ImplicitNullChecks.cpp revision 360784
1//===- ImplicitNullChecks.cpp - Fold null checks into memory accesses -----===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This pass turns explicit null checks of the form
10//
11//   test %r10, %r10
12//   je throw_npe
13//   movl (%r10), %esi
14//   ...
15//
16// to
17//
18//   faulting_load_op("movl (%r10), %esi", throw_npe)
19//   ...
20//
21// With the help of a runtime that understands the .fault_maps section,
22// faulting_load_op branches to throw_npe if executing movl (%r10), %esi incurs
23// a page fault.
24// Store and LoadStore are also supported.
25//
26//===----------------------------------------------------------------------===//
27
28#include "llvm/ADT/ArrayRef.h"
29#include "llvm/ADT/None.h"
30#include "llvm/ADT/Optional.h"
31#include "llvm/ADT/STLExtras.h"
32#include "llvm/ADT/SmallVector.h"
33#include "llvm/ADT/Statistic.h"
34#include "llvm/Analysis/AliasAnalysis.h"
35#include "llvm/Analysis/MemoryLocation.h"
36#include "llvm/CodeGen/FaultMaps.h"
37#include "llvm/CodeGen/MachineBasicBlock.h"
38#include "llvm/CodeGen/MachineFunction.h"
39#include "llvm/CodeGen/MachineFunctionPass.h"
40#include "llvm/CodeGen/MachineInstr.h"
41#include "llvm/CodeGen/MachineInstrBuilder.h"
42#include "llvm/CodeGen/MachineMemOperand.h"
43#include "llvm/CodeGen/MachineOperand.h"
44#include "llvm/CodeGen/MachineRegisterInfo.h"
45#include "llvm/CodeGen/PseudoSourceValue.h"
46#include "llvm/CodeGen/TargetInstrInfo.h"
47#include "llvm/CodeGen/TargetOpcodes.h"
48#include "llvm/CodeGen/TargetRegisterInfo.h"
49#include "llvm/CodeGen/TargetSubtargetInfo.h"
50#include "llvm/IR/BasicBlock.h"
51#include "llvm/IR/DebugLoc.h"
52#include "llvm/IR/LLVMContext.h"
53#include "llvm/InitializePasses.h"
54#include "llvm/MC/MCInstrDesc.h"
55#include "llvm/MC/MCRegisterInfo.h"
56#include "llvm/Pass.h"
57#include "llvm/Support/CommandLine.h"
58#include <cassert>
59#include <cstdint>
60#include <iterator>
61
62using namespace llvm;
63
64static cl::opt<int> PageSize("imp-null-check-page-size",
65                             cl::desc("The page size of the target in bytes"),
66                             cl::init(4096), cl::Hidden);
67
68static cl::opt<unsigned> MaxInstsToConsider(
69    "imp-null-max-insts-to-consider",
70    cl::desc("The max number of instructions to consider hoisting loads over "
71             "(the algorithm is quadratic over this number)"),
72    cl::Hidden, cl::init(8));
73
74#define DEBUG_TYPE "implicit-null-checks"
75
76STATISTIC(NumImplicitNullChecks,
77          "Number of explicit null checks made implicit");
78
79namespace {
80
81class ImplicitNullChecks : public MachineFunctionPass {
82  /// Return true if \c computeDependence can process \p MI.
83  static bool canHandle(const MachineInstr *MI);
84
85  /// Helper function for \c computeDependence.  Return true if \p A
86  /// and \p B do not have any dependences between them, and can be
87  /// re-ordered without changing program semantics.
88  bool canReorder(const MachineInstr *A, const MachineInstr *B);
89
90  /// A data type for representing the result computed by \c
91  /// computeDependence.  States whether it is okay to reorder the
92  /// instruction passed to \c computeDependence with at most one
93  /// dependency.
94  struct DependenceResult {
95    /// Can we actually re-order \p MI with \p Insts (see \c
96    /// computeDependence).
97    bool CanReorder;
98
99    /// If non-None, then an instruction in \p Insts that also must be
100    /// hoisted.
101    Optional<ArrayRef<MachineInstr *>::iterator> PotentialDependence;
102
103    /*implicit*/ DependenceResult(
104        bool CanReorder,
105        Optional<ArrayRef<MachineInstr *>::iterator> PotentialDependence)
106        : CanReorder(CanReorder), PotentialDependence(PotentialDependence) {
107      assert((!PotentialDependence || CanReorder) &&
108             "!CanReorder && PotentialDependence.hasValue() not allowed!");
109    }
110  };
111
112  /// Compute a result for the following question: can \p MI be
113  /// re-ordered from after \p Insts to before it.
114  ///
115  /// \c canHandle should return true for all instructions in \p
116  /// Insts.
117  DependenceResult computeDependence(const MachineInstr *MI,
118                                     ArrayRef<MachineInstr *> Block);
119
120  /// Represents one null check that can be made implicit.
121  class NullCheck {
122    // The memory operation the null check can be folded into.
123    MachineInstr *MemOperation;
124
125    // The instruction actually doing the null check (Ptr != 0).
126    MachineInstr *CheckOperation;
127
128    // The block the check resides in.
129    MachineBasicBlock *CheckBlock;
130
131    // The block branched to if the pointer is non-null.
132    MachineBasicBlock *NotNullSucc;
133
134    // The block branched to if the pointer is null.
135    MachineBasicBlock *NullSucc;
136
137    // If this is non-null, then MemOperation has a dependency on this
138    // instruction; and it needs to be hoisted to execute before MemOperation.
139    MachineInstr *OnlyDependency;
140
141  public:
142    explicit NullCheck(MachineInstr *memOperation, MachineInstr *checkOperation,
143                       MachineBasicBlock *checkBlock,
144                       MachineBasicBlock *notNullSucc,
145                       MachineBasicBlock *nullSucc,
146                       MachineInstr *onlyDependency)
147        : MemOperation(memOperation), CheckOperation(checkOperation),
148          CheckBlock(checkBlock), NotNullSucc(notNullSucc), NullSucc(nullSucc),
149          OnlyDependency(onlyDependency) {}
150
151    MachineInstr *getMemOperation() const { return MemOperation; }
152
153    MachineInstr *getCheckOperation() const { return CheckOperation; }
154
155    MachineBasicBlock *getCheckBlock() const { return CheckBlock; }
156
157    MachineBasicBlock *getNotNullSucc() const { return NotNullSucc; }
158
159    MachineBasicBlock *getNullSucc() const { return NullSucc; }
160
161    MachineInstr *getOnlyDependency() const { return OnlyDependency; }
162  };
163
164  const TargetInstrInfo *TII = nullptr;
165  const TargetRegisterInfo *TRI = nullptr;
166  AliasAnalysis *AA = nullptr;
167  MachineFrameInfo *MFI = nullptr;
168
169  bool analyzeBlockForNullChecks(MachineBasicBlock &MBB,
170                                 SmallVectorImpl<NullCheck> &NullCheckList);
171  MachineInstr *insertFaultingInstr(MachineInstr *MI, MachineBasicBlock *MBB,
172                                    MachineBasicBlock *HandlerMBB);
173  void rewriteNullChecks(ArrayRef<NullCheck> NullCheckList);
174
175  enum AliasResult {
176    AR_NoAlias,
177    AR_MayAlias,
178    AR_WillAliasEverything
179  };
180
181  /// Returns AR_NoAlias if \p MI memory operation does not alias with
182  /// \p PrevMI, AR_MayAlias if they may alias and AR_WillAliasEverything if
183  /// they may alias and any further memory operation may alias with \p PrevMI.
184  AliasResult areMemoryOpsAliased(const MachineInstr &MI,
185                                  const MachineInstr *PrevMI) const;
186
187  enum SuitabilityResult {
188    SR_Suitable,
189    SR_Unsuitable,
190    SR_Impossible
191  };
192
193  /// Return SR_Suitable if \p MI a memory operation that can be used to
194  /// implicitly null check the value in \p PointerReg, SR_Unsuitable if
195  /// \p MI cannot be used to null check and SR_Impossible if there is
196  /// no sense to continue lookup due to any other instruction will not be able
197  /// to be used. \p PrevInsts is the set of instruction seen since
198  /// the explicit null check on \p PointerReg.
199  SuitabilityResult isSuitableMemoryOp(const MachineInstr &MI,
200                                       unsigned PointerReg,
201                                       ArrayRef<MachineInstr *> PrevInsts);
202
203  /// Return true if \p FaultingMI can be hoisted from after the
204  /// instructions in \p InstsSeenSoFar to before them.  Set \p Dependence to a
205  /// non-null value if we also need to (and legally can) hoist a depedency.
206  bool canHoistInst(MachineInstr *FaultingMI, unsigned PointerReg,
207                    ArrayRef<MachineInstr *> InstsSeenSoFar,
208                    MachineBasicBlock *NullSucc, MachineInstr *&Dependence);
209
210public:
211  static char ID;
212
213  ImplicitNullChecks() : MachineFunctionPass(ID) {
214    initializeImplicitNullChecksPass(*PassRegistry::getPassRegistry());
215  }
216
217  bool runOnMachineFunction(MachineFunction &MF) override;
218
219  void getAnalysisUsage(AnalysisUsage &AU) const override {
220    AU.addRequired<AAResultsWrapperPass>();
221    MachineFunctionPass::getAnalysisUsage(AU);
222  }
223
224  MachineFunctionProperties getRequiredProperties() const override {
225    return MachineFunctionProperties().set(
226        MachineFunctionProperties::Property::NoVRegs);
227  }
228};
229
230} // end anonymous namespace
231
232bool ImplicitNullChecks::canHandle(const MachineInstr *MI) {
233  if (MI->isCall() || MI->mayRaiseFPException() ||
234      MI->hasUnmodeledSideEffects())
235    return false;
236  auto IsRegMask = [](const MachineOperand &MO) { return MO.isRegMask(); };
237  (void)IsRegMask;
238
239  assert(!llvm::any_of(MI->operands(), IsRegMask) &&
240         "Calls were filtered out above!");
241
242  auto IsUnordered = [](MachineMemOperand *MMO) { return MMO->isUnordered(); };
243  return llvm::all_of(MI->memoperands(), IsUnordered);
244}
245
246ImplicitNullChecks::DependenceResult
247ImplicitNullChecks::computeDependence(const MachineInstr *MI,
248                                      ArrayRef<MachineInstr *> Block) {
249  assert(llvm::all_of(Block, canHandle) && "Check this first!");
250  assert(!is_contained(Block, MI) && "Block must be exclusive of MI!");
251
252  Optional<ArrayRef<MachineInstr *>::iterator> Dep;
253
254  for (auto I = Block.begin(), E = Block.end(); I != E; ++I) {
255    if (canReorder(*I, MI))
256      continue;
257
258    if (Dep == None) {
259      // Found one possible dependency, keep track of it.
260      Dep = I;
261    } else {
262      // We found two dependencies, so bail out.
263      return {false, None};
264    }
265  }
266
267  return {true, Dep};
268}
269
270bool ImplicitNullChecks::canReorder(const MachineInstr *A,
271                                    const MachineInstr *B) {
272  assert(canHandle(A) && canHandle(B) && "Precondition!");
273
274  // canHandle makes sure that we _can_ correctly analyze the dependencies
275  // between A and B here -- for instance, we should not be dealing with heap
276  // load-store dependencies here.
277
278  for (auto MOA : A->operands()) {
279    if (!(MOA.isReg() && MOA.getReg()))
280      continue;
281
282    Register RegA = MOA.getReg();
283    for (auto MOB : B->operands()) {
284      if (!(MOB.isReg() && MOB.getReg()))
285        continue;
286
287      Register RegB = MOB.getReg();
288
289      if (TRI->regsOverlap(RegA, RegB) && (MOA.isDef() || MOB.isDef()))
290        return false;
291    }
292  }
293
294  return true;
295}
296
297bool ImplicitNullChecks::runOnMachineFunction(MachineFunction &MF) {
298  TII = MF.getSubtarget().getInstrInfo();
299  TRI = MF.getRegInfo().getTargetRegisterInfo();
300  MFI = &MF.getFrameInfo();
301  AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
302
303  SmallVector<NullCheck, 16> NullCheckList;
304
305  for (auto &MBB : MF)
306    analyzeBlockForNullChecks(MBB, NullCheckList);
307
308  if (!NullCheckList.empty())
309    rewriteNullChecks(NullCheckList);
310
311  return !NullCheckList.empty();
312}
313
314// Return true if any register aliasing \p Reg is live-in into \p MBB.
315static bool AnyAliasLiveIn(const TargetRegisterInfo *TRI,
316                           MachineBasicBlock *MBB, unsigned Reg) {
317  for (MCRegAliasIterator AR(Reg, TRI, /*IncludeSelf*/ true); AR.isValid();
318       ++AR)
319    if (MBB->isLiveIn(*AR))
320      return true;
321  return false;
322}
323
324ImplicitNullChecks::AliasResult
325ImplicitNullChecks::areMemoryOpsAliased(const MachineInstr &MI,
326                                        const MachineInstr *PrevMI) const {
327  // If it is not memory access, skip the check.
328  if (!(PrevMI->mayStore() || PrevMI->mayLoad()))
329    return AR_NoAlias;
330  // Load-Load may alias
331  if (!(MI.mayStore() || PrevMI->mayStore()))
332    return AR_NoAlias;
333  // We lost info, conservatively alias. If it was store then no sense to
334  // continue because we won't be able to check against it further.
335  if (MI.memoperands_empty())
336    return MI.mayStore() ? AR_WillAliasEverything : AR_MayAlias;
337  if (PrevMI->memoperands_empty())
338    return PrevMI->mayStore() ? AR_WillAliasEverything : AR_MayAlias;
339
340  for (MachineMemOperand *MMO1 : MI.memoperands()) {
341    // MMO1 should have a value due it comes from operation we'd like to use
342    // as implicit null check.
343    assert(MMO1->getValue() && "MMO1 should have a Value!");
344    for (MachineMemOperand *MMO2 : PrevMI->memoperands()) {
345      if (const PseudoSourceValue *PSV = MMO2->getPseudoValue()) {
346        if (PSV->mayAlias(MFI))
347          return AR_MayAlias;
348        continue;
349      }
350      llvm::AliasResult AAResult =
351          AA->alias(MemoryLocation(MMO1->getValue(), LocationSize::unknown(),
352                                   MMO1->getAAInfo()),
353                    MemoryLocation(MMO2->getValue(), LocationSize::unknown(),
354                                   MMO2->getAAInfo()));
355      if (AAResult != NoAlias)
356        return AR_MayAlias;
357    }
358  }
359  return AR_NoAlias;
360}
361
362ImplicitNullChecks::SuitabilityResult
363ImplicitNullChecks::isSuitableMemoryOp(const MachineInstr &MI,
364                                       unsigned PointerReg,
365                                       ArrayRef<MachineInstr *> PrevInsts) {
366  int64_t Offset;
367  const MachineOperand *BaseOp;
368
369  if (!TII->getMemOperandWithOffset(MI, BaseOp, Offset, TRI) ||
370      !BaseOp->isReg() || BaseOp->getReg() != PointerReg)
371    return SR_Unsuitable;
372
373  // We want the mem access to be issued at a sane offset from PointerReg,
374  // so that if PointerReg is null then the access reliably page faults.
375  if (!(MI.mayLoadOrStore() && !MI.isPredicable() &&
376        -PageSize < Offset && Offset < PageSize))
377    return SR_Unsuitable;
378
379  // Finally, check whether the current memory access aliases with previous one.
380  for (auto *PrevMI : PrevInsts) {
381    AliasResult AR = areMemoryOpsAliased(MI, PrevMI);
382    if (AR == AR_WillAliasEverything)
383      return SR_Impossible;
384    if (AR == AR_MayAlias)
385      return SR_Unsuitable;
386  }
387  return SR_Suitable;
388}
389
390bool ImplicitNullChecks::canHoistInst(MachineInstr *FaultingMI,
391                                      unsigned PointerReg,
392                                      ArrayRef<MachineInstr *> InstsSeenSoFar,
393                                      MachineBasicBlock *NullSucc,
394                                      MachineInstr *&Dependence) {
395  auto DepResult = computeDependence(FaultingMI, InstsSeenSoFar);
396  if (!DepResult.CanReorder)
397    return false;
398
399  if (!DepResult.PotentialDependence) {
400    Dependence = nullptr;
401    return true;
402  }
403
404  auto DependenceItr = *DepResult.PotentialDependence;
405  auto *DependenceMI = *DependenceItr;
406
407  // We don't want to reason about speculating loads.  Note -- at this point
408  // we should have already filtered out all of the other non-speculatable
409  // things, like calls and stores.
410  // We also do not want to hoist stores because it might change the memory
411  // while the FaultingMI may result in faulting.
412  assert(canHandle(DependenceMI) && "Should never have reached here!");
413  if (DependenceMI->mayLoadOrStore())
414    return false;
415
416  for (auto &DependenceMO : DependenceMI->operands()) {
417    if (!(DependenceMO.isReg() && DependenceMO.getReg()))
418      continue;
419
420    // Make sure that we won't clobber any live ins to the sibling block by
421    // hoisting Dependency.  For instance, we can't hoist INST to before the
422    // null check (even if it safe, and does not violate any dependencies in
423    // the non_null_block) if %rdx is live in to _null_block.
424    //
425    //    test %rcx, %rcx
426    //    je _null_block
427    //  _non_null_block:
428    //    %rdx = INST
429    //    ...
430    //
431    // This restriction does not apply to the faulting load inst because in
432    // case the pointer loaded from is in the null page, the load will not
433    // semantically execute, and affect machine state.  That is, if the load
434    // was loading into %rax and it faults, the value of %rax should stay the
435    // same as it would have been had the load not have executed and we'd have
436    // branched to NullSucc directly.
437    if (AnyAliasLiveIn(TRI, NullSucc, DependenceMO.getReg()))
438      return false;
439
440    // The Dependency can't be re-defining the base register -- then we won't
441    // get the memory operation on the address we want.  This is already
442    // checked in \c IsSuitableMemoryOp.
443    assert(!(DependenceMO.isDef() &&
444             TRI->regsOverlap(DependenceMO.getReg(), PointerReg)) &&
445           "Should have been checked before!");
446  }
447
448  auto DepDepResult =
449      computeDependence(DependenceMI, {InstsSeenSoFar.begin(), DependenceItr});
450
451  if (!DepDepResult.CanReorder || DepDepResult.PotentialDependence)
452    return false;
453
454  Dependence = DependenceMI;
455  return true;
456}
457
458/// Analyze MBB to check if its terminating branch can be turned into an
459/// implicit null check.  If yes, append a description of the said null check to
460/// NullCheckList and return true, else return false.
461bool ImplicitNullChecks::analyzeBlockForNullChecks(
462    MachineBasicBlock &MBB, SmallVectorImpl<NullCheck> &NullCheckList) {
463  using MachineBranchPredicate = TargetInstrInfo::MachineBranchPredicate;
464
465  MDNode *BranchMD = nullptr;
466  if (auto *BB = MBB.getBasicBlock())
467    BranchMD = BB->getTerminator()->getMetadata(LLVMContext::MD_make_implicit);
468
469  if (!BranchMD)
470    return false;
471
472  MachineBranchPredicate MBP;
473
474  if (TII->analyzeBranchPredicate(MBB, MBP, true))
475    return false;
476
477  // Is the predicate comparing an integer to zero?
478  if (!(MBP.LHS.isReg() && MBP.RHS.isImm() && MBP.RHS.getImm() == 0 &&
479        (MBP.Predicate == MachineBranchPredicate::PRED_NE ||
480         MBP.Predicate == MachineBranchPredicate::PRED_EQ)))
481    return false;
482
483  // If we cannot erase the test instruction itself, then making the null check
484  // implicit does not buy us much.
485  if (!MBP.SingleUseCondition)
486    return false;
487
488  MachineBasicBlock *NotNullSucc, *NullSucc;
489
490  if (MBP.Predicate == MachineBranchPredicate::PRED_NE) {
491    NotNullSucc = MBP.TrueDest;
492    NullSucc = MBP.FalseDest;
493  } else {
494    NotNullSucc = MBP.FalseDest;
495    NullSucc = MBP.TrueDest;
496  }
497
498  // We handle the simplest case for now.  We can potentially do better by using
499  // the machine dominator tree.
500  if (NotNullSucc->pred_size() != 1)
501    return false;
502
503  // To prevent the invalid transformation of the following code:
504  //
505  //   mov %rax, %rcx
506  //   test %rax, %rax
507  //   %rax = ...
508  //   je throw_npe
509  //   mov(%rcx), %r9
510  //   mov(%rax), %r10
511  //
512  // into:
513  //
514  //   mov %rax, %rcx
515  //   %rax = ....
516  //   faulting_load_op("movl (%rax), %r10", throw_npe)
517  //   mov(%rcx), %r9
518  //
519  // we must ensure that there are no instructions between the 'test' and
520  // conditional jump that modify %rax.
521  const Register PointerReg = MBP.LHS.getReg();
522
523  assert(MBP.ConditionDef->getParent() ==  &MBB && "Should be in basic block");
524
525  for (auto I = MBB.rbegin(); MBP.ConditionDef != &*I; ++I)
526    if (I->modifiesRegister(PointerReg, TRI))
527      return false;
528
529  // Starting with a code fragment like:
530  //
531  //   test %rax, %rax
532  //   jne LblNotNull
533  //
534  //  LblNull:
535  //   callq throw_NullPointerException
536  //
537  //  LblNotNull:
538  //   Inst0
539  //   Inst1
540  //   ...
541  //   Def = Load (%rax + <offset>)
542  //   ...
543  //
544  //
545  // we want to end up with
546  //
547  //   Def = FaultingLoad (%rax + <offset>), LblNull
548  //   jmp LblNotNull ;; explicit or fallthrough
549  //
550  //  LblNotNull:
551  //   Inst0
552  //   Inst1
553  //   ...
554  //
555  //  LblNull:
556  //   callq throw_NullPointerException
557  //
558  //
559  // To see why this is legal, consider the two possibilities:
560  //
561  //  1. %rax is null: since we constrain <offset> to be less than PageSize, the
562  //     load instruction dereferences the null page, causing a segmentation
563  //     fault.
564  //
565  //  2. %rax is not null: in this case we know that the load cannot fault, as
566  //     otherwise the load would've faulted in the original program too and the
567  //     original program would've been undefined.
568  //
569  // This reasoning cannot be extended to justify hoisting through arbitrary
570  // control flow.  For instance, in the example below (in pseudo-C)
571  //
572  //    if (ptr == null) { throw_npe(); unreachable; }
573  //    if (some_cond) { return 42; }
574  //    v = ptr->field;  // LD
575  //    ...
576  //
577  // we cannot (without code duplication) use the load marked "LD" to null check
578  // ptr -- clause (2) above does not apply in this case.  In the above program
579  // the safety of ptr->field can be dependent on some_cond; and, for instance,
580  // ptr could be some non-null invalid reference that never gets loaded from
581  // because some_cond is always true.
582
583  SmallVector<MachineInstr *, 8> InstsSeenSoFar;
584
585  for (auto &MI : *NotNullSucc) {
586    if (!canHandle(&MI) || InstsSeenSoFar.size() >= MaxInstsToConsider)
587      return false;
588
589    MachineInstr *Dependence;
590    SuitabilityResult SR = isSuitableMemoryOp(MI, PointerReg, InstsSeenSoFar);
591    if (SR == SR_Impossible)
592      return false;
593    if (SR == SR_Suitable &&
594        canHoistInst(&MI, PointerReg, InstsSeenSoFar, NullSucc, Dependence)) {
595      NullCheckList.emplace_back(&MI, MBP.ConditionDef, &MBB, NotNullSucc,
596                                 NullSucc, Dependence);
597      return true;
598    }
599
600    // If MI re-defines the PointerReg then we cannot move further.
601    if (llvm::any_of(MI.operands(), [&](MachineOperand &MO) {
602          return MO.isReg() && MO.getReg() && MO.isDef() &&
603                 TRI->regsOverlap(MO.getReg(), PointerReg);
604        }))
605      return false;
606    InstsSeenSoFar.push_back(&MI);
607  }
608
609  return false;
610}
611
612/// Wrap a machine instruction, MI, into a FAULTING machine instruction.
613/// The FAULTING instruction does the same load/store as MI
614/// (defining the same register), and branches to HandlerMBB if the mem access
615/// faults.  The FAULTING instruction is inserted at the end of MBB.
616MachineInstr *ImplicitNullChecks::insertFaultingInstr(
617    MachineInstr *MI, MachineBasicBlock *MBB, MachineBasicBlock *HandlerMBB) {
618  const unsigned NoRegister = 0; // Guaranteed to be the NoRegister value for
619                                 // all targets.
620
621  DebugLoc DL;
622  unsigned NumDefs = MI->getDesc().getNumDefs();
623  assert(NumDefs <= 1 && "other cases unhandled!");
624
625  unsigned DefReg = NoRegister;
626  if (NumDefs != 0) {
627    DefReg = MI->getOperand(0).getReg();
628    assert(NumDefs == 1 && "expected exactly one def!");
629  }
630
631  FaultMaps::FaultKind FK;
632  if (MI->mayLoad())
633    FK =
634        MI->mayStore() ? FaultMaps::FaultingLoadStore : FaultMaps::FaultingLoad;
635  else
636    FK = FaultMaps::FaultingStore;
637
638  auto MIB = BuildMI(MBB, DL, TII->get(TargetOpcode::FAULTING_OP), DefReg)
639                 .addImm(FK)
640                 .addMBB(HandlerMBB)
641                 .addImm(MI->getOpcode());
642
643  for (auto &MO : MI->uses()) {
644    if (MO.isReg()) {
645      MachineOperand NewMO = MO;
646      if (MO.isUse()) {
647        NewMO.setIsKill(false);
648      } else {
649        assert(MO.isDef() && "Expected def or use");
650        NewMO.setIsDead(false);
651      }
652      MIB.add(NewMO);
653    } else {
654      MIB.add(MO);
655    }
656  }
657
658  MIB.setMemRefs(MI->memoperands());
659
660  return MIB;
661}
662
663/// Rewrite the null checks in NullCheckList into implicit null checks.
664void ImplicitNullChecks::rewriteNullChecks(
665    ArrayRef<ImplicitNullChecks::NullCheck> NullCheckList) {
666  DebugLoc DL;
667
668  for (auto &NC : NullCheckList) {
669    // Remove the conditional branch dependent on the null check.
670    unsigned BranchesRemoved = TII->removeBranch(*NC.getCheckBlock());
671    (void)BranchesRemoved;
672    assert(BranchesRemoved > 0 && "expected at least one branch!");
673
674    if (auto *DepMI = NC.getOnlyDependency()) {
675      DepMI->removeFromParent();
676      NC.getCheckBlock()->insert(NC.getCheckBlock()->end(), DepMI);
677    }
678
679    // Insert a faulting instruction where the conditional branch was
680    // originally. We check earlier ensures that this bit of code motion
681    // is legal.  We do not touch the successors list for any basic block
682    // since we haven't changed control flow, we've just made it implicit.
683    MachineInstr *FaultingInstr = insertFaultingInstr(
684        NC.getMemOperation(), NC.getCheckBlock(), NC.getNullSucc());
685    // Now the values defined by MemOperation, if any, are live-in of
686    // the block of MemOperation.
687    // The original operation may define implicit-defs alongside
688    // the value.
689    MachineBasicBlock *MBB = NC.getMemOperation()->getParent();
690    for (const MachineOperand &MO : FaultingInstr->operands()) {
691      if (!MO.isReg() || !MO.isDef())
692        continue;
693      Register Reg = MO.getReg();
694      if (!Reg || MBB->isLiveIn(Reg))
695        continue;
696      MBB->addLiveIn(Reg);
697    }
698
699    if (auto *DepMI = NC.getOnlyDependency()) {
700      for (auto &MO : DepMI->operands()) {
701        if (!MO.isReg() || !MO.getReg() || !MO.isDef() || MO.isDead())
702          continue;
703        if (!NC.getNotNullSucc()->isLiveIn(MO.getReg()))
704          NC.getNotNullSucc()->addLiveIn(MO.getReg());
705      }
706    }
707
708    NC.getMemOperation()->eraseFromParent();
709    NC.getCheckOperation()->eraseFromParent();
710
711    // Insert an *unconditional* branch to not-null successor.
712    TII->insertBranch(*NC.getCheckBlock(), NC.getNotNullSucc(), nullptr,
713                      /*Cond=*/None, DL);
714
715    NumImplicitNullChecks++;
716  }
717}
718
719char ImplicitNullChecks::ID = 0;
720
721char &llvm::ImplicitNullChecksID = ImplicitNullChecks::ID;
722
723INITIALIZE_PASS_BEGIN(ImplicitNullChecks, DEBUG_TYPE,
724                      "Implicit null checks", false, false)
725INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
726INITIALIZE_PASS_END(ImplicitNullChecks, DEBUG_TYPE,
727                    "Implicit null checks", false, false)
728