31#include "llvm/CodeGen/MachineInstrBundle.h"
32#include "llvm/CodeGen/MachineMemOperand.h"
33#include "llvm/CodeGen/MachineModuleInfo.h"
34#include "llvm/CodeGen/MachineOperand.h"
35#include "llvm/CodeGen/MachineRegisterInfo.h"
36#include "llvm/CodeGen/PseudoSourceValue.h"
37#include "llvm/CodeGen/TargetInstrInfo.h"
38#include "llvm/CodeGen/TargetRegisterInfo.h"
39#include "llvm/CodeGen/TargetSubtargetInfo.h"
40#include "llvm/Config/llvm-config.h"
41#include "llvm/IR/Constants.h"
42#include "llvm/IR/DebugInfoMetadata.h"
43#include "llvm/IR/DebugLoc.h"
44#include "llvm/IR/DerivedTypes.h"
45#include "llvm/IR/Function.h"
46#include "llvm/IR/InlineAsm.h"
47#include "llvm/IR/InstrTypes.h"
48#include "llvm/IR/Intrinsics.h"
49#include "llvm/IR/LLVMContext.h"
50#include "llvm/IR/Metadata.h"
51#include "llvm/IR/Module.h"
52#include "llvm/IR/ModuleSlotTracker.h"
53#include "llvm/IR/Operator.h"
54#include "llvm/IR/Type.h"
55#include "llvm/IR/Value.h"
56#include "llvm/MC/MCInstrDesc.h"
57#include "llvm/MC/MCRegisterInfo.h"
58#include "llvm/MC/MCSymbol.h"
59#include "llvm/Support/Casting.h"
60#include "llvm/Support/CommandLine.h"
61#include "llvm/Support/Compiler.h"
62#include "llvm/Support/Debug.h"
63#include "llvm/Support/ErrorHandling.h"
64#include "llvm/Support/LowLevelTypeImpl.h"
65#include "llvm/Support/MathExtras.h"
66#include "llvm/Support/raw_ostream.h"
67#include "llvm/Target/TargetIntrinsicInfo.h"
68#include "llvm/Target/TargetMachine.h"
69#include <algorithm>
70#include <cassert>
71#include <cstddef>
72#include <cstdint>
73#include <cstring>
74#include <iterator>
75#include <utility>
76
77using namespace llvm;
78
79static const MachineFunction *getMFIfAvailable(const MachineInstr &MI) {
80  if (const MachineBasicBlock *MBB = MI.getParent())
81    if (const MachineFunction *MF = MBB->getParent())
82      return MF;
83  return nullptr;
84}
85
86// Try to crawl up to the machine function and get TRI and IntrinsicInfo from
87// it.
88static void tryToGetTargetInfo(const MachineInstr &MI,
89                               const TargetRegisterInfo *&TRI,
90                               const MachineRegisterInfo *&MRI,
91                               const TargetIntrinsicInfo *&IntrinsicInfo,
92                               const TargetInstrInfo *&TII) {
93
94  if (const MachineFunction *MF = getMFIfAvailable(MI)) {
95    TRI = MF->getSubtarget().getRegisterInfo();
96    MRI = &MF->getRegInfo();
97    IntrinsicInfo = MF->getTarget().getIntrinsicInfo();
98    TII = MF->getSubtarget().getInstrInfo();
99  }
100}
101
102void MachineInstr::addImplicitDefUseOperands(MachineFunction &MF) {
103  if (MCID->ImplicitDefs)
104    for (const MCPhysReg *ImpDefs = MCID->getImplicitDefs(); *ImpDefs;
105           ++ImpDefs)
106      addOperand(MF, MachineOperand::CreateReg(*ImpDefs, true, true));
107  if (MCID->ImplicitUses)
108    for (const MCPhysReg *ImpUses = MCID->getImplicitUses(); *ImpUses;
109           ++ImpUses)
110      addOperand(MF, MachineOperand::CreateReg(*ImpUses, false, true));
111}
112
113/// MachineInstr ctor - This constructor creates a MachineInstr and adds the
114/// implicit operands. It reserves space for the number of operands specified by
115/// the MCInstrDesc.
116MachineInstr::MachineInstr(MachineFunction &MF, const MCInstrDesc &tid,
117                           DebugLoc dl, bool NoImp)
118    : MCID(&tid), debugLoc(std::move(dl)) {
119  assert(debugLoc.hasTrivialDestructor() && "Expected trivial destructor");
120
121  // Reserve space for the expected number of operands.
122  if (unsigned NumOps = MCID->getNumOperands() +
123    MCID->getNumImplicitDefs() + MCID->getNumImplicitUses()) {
124    CapOperands = OperandCapacity::get(NumOps);
125    Operands = MF.allocateOperandArray(CapOperands);
126  }
127
128  if (!NoImp)
129    addImplicitDefUseOperands(MF);
130}
131
132/// MachineInstr ctor - Copies MachineInstr arg exactly
133///
134MachineInstr::MachineInstr(MachineFunction &MF, const MachineInstr &MI)
135    : MCID(&MI.getDesc()), Info(MI.Info), debugLoc(MI.getDebugLoc()) {
136  assert(debugLoc.hasTrivialDestructor() && "Expected trivial destructor");
137
138  CapOperands = OperandCapacity::get(MI.getNumOperands());
139  Operands = MF.allocateOperandArray(CapOperands);
140
141  // Copy operands.
142  for (const MachineOperand &MO : MI.operands())
143    addOperand(MF, MO);
144
145  // Copy all the sensible flags.
146  setFlags(MI.Flags);
147}
148
149/// getRegInfo - If this instruction is embedded into a MachineFunction,
150/// return the MachineRegisterInfo object for the current function, otherwise
151/// return null.
152MachineRegisterInfo *MachineInstr::getRegInfo() {
153  if (MachineBasicBlock *MBB = getParent())
154    return &MBB->getParent()->getRegInfo();
155  return nullptr;
156}
157
158/// RemoveRegOperandsFromUseLists - Unlink all of the register operands in
159/// this instruction from their respective use lists.  This requires that the
160/// operands already be on their use lists.
161void MachineInstr::RemoveRegOperandsFromUseLists(MachineRegisterInfo &MRI) {
162  for (MachineOperand &MO : operands())
163    if (MO.isReg())
164      MRI.removeRegOperandFromUseList(&MO);
165}
166
167/// AddRegOperandsToUseLists - Add all of the register operands in
168/// this instruction from their respective use lists.  This requires that the
169/// operands not be on their use lists yet.
170void MachineInstr::AddRegOperandsToUseLists(MachineRegisterInfo &MRI) {
171  for (MachineOperand &MO : operands())
172    if (MO.isReg())
173      MRI.addRegOperandToUseList(&MO);
174}
175
176void MachineInstr::addOperand(const MachineOperand &Op) {
177  MachineBasicBlock *MBB = getParent();
178  assert(MBB && "Use MachineInstrBuilder to add operands to dangling instrs");
179  MachineFunction *MF = MBB->getParent();
180  assert(MF && "Use MachineInstrBuilder to add operands to dangling instrs");
181  addOperand(*MF, Op);
182}
183
184/// Move NumOps MachineOperands from Src to Dst, with support for overlapping
185/// ranges. If MRI is non-null also update use-def chains.
186static void moveOperands(MachineOperand *Dst, MachineOperand *Src,
187                         unsigned NumOps, MachineRegisterInfo *MRI) {
188  if (MRI)
189    return MRI->moveOperands(Dst, Src, NumOps);
190  // MachineOperand is a trivially copyable type so we can just use memmove.
191  assert(Dst && Src && "Unknown operands");
192  std::memmove(Dst, Src, NumOps * sizeof(MachineOperand));
193}
194
195/// addOperand - Add the specified operand to the instruction.  If it is an
196/// implicit operand, it is added to the end of the operand list.  If it is
197/// an explicit operand it is added at the end of the explicit operand list
198/// (before the first implicit operand).
199void MachineInstr::addOperand(MachineFunction &MF, const MachineOperand &Op) {
200  assert(MCID && "Cannot add operands before providing an instr descriptor");
201
202  // Check if we're adding one of our existing operands.
203  if (&Op >= Operands && &Op < Operands + NumOperands) {
204    // This is unusual: MI->addOperand(MI->getOperand(i)).
205    // If adding Op requires reallocating or moving existing operands around,
206    // the Op reference could go stale. Support it by copying Op.
207    MachineOperand CopyOp(Op);
208    return addOperand(MF, CopyOp);
209  }
210
211  // Find the insert location for the new operand.  Implicit registers go at
212  // the end, everything else goes before the implicit regs.
213  //
214  // FIXME: Allow mixed explicit and implicit operands on inline asm.
215  // InstrEmitter::EmitSpecialNode() is marking inline asm clobbers as
216  // implicit-defs, but they must not be moved around.  See the FIXME in
217  // InstrEmitter.cpp.
218  unsigned OpNo = getNumOperands();
219  bool isImpReg = Op.isReg() && Op.isImplicit();
220  if (!isImpReg && !isInlineAsm()) {
221    while (OpNo && Operands[OpNo-1].isReg() && Operands[OpNo-1].isImplicit()) {
222      --OpNo;
223      assert(!Operands[OpNo].isTied() && "Cannot move tied operands");
224    }
225  }
226
227#ifndef NDEBUG
228  bool isDebugOp = Op.getType() == MachineOperand::MO_Metadata ||
229                   Op.getType() == MachineOperand::MO_MCSymbol;
230  // OpNo now points as the desired insertion point.  Unless this is a variadic
231  // instruction, only implicit regs are allowed beyond MCID->getNumOperands().
232  // RegMask operands go between the explicit and implicit operands.
233  assert((isImpReg || Op.isRegMask() || MCID->isVariadic() ||
234          OpNo < MCID->getNumOperands() || isDebugOp) &&
235         "Trying to add an operand to a machine instr that is already done!");
236#endif
237
238  MachineRegisterInfo *MRI = getRegInfo();
239
240  // Determine if the Operands array needs to be reallocated.
241  // Save the old capacity and operand array.
242  OperandCapacity OldCap = CapOperands;
243  MachineOperand *OldOperands = Operands;
244  if (!OldOperands || OldCap.getSize() == getNumOperands()) {
245    CapOperands = OldOperands ? OldCap.getNext() : OldCap.get(1);
246    Operands = MF.allocateOperandArray(CapOperands);
247    // Move the operands before the insertion point.
248    if (OpNo)
249      moveOperands(Operands, OldOperands, OpNo, MRI);
250  }
251
252  // Move the operands following the insertion point.
253  if (OpNo != NumOperands)
254    moveOperands(Operands + OpNo + 1, OldOperands + OpNo, NumOperands - OpNo,
255                 MRI);
256  ++NumOperands;
257
258  // Deallocate the old operand array.
259  if (OldOperands != Operands && OldOperands)
260    MF.deallocateOperandArray(OldCap, OldOperands);
261
262  // Copy Op into place. It still needs to be inserted into the MRI use lists.
263  MachineOperand *NewMO = new (Operands + OpNo) MachineOperand(Op);
264  NewMO->ParentMI = this;
265
266  // When adding a register operand, tell MRI about it.
267  if (NewMO->isReg()) {
268    // Ensure isOnRegUseList() returns false, regardless of Op's status.
269    NewMO->Contents.Reg.Prev = nullptr;
270    // Ignore existing ties. This is not a property that can be copied.
271    NewMO->TiedTo = 0;
272    // Add the new operand to MRI, but only for instructions in an MBB.
273    if (MRI)
274      MRI->addRegOperandToUseList(NewMO);
275    // The MCID operand information isn't accurate until we start adding
276    // explicit operands. The implicit operands are added first, then the
277    // explicits are inserted before them.
278    if (!isImpReg) {
279      // Tie uses to defs as indicated in MCInstrDesc.
280      if (NewMO->isUse()) {
281        int DefIdx = MCID->getOperandConstraint(OpNo, MCOI::TIED_TO);
282        if (DefIdx != -1)
283          tieOperands(DefIdx, OpNo);
284      }
285      // If the register operand is flagged as early, mark the operand as such.
286      if (MCID->getOperandConstraint(OpNo, MCOI::EARLY_CLOBBER) != -1)
287        NewMO->setIsEarlyClobber(true);
288    }
289  }
290}
291
292/// RemoveOperand - Erase an operand  from an instruction, leaving it with one
293/// fewer operand than it started with.
294///
295void MachineInstr::RemoveOperand(unsigned OpNo) {
296  assert(OpNo < getNumOperands() && "Invalid operand number");
297  untieRegOperand(OpNo);
298
299#ifndef NDEBUG
300  // Moving tied operands would break the ties.
301  for (unsigned i = OpNo + 1, e = getNumOperands(); i != e; ++i)
302    if (Operands[i].isReg())
303      assert(!Operands[i].isTied() && "Cannot move tied operands");
304#endif
305
306  MachineRegisterInfo *MRI = getRegInfo();
307  if (MRI && Operands[OpNo].isReg())
308    MRI->removeRegOperandFromUseList(Operands + OpNo);
309
310  // Don't call the MachineOperand destructor. A lot of this code depends on
311  // MachineOperand having a trivial destructor anyway, and adding a call here
312  // wouldn't make it 'destructor-correct'.
313
314  if (unsigned N = NumOperands - 1 - OpNo)
315    moveOperands(Operands + OpNo, Operands + OpNo + 1, N, MRI);
316  --NumOperands;
317}
318
319void MachineInstr::setExtraInfo(MachineFunction &MF,
320                                ArrayRef<MachineMemOperand *> MMOs,
321                                MCSymbol *PreInstrSymbol,
322                                MCSymbol *PostInstrSymbol,
323                                MDNode *HeapAllocMarker) {
324  bool HasPreInstrSymbol = PreInstrSymbol != nullptr;
325  bool HasPostInstrSymbol = PostInstrSymbol != nullptr;
326  bool HasHeapAllocMarker = HeapAllocMarker != nullptr;
327  int NumPointers =
328      MMOs.size() + HasPreInstrSymbol + HasPostInstrSymbol + HasHeapAllocMarker;
329
330  // Drop all extra info if there is none.
331  if (NumPointers <= 0) {
332    Info.clear();
333    return;
334  }
335
336  // If more than one pointer, then store out of line. Store heap alloc markers
337  // out of line because PointerSumType cannot hold more than 4 tag types with
338  // 32-bit pointers.
339  // FIXME: Maybe we should make the symbols in the extra info mutable?
340  else if (NumPointers > 1 || HasHeapAllocMarker) {
341    Info.set<EIIK_OutOfLine>(MF.createMIExtraInfo(
342        MMOs, PreInstrSymbol, PostInstrSymbol, HeapAllocMarker));
343    return;
344  }
345
346  // Otherwise store the single pointer inline.
347  if (HasPreInstrSymbol)
348    Info.set<EIIK_PreInstrSymbol>(PreInstrSymbol);
349  else if (HasPostInstrSymbol)
350    Info.set<EIIK_PostInstrSymbol>(PostInstrSymbol);
351  else
352    Info.set<EIIK_MMO>(MMOs[0]);
353}
354
355void MachineInstr::dropMemRefs(MachineFunction &MF) {
356  if (memoperands_empty())
357    return;
358
359  setExtraInfo(MF, {}, getPreInstrSymbol(), getPostInstrSymbol(),
360               getHeapAllocMarker());
361}
362
363void MachineInstr::setMemRefs(MachineFunction &MF,
364                              ArrayRef<MachineMemOperand *> MMOs) {
365  if (MMOs.empty()) {
366    dropMemRefs(MF);
367    return;
368  }
369
370  setExtraInfo(MF, MMOs, getPreInstrSymbol(), getPostInstrSymbol(),
371               getHeapAllocMarker());
372}
373
374void MachineInstr::addMemOperand(MachineFunction &MF,
375                                 MachineMemOperand *MO) {
376  SmallVector<MachineMemOperand *, 2> MMOs;
377  MMOs.append(memoperands_begin(), memoperands_end());
378  MMOs.push_back(MO);
379  setMemRefs(MF, MMOs);
380}
381
382void MachineInstr::cloneMemRefs(MachineFunction &MF, const MachineInstr &MI) {
383  if (this == &MI)
384    // Nothing to do for a self-clone!
385    return;
386
387  assert(&MF == MI.getMF() &&
388         "Invalid machine functions when cloning memory refrences!");
389  // See if we can just steal the extra info already allocated for the
390  // instruction. We can do this whenever the pre- and post-instruction symbols
391  // are the same (including null).
392  if (getPreInstrSymbol() == MI.getPreInstrSymbol() &&
393      getPostInstrSymbol() == MI.getPostInstrSymbol() &&
394      getHeapAllocMarker() == MI.getHeapAllocMarker()) {
395    Info = MI.Info;
396    return;
397  }
398
399  // Otherwise, fall back on a copy-based clone.
400  setMemRefs(MF, MI.memoperands());
401}
402
403/// Check to see if the MMOs pointed to by the two MemRefs arrays are
404/// identical.
405static bool hasIdenticalMMOs(ArrayRef<MachineMemOperand *> LHS,
406                             ArrayRef<MachineMemOperand *> RHS) {
407  if (LHS.size() != RHS.size())
408    return false;
409
410  auto LHSPointees = make_pointee_range(LHS);
411  auto RHSPointees = make_pointee_range(RHS);
412  return std::equal(LHSPointees.begin(), LHSPointees.end(),
413                    RHSPointees.begin());
414}
415
416void MachineInstr::cloneMergedMemRefs(MachineFunction &MF,
417                                      ArrayRef<const MachineInstr *> MIs) {
418  // Try handling easy numbers of MIs with simpler mechanisms.
419  if (MIs.empty()) {
420    dropMemRefs(MF);
421    return;
422  }
423  if (MIs.size() == 1) {
424    cloneMemRefs(MF, *MIs[0]);
425    return;
426  }
427  // Because an empty memoperands list provides *no* information and must be
428  // handled conservatively (assuming the instruction can do anything), the only
429  // way to merge with it is to drop all other memoperands.
430  if (MIs[0]->memoperands_empty()) {
431    dropMemRefs(MF);
432    return;
433  }
434
435  // Handle the general case.
436  SmallVector<MachineMemOperand *, 2> MergedMMOs;
437  // Start with the first instruction.
438  assert(&MF == MIs[0]->getMF() &&
439         "Invalid machine functions when cloning memory references!");
440  MergedMMOs.append(MIs[0]->memoperands_begin(), MIs[0]->memoperands_end());
441  // Now walk all the other instructions and accumulate any different MMOs.
442  for (const MachineInstr &MI : make_pointee_range(MIs.slice(1))) {
443    assert(&MF == MI.getMF() &&
444           "Invalid machine functions when cloning memory references!");
445
446    // Skip MIs with identical operands to the first. This is a somewhat
447    // arbitrary hack but will catch common cases without being quadratic.
448    // TODO: We could fully implement merge semantics here if needed.
449    if (hasIdenticalMMOs(MIs[0]->memoperands(), MI.memoperands()))
450      continue;
451
452    // Because an empty memoperands list provides *no* information and must be
453    // handled conservatively (assuming the instruction can do anything), the
454    // only way to merge with it is to drop all other memoperands.
455    if (MI.memoperands_empty()) {
456      dropMemRefs(MF);
457      return;
458    }
459
460    // Otherwise accumulate these into our temporary buffer of the merged state.
461    MergedMMOs.append(MI.memoperands_begin(), MI.memoperands_end());
462  }
463
464  setMemRefs(MF, MergedMMOs);
465}
466
467void MachineInstr::setPreInstrSymbol(MachineFunction &MF, MCSymbol *Symbol) {
468  // Do nothing if old and new symbols are the same.
469  if (Symbol == getPreInstrSymbol())
470    return;
471
472  // If there was only one symbol and we're removing it, just clear info.
473  if (!Symbol && Info.is<EIIK_PreInstrSymbol>()) {
474    Info.clear();
475    return;
476  }
477
478  setExtraInfo(MF, memoperands(), Symbol, getPostInstrSymbol(),
479               getHeapAllocMarker());
480}
481
482void MachineInstr::setPostInstrSymbol(MachineFunction &MF, MCSymbol *Symbol) {
483  // Do nothing if old and new symbols are the same.
484  if (Symbol == getPostInstrSymbol())
485    return;
486
487  // If there was only one symbol and we're removing it, just clear info.
488  if (!Symbol && Info.is<EIIK_PostInstrSymbol>()) {
489    Info.clear();
490    return;
491  }
492
493  setExtraInfo(MF, memoperands(), getPreInstrSymbol(), Symbol,
494               getHeapAllocMarker());
495}
496
497void MachineInstr::setHeapAllocMarker(MachineFunction &MF, MDNode *Marker) {
498  // Do nothing if old and new symbols are the same.
499  if (Marker == getHeapAllocMarker())
500    return;
501
502  setExtraInfo(MF, memoperands(), getPreInstrSymbol(), getPostInstrSymbol(),
503               Marker);
504}
505
506void MachineInstr::cloneInstrSymbols(MachineFunction &MF,
507                                     const MachineInstr &MI) {
508  if (this == &MI)
509    // Nothing to do for a self-clone!
510    return;
511
512  assert(&MF == MI.getMF() &&
513         "Invalid machine functions when cloning instruction symbols!");
514
515  setPreInstrSymbol(MF, MI.getPreInstrSymbol());
516  setPostInstrSymbol(MF, MI.getPostInstrSymbol());
517  setHeapAllocMarker(MF, MI.getHeapAllocMarker());
518}
519
520uint16_t MachineInstr::mergeFlagsWith(const MachineInstr &Other) const {
521  // For now, the just return the union of the flags. If the flags get more
522  // complicated over time, we might need more logic here.
523  return getFlags() | Other.getFlags();
524}
525
526uint16_t MachineInstr::copyFlagsFromInstruction(const Instruction &I) {
527  uint16_t MIFlags = 0;
528  // Copy the wrapping flags.
529  if (const OverflowingBinaryOperator *OB =
530          dyn_cast<OverflowingBinaryOperator>(&I)) {
531    if (OB->hasNoSignedWrap())
532      MIFlags |= MachineInstr::MIFlag::NoSWrap;
533    if (OB->hasNoUnsignedWrap())
534      MIFlags |= MachineInstr::MIFlag::NoUWrap;
535  }
536
537  // Copy the exact flag.
538  if (const PossiblyExactOperator *PE = dyn_cast<PossiblyExactOperator>(&I))
539    if (PE->isExact())
540      MIFlags |= MachineInstr::MIFlag::IsExact;
541
542  // Copy the fast-math flags.
543  if (const FPMathOperator *FP = dyn_cast<FPMathOperator>(&I)) {
544    const FastMathFlags Flags = FP->getFastMathFlags();
545    if (Flags.noNaNs())
546      MIFlags |= MachineInstr::MIFlag::FmNoNans;
547    if (Flags.noInfs())
548      MIFlags |= MachineInstr::MIFlag::FmNoInfs;
549    if (Flags.noSignedZeros())
550      MIFlags |= MachineInstr::MIFlag::FmNsz;
551    if (Flags.allowReciprocal())
552      MIFlags |= MachineInstr::MIFlag::FmArcp;
553    if (Flags.allowContract())
554      MIFlags |= MachineInstr::MIFlag::FmContract;
555    if (Flags.approxFunc())
556      MIFlags |= MachineInstr::MIFlag::FmAfn;
557    if (Flags.allowReassoc())
558      MIFlags |= MachineInstr::MIFlag::FmReassoc;
559  }
560
561  return MIFlags;
562}
563
564void MachineInstr::copyIRFlags(const Instruction &I) {
565  Flags = copyFlagsFromInstruction(I);
566}
567
568bool MachineInstr::hasPropertyInBundle(uint64_t Mask, QueryType Type) const {
569  assert(!isBundledWithPred() && "Must be called on bundle header");
570  for (MachineBasicBlock::const_instr_iterator MII = getIterator();; ++MII) {
571    if (MII->getDesc().getFlags() & Mask) {
572      if (Type == AnyInBundle)
573        return true;
574    } else {
575      if (Type == AllInBundle && !MII->isBundle())
576        return false;
577    }
578    // This was the last instruction in the bundle.
579    if (!MII->isBundledWithSucc())
580      return Type == AllInBundle;
581  }
582}
583
584bool MachineInstr::isIdenticalTo(const MachineInstr &Other,
585                                 MICheckType Check) const {
586  // If opcodes or number of operands are not the same then the two
587  // instructions are obviously not identical.
588  if (Other.getOpcode() != getOpcode() ||
589      Other.getNumOperands() != getNumOperands())
590    return false;
591
592  if (isBundle()) {
593    // We have passed the test above that both instructions have the same
594    // opcode, so we know that both instructions are bundles here. Let's compare
595    // MIs inside the bundle.
596    assert(Other.isBundle() && "Expected that both instructions are bundles.");
597    MachineBasicBlock::const_instr_iterator I1 = getIterator();
598    MachineBasicBlock::const_instr_iterator I2 = Other.getIterator();
599    // Loop until we analysed the last intruction inside at least one of the
600    // bundles.
601    while (I1->isBundledWithSucc() && I2->isBundledWithSucc()) {
602      ++I1;
603      ++I2;
604      if (!I1->isIdenticalTo(*I2, Check))
605        return false;
606    }
607    // If we've reached the end of just one of the two bundles, but not both,
608    // the instructions are not identical.
609    if (I1->isBundledWithSucc() || I2->isBundledWithSucc())
610      return false;
611  }
612
613  // Check operands to make sure they match.
614  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
615    const MachineOperand &MO = getOperand(i);
616    const MachineOperand &OMO = Other.getOperand(i);
617    if (!MO.isReg()) {
618      if (!MO.isIdenticalTo(OMO))
619        return false;
620      continue;
621    }
622
623    // Clients may or may not want to ignore defs when testing for equality.
624    // For example, machine CSE pass only cares about finding common
625    // subexpressions, so it's safe to ignore virtual register defs.
626    if (MO.isDef()) {
627      if (Check == IgnoreDefs)
628        continue;
629      else if (Check == IgnoreVRegDefs) {
630        if (!Register::isVirtualRegister(MO.getReg()) ||
631            !Register::isVirtualRegister(OMO.getReg()))
632          if (!MO.isIdenticalTo(OMO))
633            return false;
634      } else {
635        if (!MO.isIdenticalTo(OMO))
636          return false;
637        if (Check == CheckKillDead && MO.isDead() != OMO.isDead())
638          return false;
639      }
640    } else {
641      if (!MO.isIdenticalTo(OMO))
642        return false;
643      if (Check == CheckKillDead && MO.isKill() != OMO.isKill())
644        return false;
645    }
646  }
647  // If DebugLoc does not match then two debug instructions are not identical.
648  if (isDebugInstr())
649    if (getDebugLoc() && Other.getDebugLoc() &&
650        getDebugLoc() != Other.getDebugLoc())
651      return false;
652  return true;
653}
654
655const MachineFunction *MachineInstr::getMF() const {
656  return getParent()->getParent();
657}
658
659MachineInstr *MachineInstr::removeFromParent() {
660  assert(getParent() && "Not embedded in a basic block!");
661  return getParent()->remove(this);
662}
663
664MachineInstr *MachineInstr::removeFromBundle() {
665  assert(getParent() && "Not embedded in a basic block!");
666  return getParent()->remove_instr(this);
667}
668
669void MachineInstr::eraseFromParent() {
670  assert(getParent() && "Not embedded in a basic block!");
671  getParent()->erase(this);
672}
673
674void MachineInstr::eraseFromParentAndMarkDBGValuesForRemoval() {
675  assert(getParent() && "Not embedded in a basic block!");
676  MachineBasicBlock *MBB = getParent();
677  MachineFunction *MF = MBB->getParent();
678  assert(MF && "Not embedded in a function!");
679
680  MachineInstr *MI = (MachineInstr *)this;
681  MachineRegisterInfo &MRI = MF->getRegInfo();
682
683  for (const MachineOperand &MO : MI->operands()) {
684    if (!MO.isReg() || !MO.isDef())
685      continue;
686    Register Reg = MO.getReg();
687    if (!Reg.isVirtual())
688      continue;
689    MRI.markUsesInDebugValueAsUndef(Reg);
690  }
691  MI->eraseFromParent();
692}
693
694void MachineInstr::eraseFromBundle() {
695  assert(getParent() && "Not embedded in a basic block!");
696  getParent()->erase_instr(this);
697}
698
699unsigned MachineInstr::getNumExplicitOperands() const {
700  unsigned NumOperands = MCID->getNumOperands();
701  if (!MCID->isVariadic())
702    return NumOperands;
703
704  for (unsigned I = NumOperands, E = getNumOperands(); I != E; ++I) {
705    const MachineOperand &MO = getOperand(I);
706    // The operands must always be in the following order:
707    // - explicit reg defs,
708    // - other explicit operands (reg uses, immediates, etc.),
709    // - implicit reg defs
710    // - implicit reg uses
711    if (MO.isReg() && MO.isImplicit())
712      break;
713    ++NumOperands;
714  }
715  return NumOperands;
716}
717
718unsigned MachineInstr::getNumExplicitDefs() const {
719  unsigned NumDefs = MCID->getNumDefs();
720  if (!MCID->isVariadic())
721    return NumDefs;
722
723  for (unsigned I = NumDefs, E = getNumOperands(); I != E; ++I) {
724    const MachineOperand &MO = getOperand(I);
725    if (!MO.isReg() || !MO.isDef() || MO.isImplicit())
726      break;
727    ++NumDefs;
728  }
729  return NumDefs;
730}
731
732void MachineInstr::bundleWithPred() {
733  assert(!isBundledWithPred() && "MI is already bundled with its predecessor");
734  setFlag(BundledPred);
735  MachineBasicBlock::instr_iterator Pred = getIterator();
736  --Pred;
737  assert(!Pred->isBundledWithSucc() && "Inconsistent bundle flags");
738  Pred->setFlag(BundledSucc);
739}
740
741void MachineInstr::bundleWithSucc() {
742  assert(!isBundledWithSucc() && "MI is already bundled with its successor");
743  setFlag(BundledSucc);
744  MachineBasicBlock::instr_iterator Succ = getIterator();
745  ++Succ;
746  assert(!Succ->isBundledWithPred() && "Inconsistent bundle flags");
747  Succ->setFlag(BundledPred);
748}
749
750void MachineInstr::unbundleFromPred() {
751  assert(isBundledWithPred() && "MI isn't bundled with its predecessor");
752  clearFlag(BundledPred);
753  MachineBasicBlock::instr_iterator Pred = getIterator();
754  --Pred;
755  assert(Pred->isBundledWithSucc() && "Inconsistent bundle flags");
756  Pred->clearFlag(BundledSucc);
757}
758
759void MachineInstr::unbundleFromSucc() {
760  assert(isBundledWithSucc() && "MI isn't bundled with its successor");
761  clearFlag(BundledSucc);
762  MachineBasicBlock::instr_iterator Succ = getIterator();
763  ++Succ;
764  assert(Succ->isBundledWithPred() && "Inconsistent bundle flags");
765  Succ->clearFlag(BundledPred);
766}
767
768bool MachineInstr::isStackAligningInlineAsm() const {
769  if (isInlineAsm()) {
770    unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
771    if (ExtraInfo & InlineAsm::Extra_IsAlignStack)
772      return true;
773  }
774  return false;
775}
776
777InlineAsm::AsmDialect MachineInstr::getInlineAsmDialect() const {
778  assert(isInlineAsm() && "getInlineAsmDialect() only works for inline asms!");
779  unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
780  return InlineAsm::AsmDialect((ExtraInfo & InlineAsm::Extra_AsmDialect) != 0);
781}
782
783int MachineInstr::findInlineAsmFlagIdx(unsigned OpIdx,
784                                       unsigned *GroupNo) const {
785  assert(isInlineAsm() && "Expected an inline asm instruction");
786  assert(OpIdx < getNumOperands() && "OpIdx out of range");
787
788  // Ignore queries about the initial operands.
789  if (OpIdx < InlineAsm::MIOp_FirstOperand)
790    return -1;
791
792  unsigned Group = 0;
793  unsigned NumOps;
794  for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e;
795       i += NumOps) {
796    const MachineOperand &FlagMO = getOperand(i);
797    // If we reach the implicit register operands, stop looking.
798    if (!FlagMO.isImm())
799      return -1;
800    NumOps = 1 + InlineAsm::getNumOperandRegisters(FlagMO.getImm());
801    if (i + NumOps > OpIdx) {
802      if (GroupNo)
803        *GroupNo = Group;
804      return i;
805    }
806    ++Group;
807  }
808  return -1;
809}
810
811const DILabel *MachineInstr::getDebugLabel() const {
812  assert(isDebugLabel() && "not a DBG_LABEL");
813  return cast<DILabel>(getOperand(0).getMetadata());
814}
815
816const DILocalVariable *MachineInstr::getDebugVariable() const {
817  assert(isDebugValue() && "not a DBG_VALUE");
818  return cast<DILocalVariable>(getOperand(2).getMetadata());
819}
820
821const DIExpression *MachineInstr::getDebugExpression() const {
822  assert(isDebugValue() && "not a DBG_VALUE");
823  return cast<DIExpression>(getOperand(3).getMetadata());
824}
825
826bool MachineInstr::isDebugEntryValue() const {
827  return isDebugValue() && getDebugExpression()->isEntryValue();
828}
829
830const TargetRegisterClass*
831MachineInstr::getRegClassConstraint(unsigned OpIdx,
832                                    const TargetInstrInfo *TII,
833                                    const TargetRegisterInfo *TRI) const {
834  assert(getParent() && "Can't have an MBB reference here!");
835  assert(getMF() && "Can't have an MF reference here!");
836  const MachineFunction &MF = *getMF();
837
838  // Most opcodes have fixed constraints in their MCInstrDesc.
839  if (!isInlineAsm())
840    return TII->getRegClass(getDesc(), OpIdx, TRI, MF);
841
842  if (!getOperand(OpIdx).isReg())
843    return nullptr;
844
845  // For tied uses on inline asm, get the constraint from the def.
846  unsigned DefIdx;
847  if (getOperand(OpIdx).isUse() && isRegTiedToDefOperand(OpIdx, &DefIdx))
848    OpIdx = DefIdx;
849
850  // Inline asm stores register class constraints in the flag word.
851  int FlagIdx = findInlineAsmFlagIdx(OpIdx);
852  if (FlagIdx < 0)
853    return nullptr;
854
855  unsigned Flag = getOperand(FlagIdx).getImm();
856  unsigned RCID;
857  if ((InlineAsm::getKind(Flag) == InlineAsm::Kind_RegUse ||
858       InlineAsm::getKind(Flag) == InlineAsm::Kind_RegDef ||
859       InlineAsm::getKind(Flag) == InlineAsm::Kind_RegDefEarlyClobber) &&
860      InlineAsm::hasRegClassConstraint(Flag, RCID))
861    return TRI->getRegClass(RCID);
862
863  // Assume that all registers in a memory operand are pointers.
864  if (InlineAsm::getKind(Flag) == InlineAsm::Kind_Mem)
865    return TRI->getPointerRegClass(MF);
866
867  return nullptr;
868}
869
870const TargetRegisterClass *MachineInstr::getRegClassConstraintEffectForVReg(
871    Register Reg, const TargetRegisterClass *CurRC, const TargetInstrInfo *TII,
872    const TargetRegisterInfo *TRI, bool ExploreBundle) const {
873  // Check every operands inside the bundle if we have
874  // been asked to.
875  if (ExploreBundle)
876    for (ConstMIBundleOperands OpndIt(*this); OpndIt.isValid() && CurRC;
877         ++OpndIt)
878      CurRC = OpndIt->getParent()->getRegClassConstraintEffectForVRegImpl(
879          OpndIt.getOperandNo(), Reg, CurRC, TII, TRI);
880  else
881    // Otherwise, just check the current operands.
882    for (unsigned i = 0, e = NumOperands; i < e && CurRC; ++i)
883      CurRC = getRegClassConstraintEffectForVRegImpl(i, Reg, CurRC, TII, TRI);
884  return CurRC;
885}
886
887const TargetRegisterClass *MachineInstr::getRegClassConstraintEffectForVRegImpl(
888    unsigned OpIdx, Register Reg, const TargetRegisterClass *CurRC,
889    const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const {
890  assert(CurRC && "Invalid initial register class");
891  // Check if Reg is constrained by some of its use/def from MI.
892  const MachineOperand &MO = getOperand(OpIdx);
893  if (!MO.isReg() || MO.getReg() != Reg)
894    return CurRC;
895  // If yes, accumulate the constraints through the operand.
896  return getRegClassConstraintEffect(OpIdx, CurRC, TII, TRI);
897}
898
899const TargetRegisterClass *MachineInstr::getRegClassConstraintEffect(
900    unsigned OpIdx, const TargetRegisterClass *CurRC,
901    const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const {
902  const TargetRegisterClass *OpRC = getRegClassConstraint(OpIdx, TII, TRI);
903  const MachineOperand &MO = getOperand(OpIdx);
904  assert(MO.isReg() &&
905         "Cannot get register constraints for non-register operand");
906  assert(CurRC && "Invalid initial register class");
907  if (unsigned SubIdx = MO.getSubReg()) {
908    if (OpRC)
909      CurRC = TRI->getMatchingSuperRegClass(CurRC, OpRC, SubIdx);
910    else
911      CurRC = TRI->getSubClassWithSubReg(CurRC, SubIdx);
912  } else if (OpRC)
913    CurRC = TRI->getCommonSubClass(CurRC, OpRC);
914  return CurRC;
915}
916
917/// Return the number of instructions inside the MI bundle, not counting the
918/// header instruction.
919unsigned MachineInstr::getBundleSize() const {
920  MachineBasicBlock::const_instr_iterator I = getIterator();
921  unsigned Size = 0;
922  while (I->isBundledWithSucc()) {
923    ++Size;
924    ++I;
925  }
926  return Size;
927}
928
929/// Returns true if the MachineInstr has an implicit-use operand of exactly
930/// the given register (not considering sub/super-registers).
931bool MachineInstr::hasRegisterImplicitUseOperand(Register Reg) const {
932  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
933    const MachineOperand &MO = getOperand(i);
934    if (MO.isReg() && MO.isUse() && MO.isImplicit() && MO.getReg() == Reg)
935      return true;
936  }
937  return false;
938}
939
940/// findRegisterUseOperandIdx() - Returns the MachineOperand that is a use of
941/// the specific register or -1 if it is not found. It further tightens
942/// the search criteria to a use that kills the register if isKill is true.
943int MachineInstr::findRegisterUseOperandIdx(
944    Register Reg, bool isKill, const TargetRegisterInfo *TRI) const {
945  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
946    const MachineOperand &MO = getOperand(i);
947    if (!MO.isReg() || !MO.isUse())
948      continue;
949    Register MOReg = MO.getReg();
950    if (!MOReg)
951      continue;
952    if (MOReg == Reg || (TRI && Reg && MOReg && TRI->regsOverlap(MOReg, Reg)))
953      if (!isKill || MO.isKill())
954        return i;
955  }
956  return -1;
957}
958
959/// readsWritesVirtualRegister - Return a pair of bools (reads, writes)
960/// indicating if this instruction reads or writes Reg. This also considers
961/// partial defines.
962std::pair<bool,bool>
963MachineInstr::readsWritesVirtualRegister(Register Reg,
964                                         SmallVectorImpl<unsigned> *Ops) const {
965  bool PartDef = false; // Partial redefine.
966  bool FullDef = false; // Full define.
967  bool Use = false;
968
969  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
970    const MachineOperand &MO = getOperand(i);
971    if (!MO.isReg() || MO.getReg() != Reg)
972      continue;
973    if (Ops)
974      Ops->push_back(i);
975    if (MO.isUse())
976      Use |= !MO.isUndef();
977    else if (MO.getSubReg() && !MO.isUndef())
978      // A partial def undef doesn't count as reading the register.
979      PartDef = true;
980    else
981      FullDef = true;
982  }
983  // A partial redefine uses Reg unless there is also a full define.
984  return std::make_pair(Use || (PartDef && !FullDef), PartDef || FullDef);
985}
986
987/// findRegisterDefOperandIdx() - Returns the operand index that is a def of
988/// the specified register or -1 if it is not found. If isDead is true, defs
989/// that are not dead are skipped. If TargetRegisterInfo is non-null, then it
990/// also checks if there is a def of a super-register.
991int
992MachineInstr::findRegisterDefOperandIdx(Register Reg, bool isDead, bool Overlap,
993                                        const TargetRegisterInfo *TRI) const {
994  bool isPhys = Register::isPhysicalRegister(Reg);
995  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
996    const MachineOperand &MO = getOperand(i);
997    // Accept regmask operands when Overlap is set.
998    // Ignore them when looking for a specific def operand (Overlap == false).
999    if (isPhys && Overlap && MO.isRegMask() && MO.clobbersPhysReg(Reg))
1000      return i;
1001    if (!MO.isReg() || !MO.isDef())
1002      continue;
1003    Register MOReg = MO.getReg();
1004    bool Found = (MOReg == Reg);
1005    if (!Found && TRI && isPhys && Register::isPhysicalRegister(MOReg)) {
1006      if (Overlap)
1007        Found = TRI->regsOverlap(MOReg, Reg);
1008      else
1009        Found = TRI->isSubRegister(MOReg, Reg);
1010    }
1011    if (Found && (!isDead || MO.isDead()))
1012      return i;
1013  }
1014  return -1;
1015}
1016
1017/// findFirstPredOperandIdx() - Find the index of the first operand in the
1018/// operand list that is used to represent the predicate. It returns -1 if
1019/// none is found.
1020int MachineInstr::findFirstPredOperandIdx() const {
1021  // Don't call MCID.findFirstPredOperandIdx() because this variant
1022  // is sometimes called on an instruction that's not yet complete, and
1023  // so the number of operands is less than the MCID indicates. In
1024  // particular, the PTX target does this.
1025  const MCInstrDesc &MCID = getDesc();
1026  if (MCID.isPredicable()) {
1027    for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
1028      if (MCID.OpInfo[i].isPredicate())
1029        return i;
1030  }
1031
1032  return -1;
1033}
1034
1035// MachineOperand::TiedTo is 4 bits wide.
1036const unsigned TiedMax = 15;
1037
1038/// tieOperands - Mark operands at DefIdx and UseIdx as tied to each other.
1039///
1040/// Use and def operands can be tied together, indicated by a non-zero TiedTo
1041/// field. TiedTo can have these values:
1042///
1043/// 0:              Operand is not tied to anything.
1044/// 1 to TiedMax-1: Tied to getOperand(TiedTo-1).
1045/// TiedMax:        Tied to an operand >= TiedMax-1.
1046///
1047/// The tied def must be one of the first TiedMax operands on a normal
1048/// instruction. INLINEASM instructions allow more tied defs.
1049///
1050void MachineInstr::tieOperands(unsigned DefIdx, unsigned UseIdx) {
1051  MachineOperand &DefMO = getOperand(DefIdx);
1052  MachineOperand &UseMO = getOperand(UseIdx);
1053  assert(DefMO.isDef() && "DefIdx must be a def operand");
1054  assert(UseMO.isUse() && "UseIdx must be a use operand");
1055  assert(!DefMO.isTied() && "Def is already tied to another use");
1056  assert(!UseMO.isTied() && "Use is already tied to another def");
1057
1058  if (DefIdx < TiedMax)
1059    UseMO.TiedTo = DefIdx + 1;
1060  else {
1061    // Inline asm can use the group descriptors to find tied operands, but on
1062    // normal instruction, the tied def must be within the first TiedMax
1063    // operands.
1064    assert(isInlineAsm() && "DefIdx out of range");
1065    UseMO.TiedTo = TiedMax;
1066  }
1067
1068  // UseIdx can be out of range, we'll search for it in findTiedOperandIdx().
1069  DefMO.TiedTo = std::min(UseIdx + 1, TiedMax);
1070}
1071
1072/// Given the index of a tied register operand, find the operand it is tied to.
1073/// Defs are tied to uses and vice versa. Returns the index of the tied operand
1074/// which must exist.
1075unsigned MachineInstr::findTiedOperandIdx(unsigned OpIdx) const {
1076  const MachineOperand &MO = getOperand(OpIdx);
1077  assert(MO.isTied() && "Operand isn't tied");
1078
1079  // Normally TiedTo is in range.
1080  if (MO.TiedTo < TiedMax)
1081    return MO.TiedTo - 1;
1082
1083  // Uses on normal instructions can be out of range.
1084  if (!isInlineAsm()) {
1085    // Normal tied defs must be in the 0..TiedMax-1 range.
1086    if (MO.isUse())
1087      return TiedMax - 1;
1088    // MO is a def. Search for the tied use.
1089    for (unsigned i = TiedMax - 1, e = getNumOperands(); i != e; ++i) {
1090      const MachineOperand &UseMO = getOperand(i);
1091      if (UseMO.isReg() && UseMO.isUse() && UseMO.TiedTo == OpIdx + 1)
1092        return i;
1093    }
1094    llvm_unreachable("Can't find tied use");
1095  }
1096
1097  // Now deal with inline asm by parsing the operand group descriptor flags.
1098  // Find the beginning of each operand group.
1099  SmallVector<unsigned, 8> GroupIdx;
1100  unsigned OpIdxGroup = ~0u;
1101  unsigned NumOps;
1102  for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e;
1103       i += NumOps) {
1104    const MachineOperand &FlagMO = getOperand(i);
1105    assert(FlagMO.isImm() && "Invalid tied operand on inline asm");
1106    unsigned CurGroup = GroupIdx.size();
1107    GroupIdx.push_back(i);
1108    NumOps = 1 + InlineAsm::getNumOperandRegisters(FlagMO.getImm());
1109    // OpIdx belongs to this operand group.
1110    if (OpIdx > i && OpIdx < i + NumOps)
1111      OpIdxGroup = CurGroup;
1112    unsigned TiedGroup;
1113    if (!InlineAsm::isUseOperandTiedToDef(FlagMO.getImm(), TiedGroup))
1114      continue;
1115    // Operands in this group are tied to operands in TiedGroup which must be
1116    // earlier. Find the number of operands between the two groups.
1117    unsigned Delta = i - GroupIdx[TiedGroup];
1118
1119    // OpIdx is a use tied to TiedGroup.
1120    if (OpIdxGroup == CurGroup)
1121      return OpIdx - Delta;
1122
1123    // OpIdx is a def tied to this use group.
1124    if (OpIdxGroup == TiedGroup)
1125      return OpIdx + Delta;
1126  }
1127  llvm_unreachable("Invalid tied operand on inline asm");
1128}
1129
1130/// clearKillInfo - Clears kill flags on all operands.
1131///
1132void MachineInstr::clearKillInfo() {
1133  for (MachineOperand &MO : operands()) {
1134    if (MO.isReg() && MO.isUse())
1135      MO.setIsKill(false);
1136  }
1137}
1138
1139void MachineInstr::substituteRegister(Register FromReg, Register ToReg,
1140                                      unsigned SubIdx,
1141                                      const TargetRegisterInfo &RegInfo) {
1142  if (Register::isPhysicalRegister(ToReg)) {
1143    if (SubIdx)
1144      ToReg = RegInfo.getSubReg(ToReg, SubIdx);
1145    for (MachineOperand &MO : operands()) {
1146      if (!MO.isReg() || MO.getReg() != FromReg)
1147        continue;
1148      MO.substPhysReg(ToReg, RegInfo);
1149    }
1150  } else {
1151    for (MachineOperand &MO : operands()) {
1152      if (!MO.isReg() || MO.getReg() != FromReg)
1153        continue;
1154      MO.substVirtReg(ToReg, SubIdx, RegInfo);
1155    }
1156  }
1157}
1158
1159/// isSafeToMove - Return true if it is safe to move this instruction. If
1160/// SawStore is set to true, it means that there is a store (or call) between
1161/// the instruction's location and its intended destination.
1162bool MachineInstr::isSafeToMove(AAResults *AA, bool &SawStore) const {
1163  // Ignore stuff that we obviously can't move.
1164  //
1165  // Treat volatile loads as stores. This is not strictly necessary for
1166  // volatiles, but it is required for atomic loads. It is not allowed to move
1167  // a load across an atomic load with Ordering > Monotonic.
1168  if (mayStore() || isCall() || isPHI() ||
1169      (mayLoad() && hasOrderedMemoryRef())) {
1170    SawStore = true;
1171    return false;
1172  }
1173
1174  if (isPosition() || isDebugInstr() || isTerminator() ||
1175      mayRaiseFPException() || hasUnmodeledSideEffects())
1176    return false;
1177
1178  // See if this instruction does a load.  If so, we have to guarantee that the
1179  // loaded value doesn't change between the load and the its intended
1180  // destination. The check for isInvariantLoad gives the targe the chance to
1181  // classify the load as always returning a constant, e.g. a constant pool
1182  // load.
1183  if (mayLoad() && !isDereferenceableInvariantLoad(AA))
1184    // Otherwise, this is a real load.  If there is a store between the load and
1185    // end of block, we can't move it.
1186    return !SawStore;
1187
1188  return true;
1189}
1190
1191bool MachineInstr::mayAlias(AAResults *AA, const MachineInstr &Other,
1192                            bool UseTBAA) const {
1193  const MachineFunction *MF = getMF();
1194  const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
1195  const MachineFrameInfo &MFI = MF->getFrameInfo();
1196
1197  // If neither instruction stores to memory, they can't alias in any
1198  // meaningful way, even if they read from the same address.
1199  if (!mayStore() && !Other.mayStore())
1200    return false;
1201
1202  // Let the target decide if memory accesses cannot possibly overlap.
1203  if (TII->areMemAccessesTriviallyDisjoint(*this, Other))
1204    return false;
1205
1206  // FIXME: Need to handle multiple memory operands to support all targets.
1207  if (!hasOneMemOperand() || !Other.hasOneMemOperand())
1208    return true;
1209
1210  MachineMemOperand *MMOa = *memoperands_begin();
1211  MachineMemOperand *MMOb = *Other.memoperands_begin();
1212
1213  // The following interface to AA is fashioned after DAGCombiner::isAlias
1214  // and operates with MachineMemOperand offset with some important
1215  // assumptions:
1216  //   - LLVM fundamentally assumes flat address spaces.
1217  //   - MachineOperand offset can *only* result from legalization and
1218  //     cannot affect queries other than the trivial case of overlap
1219  //     checking.
1220  //   - These offsets never wrap and never step outside
1221  //     of allocated objects.
1222  //   - There should never be any negative offsets here.
1223  //
1224  // FIXME: Modify API to hide this math from "user"
1225  // Even before we go to AA we can reason locally about some
1226  // memory objects. It can save compile time, and possibly catch some
1227  // corner cases not currently covered.
1228
1229  int64_t OffsetA = MMOa->getOffset();
1230  int64_t OffsetB = MMOb->getOffset();
1231  int64_t MinOffset = std::min(OffsetA, OffsetB);
1232
1233  uint64_t WidthA = MMOa->getSize();
1234  uint64_t WidthB = MMOb->getSize();
1235  bool KnownWidthA = WidthA != MemoryLocation::UnknownSize;
1236  bool KnownWidthB = WidthB != MemoryLocation::UnknownSize;
1237
1238  const Value *ValA = MMOa->getValue();
1239  const Value *ValB = MMOb->getValue();
1240  bool SameVal = (ValA && ValB && (ValA == ValB));
1241  if (!SameVal) {
1242    const PseudoSourceValue *PSVa = MMOa->getPseudoValue();
1243    const PseudoSourceValue *PSVb = MMOb->getPseudoValue();
1244    if (PSVa && ValB && !PSVa->mayAlias(&MFI))
1245      return false;
1246    if (PSVb && ValA && !PSVb->mayAlias(&MFI))
1247      return false;
1248    if (PSVa && PSVb && (PSVa == PSVb))
1249      SameVal = true;
1250  }
1251
1252  if (SameVal) {
1253    if (!KnownWidthA || !KnownWidthB)
1254      return true;
1255    int64_t MaxOffset = std::max(OffsetA, OffsetB);
1256    int64_t LowWidth = (MinOffset == OffsetA) ? WidthA : WidthB;
1257    return (MinOffset + LowWidth > MaxOffset);
1258  }
1259
1260  if (!AA)
1261    return true;
1262
1263  if (!ValA || !ValB)
1264    return true;
1265
1266  assert((OffsetA >= 0) && "Negative MachineMemOperand offset");
1267  assert((OffsetB >= 0) && "Negative MachineMemOperand offset");
1268
1269  int64_t OverlapA = KnownWidthA ? WidthA + OffsetA - MinOffset
1270                                 : MemoryLocation::UnknownSize;
1271  int64_t OverlapB = KnownWidthB ? WidthB + OffsetB - MinOffset
1272                                 : MemoryLocation::UnknownSize;
1273
1274  AliasResult AAResult = AA->alias(
1275      MemoryLocation(ValA, OverlapA,
1276                     UseTBAA ? MMOa->getAAInfo() : AAMDNodes()),
1277      MemoryLocation(ValB, OverlapB,
1278                     UseTBAA ? MMOb->getAAInfo() : AAMDNodes()));
1279
1280  return (AAResult != NoAlias);
1281}
1282
1283/// hasOrderedMemoryRef - Return true if this instruction may have an ordered
1284/// or volatile memory reference, or if the information describing the memory
1285/// reference is not available. Return false if it is known to have no ordered
1286/// memory references.
1287bool MachineInstr::hasOrderedMemoryRef() const {
1288  // An instruction known never to access memory won't have a volatile access.
1289  if (!mayStore() &&
1290      !mayLoad() &&
1291      !isCall() &&
1292      !hasUnmodeledSideEffects())
1293    return false;
1294
1295  // Otherwise, if the instruction has no memory reference information,
1296  // conservatively assume it wasn't preserved.
1297  if (memoperands_empty())
1298    return true;
1299
1300  // Check if any of our memory operands are ordered.
1301  return llvm::any_of(memoperands(), [](const MachineMemOperand *MMO) {
1302    return !MMO->isUnordered();
1303  });
1304}
1305
1306/// isDereferenceableInvariantLoad - Return true if this instruction will never
1307/// trap and is loading from a location whose value is invariant across a run of
1308/// this function.
1309bool MachineInstr::isDereferenceableInvariantLoad(AAResults *AA) const {
1310  // If the instruction doesn't load at all, it isn't an invariant load.
1311  if (!mayLoad())
1312    return false;
1313
1314  // If the instruction has lost its memoperands, conservatively assume that
1315  // it may not be an invariant load.
1316  if (memoperands_empty())
1317    return false;
1318
1319  const MachineFrameInfo &MFI = getParent()->getParent()->getFrameInfo();
1320
1321  for (MachineMemOperand *MMO : memoperands()) {
1322    if (!MMO->isUnordered())
1323      // If the memory operand has ordering side effects, we can't move the
1324      // instruction.  Such an instruction is technically an invariant load,
1325      // but the caller code would need updated to expect that.
1326      return false;
1327    if (MMO->isStore()) return false;
1328    if (MMO->isInvariant() && MMO->isDereferenceable())
1329      continue;
1330
1331    // A load from a constant PseudoSourceValue is invariant.
1332    if (const PseudoSourceValue *PSV = MMO->getPseudoValue())
1333      if (PSV->isConstant(&MFI))
1334        continue;
1335
1336    if (const Value *V = MMO->getValue()) {
1337      // If we have an AliasAnalysis, ask it whether the memory is constant.
1338      if (AA &&
1339          AA->pointsToConstantMemory(
1340              MemoryLocation(V, MMO->getSize(), MMO->getAAInfo())))
1341        continue;
1342    }
1343
1344    // Otherwise assume conservatively.
1345    return false;
1346  }
1347
1348  // Everything checks out.
1349  return true;
1350}
1351
1352/// isConstantValuePHI - If the specified instruction is a PHI that always
1353/// merges together the same virtual register, return the register, otherwise
1354/// return 0.
1355unsigned MachineInstr::isConstantValuePHI() const {
1356  if (!isPHI())
1357    return 0;
1358  assert(getNumOperands() >= 3 &&
1359         "It's illegal to have a PHI without source operands");
1360
1361  Register Reg = getOperand(1).getReg();
1362  for (unsigned i = 3, e = getNumOperands(); i < e; i += 2)
1363    if (getOperand(i).getReg() != Reg)
1364      return 0;
1365  return Reg;
1366}
1367
1368bool MachineInstr::hasUnmodeledSideEffects() const {
1369  if (hasProperty(MCID::UnmodeledSideEffects))
1370    return true;
1371  if (isInlineAsm()) {
1372    unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
1373    if (ExtraInfo & InlineAsm::Extra_HasSideEffects)
1374      return true;
1375  }
1376
1377  return false;
1378}
1379
1380bool MachineInstr::isLoadFoldBarrier() const {
1381  return mayStore() || isCall() || hasUnmodeledSideEffects();
1382}
1383
1384/// allDefsAreDead - Return true if all the defs of this instruction are dead.
1385///
1386bool MachineInstr::allDefsAreDead() const {
1387  for (const MachineOperand &MO : operands()) {
1388    if (!MO.isReg() || MO.isUse())
1389      continue;
1390    if (!MO.isDead())
1391      return false;
1392  }
1393  return true;
1394}
1395
1396/// copyImplicitOps - Copy implicit register operands from specified
1397/// instruction to this instruction.
1398void MachineInstr::copyImplicitOps(MachineFunction &MF,
1399                                   const MachineInstr &MI) {
1400  for (unsigned i = MI.getDesc().getNumOperands(), e = MI.getNumOperands();
1401       i != e; ++i) {
1402    const MachineOperand &MO = MI.getOperand(i);
1403    if ((MO.isReg() && MO.isImplicit()) || MO.isRegMask())
1404      addOperand(MF, MO);
1405  }
1406}
1407
1408bool MachineInstr::hasComplexRegisterTies() const {
1409  const MCInstrDesc &MCID = getDesc();
1410  for (unsigned I = 0, E = getNumOperands(); I < E; ++I) {
1411    const auto &Operand = getOperand(I);
1412    if (!Operand.isReg() || Operand.isDef())
1413      // Ignore the defined registers as MCID marks only the uses as tied.
1414      continue;
1415    int ExpectedTiedIdx = MCID.getOperandConstraint(I, MCOI::TIED_TO);
1416    int TiedIdx = Operand.isTied() ? int(findTiedOperandIdx(I)) : -1;
1417    if (ExpectedTiedIdx != TiedIdx)
1418      return true;
1419  }
1420  return false;
1421}
1422
1423LLT MachineInstr::getTypeToPrint(unsigned OpIdx, SmallBitVector &PrintedTypes,
1424                                 const MachineRegisterInfo &MRI) const {
1425  const MachineOperand &Op = getOperand(OpIdx);
1426  if (!Op.isReg())
1427    return LLT{};
1428
1429  if (isVariadic() || OpIdx >= getNumExplicitOperands())
1430    return MRI.getType(Op.getReg());
1431
1432  auto &OpInfo = getDesc().OpInfo[OpIdx];
1433  if (!OpInfo.isGenericType())
1434    return MRI.getType(Op.getReg());
1435
1436  if (PrintedTypes[OpInfo.getGenericTypeIndex()])
1437    return LLT{};
1438
1439  LLT TypeToPrint = MRI.getType(Op.getReg());
1440  // Don't mark the type index printed if it wasn't actually printed: maybe
1441  // another operand with the same type index has an actual type attached:
1442  if (TypeToPrint.isValid())
1443    PrintedTypes.set(OpInfo.getGenericTypeIndex());
1444  return TypeToPrint;
1445}
1446
1447#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1448LLVM_DUMP_METHOD void MachineInstr::dump() const {
1449  dbgs() << "  ";
1450  print(dbgs());
1451}
1452#endif
1453
1454void MachineInstr::print(raw_ostream &OS, bool IsStandalone, bool SkipOpers,
1455                         bool SkipDebugLoc, bool AddNewLine,
1456                         const TargetInstrInfo *TII) const {
1457  const Module *M = nullptr;
1458  const Function *F = nullptr;
1459  if (const MachineFunction *MF = getMFIfAvailable(*this)) {
1460    F = &MF->getFunction();
1461    M = F->getParent();
1462    if (!TII)
1463      TII = MF->getSubtarget().getInstrInfo();
1464  }
1465
1466  ModuleSlotTracker MST(M);
1467  if (F)
1468    MST.incorporateFunction(*F);
1469  print(OS, MST, IsStandalone, SkipOpers, SkipDebugLoc, AddNewLine, TII);
1470}
1471
1472void MachineInstr::print(raw_ostream &OS, ModuleSlotTracker &MST,
1473                         bool IsStandalone, bool SkipOpers, bool SkipDebugLoc,
1474                         bool AddNewLine, const TargetInstrInfo *TII) const {
1475  // We can be a bit tidier if we know the MachineFunction.
1476  const MachineFunction *MF = nullptr;
1477  const TargetRegisterInfo *TRI = nullptr;
1478  const MachineRegisterInfo *MRI = nullptr;
1479  const TargetIntrinsicInfo *IntrinsicInfo = nullptr;
1480  tryToGetTargetInfo(*this, TRI, MRI, IntrinsicInfo, TII);
1481
1482  if (isCFIInstruction())
1483    assert(getNumOperands() == 1 && "Expected 1 operand in CFI instruction");
1484
1485  SmallBitVector PrintedTypes(8);
1486  bool ShouldPrintRegisterTies = IsStandalone || hasComplexRegisterTies();
1487  auto getTiedOperandIdx = [&](unsigned OpIdx) {
1488    if (!ShouldPrintRegisterTies)
1489      return 0U;
1490    const MachineOperand &MO = getOperand(OpIdx);
1491    if (MO.isReg() && MO.isTied() && !MO.isDef())
1492      return findTiedOperandIdx(OpIdx);
1493    return 0U;
1494  };
1495  unsigned StartOp = 0;
1496  unsigned e = getNumOperands();
1497
1498  // Print explicitly defined operands on the left of an assignment syntax.
1499  while (StartOp < e) {
1500    const MachineOperand &MO = getOperand(StartOp);
1501    if (!MO.isReg() || !MO.isDef() || MO.isImplicit())
1502      break;
1503
1504    if (StartOp != 0)
1505      OS << ", ";
1506
1507    LLT TypeToPrint = MRI ? getTypeToPrint(StartOp, PrintedTypes, *MRI) : LLT{};
1508    unsigned TiedOperandIdx = getTiedOperandIdx(StartOp);
1509    MO.print(OS, MST, TypeToPrint, StartOp, /*PrintDef=*/false, IsStandalone,
1510             ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo);
1511    ++StartOp;
1512  }
1513
1514  if (StartOp != 0)
1515    OS << " = ";
1516
1517  if (getFlag(MachineInstr::FrameSetup))
1518    OS << "frame-setup ";
1519  if (getFlag(MachineInstr::FrameDestroy))
1520    OS << "frame-destroy ";
1521  if (getFlag(MachineInstr::FmNoNans))
1522    OS << "nnan ";
1523  if (getFlag(MachineInstr::FmNoInfs))
1524    OS << "ninf ";
1525  if (getFlag(MachineInstr::FmNsz))
1526    OS << "nsz ";
1527  if (getFlag(MachineInstr::FmArcp))
1528    OS << "arcp ";
1529  if (getFlag(MachineInstr::FmContract))
1530    OS << "contract ";
1531  if (getFlag(MachineInstr::FmAfn))
1532    OS << "afn ";
1533  if (getFlag(MachineInstr::FmReassoc))
1534    OS << "reassoc ";
1535  if (getFlag(MachineInstr::NoUWrap))
1536    OS << "nuw ";
1537  if (getFlag(MachineInstr::NoSWrap))
1538    OS << "nsw ";
1539  if (getFlag(MachineInstr::IsExact))
1540    OS << "exact ";
1541  if (getFlag(MachineInstr::NoFPExcept))
1542    OS << "nofpexcept ";
1543
1544  // Print the opcode name.
1545  if (TII)
1546    OS << TII->getName(getOpcode());
1547  else
1548    OS << "UNKNOWN";
1549
1550  if (SkipOpers)
1551    return;
1552
1553  // Print the rest of the operands.
1554  bool FirstOp = true;
1555  unsigned AsmDescOp = ~0u;
1556  unsigned AsmOpCount = 0;
1557
1558  if (isInlineAsm() && e >= InlineAsm::MIOp_FirstOperand) {
1559    // Print asm string.
1560    OS << " ";
1561    const unsigned OpIdx = InlineAsm::MIOp_AsmString;
1562    LLT TypeToPrint = MRI ? getTypeToPrint(OpIdx, PrintedTypes, *MRI) : LLT{};
1563    unsigned TiedOperandIdx = getTiedOperandIdx(OpIdx);
1564    getOperand(OpIdx).print(OS, MST, TypeToPrint, OpIdx, /*PrintDef=*/true, IsStandalone,
1565                            ShouldPrintRegisterTies, TiedOperandIdx, TRI,
1566                            IntrinsicInfo);
1567
1568    // Print HasSideEffects, MayLoad, MayStore, IsAlignStack
1569    unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
1570    if (ExtraInfo & InlineAsm::Extra_HasSideEffects)
1571      OS << " [sideeffect]";
1572    if (ExtraInfo & InlineAsm::Extra_MayLoad)
1573      OS << " [mayload]";
1574    if (ExtraInfo & InlineAsm::Extra_MayStore)
1575      OS << " [maystore]";
1576    if (ExtraInfo & InlineAsm::Extra_IsConvergent)
1577      OS << " [isconvergent]";
1578    if (ExtraInfo & InlineAsm::Extra_IsAlignStack)
1579      OS << " [alignstack]";
1580    if (getInlineAsmDialect() == InlineAsm::AD_ATT)
1581      OS << " [attdialect]";
1582    if (getInlineAsmDialect() == InlineAsm::AD_Intel)
1583      OS << " [inteldialect]";
1584
1585    StartOp = AsmDescOp = InlineAsm::MIOp_FirstOperand;
1586    FirstOp = false;
1587  }
1588
1589  for (unsigned i = StartOp, e = getNumOperands(); i != e; ++i) {
1590    const MachineOperand &MO = getOperand(i);
1591
1592    if (FirstOp) FirstOp = false; else OS << ",";
1593    OS << " ";
1594
1595    if (isDebugValue() && MO.isMetadata()) {
1596      // Pretty print DBG_VALUE instructions.
1597      auto *DIV = dyn_cast<DILocalVariable>(MO.getMetadata());
1598      if (DIV && !DIV->getName().empty())
1599        OS << "!\"" << DIV->getName() << '\"';
1600      else {
1601        LLT TypeToPrint = MRI ? getTypeToPrint(i, PrintedTypes, *MRI) : LLT{};
1602        unsigned TiedOperandIdx = getTiedOperandIdx(i);
1603        MO.print(OS, MST, TypeToPrint, i, /*PrintDef=*/true, IsStandalone,
1604                 ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo);
1605      }
1606    } else if (isDebugLabel() && MO.isMetadata()) {
1607      // Pretty print DBG_LABEL instructions.
1608      auto *DIL = dyn_cast<DILabel>(MO.getMetadata());
1609      if (DIL && !DIL->getName().empty())
1610        OS << "\"" << DIL->getName() << '\"';
1611      else {
1612        LLT TypeToPrint = MRI ? getTypeToPrint(i, PrintedTypes, *MRI) : LLT{};
1613        unsigned TiedOperandIdx = getTiedOperandIdx(i);
1614        MO.print(OS, MST, TypeToPrint, i, /*PrintDef=*/true, IsStandalone,
1615                 ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo);
1616      }
1617    } else if (i == AsmDescOp && MO.isImm()) {
1618      // Pretty print the inline asm operand descriptor.
1619      OS << '$' << AsmOpCount++;
1620      unsigned Flag = MO.getImm();
1621      switch (InlineAsm::getKind(Flag)) {
1622      case InlineAsm::Kind_RegUse:             OS << ":[reguse"; break;
1623      case InlineAsm::Kind_RegDef:             OS << ":[regdef"; break;
1624      case InlineAsm::Kind_RegDefEarlyClobber: OS << ":[regdef-ec"; break;
1625      case InlineAsm::Kind_Clobber:            OS << ":[clobber"; break;
1626      case InlineAsm::Kind_Imm:                OS << ":[imm"; break;
1627      case InlineAsm::Kind_Mem:                OS << ":[mem"; break;
1628      default: OS << ":[??" << InlineAsm::getKind(Flag); break;
1629      }
1630
1631      unsigned RCID = 0;
1632      if (!InlineAsm::isImmKind(Flag) && !InlineAsm::isMemKind(Flag) &&
1633          InlineAsm::hasRegClassConstraint(Flag, RCID)) {
1634        if (TRI) {
1635          OS << ':' << TRI->getRegClassName(TRI->getRegClass(RCID));
1636        } else
1637          OS << ":RC" << RCID;
1638      }
1639
1640      if (InlineAsm::isMemKind(Flag)) {
1641        unsigned MCID = InlineAsm::getMemoryConstraintID(Flag);
1642        switch (MCID) {
1643        case InlineAsm::Constraint_es: OS << ":es"; break;
1644        case InlineAsm::Constraint_i:  OS << ":i"; break;
1645        case InlineAsm::Constraint_m:  OS << ":m"; break;
1646        case InlineAsm::Constraint_o:  OS << ":o"; break;
1647        case InlineAsm::Constraint_v:  OS << ":v"; break;
1648        case InlineAsm::Constraint_Q:  OS << ":Q"; break;
1649        case InlineAsm::Constraint_R:  OS << ":R"; break;
1650        case InlineAsm::Constraint_S:  OS << ":S"; break;
1651        case InlineAsm::Constraint_T:  OS << ":T"; break;
1652        case InlineAsm::Constraint_Um: OS << ":Um"; break;
1653        case InlineAsm::Constraint_Un: OS << ":Un"; break;
1654        case InlineAsm::Constraint_Uq: OS << ":Uq"; break;
1655        case InlineAsm::Constraint_Us: OS << ":Us"; break;
1656        case InlineAsm::Constraint_Ut: OS << ":Ut"; break;
1657        case InlineAsm::Constraint_Uv: OS << ":Uv"; break;
1658        case InlineAsm::Constraint_Uy: OS << ":Uy"; break;
1659        case InlineAsm::Constraint_X:  OS << ":X"; break;
1660        case InlineAsm::Constraint_Z:  OS << ":Z"; break;
1661        case InlineAsm::Constraint_ZC: OS << ":ZC"; break;
1662        case InlineAsm::Constraint_Zy: OS << ":Zy"; break;
1663        default: OS << ":?"; break;
1664        }
1665      }
1666
1667      unsigned TiedTo = 0;
1668      if (InlineAsm::isUseOperandTiedToDef(Flag, TiedTo))
1669        OS << " tiedto:$" << TiedTo;
1670
1671      OS << ']';
1672
1673      // Compute the index of the next operand descriptor.
1674      AsmDescOp += 1 + InlineAsm::getNumOperandRegisters(Flag);
1675    } else {
1676      LLT TypeToPrint = MRI ? getTypeToPrint(i, PrintedTypes, *MRI) : LLT{};
1677      unsigned TiedOperandIdx = getTiedOperandIdx(i);
1678      if (MO.isImm() && isOperandSubregIdx(i))
1679        MachineOperand::printSubRegIdx(OS, MO.getImm(), TRI);
1680      else
1681        MO.print(OS, MST, TypeToPrint, i, /*PrintDef=*/true, IsStandalone,
1682                 ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo);
1683    }
1684  }
1685
1686  // Print any optional symbols attached to this instruction as-if they were
1687  // operands.
1688  if (MCSymbol *PreInstrSymbol = getPreInstrSymbol()) {
1689    if (!FirstOp) {
1690      FirstOp = false;
1691      OS << ',';
1692    }
1693    OS << " pre-instr-symbol ";
1694    MachineOperand::printSymbol(OS, *PreInstrSymbol);
1695  }
1696  if (MCSymbol *PostInstrSymbol = getPostInstrSymbol()) {
1697    if (!FirstOp) {
1698      FirstOp = false;
1699      OS << ',';
1700    }
1701    OS << " post-instr-symbol ";
1702    MachineOperand::printSymbol(OS, *PostInstrSymbol);
1703  }
1704  if (MDNode *HeapAllocMarker = getHeapAllocMarker()) {
1705    if (!FirstOp) {
1706      FirstOp = false;
1707      OS << ',';
1708    }
1709    OS << " heap-alloc-marker ";
1710    HeapAllocMarker->printAsOperand(OS, MST);
1711  }
1712
1713  if (!SkipDebugLoc) {
1714    if (const DebugLoc &DL = getDebugLoc()) {
1715      if (!FirstOp)
1716        OS << ',';
1717      OS << " debug-location ";
1718      DL->printAsOperand(OS, MST);
1719    }
1720  }
1721
1722  if (!memoperands_empty()) {
1723    SmallVector<StringRef, 0> SSNs;
1724    const LLVMContext *Context = nullptr;
1725    std::unique_ptr<LLVMContext> CtxPtr;
1726    const MachineFrameInfo *MFI = nullptr;
1727    if (const MachineFunction *MF = getMFIfAvailable(*this)) {
1728      MFI = &MF->getFrameInfo();
1729      Context = &MF->getFunction().getContext();
1730    } else {
1731      CtxPtr = std::make_unique<LLVMContext>();
1732      Context = CtxPtr.get();
1733    }
1734
1735    OS << " :: ";
1736    bool NeedComma = false;
1737    for (const MachineMemOperand *Op : memoperands()) {
1738      if (NeedComma)
1739        OS << ", ";
1740      Op->print(OS, MST, SSNs, *Context, MFI, TII);
1741      NeedComma = true;
1742    }
1743  }
1744
1745  if (SkipDebugLoc)
1746    return;
1747
1748  bool HaveSemi = false;
1749
1750  // Print debug location information.
1751  if (const DebugLoc &DL = getDebugLoc()) {
1752    if (!HaveSemi) {
1753      OS << ';';
1754      HaveSemi = true;
1755    }
1756    OS << ' ';
1757    DL.print(OS);
1758  }
1759
1760  // Print extra comments for DEBUG_VALUE.
1761  if (isDebugValue() && getOperand(e - 2).isMetadata()) {
1762    if (!HaveSemi) {
1763      OS << ";";
1764      HaveSemi = true;
1765    }
1766    auto *DV = cast<DILocalVariable>(getOperand(e - 2).getMetadata());
1767    OS << " line no:" <<  DV->getLine();
1768    if (auto *InlinedAt = debugLoc->getInlinedAt()) {
1769      DebugLoc InlinedAtDL(InlinedAt);
1770      if (InlinedAtDL && MF) {
1771        OS << " inlined @[ ";
1772        InlinedAtDL.print(OS);
1773        OS << " ]";
1774      }
1775    }
1776    if (isIndirectDebugValue())
1777      OS << " indirect";
1778  }
1779  // TODO: DBG_LABEL
1780
1781  if (AddNewLine)
1782    OS << '\n';
1783}
1784
1785bool MachineInstr::addRegisterKilled(Register IncomingReg,
1786                                     const TargetRegisterInfo *RegInfo,
1787                                     bool AddIfNotFound) {
1788  bool isPhysReg = Register::isPhysicalRegister(IncomingReg);
1789  bool hasAliases = isPhysReg &&
1790    MCRegAliasIterator(IncomingReg, RegInfo, false).isValid();
1791  bool Found = false;
1792  SmallVector<unsigned,4> DeadOps;
1793  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1794    MachineOperand &MO = getOperand(i);
1795    if (!MO.isReg() || !MO.isUse() || MO.isUndef())
1796      continue;
1797
1798    // DEBUG_VALUE nodes do not contribute to code generation and should
1799    // always be ignored. Failure to do so may result in trying to modify
1800    // KILL flags on DEBUG_VALUE nodes.
1801    if (MO.isDebug())
1802      continue;
1803
1804    Register Reg = MO.getReg();
1805    if (!Reg)
1806      continue;
1807
1808    if (Reg == IncomingReg) {
1809      if (!Found) {
1810        if (MO.isKill())
1811          // The register is already marked kill.
1812          return true;
1813        if (isPhysReg && isRegTiedToDefOperand(i))
1814          // Two-address uses of physregs must not be marked kill.
1815          return true;
1816        MO.setIsKill();
1817        Found = true;
1818      }
1819    } else if (hasAliases && MO.isKill() && Register::isPhysicalRegister(Reg)) {
1820      // A super-register kill already exists.
1821      if (RegInfo->isSuperRegister(IncomingReg, Reg))
1822        return true;
1823      if (RegInfo->isSubRegister(IncomingReg, Reg))
1824        DeadOps.push_back(i);
1825    }
1826  }
1827
1828  // Trim unneeded kill operands.
1829  while (!DeadOps.empty()) {
1830    unsigned OpIdx = DeadOps.back();
1831    if (getOperand(OpIdx).isImplicit() &&
1832        (!isInlineAsm() || findInlineAsmFlagIdx(OpIdx) < 0))
1833      RemoveOperand(OpIdx);
1834    else
1835      getOperand(OpIdx).setIsKill(false);
1836    DeadOps.pop_back();
1837  }
1838
1839  // If not found, this means an alias of one of the operands is killed. Add a
1840  // new implicit operand if required.
1841  if (!Found && AddIfNotFound) {
1842    addOperand(MachineOperand::CreateReg(IncomingReg,
1843                                         false /*IsDef*/,
1844                                         true  /*IsImp*/,
1845                                         true  /*IsKill*/));
1846    return true;
1847  }
1848  return Found;
1849}
1850
1851void MachineInstr::clearRegisterKills(Register Reg,
1852                                      const TargetRegisterInfo *RegInfo) {
1853  if (!Register::isPhysicalRegister(Reg))
1854    RegInfo = nullptr;
1855  for (MachineOperand &MO : operands()) {
1856    if (!MO.isReg() || !MO.isUse() || !MO.isKill())
1857      continue;
1858    Register OpReg = MO.getReg();
1859    if ((RegInfo && RegInfo->regsOverlap(Reg, OpReg)) || Reg == OpReg)
1860      MO.setIsKill(false);
1861  }
1862}
1863
1864bool MachineInstr::addRegisterDead(Register Reg,
1865                                   const TargetRegisterInfo *RegInfo,
1866                                   bool AddIfNotFound) {
1867  bool isPhysReg = Register::isPhysicalRegister(Reg);
1868  bool hasAliases = isPhysReg &&
1869    MCRegAliasIterator(Reg, RegInfo, false).isValid();
1870  bool Found = false;
1871  SmallVector<unsigned,4> DeadOps;
1872  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1873    MachineOperand &MO = getOperand(i);
1874    if (!MO.isReg() || !MO.isDef())
1875      continue;
1876    Register MOReg = MO.getReg();
1877    if (!MOReg)
1878      continue;
1879
1880    if (MOReg == Reg) {
1881      MO.setIsDead();
1882      Found = true;
1883    } else if (hasAliases && MO.isDead() &&
1884               Register::isPhysicalRegister(MOReg)) {
1885      // There exists a super-register that's marked dead.
1886      if (RegInfo->isSuperRegister(Reg, MOReg))
1887        return true;
1888      if (RegInfo->isSubRegister(Reg, MOReg))
1889        DeadOps.push_back(i);
1890    }
1891  }
1892
1893  // Trim unneeded dead operands.
1894  while (!DeadOps.empty()) {
1895    unsigned OpIdx = DeadOps.back();
1896    if (getOperand(OpIdx).isImplicit() &&
1897        (!isInlineAsm() || findInlineAsmFlagIdx(OpIdx) < 0))
1898      RemoveOperand(OpIdx);
1899    else
1900      getOperand(OpIdx).setIsDead(false);
1901    DeadOps.pop_back();
1902  }
1903
1904  // If not found, this means an alias of one of the operands is dead. Add a
1905  // new implicit operand if required.
1906  if (Found || !AddIfNotFound)
1907    return Found;
1908
1909  addOperand(MachineOperand::CreateReg(Reg,
1910                                       true  /*IsDef*/,
1911                                       true  /*IsImp*/,
1912                                       false /*IsKill*/,
1913                                       true  /*IsDead*/));
1914  return true;
1915}
1916
1917void MachineInstr::clearRegisterDeads(Register Reg) {
1918  for (MachineOperand &MO : operands()) {
1919    if (!MO.isReg() || !MO.isDef() || MO.getReg() != Reg)
1920      continue;
1921    MO.setIsDead(false);
1922  }
1923}
1924
1925void MachineInstr::setRegisterDefReadUndef(Register Reg, bool IsUndef) {
1926  for (MachineOperand &MO : operands()) {
1927    if (!MO.isReg() || !MO.isDef() || MO.getReg() != Reg || MO.getSubReg() == 0)
1928      continue;
1929    MO.setIsUndef(IsUndef);
1930  }
1931}
1932
1933void MachineInstr::addRegisterDefined(Register Reg,
1934                                      const TargetRegisterInfo *RegInfo) {
1935  if (Register::isPhysicalRegister(Reg)) {
1936    MachineOperand *MO = findRegisterDefOperand(Reg, false, false, RegInfo);
1937    if (MO)
1938      return;
1939  } else {
1940    for (const MachineOperand &MO : operands()) {
1941      if (MO.isReg() && MO.getReg() == Reg && MO.isDef() &&
1942          MO.getSubReg() == 0)
1943        return;
1944    }
1945  }
1946  addOperand(MachineOperand::CreateReg(Reg,
1947                                       true  /*IsDef*/,
1948                                       true  /*IsImp*/));
1949}
1950
1951void MachineInstr::setPhysRegsDeadExcept(ArrayRef<Register> UsedRegs,
1952                                         const TargetRegisterInfo &TRI) {
1953  bool HasRegMask = false;
1954  for (MachineOperand &MO : operands()) {
1955    if (MO.isRegMask()) {
1956      HasRegMask = true;
1957      continue;
1958    }
1959    if (!MO.isReg() || !MO.isDef()) continue;
1960    Register Reg = MO.getReg();
1961    if (!Reg.isPhysical())
1962      continue;
1963    // If there are no uses, including partial uses, the def is dead.
1964    if (llvm::none_of(UsedRegs,
1965                      [&](MCRegister Use) { return TRI.regsOverlap(Use, Reg); }))
1966      MO.setIsDead();
1967  }
1968
1969  // This is a call with a register mask operand.
1970  // Mask clobbers are always dead, so add defs for the non-dead defines.
1971  if (HasRegMask)
1972    for (ArrayRef<Register>::iterator I = UsedRegs.begin(), E = UsedRegs.end();
1973         I != E; ++I)
1974      addRegisterDefined(*I, &TRI);
1975}
1976
1977unsigned
1978MachineInstrExpressionTrait::getHashValue(const MachineInstr* const &MI) {
1979  // Build up a buffer of hash code components.
1980  SmallVector<size_t, 16> HashComponents;
1981  HashComponents.reserve(MI->getNumOperands() + 1);
1982  HashComponents.push_back(MI->getOpcode());
1983  for (const MachineOperand &MO : MI->operands()) {
1984    if (MO.isReg() && MO.isDef() && Register::isVirtualRegister(MO.getReg()))
1985      continue;  // Skip virtual register defs.
1986
1987    HashComponents.push_back(hash_value(MO));
1988  }
1989  return hash_combine_range(HashComponents.begin(), HashComponents.end());
1990}
1991
1992void MachineInstr::emitError(StringRef Msg) const {
1993  // Find the source location cookie.
1994  unsigned LocCookie = 0;
1995  const MDNode *LocMD = nullptr;
1996  for (unsigned i = getNumOperands(); i != 0; --i) {
1997    if (getOperand(i-1).isMetadata() &&
1998        (LocMD = getOperand(i-1).getMetadata()) &&
1999        LocMD->getNumOperands() != 0) {
2000      if (const ConstantInt *CI =
2001              mdconst::dyn_extract<ConstantInt>(LocMD->getOperand(0))) {
2002        LocCookie = CI->getZExtValue();
2003        break;
2004      }
2005    }
2006  }
2007
2008  if (const MachineBasicBlock *MBB = getParent())
2009    if (const MachineFunction *MF = MBB->getParent())
2010      return MF->getMMI().getModule()->getContext().emitError(LocCookie, Msg);
2011  report_fatal_error(Msg);
2012}
2013
2014MachineInstrBuilder llvm::BuildMI(MachineFunction &MF, const DebugLoc &DL,
2015                                  const MCInstrDesc &MCID, bool IsIndirect,
2016                                  Register Reg, const MDNode *Variable,
2017                                  const MDNode *Expr) {
2018  assert(isa<DILocalVariable>(Variable) && "not a variable");
2019  assert(cast<DIExpression>(Expr)->isValid() && "not an expression");
2020  assert(cast<DILocalVariable>(Variable)->isValidLocationForIntrinsic(DL) &&
2021         "Expected inlined-at fields to agree");
2022  auto MIB = BuildMI(MF, DL, MCID).addReg(Reg, RegState::Debug);
2023  if (IsIndirect)
2024    MIB.addImm(0U);
2025  else
2026    MIB.addReg(0U, RegState::Debug);
2027  return MIB.addMetadata(Variable).addMetadata(Expr);
2028}
2029
2030MachineInstrBuilder llvm::BuildMI(MachineFunction &MF, const DebugLoc &DL,
2031                                  const MCInstrDesc &MCID, bool IsIndirect,
2032                                  MachineOperand &MO, const MDNode *Variable,
2033                                  const MDNode *Expr) {
2034  assert(isa<DILocalVariable>(Variable) && "not a variable");
2035  assert(cast<DIExpression>(Expr)->isValid() && "not an expression");
2036  assert(cast<DILocalVariable>(Variable)->isValidLocationForIntrinsic(DL) &&
2037         "Expected inlined-at fields to agree");
2038  if (MO.isReg())
2039    return BuildMI(MF, DL, MCID, IsIndirect, MO.getReg(), Variable, Expr);
2040
2041  auto MIB = BuildMI(MF, DL, MCID).add(MO);
2042  if (IsIndirect)
2043    MIB.addImm(0U);
2044  else
2045    MIB.addReg(0U, RegState::Debug);
2046  return MIB.addMetadata(Variable).addMetadata(Expr);
2047 }
2048
2049MachineInstrBuilder llvm::BuildMI(MachineBasicBlock &BB,
2050                                  MachineBasicBlock::iterator I,
2051                                  const DebugLoc &DL, const MCInstrDesc &MCID,
2052                                  bool IsIndirect, Register Reg,
2053                                  const MDNode *Variable, const MDNode *Expr) {
2054  MachineFunction &MF = *BB.getParent();
2055  MachineInstr *MI = BuildMI(MF, DL, MCID, IsIndirect, Reg, Variable, Expr);
2056  BB.insert(I, MI);
2057  return MachineInstrBuilder(MF, MI);
2058}
2059
2060MachineInstrBuilder llvm::BuildMI(MachineBasicBlock &BB,
2061                                  MachineBasicBlock::iterator I,
2062                                  const DebugLoc &DL, const MCInstrDesc &MCID,
2063                                  bool IsIndirect, MachineOperand &MO,
2064                                  const MDNode *Variable, const MDNode *Expr) {
2065  MachineFunction &MF = *BB.getParent();
2066  MachineInstr *MI = BuildMI(MF, DL, MCID, IsIndirect, MO, Variable, Expr);
2067  BB.insert(I, MI);
2068  return MachineInstrBuilder(MF, *MI);
2069}
2070
2071/// Compute the new DIExpression to use with a DBG_VALUE for a spill slot.
2072/// This prepends DW_OP_deref when spilling an indirect DBG_VALUE.
2073static const DIExpression *computeExprForSpill(const MachineInstr &MI) {
2074  assert(MI.getOperand(0).isReg() && "can't spill non-register");
2075  assert(MI.getDebugVariable()->isValidLocationForIntrinsic(MI.getDebugLoc()) &&
2076         "Expected inlined-at fields to agree");
2077
2078  const DIExpression *Expr = MI.getDebugExpression();
2079  if (MI.isIndirectDebugValue()) {
2080    assert(MI.getOperand(1).getImm() == 0 && "DBG_VALUE with nonzero offset");
2081    Expr = DIExpression::prepend(Expr, DIExpression::DerefBefore);
2082  }
2083  return Expr;
2084}
2085
2086MachineInstr *llvm::buildDbgValueForSpill(MachineBasicBlock &BB,
2087                                          MachineBasicBlock::iterator I,
2088                                          const MachineInstr &Orig,
2089                                          int FrameIndex) {
2090  const DIExpression *Expr = computeExprForSpill(Orig);
2091  return BuildMI(BB, I, Orig.getDebugLoc(), Orig.getDesc())
2092      .addFrameIndex(FrameIndex)
2093      .addImm(0U)
2094      .addMetadata(Orig.getDebugVariable())
2095      .addMetadata(Expr);
2096}
2097
2098void llvm::updateDbgValueForSpill(MachineInstr &Orig, int FrameIndex) {
2099  const DIExpression *Expr = computeExprForSpill(Orig);
2100  Orig.getOperand(0).ChangeToFrameIndex(FrameIndex);
2101  Orig.getOperand(1).ChangeToImmediate(0U);
2102  Orig.getOperand(3).setMetadata(Expr);
2103}
2104
2105void MachineInstr::collectDebugValues(
2106                                SmallVectorImpl<MachineInstr *> &DbgValues) {
2107  MachineInstr &MI = *this;
2108  if (!MI.getOperand(0).isReg())
2109    return;
2110
2111  MachineBasicBlock::iterator DI = MI; ++DI;
2112  for (MachineBasicBlock::iterator DE = MI.getParent()->end();
2113       DI != DE; ++DI) {
2114    if (!DI->isDebugValue())
2115      return;
2116    if (DI->getOperand(0).isReg() &&
2117        DI->getOperand(0).getReg() == MI.getOperand(0).getReg())
2118      DbgValues.push_back(&*DI);
2119  }
2120}
2121
2122void MachineInstr::changeDebugValuesDefReg(Register Reg) {
2123  // Collect matching debug values.
2124  SmallVector<MachineInstr *, 2> DbgValues;
2125
2126  if (!getOperand(0).isReg())
2127    return;
2128
2129  unsigned DefReg = getOperand(0).getReg();
2130  auto *MRI = getRegInfo();
2131  for (auto &MO : MRI->use_operands(DefReg)) {
2132    auto *DI = MO.getParent();
2133    if (!DI->isDebugValue())
2134      continue;
2135    if (DI->getOperand(0).isReg() &&
2136        DI->getOperand(0).getReg() == DefReg){
2137      DbgValues.push_back(DI);
2138    }
2139  }
2140
2141  // Propagate Reg to debug value instructions.
2142  for (auto *DBI : DbgValues)
2143    DBI->getOperand(0).setReg(Reg);
2144}
2145
2146using MMOList = SmallVector<const MachineMemOperand *, 2>;
2147
2148static unsigned getSpillSlotSize(MMOList &Accesses,
2149                                 const MachineFrameInfo &MFI) {
2150  unsigned Size = 0;
2151  for (auto A : Accesses)
2152    if (MFI.isSpillSlotObjectIndex(
2153            cast<FixedStackPseudoSourceValue>(A->getPseudoValue())
2154                ->getFrameIndex()))
2155      Size += A->getSize();
2156  return Size;
2157}
2158
2159Optional<unsigned>
2160MachineInstr::getSpillSize(const TargetInstrInfo *TII) const {
2161  int FI;
2162  if (TII->isStoreToStackSlotPostFE(*this, FI)) {
2163    const MachineFrameInfo &MFI = getMF()->getFrameInfo();
2164    if (MFI.isSpillSlotObjectIndex(FI))
2165      return (*memoperands_begin())->getSize();
2166  }
2167  return None;
2168}
2169
2170Optional<unsigned>
2171MachineInstr::getFoldedSpillSize(const TargetInstrInfo *TII) const {
2172  MMOList Accesses;
2173  if (TII->hasStoreToStackSlot(*this, Accesses))
2174    return getSpillSlotSize(Accesses, getMF()->getFrameInfo());
2175  return None;
2176}
2177
2178Optional<unsigned>
2179MachineInstr::getRestoreSize(const TargetInstrInfo *TII) const {
2180  int FI;
2181  if (TII->isLoadFromStackSlotPostFE(*this, FI)) {
2182    const MachineFrameInfo &MFI = getMF()->getFrameInfo();
2183    if (MFI.isSpillSlotObjectIndex(FI))
2184      return (*memoperands_begin())->getSize();
2185  }
2186  return None;
2187}
2188
2189Optional<unsigned>
2190MachineInstr::getFoldedRestoreSize(const TargetInstrInfo *TII) const {
2191  MMOList Accesses;
2192  if (TII->hasLoadFromStackSlot(*this, Accesses))
2193    return getSpillSlotSize(Accesses, getMF()->getFrameInfo());
2194  return None;
2195}
2196