InterleavedLoadCombinePass.cpp revision 360784
1//===- InterleavedLoadCombine.cpp - Combine Interleaved Loads ---*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// \file
10//
11// This file defines the interleaved-load-combine pass. The pass searches for
12// ShuffleVectorInstruction that execute interleaving loads. If a matching
13// pattern is found, it adds a combined load and further instructions in a
14// pattern that is detectable by InterleavedAccesPass. The old instructions are
15// left dead to be removed later. The pass is specifically designed to be
16// executed just before InterleavedAccesPass to find any left-over instances
17// that are not detected within former passes.
18//
19//===----------------------------------------------------------------------===//
20
21#include "llvm/ADT/Statistic.h"
22#include "llvm/Analysis/MemoryLocation.h"
23#include "llvm/Analysis/MemorySSA.h"
24#include "llvm/Analysis/MemorySSAUpdater.h"
25#include "llvm/Analysis/OptimizationRemarkEmitter.h"
26#include "llvm/Analysis/TargetTransformInfo.h"
27#include "llvm/CodeGen/Passes.h"
28#include "llvm/CodeGen/TargetLowering.h"
29#include "llvm/CodeGen/TargetPassConfig.h"
30#include "llvm/CodeGen/TargetSubtargetInfo.h"
31#include "llvm/IR/DataLayout.h"
32#include "llvm/IR/Dominators.h"
33#include "llvm/IR/Function.h"
34#include "llvm/IR/Instructions.h"
35#include "llvm/IR/LegacyPassManager.h"
36#include "llvm/IR/Module.h"
37#include "llvm/InitializePasses.h"
38#include "llvm/Pass.h"
39#include "llvm/Support/Debug.h"
40#include "llvm/Support/ErrorHandling.h"
41#include "llvm/Support/raw_ostream.h"
42#include "llvm/Target/TargetMachine.h"
43
44#include <algorithm>
45#include <cassert>
46#include <list>
47
48using namespace llvm;
49
50#define DEBUG_TYPE "interleaved-load-combine"
51
52namespace {
53
54/// Statistic counter
55STATISTIC(NumInterleavedLoadCombine, "Number of combined loads");
56
57/// Option to disable the pass
58static cl::opt<bool> DisableInterleavedLoadCombine(
59    "disable-" DEBUG_TYPE, cl::init(false), cl::Hidden,
60    cl::desc("Disable combining of interleaved loads"));
61
62struct VectorInfo;
63
64struct InterleavedLoadCombineImpl {
65public:
66  InterleavedLoadCombineImpl(Function &F, DominatorTree &DT, MemorySSA &MSSA,
67                             TargetMachine &TM)
68      : F(F), DT(DT), MSSA(MSSA),
69        TLI(*TM.getSubtargetImpl(F)->getTargetLowering()),
70        TTI(TM.getTargetTransformInfo(F)) {}
71
72  /// Scan the function for interleaved load candidates and execute the
73  /// replacement if applicable.
74  bool run();
75
76private:
77  /// Function this pass is working on
78  Function &F;
79
80  /// Dominator Tree Analysis
81  DominatorTree &DT;
82
83  /// Memory Alias Analyses
84  MemorySSA &MSSA;
85
86  /// Target Lowering Information
87  const TargetLowering &TLI;
88
89  /// Target Transform Information
90  const TargetTransformInfo TTI;
91
92  /// Find the instruction in sets LIs that dominates all others, return nullptr
93  /// if there is none.
94  LoadInst *findFirstLoad(const std::set<LoadInst *> &LIs);
95
96  /// Replace interleaved load candidates. It does additional
97  /// analyses if this makes sense. Returns true on success and false
98  /// of nothing has been changed.
99  bool combine(std::list<VectorInfo> &InterleavedLoad,
100               OptimizationRemarkEmitter &ORE);
101
102  /// Given a set of VectorInfo containing candidates for a given interleave
103  /// factor, find a set that represents a 'factor' interleaved load.
104  bool findPattern(std::list<VectorInfo> &Candidates,
105                   std::list<VectorInfo> &InterleavedLoad, unsigned Factor,
106                   const DataLayout &DL);
107}; // InterleavedLoadCombine
108
109/// First Order Polynomial on an n-Bit Integer Value
110///
111/// Polynomial(Value) = Value * B + A + E*2^(n-e)
112///
113/// A and B are the coefficients. E*2^(n-e) is an error within 'e' most
114/// significant bits. It is introduced if an exact computation cannot be proven
115/// (e.q. division by 2).
116///
117/// As part of this optimization multiple loads will be combined. It necessary
118/// to prove that loads are within some relative offset to each other. This
119/// class is used to prove relative offsets of values loaded from memory.
120///
121/// Representing an integer in this form is sound since addition in two's
122/// complement is associative (trivial) and multiplication distributes over the
123/// addition (see Proof(1) in Polynomial::mul). Further, both operations
124/// commute.
125//
126// Example:
127// declare @fn(i64 %IDX, <4 x float>* %PTR) {
128//   %Pa1 = add i64 %IDX, 2
129//   %Pa2 = lshr i64 %Pa1, 1
130//   %Pa3 = getelementptr inbounds <4 x float>, <4 x float>* %PTR, i64 %Pa2
131//   %Va = load <4 x float>, <4 x float>* %Pa3
132//
133//   %Pb1 = add i64 %IDX, 4
134//   %Pb2 = lshr i64 %Pb1, 1
135//   %Pb3 = getelementptr inbounds <4 x float>, <4 x float>* %PTR, i64 %Pb2
136//   %Vb = load <4 x float>, <4 x float>* %Pb3
137// ... }
138//
139// The goal is to prove that two loads load consecutive addresses.
140//
141// In this case the polynomials are constructed by the following
142// steps.
143//
144// The number tag #e specifies the error bits.
145//
146// Pa_0 = %IDX              #0
147// Pa_1 = %IDX + 2          #0 | add 2
148// Pa_2 = %IDX/2 + 1        #1 | lshr 1
149// Pa_3 = %IDX/2 + 1        #1 | GEP, step signext to i64
150// Pa_4 = (%IDX/2)*16 + 16  #0 | GEP, multiply index by sizeof(4) for floats
151// Pa_5 = (%IDX/2)*16 + 16  #0 | GEP, add offset of leading components
152//
153// Pb_0 = %IDX              #0
154// Pb_1 = %IDX + 4          #0 | add 2
155// Pb_2 = %IDX/2 + 2        #1 | lshr 1
156// Pb_3 = %IDX/2 + 2        #1 | GEP, step signext to i64
157// Pb_4 = (%IDX/2)*16 + 32  #0 | GEP, multiply index by sizeof(4) for floats
158// Pb_5 = (%IDX/2)*16 + 16  #0 | GEP, add offset of leading components
159//
160// Pb_5 - Pa_5 = 16         #0 | subtract to get the offset
161//
162// Remark: %PTR is not maintained within this class. So in this instance the
163// offset of 16 can only be assumed if the pointers are equal.
164//
165class Polynomial {
166  /// Operations on B
167  enum BOps {
168    LShr,
169    Mul,
170    SExt,
171    Trunc,
172  };
173
174  /// Number of Error Bits e
175  unsigned ErrorMSBs;
176
177  /// Value
178  Value *V;
179
180  /// Coefficient B
181  SmallVector<std::pair<BOps, APInt>, 4> B;
182
183  /// Coefficient A
184  APInt A;
185
186public:
187  Polynomial(Value *V) : ErrorMSBs((unsigned)-1), V(V), B(), A() {
188    IntegerType *Ty = dyn_cast<IntegerType>(V->getType());
189    if (Ty) {
190      ErrorMSBs = 0;
191      this->V = V;
192      A = APInt(Ty->getBitWidth(), 0);
193    }
194  }
195
196  Polynomial(const APInt &A, unsigned ErrorMSBs = 0)
197      : ErrorMSBs(ErrorMSBs), V(NULL), B(), A(A) {}
198
199  Polynomial(unsigned BitWidth, uint64_t A, unsigned ErrorMSBs = 0)
200      : ErrorMSBs(ErrorMSBs), V(NULL), B(), A(BitWidth, A) {}
201
202  Polynomial() : ErrorMSBs((unsigned)-1), V(NULL), B(), A() {}
203
204  /// Increment and clamp the number of undefined bits.
205  void incErrorMSBs(unsigned amt) {
206    if (ErrorMSBs == (unsigned)-1)
207      return;
208
209    ErrorMSBs += amt;
210    if (ErrorMSBs > A.getBitWidth())
211      ErrorMSBs = A.getBitWidth();
212  }
213
214  /// Decrement and clamp the number of undefined bits.
215  void decErrorMSBs(unsigned amt) {
216    if (ErrorMSBs == (unsigned)-1)
217      return;
218
219    if (ErrorMSBs > amt)
220      ErrorMSBs -= amt;
221    else
222      ErrorMSBs = 0;
223  }
224
225  /// Apply an add on the polynomial
226  Polynomial &add(const APInt &C) {
227    // Note: Addition is associative in two's complement even when in case of
228    // signed overflow.
229    //
230    // Error bits can only propagate into higher significant bits. As these are
231    // already regarded as undefined, there is no change.
232    //
233    // Theorem: Adding a constant to a polynomial does not change the error
234    // term.
235    //
236    // Proof:
237    //
238    //   Since the addition is associative and commutes:
239    //
240    //   (B + A + E*2^(n-e)) + C = B + (A + C) + E*2^(n-e)
241    // [qed]
242
243    if (C.getBitWidth() != A.getBitWidth()) {
244      ErrorMSBs = (unsigned)-1;
245      return *this;
246    }
247
248    A += C;
249    return *this;
250  }
251
252  /// Apply a multiplication onto the polynomial.
253  Polynomial &mul(const APInt &C) {
254    // Note: Multiplication distributes over the addition
255    //
256    // Theorem: Multiplication distributes over the addition
257    //
258    // Proof(1):
259    //
260    //   (B+A)*C =-
261    //        = (B + A) + (B + A) + .. {C Times}
262    //         addition is associative and commutes, hence
263    //        = B + B + .. {C Times} .. + A + A + .. {C times}
264    //        = B*C + A*C
265    //   (see (function add) for signed values and overflows)
266    // [qed]
267    //
268    // Theorem: If C has c trailing zeros, errors bits in A or B are shifted out
269    // to the left.
270    //
271    // Proof(2):
272    //
273    //   Let B' and A' be the n-Bit inputs with some unknown errors EA,
274    //   EB at e leading bits. B' and A' can be written down as:
275    //
276    //     B' = B + 2^(n-e)*EB
277    //     A' = A + 2^(n-e)*EA
278    //
279    //   Let C' be an input with c trailing zero bits. C' can be written as
280    //
281    //     C' = C*2^c
282    //
283    //   Therefore we can compute the result by using distributivity and
284    //   commutativity.
285    //
286    //     (B'*C' + A'*C') = [B + 2^(n-e)*EB] * C' + [A + 2^(n-e)*EA] * C' =
287    //                     = [B + 2^(n-e)*EB + A + 2^(n-e)*EA] * C' =
288    //                     = (B'+A') * C' =
289    //                     = [B + 2^(n-e)*EB + A + 2^(n-e)*EA] * C' =
290    //                     = [B + A + 2^(n-e)*EB + 2^(n-e)*EA] * C' =
291    //                     = (B + A) * C' + [2^(n-e)*EB + 2^(n-e)*EA)] * C' =
292    //                     = (B + A) * C' + [2^(n-e)*EB + 2^(n-e)*EA)] * C*2^c =
293    //                     = (B + A) * C' + C*(EB + EA)*2^(n-e)*2^c =
294    //
295    //   Let EC be the final error with EC = C*(EB + EA)
296    //
297    //                     = (B + A)*C' + EC*2^(n-e)*2^c =
298    //                     = (B + A)*C' + EC*2^(n-(e-c))
299    //
300    //   Since EC is multiplied by 2^(n-(e-c)) the resulting error contains c
301    //   less error bits than the input. c bits are shifted out to the left.
302    // [qed]
303
304    if (C.getBitWidth() != A.getBitWidth()) {
305      ErrorMSBs = (unsigned)-1;
306      return *this;
307    }
308
309    // Multiplying by one is a no-op.
310    if (C.isOneValue()) {
311      return *this;
312    }
313
314    // Multiplying by zero removes the coefficient B and defines all bits.
315    if (C.isNullValue()) {
316      ErrorMSBs = 0;
317      deleteB();
318    }
319
320    // See Proof(2): Trailing zero bits indicate a left shift. This removes
321    // leading bits from the result even if they are undefined.
322    decErrorMSBs(C.countTrailingZeros());
323
324    A *= C;
325    pushBOperation(Mul, C);
326    return *this;
327  }
328
329  /// Apply a logical shift right on the polynomial
330  Polynomial &lshr(const APInt &C) {
331    // Theorem(1): (B + A + E*2^(n-e)) >> 1 => (B >> 1) + (A >> 1) + E'*2^(n-e')
332    //          where
333    //             e' = e + 1,
334    //             E is a e-bit number,
335    //             E' is a e'-bit number,
336    //   holds under the following precondition:
337    //          pre(1): A % 2 = 0
338    //          pre(2): e < n, (see Theorem(2) for the trivial case with e=n)
339    //   where >> expresses a logical shift to the right, with adding zeros.
340    //
341    //  We need to show that for every, E there is a E'
342    //
343    //  B = b_h * 2^(n-1) + b_m * 2 + b_l
344    //  A = a_h * 2^(n-1) + a_m * 2         (pre(1))
345    //
346    //  where a_h, b_h, b_l are single bits, and a_m, b_m are (n-2) bit numbers
347    //
348    //  Let X = (B + A + E*2^(n-e)) >> 1
349    //  Let Y = (B >> 1) + (A >> 1) + E*2^(n-e) >> 1
350    //
351    //    X = [B + A + E*2^(n-e)] >> 1 =
352    //      = [  b_h * 2^(n-1) + b_m * 2 + b_l +
353    //         + a_h * 2^(n-1) + a_m * 2 +
354    //         + E * 2^(n-e) ] >> 1 =
355    //
356    //    The sum is built by putting the overflow of [a_m + b+n] into the term
357    //    2^(n-1). As there are no more bits beyond 2^(n-1) the overflow within
358    //    this bit is discarded. This is expressed by % 2.
359    //
360    //    The bit in position 0 cannot overflow into the term (b_m + a_m).
361    //
362    //      = [  ([b_h + a_h + (b_m + a_m) >> (n-2)] % 2) * 2^(n-1) +
363    //         + ((b_m + a_m) % 2^(n-2)) * 2 +
364    //         + b_l + E * 2^(n-e) ] >> 1 =
365    //
366    //    The shift is computed by dividing the terms by 2 and by cutting off
367    //    b_l.
368    //
369    //      =    ([b_h + a_h + (b_m + a_m) >> (n-2)] % 2) * 2^(n-2) +
370    //         + ((b_m + a_m) % 2^(n-2)) +
371    //         + E * 2^(n-(e+1)) =
372    //
373    //    by the definition in the Theorem e+1 = e'
374    //
375    //      =    ([b_h + a_h + (b_m + a_m) >> (n-2)] % 2) * 2^(n-2) +
376    //         + ((b_m + a_m) % 2^(n-2)) +
377    //         + E * 2^(n-e') =
378    //
379    //    Compute Y by applying distributivity first
380    //
381    //    Y =  (B >> 1) + (A >> 1) + E*2^(n-e') =
382    //      =    (b_h * 2^(n-1) + b_m * 2 + b_l) >> 1 +
383    //         + (a_h * 2^(n-1) + a_m * 2) >> 1 +
384    //         + E * 2^(n-e) >> 1 =
385    //
386    //    Again, the shift is computed by dividing the terms by 2 and by cutting
387    //    off b_l.
388    //
389    //      =     b_h * 2^(n-2) + b_m +
390    //         +  a_h * 2^(n-2) + a_m +
391    //         +  E * 2^(n-(e+1)) =
392    //
393    //    Again, the sum is built by putting the overflow of [a_m + b+n] into
394    //    the term 2^(n-1). But this time there is room for a second bit in the
395    //    term 2^(n-2) we add this bit to a new term and denote it o_h in a
396    //    second step.
397    //
398    //      =    ([b_h + a_h + (b_m + a_m) >> (n-2)] >> 1) * 2^(n-1) +
399    //         + ([b_h + a_h + (b_m + a_m) >> (n-2)] % 2) * 2^(n-2) +
400    //         + ((b_m + a_m) % 2^(n-2)) +
401    //         + E * 2^(n-(e+1)) =
402    //
403    //    Let o_h = [b_h + a_h + (b_m + a_m) >> (n-2)] >> 1
404    //    Further replace e+1 by e'.
405    //
406    //      =    o_h * 2^(n-1) +
407    //         + ([b_h + a_h + (b_m + a_m) >> (n-2)] % 2) * 2^(n-2) +
408    //         + ((b_m + a_m) % 2^(n-2)) +
409    //         + E * 2^(n-e') =
410    //
411    //    Move o_h into the error term and construct E'. To ensure that there is
412    //    no 2^x with negative x, this step requires pre(2) (e < n).
413    //
414    //      =    ([b_h + a_h + (b_m + a_m) >> (n-2)] % 2) * 2^(n-2) +
415    //         + ((b_m + a_m) % 2^(n-2)) +
416    //         + o_h * 2^(e'-1) * 2^(n-e') +               | pre(2), move 2^(e'-1)
417    //                                                     | out of the old exponent
418    //         + E * 2^(n-e') =
419    //      =    ([b_h + a_h + (b_m + a_m) >> (n-2)] % 2) * 2^(n-2) +
420    //         + ((b_m + a_m) % 2^(n-2)) +
421    //         + [o_h * 2^(e'-1) + E] * 2^(n-e') +         | move 2^(e'-1) out of
422    //                                                     | the old exponent
423    //
424    //    Let E' = o_h * 2^(e'-1) + E
425    //
426    //      =    ([b_h + a_h + (b_m + a_m) >> (n-2)] % 2) * 2^(n-2) +
427    //         + ((b_m + a_m) % 2^(n-2)) +
428    //         + E' * 2^(n-e')
429    //
430    //    Because X and Y are distinct only in there error terms and E' can be
431    //    constructed as shown the theorem holds.
432    // [qed]
433    //
434    // For completeness in case of the case e=n it is also required to show that
435    // distributivity can be applied.
436    //
437    // In this case Theorem(1) transforms to (the pre-condition on A can also be
438    // dropped)
439    //
440    // Theorem(2): (B + A + E) >> 1 => (B >> 1) + (A >> 1) + E'
441    //          where
442    //             A, B, E, E' are two's complement numbers with the same bit
443    //             width
444    //
445    //   Let A + B + E = X
446    //   Let (B >> 1) + (A >> 1) = Y
447    //
448    //   Therefore we need to show that for every X and Y there is an E' which
449    //   makes the equation
450    //
451    //     X = Y + E'
452    //
453    //   hold. This is trivially the case for E' = X - Y.
454    //
455    // [qed]
456    //
457    // Remark: Distributing lshr with and arbitrary number n can be expressed as
458    //   ((((B + A) lshr 1) lshr 1) ... ) {n times}.
459    // This construction induces n additional error bits at the left.
460
461    if (C.getBitWidth() != A.getBitWidth()) {
462      ErrorMSBs = (unsigned)-1;
463      return *this;
464    }
465
466    if (C.isNullValue())
467      return *this;
468
469    // Test if the result will be zero
470    unsigned shiftAmt = C.getZExtValue();
471    if (shiftAmt >= C.getBitWidth())
472      return mul(APInt(C.getBitWidth(), 0));
473
474    // The proof that shiftAmt LSBs are zero for at least one summand is only
475    // possible for the constant number.
476    //
477    // If this can be proven add shiftAmt to the error counter
478    // `ErrorMSBs`. Otherwise set all bits as undefined.
479    if (A.countTrailingZeros() < shiftAmt)
480      ErrorMSBs = A.getBitWidth();
481    else
482      incErrorMSBs(shiftAmt);
483
484    // Apply the operation.
485    pushBOperation(LShr, C);
486    A = A.lshr(shiftAmt);
487
488    return *this;
489  }
490
491  /// Apply a sign-extend or truncate operation on the polynomial.
492  Polynomial &sextOrTrunc(unsigned n) {
493    if (n < A.getBitWidth()) {
494      // Truncate: Clearly undefined Bits on the MSB side are removed
495      // if there are any.
496      decErrorMSBs(A.getBitWidth() - n);
497      A = A.trunc(n);
498      pushBOperation(Trunc, APInt(sizeof(n) * 8, n));
499    }
500    if (n > A.getBitWidth()) {
501      // Extend: Clearly extending first and adding later is different
502      // to adding first and extending later in all extended bits.
503      incErrorMSBs(n - A.getBitWidth());
504      A = A.sext(n);
505      pushBOperation(SExt, APInt(sizeof(n) * 8, n));
506    }
507
508    return *this;
509  }
510
511  /// Test if there is a coefficient B.
512  bool isFirstOrder() const { return V != nullptr; }
513
514  /// Test coefficient B of two Polynomials are equal.
515  bool isCompatibleTo(const Polynomial &o) const {
516    // The polynomial use different bit width.
517    if (A.getBitWidth() != o.A.getBitWidth())
518      return false;
519
520    // If neither Polynomial has the Coefficient B.
521    if (!isFirstOrder() && !o.isFirstOrder())
522      return true;
523
524    // The index variable is different.
525    if (V != o.V)
526      return false;
527
528    // Check the operations.
529    if (B.size() != o.B.size())
530      return false;
531
532    auto ob = o.B.begin();
533    for (auto &b : B) {
534      if (b != *ob)
535        return false;
536      ob++;
537    }
538
539    return true;
540  }
541
542  /// Subtract two polynomials, return an undefined polynomial if
543  /// subtraction is not possible.
544  Polynomial operator-(const Polynomial &o) const {
545    // Return an undefined polynomial if incompatible.
546    if (!isCompatibleTo(o))
547      return Polynomial();
548
549    // If the polynomials are compatible (meaning they have the same
550    // coefficient on B), B is eliminated. Thus a polynomial solely
551    // containing A is returned
552    return Polynomial(A - o.A, std::max(ErrorMSBs, o.ErrorMSBs));
553  }
554
555  /// Subtract a constant from a polynomial,
556  Polynomial operator-(uint64_t C) const {
557    Polynomial Result(*this);
558    Result.A -= C;
559    return Result;
560  }
561
562  /// Add a constant to a polynomial,
563  Polynomial operator+(uint64_t C) const {
564    Polynomial Result(*this);
565    Result.A += C;
566    return Result;
567  }
568
569  /// Returns true if it can be proven that two Polynomials are equal.
570  bool isProvenEqualTo(const Polynomial &o) {
571    // Subtract both polynomials and test if it is fully defined and zero.
572    Polynomial r = *this - o;
573    return (r.ErrorMSBs == 0) && (!r.isFirstOrder()) && (r.A.isNullValue());
574  }
575
576  /// Print the polynomial into a stream.
577  void print(raw_ostream &OS) const {
578    OS << "[{#ErrBits:" << ErrorMSBs << "} ";
579
580    if (V) {
581      for (auto b : B)
582        OS << "(";
583      OS << "(" << *V << ") ";
584
585      for (auto b : B) {
586        switch (b.first) {
587        case LShr:
588          OS << "LShr ";
589          break;
590        case Mul:
591          OS << "Mul ";
592          break;
593        case SExt:
594          OS << "SExt ";
595          break;
596        case Trunc:
597          OS << "Trunc ";
598          break;
599        }
600
601        OS << b.second << ") ";
602      }
603    }
604
605    OS << "+ " << A << "]";
606  }
607
608private:
609  void deleteB() {
610    V = nullptr;
611    B.clear();
612  }
613
614  void pushBOperation(const BOps Op, const APInt &C) {
615    if (isFirstOrder()) {
616      B.push_back(std::make_pair(Op, C));
617      return;
618    }
619  }
620};
621
622#ifndef NDEBUG
623static raw_ostream &operator<<(raw_ostream &OS, const Polynomial &S) {
624  S.print(OS);
625  return OS;
626}
627#endif
628
629/// VectorInfo stores abstract the following information for each vector
630/// element:
631///
632/// 1) The the memory address loaded into the element as Polynomial
633/// 2) a set of load instruction necessary to construct the vector,
634/// 3) a set of all other instructions that are necessary to create the vector and
635/// 4) a pointer value that can be used as relative base for all elements.
636struct VectorInfo {
637private:
638  VectorInfo(const VectorInfo &c) : VTy(c.VTy) {
639    llvm_unreachable(
640        "Copying VectorInfo is neither implemented nor necessary,");
641  }
642
643public:
644  /// Information of a Vector Element
645  struct ElementInfo {
646    /// Offset Polynomial.
647    Polynomial Ofs;
648
649    /// The Load Instruction used to Load the entry. LI is null if the pointer
650    /// of the load instruction does not point on to the entry
651    LoadInst *LI;
652
653    ElementInfo(Polynomial Offset = Polynomial(), LoadInst *LI = nullptr)
654        : Ofs(Offset), LI(LI) {}
655  };
656
657  /// Basic-block the load instructions are within
658  BasicBlock *BB;
659
660  /// Pointer value of all participation load instructions
661  Value *PV;
662
663  /// Participating load instructions
664  std::set<LoadInst *> LIs;
665
666  /// Participating instructions
667  std::set<Instruction *> Is;
668
669  /// Final shuffle-vector instruction
670  ShuffleVectorInst *SVI;
671
672  /// Information of the offset for each vector element
673  ElementInfo *EI;
674
675  /// Vector Type
676  VectorType *const VTy;
677
678  VectorInfo(VectorType *VTy)
679      : BB(nullptr), PV(nullptr), LIs(), Is(), SVI(nullptr), VTy(VTy) {
680    EI = new ElementInfo[VTy->getNumElements()];
681  }
682
683  virtual ~VectorInfo() { delete[] EI; }
684
685  unsigned getDimension() const { return VTy->getNumElements(); }
686
687  /// Test if the VectorInfo can be part of an interleaved load with the
688  /// specified factor.
689  ///
690  /// \param Factor of the interleave
691  /// \param DL Targets Datalayout
692  ///
693  /// \returns true if this is possible and false if not
694  bool isInterleaved(unsigned Factor, const DataLayout &DL) const {
695    unsigned Size = DL.getTypeAllocSize(VTy->getElementType());
696    for (unsigned i = 1; i < getDimension(); i++) {
697      if (!EI[i].Ofs.isProvenEqualTo(EI[0].Ofs + i * Factor * Size)) {
698        return false;
699      }
700    }
701    return true;
702  }
703
704  /// Recursively computes the vector information stored in V.
705  ///
706  /// This function delegates the work to specialized implementations
707  ///
708  /// \param V Value to operate on
709  /// \param Result Result of the computation
710  ///
711  /// \returns false if no sensible information can be gathered.
712  static bool compute(Value *V, VectorInfo &Result, const DataLayout &DL) {
713    ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(V);
714    if (SVI)
715      return computeFromSVI(SVI, Result, DL);
716    LoadInst *LI = dyn_cast<LoadInst>(V);
717    if (LI)
718      return computeFromLI(LI, Result, DL);
719    BitCastInst *BCI = dyn_cast<BitCastInst>(V);
720    if (BCI)
721      return computeFromBCI(BCI, Result, DL);
722    return false;
723  }
724
725  /// BitCastInst specialization to compute the vector information.
726  ///
727  /// \param BCI BitCastInst to operate on
728  /// \param Result Result of the computation
729  ///
730  /// \returns false if no sensible information can be gathered.
731  static bool computeFromBCI(BitCastInst *BCI, VectorInfo &Result,
732                             const DataLayout &DL) {
733    Instruction *Op = dyn_cast<Instruction>(BCI->getOperand(0));
734
735    if (!Op)
736      return false;
737
738    VectorType *VTy = dyn_cast<VectorType>(Op->getType());
739    if (!VTy)
740      return false;
741
742    // We can only cast from large to smaller vectors
743    if (Result.VTy->getNumElements() % VTy->getNumElements())
744      return false;
745
746    unsigned Factor = Result.VTy->getNumElements() / VTy->getNumElements();
747    unsigned NewSize = DL.getTypeAllocSize(Result.VTy->getElementType());
748    unsigned OldSize = DL.getTypeAllocSize(VTy->getElementType());
749
750    if (NewSize * Factor != OldSize)
751      return false;
752
753    VectorInfo Old(VTy);
754    if (!compute(Op, Old, DL))
755      return false;
756
757    for (unsigned i = 0; i < Result.VTy->getNumElements(); i += Factor) {
758      for (unsigned j = 0; j < Factor; j++) {
759        Result.EI[i + j] =
760            ElementInfo(Old.EI[i / Factor].Ofs + j * NewSize,
761                        j == 0 ? Old.EI[i / Factor].LI : nullptr);
762      }
763    }
764
765    Result.BB = Old.BB;
766    Result.PV = Old.PV;
767    Result.LIs.insert(Old.LIs.begin(), Old.LIs.end());
768    Result.Is.insert(Old.Is.begin(), Old.Is.end());
769    Result.Is.insert(BCI);
770    Result.SVI = nullptr;
771
772    return true;
773  }
774
775  /// ShuffleVectorInst specialization to compute vector information.
776  ///
777  /// \param SVI ShuffleVectorInst to operate on
778  /// \param Result Result of the computation
779  ///
780  /// Compute the left and the right side vector information and merge them by
781  /// applying the shuffle operation. This function also ensures that the left
782  /// and right side have compatible loads. This means that all loads are with
783  /// in the same basic block and are based on the same pointer.
784  ///
785  /// \returns false if no sensible information can be gathered.
786  static bool computeFromSVI(ShuffleVectorInst *SVI, VectorInfo &Result,
787                             const DataLayout &DL) {
788    VectorType *ArgTy = dyn_cast<VectorType>(SVI->getOperand(0)->getType());
789    assert(ArgTy && "ShuffleVector Operand is not a VectorType");
790
791    // Compute the left hand vector information.
792    VectorInfo LHS(ArgTy);
793    if (!compute(SVI->getOperand(0), LHS, DL))
794      LHS.BB = nullptr;
795
796    // Compute the right hand vector information.
797    VectorInfo RHS(ArgTy);
798    if (!compute(SVI->getOperand(1), RHS, DL))
799      RHS.BB = nullptr;
800
801    // Neither operand produced sensible results?
802    if (!LHS.BB && !RHS.BB)
803      return false;
804    // Only RHS produced sensible results?
805    else if (!LHS.BB) {
806      Result.BB = RHS.BB;
807      Result.PV = RHS.PV;
808    }
809    // Only LHS produced sensible results?
810    else if (!RHS.BB) {
811      Result.BB = LHS.BB;
812      Result.PV = LHS.PV;
813    }
814    // Both operands produced sensible results?
815    else if ((LHS.BB == RHS.BB) && (LHS.PV == RHS.PV)) {
816      Result.BB = LHS.BB;
817      Result.PV = LHS.PV;
818    }
819    // Both operands produced sensible results but they are incompatible.
820    else {
821      return false;
822    }
823
824    // Merge and apply the operation on the offset information.
825    if (LHS.BB) {
826      Result.LIs.insert(LHS.LIs.begin(), LHS.LIs.end());
827      Result.Is.insert(LHS.Is.begin(), LHS.Is.end());
828    }
829    if (RHS.BB) {
830      Result.LIs.insert(RHS.LIs.begin(), RHS.LIs.end());
831      Result.Is.insert(RHS.Is.begin(), RHS.Is.end());
832    }
833    Result.Is.insert(SVI);
834    Result.SVI = SVI;
835
836    int j = 0;
837    for (int i : SVI->getShuffleMask()) {
838      assert((i < 2 * (signed)ArgTy->getNumElements()) &&
839             "Invalid ShuffleVectorInst (index out of bounds)");
840
841      if (i < 0)
842        Result.EI[j] = ElementInfo();
843      else if (i < (signed)ArgTy->getNumElements()) {
844        if (LHS.BB)
845          Result.EI[j] = LHS.EI[i];
846        else
847          Result.EI[j] = ElementInfo();
848      } else {
849        if (RHS.BB)
850          Result.EI[j] = RHS.EI[i - ArgTy->getNumElements()];
851        else
852          Result.EI[j] = ElementInfo();
853      }
854      j++;
855    }
856
857    return true;
858  }
859
860  /// LoadInst specialization to compute vector information.
861  ///
862  /// This function also acts as abort condition to the recursion.
863  ///
864  /// \param LI LoadInst to operate on
865  /// \param Result Result of the computation
866  ///
867  /// \returns false if no sensible information can be gathered.
868  static bool computeFromLI(LoadInst *LI, VectorInfo &Result,
869                            const DataLayout &DL) {
870    Value *BasePtr;
871    Polynomial Offset;
872
873    if (LI->isVolatile())
874      return false;
875
876    if (LI->isAtomic())
877      return false;
878
879    // Get the base polynomial
880    computePolynomialFromPointer(*LI->getPointerOperand(), Offset, BasePtr, DL);
881
882    Result.BB = LI->getParent();
883    Result.PV = BasePtr;
884    Result.LIs.insert(LI);
885    Result.Is.insert(LI);
886
887    for (unsigned i = 0; i < Result.getDimension(); i++) {
888      Value *Idx[2] = {
889          ConstantInt::get(Type::getInt32Ty(LI->getContext()), 0),
890          ConstantInt::get(Type::getInt32Ty(LI->getContext()), i),
891      };
892      int64_t Ofs = DL.getIndexedOffsetInType(Result.VTy, makeArrayRef(Idx, 2));
893      Result.EI[i] = ElementInfo(Offset + Ofs, i == 0 ? LI : nullptr);
894    }
895
896    return true;
897  }
898
899  /// Recursively compute polynomial of a value.
900  ///
901  /// \param BO Input binary operation
902  /// \param Result Result polynomial
903  static void computePolynomialBinOp(BinaryOperator &BO, Polynomial &Result) {
904    Value *LHS = BO.getOperand(0);
905    Value *RHS = BO.getOperand(1);
906
907    // Find the RHS Constant if any
908    ConstantInt *C = dyn_cast<ConstantInt>(RHS);
909    if ((!C) && BO.isCommutative()) {
910      C = dyn_cast<ConstantInt>(LHS);
911      if (C)
912        std::swap(LHS, RHS);
913    }
914
915    switch (BO.getOpcode()) {
916    case Instruction::Add:
917      if (!C)
918        break;
919
920      computePolynomial(*LHS, Result);
921      Result.add(C->getValue());
922      return;
923
924    case Instruction::LShr:
925      if (!C)
926        break;
927
928      computePolynomial(*LHS, Result);
929      Result.lshr(C->getValue());
930      return;
931
932    default:
933      break;
934    }
935
936    Result = Polynomial(&BO);
937  }
938
939  /// Recursively compute polynomial of a value
940  ///
941  /// \param V input value
942  /// \param Result result polynomial
943  static void computePolynomial(Value &V, Polynomial &Result) {
944    if (auto *BO = dyn_cast<BinaryOperator>(&V))
945      computePolynomialBinOp(*BO, Result);
946    else
947      Result = Polynomial(&V);
948  }
949
950  /// Compute the Polynomial representation of a Pointer type.
951  ///
952  /// \param Ptr input pointer value
953  /// \param Result result polynomial
954  /// \param BasePtr pointer the polynomial is based on
955  /// \param DL Datalayout of the target machine
956  static void computePolynomialFromPointer(Value &Ptr, Polynomial &Result,
957                                           Value *&BasePtr,
958                                           const DataLayout &DL) {
959    // Not a pointer type? Return an undefined polynomial
960    PointerType *PtrTy = dyn_cast<PointerType>(Ptr.getType());
961    if (!PtrTy) {
962      Result = Polynomial();
963      BasePtr = nullptr;
964      return;
965    }
966    unsigned PointerBits =
967        DL.getIndexSizeInBits(PtrTy->getPointerAddressSpace());
968
969    /// Skip pointer casts. Return Zero polynomial otherwise
970    if (isa<CastInst>(&Ptr)) {
971      CastInst &CI = *cast<CastInst>(&Ptr);
972      switch (CI.getOpcode()) {
973      case Instruction::BitCast:
974        computePolynomialFromPointer(*CI.getOperand(0), Result, BasePtr, DL);
975        break;
976      default:
977        BasePtr = &Ptr;
978        Polynomial(PointerBits, 0);
979        break;
980      }
981    }
982    /// Resolve GetElementPtrInst.
983    else if (isa<GetElementPtrInst>(&Ptr)) {
984      GetElementPtrInst &GEP = *cast<GetElementPtrInst>(&Ptr);
985
986      APInt BaseOffset(PointerBits, 0);
987
988      // Check if we can compute the Offset with accumulateConstantOffset
989      if (GEP.accumulateConstantOffset(DL, BaseOffset)) {
990        Result = Polynomial(BaseOffset);
991        BasePtr = GEP.getPointerOperand();
992        return;
993      } else {
994        // Otherwise we allow that the last index operand of the GEP is
995        // non-constant.
996        unsigned idxOperand, e;
997        SmallVector<Value *, 4> Indices;
998        for (idxOperand = 1, e = GEP.getNumOperands(); idxOperand < e;
999             idxOperand++) {
1000          ConstantInt *IDX = dyn_cast<ConstantInt>(GEP.getOperand(idxOperand));
1001          if (!IDX)
1002            break;
1003          Indices.push_back(IDX);
1004        }
1005
1006        // It must also be the last operand.
1007        if (idxOperand + 1 != e) {
1008          Result = Polynomial();
1009          BasePtr = nullptr;
1010          return;
1011        }
1012
1013        // Compute the polynomial of the index operand.
1014        computePolynomial(*GEP.getOperand(idxOperand), Result);
1015
1016        // Compute base offset from zero based index, excluding the last
1017        // variable operand.
1018        BaseOffset =
1019            DL.getIndexedOffsetInType(GEP.getSourceElementType(), Indices);
1020
1021        // Apply the operations of GEP to the polynomial.
1022        unsigned ResultSize = DL.getTypeAllocSize(GEP.getResultElementType());
1023        Result.sextOrTrunc(PointerBits);
1024        Result.mul(APInt(PointerBits, ResultSize));
1025        Result.add(BaseOffset);
1026        BasePtr = GEP.getPointerOperand();
1027      }
1028    }
1029    // All other instructions are handled by using the value as base pointer and
1030    // a zero polynomial.
1031    else {
1032      BasePtr = &Ptr;
1033      Polynomial(DL.getIndexSizeInBits(PtrTy->getPointerAddressSpace()), 0);
1034    }
1035  }
1036
1037#ifndef NDEBUG
1038  void print(raw_ostream &OS) const {
1039    if (PV)
1040      OS << *PV;
1041    else
1042      OS << "(none)";
1043    OS << " + ";
1044    for (unsigned i = 0; i < getDimension(); i++)
1045      OS << ((i == 0) ? "[" : ", ") << EI[i].Ofs;
1046    OS << "]";
1047  }
1048#endif
1049};
1050
1051} // anonymous namespace
1052
1053bool InterleavedLoadCombineImpl::findPattern(
1054    std::list<VectorInfo> &Candidates, std::list<VectorInfo> &InterleavedLoad,
1055    unsigned Factor, const DataLayout &DL) {
1056  for (auto C0 = Candidates.begin(), E0 = Candidates.end(); C0 != E0; ++C0) {
1057    unsigned i;
1058    // Try to find an interleaved load using the front of Worklist as first line
1059    unsigned Size = DL.getTypeAllocSize(C0->VTy->getElementType());
1060
1061    // List containing iterators pointing to the VectorInfos of the candidates
1062    std::vector<std::list<VectorInfo>::iterator> Res(Factor, Candidates.end());
1063
1064    for (auto C = Candidates.begin(), E = Candidates.end(); C != E; C++) {
1065      if (C->VTy != C0->VTy)
1066        continue;
1067      if (C->BB != C0->BB)
1068        continue;
1069      if (C->PV != C0->PV)
1070        continue;
1071
1072      // Check the current value matches any of factor - 1 remaining lines
1073      for (i = 1; i < Factor; i++) {
1074        if (C->EI[0].Ofs.isProvenEqualTo(C0->EI[0].Ofs + i * Size)) {
1075          Res[i] = C;
1076        }
1077      }
1078
1079      for (i = 1; i < Factor; i++) {
1080        if (Res[i] == Candidates.end())
1081          break;
1082      }
1083      if (i == Factor) {
1084        Res[0] = C0;
1085        break;
1086      }
1087    }
1088
1089    if (Res[0] != Candidates.end()) {
1090      // Move the result into the output
1091      for (unsigned i = 0; i < Factor; i++) {
1092        InterleavedLoad.splice(InterleavedLoad.end(), Candidates, Res[i]);
1093      }
1094
1095      return true;
1096    }
1097  }
1098  return false;
1099}
1100
1101LoadInst *
1102InterleavedLoadCombineImpl::findFirstLoad(const std::set<LoadInst *> &LIs) {
1103  assert(!LIs.empty() && "No load instructions given.");
1104
1105  // All LIs are within the same BB. Select the first for a reference.
1106  BasicBlock *BB = (*LIs.begin())->getParent();
1107  BasicBlock::iterator FLI =
1108      std::find_if(BB->begin(), BB->end(), [&LIs](Instruction &I) -> bool {
1109        return is_contained(LIs, &I);
1110      });
1111  assert(FLI != BB->end());
1112
1113  return cast<LoadInst>(FLI);
1114}
1115
1116bool InterleavedLoadCombineImpl::combine(std::list<VectorInfo> &InterleavedLoad,
1117                                         OptimizationRemarkEmitter &ORE) {
1118  LLVM_DEBUG(dbgs() << "Checking interleaved load\n");
1119
1120  // The insertion point is the LoadInst which loads the first values. The
1121  // following tests are used to proof that the combined load can be inserted
1122  // just before InsertionPoint.
1123  LoadInst *InsertionPoint = InterleavedLoad.front().EI[0].LI;
1124
1125  // Test if the offset is computed
1126  if (!InsertionPoint)
1127    return false;
1128
1129  std::set<LoadInst *> LIs;
1130  std::set<Instruction *> Is;
1131  std::set<Instruction *> SVIs;
1132
1133  unsigned InterleavedCost;
1134  unsigned InstructionCost = 0;
1135
1136  // Get the interleave factor
1137  unsigned Factor = InterleavedLoad.size();
1138
1139  // Merge all input sets used in analysis
1140  for (auto &VI : InterleavedLoad) {
1141    // Generate a set of all load instructions to be combined
1142    LIs.insert(VI.LIs.begin(), VI.LIs.end());
1143
1144    // Generate a set of all instructions taking part in load
1145    // interleaved. This list excludes the instructions necessary for the
1146    // polynomial construction.
1147    Is.insert(VI.Is.begin(), VI.Is.end());
1148
1149    // Generate the set of the final ShuffleVectorInst.
1150    SVIs.insert(VI.SVI);
1151  }
1152
1153  // There is nothing to combine.
1154  if (LIs.size() < 2)
1155    return false;
1156
1157  // Test if all participating instruction will be dead after the
1158  // transformation. If intermediate results are used, no performance gain can
1159  // be expected. Also sum the cost of the Instructions beeing left dead.
1160  for (auto &I : Is) {
1161    // Compute the old cost
1162    InstructionCost +=
1163        TTI.getInstructionCost(I, TargetTransformInfo::TCK_Latency);
1164
1165    // The final SVIs are allowed not to be dead, all uses will be replaced
1166    if (SVIs.find(I) != SVIs.end())
1167      continue;
1168
1169    // If there are users outside the set to be eliminated, we abort the
1170    // transformation. No gain can be expected.
1171    for (auto *U : I->users()) {
1172      if (Is.find(dyn_cast<Instruction>(U)) == Is.end())
1173        return false;
1174    }
1175  }
1176
1177  // We know that all LoadInst are within the same BB. This guarantees that
1178  // either everything or nothing is loaded.
1179  LoadInst *First = findFirstLoad(LIs);
1180
1181  // To be safe that the loads can be combined, iterate over all loads and test
1182  // that the corresponding defining access dominates first LI. This guarantees
1183  // that there are no aliasing stores in between the loads.
1184  auto FMA = MSSA.getMemoryAccess(First);
1185  for (auto LI : LIs) {
1186    auto MADef = MSSA.getMemoryAccess(LI)->getDefiningAccess();
1187    if (!MSSA.dominates(MADef, FMA))
1188      return false;
1189  }
1190  assert(!LIs.empty() && "There are no LoadInst to combine");
1191
1192  // It is necessary that insertion point dominates all final ShuffleVectorInst.
1193  for (auto &VI : InterleavedLoad) {
1194    if (!DT.dominates(InsertionPoint, VI.SVI))
1195      return false;
1196  }
1197
1198  // All checks are done. Add instructions detectable by InterleavedAccessPass
1199  // The old instruction will are left dead.
1200  IRBuilder<> Builder(InsertionPoint);
1201  Type *ETy = InterleavedLoad.front().SVI->getType()->getElementType();
1202  unsigned ElementsPerSVI =
1203      InterleavedLoad.front().SVI->getType()->getNumElements();
1204  VectorType *ILTy = VectorType::get(ETy, Factor * ElementsPerSVI);
1205
1206  SmallVector<unsigned, 4> Indices;
1207  for (unsigned i = 0; i < Factor; i++)
1208    Indices.push_back(i);
1209  InterleavedCost = TTI.getInterleavedMemoryOpCost(
1210      Instruction::Load, ILTy, Factor, Indices, InsertionPoint->getAlignment(),
1211      InsertionPoint->getPointerAddressSpace());
1212
1213  if (InterleavedCost >= InstructionCost) {
1214    return false;
1215  }
1216
1217  // Create a pointer cast for the wide load.
1218  auto CI = Builder.CreatePointerCast(InsertionPoint->getOperand(0),
1219                                      ILTy->getPointerTo(),
1220                                      "interleaved.wide.ptrcast");
1221
1222  // Create the wide load and update the MemorySSA.
1223  auto LI = Builder.CreateAlignedLoad(ILTy, CI, InsertionPoint->getAlignment(),
1224                                      "interleaved.wide.load");
1225  auto MSSAU = MemorySSAUpdater(&MSSA);
1226  MemoryUse *MSSALoad = cast<MemoryUse>(MSSAU.createMemoryAccessBefore(
1227      LI, nullptr, MSSA.getMemoryAccess(InsertionPoint)));
1228  MSSAU.insertUse(MSSALoad);
1229
1230  // Create the final SVIs and replace all uses.
1231  int i = 0;
1232  for (auto &VI : InterleavedLoad) {
1233    SmallVector<uint32_t, 4> Mask;
1234    for (unsigned j = 0; j < ElementsPerSVI; j++)
1235      Mask.push_back(i + j * Factor);
1236
1237    Builder.SetInsertPoint(VI.SVI);
1238    auto SVI = Builder.CreateShuffleVector(LI, UndefValue::get(LI->getType()),
1239                                           Mask, "interleaved.shuffle");
1240    VI.SVI->replaceAllUsesWith(SVI);
1241    i++;
1242  }
1243
1244  NumInterleavedLoadCombine++;
1245  ORE.emit([&]() {
1246    return OptimizationRemark(DEBUG_TYPE, "Combined Interleaved Load", LI)
1247           << "Load interleaved combined with factor "
1248           << ore::NV("Factor", Factor);
1249  });
1250
1251  return true;
1252}
1253
1254bool InterleavedLoadCombineImpl::run() {
1255  OptimizationRemarkEmitter ORE(&F);
1256  bool changed = false;
1257  unsigned MaxFactor = TLI.getMaxSupportedInterleaveFactor();
1258
1259  auto &DL = F.getParent()->getDataLayout();
1260
1261  // Start with the highest factor to avoid combining and recombining.
1262  for (unsigned Factor = MaxFactor; Factor >= 2; Factor--) {
1263    std::list<VectorInfo> Candidates;
1264
1265    for (BasicBlock &BB : F) {
1266      for (Instruction &I : BB) {
1267        if (auto SVI = dyn_cast<ShuffleVectorInst>(&I)) {
1268
1269          Candidates.emplace_back(SVI->getType());
1270
1271          if (!VectorInfo::computeFromSVI(SVI, Candidates.back(), DL)) {
1272            Candidates.pop_back();
1273            continue;
1274          }
1275
1276          if (!Candidates.back().isInterleaved(Factor, DL)) {
1277            Candidates.pop_back();
1278          }
1279        }
1280      }
1281    }
1282
1283    std::list<VectorInfo> InterleavedLoad;
1284    while (findPattern(Candidates, InterleavedLoad, Factor, DL)) {
1285      if (combine(InterleavedLoad, ORE)) {
1286        changed = true;
1287      } else {
1288        // Remove the first element of the Interleaved Load but put the others
1289        // back on the list and continue searching
1290        Candidates.splice(Candidates.begin(), InterleavedLoad,
1291                          std::next(InterleavedLoad.begin()),
1292                          InterleavedLoad.end());
1293      }
1294      InterleavedLoad.clear();
1295    }
1296  }
1297
1298  return changed;
1299}
1300
1301namespace {
1302/// This pass combines interleaved loads into a pattern detectable by
1303/// InterleavedAccessPass.
1304struct InterleavedLoadCombine : public FunctionPass {
1305  static char ID;
1306
1307  InterleavedLoadCombine() : FunctionPass(ID) {
1308    initializeInterleavedLoadCombinePass(*PassRegistry::getPassRegistry());
1309  }
1310
1311  StringRef getPassName() const override {
1312    return "Interleaved Load Combine Pass";
1313  }
1314
1315  bool runOnFunction(Function &F) override {
1316    if (DisableInterleavedLoadCombine)
1317      return false;
1318
1319    auto *TPC = getAnalysisIfAvailable<TargetPassConfig>();
1320    if (!TPC)
1321      return false;
1322
1323    LLVM_DEBUG(dbgs() << "*** " << getPassName() << ": " << F.getName()
1324                      << "\n");
1325
1326    return InterleavedLoadCombineImpl(
1327               F, getAnalysis<DominatorTreeWrapperPass>().getDomTree(),
1328               getAnalysis<MemorySSAWrapperPass>().getMSSA(),
1329               TPC->getTM<TargetMachine>())
1330        .run();
1331  }
1332
1333  void getAnalysisUsage(AnalysisUsage &AU) const override {
1334    AU.addRequired<MemorySSAWrapperPass>();
1335    AU.addRequired<DominatorTreeWrapperPass>();
1336    FunctionPass::getAnalysisUsage(AU);
1337  }
1338
1339private:
1340};
1341} // anonymous namespace
1342
1343char InterleavedLoadCombine::ID = 0;
1344
1345INITIALIZE_PASS_BEGIN(
1346    InterleavedLoadCombine, DEBUG_TYPE,
1347    "Combine interleaved loads into wide loads and shufflevector instructions",
1348    false, false)
1349INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
1350INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass)
1351INITIALIZE_PASS_END(
1352    InterleavedLoadCombine, DEBUG_TYPE,
1353    "Combine interleaved loads into wide loads and shufflevector instructions",
1354    false, false)
1355
1356FunctionPass *
1357llvm::createInterleavedLoadCombinePass() {
1358  auto P = new InterleavedLoadCombine();
1359  return P;
1360}
1361