RegBankSelect.cpp revision 360784
1//==- llvm/CodeGen/GlobalISel/RegBankSelect.cpp - RegBankSelect --*- C++ -*-==//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8/// \file
9/// This file implements the RegBankSelect class.
10//===----------------------------------------------------------------------===//
11
12#include "llvm/CodeGen/GlobalISel/RegBankSelect.h"
13#include "llvm/ADT/PostOrderIterator.h"
14#include "llvm/ADT/STLExtras.h"
15#include "llvm/ADT/SmallVector.h"
16#include "llvm/CodeGen/GlobalISel/LegalizerInfo.h"
17#include "llvm/CodeGen/GlobalISel/RegisterBank.h"
18#include "llvm/CodeGen/GlobalISel/RegisterBankInfo.h"
19#include "llvm/CodeGen/GlobalISel/Utils.h"
20#include "llvm/CodeGen/MachineBasicBlock.h"
21#include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
22#include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
23#include "llvm/CodeGen/MachineFunction.h"
24#include "llvm/CodeGen/MachineInstr.h"
25#include "llvm/CodeGen/MachineOperand.h"
26#include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h"
27#include "llvm/CodeGen/MachineRegisterInfo.h"
28#include "llvm/CodeGen/TargetOpcodes.h"
29#include "llvm/CodeGen/TargetPassConfig.h"
30#include "llvm/CodeGen/TargetRegisterInfo.h"
31#include "llvm/CodeGen/TargetSubtargetInfo.h"
32#include "llvm/Config/llvm-config.h"
33#include "llvm/IR/Attributes.h"
34#include "llvm/IR/Function.h"
35#include "llvm/InitializePasses.h"
36#include "llvm/Pass.h"
37#include "llvm/Support/BlockFrequency.h"
38#include "llvm/Support/CommandLine.h"
39#include "llvm/Support/Compiler.h"
40#include "llvm/Support/Debug.h"
41#include "llvm/Support/ErrorHandling.h"
42#include "llvm/Support/raw_ostream.h"
43#include <algorithm>
44#include <cassert>
45#include <cstdint>
46#include <limits>
47#include <memory>
48#include <utility>
49
50#define DEBUG_TYPE "regbankselect"
51
52using namespace llvm;
53
54static cl::opt<RegBankSelect::Mode> RegBankSelectMode(
55    cl::desc("Mode of the RegBankSelect pass"), cl::Hidden, cl::Optional,
56    cl::values(clEnumValN(RegBankSelect::Mode::Fast, "regbankselect-fast",
57                          "Run the Fast mode (default mapping)"),
58               clEnumValN(RegBankSelect::Mode::Greedy, "regbankselect-greedy",
59                          "Use the Greedy mode (best local mapping)")));
60
61char RegBankSelect::ID = 0;
62
63INITIALIZE_PASS_BEGIN(RegBankSelect, DEBUG_TYPE,
64                      "Assign register bank of generic virtual registers",
65                      false, false);
66INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo)
67INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)
68INITIALIZE_PASS_DEPENDENCY(TargetPassConfig)
69INITIALIZE_PASS_END(RegBankSelect, DEBUG_TYPE,
70                    "Assign register bank of generic virtual registers", false,
71                    false)
72
73RegBankSelect::RegBankSelect(Mode RunningMode)
74    : MachineFunctionPass(ID), OptMode(RunningMode) {
75  if (RegBankSelectMode.getNumOccurrences() != 0) {
76    OptMode = RegBankSelectMode;
77    if (RegBankSelectMode != RunningMode)
78      LLVM_DEBUG(dbgs() << "RegBankSelect mode overrided by command line\n");
79  }
80}
81
82void RegBankSelect::init(MachineFunction &MF) {
83  RBI = MF.getSubtarget().getRegBankInfo();
84  assert(RBI && "Cannot work without RegisterBankInfo");
85  MRI = &MF.getRegInfo();
86  TRI = MF.getSubtarget().getRegisterInfo();
87  TPC = &getAnalysis<TargetPassConfig>();
88  if (OptMode != Mode::Fast) {
89    MBFI = &getAnalysis<MachineBlockFrequencyInfo>();
90    MBPI = &getAnalysis<MachineBranchProbabilityInfo>();
91  } else {
92    MBFI = nullptr;
93    MBPI = nullptr;
94  }
95  MIRBuilder.setMF(MF);
96  MORE = std::make_unique<MachineOptimizationRemarkEmitter>(MF, MBFI);
97}
98
99void RegBankSelect::getAnalysisUsage(AnalysisUsage &AU) const {
100  if (OptMode != Mode::Fast) {
101    // We could preserve the information from these two analysis but
102    // the APIs do not allow to do so yet.
103    AU.addRequired<MachineBlockFrequencyInfo>();
104    AU.addRequired<MachineBranchProbabilityInfo>();
105  }
106  AU.addRequired<TargetPassConfig>();
107  getSelectionDAGFallbackAnalysisUsage(AU);
108  MachineFunctionPass::getAnalysisUsage(AU);
109}
110
111bool RegBankSelect::assignmentMatch(
112    Register Reg, const RegisterBankInfo::ValueMapping &ValMapping,
113    bool &OnlyAssign) const {
114  // By default we assume we will have to repair something.
115  OnlyAssign = false;
116  // Each part of a break down needs to end up in a different register.
117  // In other word, Reg assignment does not match.
118  if (ValMapping.NumBreakDowns != 1)
119    return false;
120
121  const RegisterBank *CurRegBank = RBI->getRegBank(Reg, *MRI, *TRI);
122  const RegisterBank *DesiredRegBank = ValMapping.BreakDown[0].RegBank;
123  // Reg is free of assignment, a simple assignment will make the
124  // register bank to match.
125  OnlyAssign = CurRegBank == nullptr;
126  LLVM_DEBUG(dbgs() << "Does assignment already match: ";
127             if (CurRegBank) dbgs() << *CurRegBank; else dbgs() << "none";
128             dbgs() << " against ";
129             assert(DesiredRegBank && "The mapping must be valid");
130             dbgs() << *DesiredRegBank << '\n';);
131  return CurRegBank == DesiredRegBank;
132}
133
134bool RegBankSelect::repairReg(
135    MachineOperand &MO, const RegisterBankInfo::ValueMapping &ValMapping,
136    RegBankSelect::RepairingPlacement &RepairPt,
137    const iterator_range<SmallVectorImpl<Register>::const_iterator> &NewVRegs) {
138
139  assert(ValMapping.NumBreakDowns == (unsigned)size(NewVRegs) &&
140         "need new vreg for each breakdown");
141
142  // An empty range of new register means no repairing.
143  assert(!NewVRegs.empty() && "We should not have to repair");
144
145  MachineInstr *MI;
146  if (ValMapping.NumBreakDowns == 1) {
147    // Assume we are repairing a use and thus, the original reg will be
148    // the source of the repairing.
149    Register Src = MO.getReg();
150    Register Dst = *NewVRegs.begin();
151
152    // If we repair a definition, swap the source and destination for
153    // the repairing.
154    if (MO.isDef())
155      std::swap(Src, Dst);
156
157    assert((RepairPt.getNumInsertPoints() == 1 ||
158            Register::isPhysicalRegister(Dst)) &&
159           "We are about to create several defs for Dst");
160
161    // Build the instruction used to repair, then clone it at the right
162    // places. Avoiding buildCopy bypasses the check that Src and Dst have the
163    // same types because the type is a placeholder when this function is called.
164    MI = MIRBuilder.buildInstrNoInsert(TargetOpcode::COPY)
165      .addDef(Dst)
166      .addUse(Src);
167    LLVM_DEBUG(dbgs() << "Copy: " << printReg(Src) << " to: " << printReg(Dst)
168               << '\n');
169  } else {
170    // TODO: Support with G_IMPLICIT_DEF + G_INSERT sequence or G_EXTRACT
171    // sequence.
172    assert(ValMapping.partsAllUniform() && "irregular breakdowns not supported");
173
174    LLT RegTy = MRI->getType(MO.getReg());
175    if (MO.isDef()) {
176      unsigned MergeOp;
177      if (RegTy.isVector()) {
178        if (ValMapping.NumBreakDowns == RegTy.getNumElements())
179          MergeOp = TargetOpcode::G_BUILD_VECTOR;
180        else {
181          assert(
182              (ValMapping.BreakDown[0].Length * ValMapping.NumBreakDowns ==
183               RegTy.getSizeInBits()) &&
184              (ValMapping.BreakDown[0].Length % RegTy.getScalarSizeInBits() ==
185               0) &&
186              "don't understand this value breakdown");
187
188          MergeOp = TargetOpcode::G_CONCAT_VECTORS;
189        }
190      } else
191        MergeOp = TargetOpcode::G_MERGE_VALUES;
192
193      auto MergeBuilder =
194        MIRBuilder.buildInstrNoInsert(MergeOp)
195        .addDef(MO.getReg());
196
197      for (Register SrcReg : NewVRegs)
198        MergeBuilder.addUse(SrcReg);
199
200      MI = MergeBuilder;
201    } else {
202      MachineInstrBuilder UnMergeBuilder =
203        MIRBuilder.buildInstrNoInsert(TargetOpcode::G_UNMERGE_VALUES);
204      for (Register DefReg : NewVRegs)
205        UnMergeBuilder.addDef(DefReg);
206
207      UnMergeBuilder.addUse(MO.getReg());
208      MI = UnMergeBuilder;
209    }
210  }
211
212  if (RepairPt.getNumInsertPoints() != 1)
213    report_fatal_error("need testcase to support multiple insertion points");
214
215  // TODO:
216  // Check if MI is legal. if not, we need to legalize all the
217  // instructions we are going to insert.
218  std::unique_ptr<MachineInstr *[]> NewInstrs(
219      new MachineInstr *[RepairPt.getNumInsertPoints()]);
220  bool IsFirst = true;
221  unsigned Idx = 0;
222  for (const std::unique_ptr<InsertPoint> &InsertPt : RepairPt) {
223    MachineInstr *CurMI;
224    if (IsFirst)
225      CurMI = MI;
226    else
227      CurMI = MIRBuilder.getMF().CloneMachineInstr(MI);
228    InsertPt->insert(*CurMI);
229    NewInstrs[Idx++] = CurMI;
230    IsFirst = false;
231  }
232  // TODO:
233  // Legalize NewInstrs if need be.
234  return true;
235}
236
237uint64_t RegBankSelect::getRepairCost(
238    const MachineOperand &MO,
239    const RegisterBankInfo::ValueMapping &ValMapping) const {
240  assert(MO.isReg() && "We should only repair register operand");
241  assert(ValMapping.NumBreakDowns && "Nothing to map??");
242
243  bool IsSameNumOfValues = ValMapping.NumBreakDowns == 1;
244  const RegisterBank *CurRegBank = RBI->getRegBank(MO.getReg(), *MRI, *TRI);
245  // If MO does not have a register bank, we should have just been
246  // able to set one unless we have to break the value down.
247  assert(CurRegBank || MO.isDef());
248
249  // Def: Val <- NewDefs
250  //     Same number of values: copy
251  //     Different number: Val = build_sequence Defs1, Defs2, ...
252  // Use: NewSources <- Val.
253  //     Same number of values: copy.
254  //     Different number: Src1, Src2, ... =
255  //           extract_value Val, Src1Begin, Src1Len, Src2Begin, Src2Len, ...
256  // We should remember that this value is available somewhere else to
257  // coalesce the value.
258
259  if (ValMapping.NumBreakDowns != 1)
260    return RBI->getBreakDownCost(ValMapping, CurRegBank);
261
262  if (IsSameNumOfValues) {
263    const RegisterBank *DesiredRegBank = ValMapping.BreakDown[0].RegBank;
264    // If we repair a definition, swap the source and destination for
265    // the repairing.
266    if (MO.isDef())
267      std::swap(CurRegBank, DesiredRegBank);
268    // TODO: It may be possible to actually avoid the copy.
269    // If we repair something where the source is defined by a copy
270    // and the source of that copy is on the right bank, we can reuse
271    // it for free.
272    // E.g.,
273    // RegToRepair<BankA> = copy AlternativeSrc<BankB>
274    // = op RegToRepair<BankA>
275    // We can simply propagate AlternativeSrc instead of copying RegToRepair
276    // into a new virtual register.
277    // We would also need to propagate this information in the
278    // repairing placement.
279    unsigned Cost = RBI->copyCost(*DesiredRegBank, *CurRegBank,
280                                  RBI->getSizeInBits(MO.getReg(), *MRI, *TRI));
281    // TODO: use a dedicated constant for ImpossibleCost.
282    if (Cost != std::numeric_limits<unsigned>::max())
283      return Cost;
284    // Return the legalization cost of that repairing.
285  }
286  return std::numeric_limits<unsigned>::max();
287}
288
289const RegisterBankInfo::InstructionMapping &RegBankSelect::findBestMapping(
290    MachineInstr &MI, RegisterBankInfo::InstructionMappings &PossibleMappings,
291    SmallVectorImpl<RepairingPlacement> &RepairPts) {
292  assert(!PossibleMappings.empty() &&
293         "Do not know how to map this instruction");
294
295  const RegisterBankInfo::InstructionMapping *BestMapping = nullptr;
296  MappingCost Cost = MappingCost::ImpossibleCost();
297  SmallVector<RepairingPlacement, 4> LocalRepairPts;
298  for (const RegisterBankInfo::InstructionMapping *CurMapping :
299       PossibleMappings) {
300    MappingCost CurCost =
301        computeMapping(MI, *CurMapping, LocalRepairPts, &Cost);
302    if (CurCost < Cost) {
303      LLVM_DEBUG(dbgs() << "New best: " << CurCost << '\n');
304      Cost = CurCost;
305      BestMapping = CurMapping;
306      RepairPts.clear();
307      for (RepairingPlacement &RepairPt : LocalRepairPts)
308        RepairPts.emplace_back(std::move(RepairPt));
309    }
310  }
311  if (!BestMapping && !TPC->isGlobalISelAbortEnabled()) {
312    // If none of the mapping worked that means they are all impossible.
313    // Thus, pick the first one and set an impossible repairing point.
314    // It will trigger the failed isel mode.
315    BestMapping = *PossibleMappings.begin();
316    RepairPts.emplace_back(
317        RepairingPlacement(MI, 0, *TRI, *this, RepairingPlacement::Impossible));
318  } else
319    assert(BestMapping && "No suitable mapping for instruction");
320  return *BestMapping;
321}
322
323void RegBankSelect::tryAvoidingSplit(
324    RegBankSelect::RepairingPlacement &RepairPt, const MachineOperand &MO,
325    const RegisterBankInfo::ValueMapping &ValMapping) const {
326  const MachineInstr &MI = *MO.getParent();
327  assert(RepairPt.hasSplit() && "We should not have to adjust for split");
328  // Splitting should only occur for PHIs or between terminators,
329  // because we only do local repairing.
330  assert((MI.isPHI() || MI.isTerminator()) && "Why do we split?");
331
332  assert(&MI.getOperand(RepairPt.getOpIdx()) == &MO &&
333         "Repairing placement does not match operand");
334
335  // If we need splitting for phis, that means it is because we
336  // could not find an insertion point before the terminators of
337  // the predecessor block for this argument. In other words,
338  // the input value is defined by one of the terminators.
339  assert((!MI.isPHI() || !MO.isDef()) && "Need split for phi def?");
340
341  // We split to repair the use of a phi or a terminator.
342  if (!MO.isDef()) {
343    if (MI.isTerminator()) {
344      assert(&MI != &(*MI.getParent()->getFirstTerminator()) &&
345             "Need to split for the first terminator?!");
346    } else {
347      // For the PHI case, the split may not be actually required.
348      // In the copy case, a phi is already a copy on the incoming edge,
349      // therefore there is no need to split.
350      if (ValMapping.NumBreakDowns == 1)
351        // This is a already a copy, there is nothing to do.
352        RepairPt.switchTo(RepairingPlacement::RepairingKind::Reassign);
353    }
354    return;
355  }
356
357  // At this point, we need to repair a defintion of a terminator.
358
359  // Technically we need to fix the def of MI on all outgoing
360  // edges of MI to keep the repairing local. In other words, we
361  // will create several definitions of the same register. This
362  // does not work for SSA unless that definition is a physical
363  // register.
364  // However, there are other cases where we can get away with
365  // that while still keeping the repairing local.
366  assert(MI.isTerminator() && MO.isDef() &&
367         "This code is for the def of a terminator");
368
369  // Since we use RPO traversal, if we need to repair a definition
370  // this means this definition could be:
371  // 1. Used by PHIs (i.e., this VReg has been visited as part of the
372  //    uses of a phi.), or
373  // 2. Part of a target specific instruction (i.e., the target applied
374  //    some register class constraints when creating the instruction.)
375  // If the constraints come for #2, the target said that another mapping
376  // is supported so we may just drop them. Indeed, if we do not change
377  // the number of registers holding that value, the uses will get fixed
378  // when we get to them.
379  // Uses in PHIs may have already been proceeded though.
380  // If the constraints come for #1, then, those are weak constraints and
381  // no actual uses may rely on them. However, the problem remains mainly
382  // the same as for #2. If the value stays in one register, we could
383  // just switch the register bank of the definition, but we would need to
384  // account for a repairing cost for each phi we silently change.
385  //
386  // In any case, if the value needs to be broken down into several
387  // registers, the repairing is not local anymore as we need to patch
388  // every uses to rebuild the value in just one register.
389  //
390  // To summarize:
391  // - If the value is in a physical register, we can do the split and
392  //   fix locally.
393  // Otherwise if the value is in a virtual register:
394  // - If the value remains in one register, we do not have to split
395  //   just switching the register bank would do, but we need to account
396  //   in the repairing cost all the phi we changed.
397  // - If the value spans several registers, then we cannot do a local
398  //   repairing.
399
400  // Check if this is a physical or virtual register.
401  Register Reg = MO.getReg();
402  if (Register::isPhysicalRegister(Reg)) {
403    // We are going to split every outgoing edges.
404    // Check that this is possible.
405    // FIXME: The machine representation is currently broken
406    // since it also several terminators in one basic block.
407    // Because of that we would technically need a way to get
408    // the targets of just one terminator to know which edges
409    // we have to split.
410    // Assert that we do not hit the ill-formed representation.
411
412    // If there are other terminators before that one, some of
413    // the outgoing edges may not be dominated by this definition.
414    assert(&MI == &(*MI.getParent()->getFirstTerminator()) &&
415           "Do not know which outgoing edges are relevant");
416    const MachineInstr *Next = MI.getNextNode();
417    assert((!Next || Next->isUnconditionalBranch()) &&
418           "Do not know where each terminator ends up");
419    if (Next)
420      // If the next terminator uses Reg, this means we have
421      // to split right after MI and thus we need a way to ask
422      // which outgoing edges are affected.
423      assert(!Next->readsRegister(Reg) && "Need to split between terminators");
424    // We will split all the edges and repair there.
425  } else {
426    // This is a virtual register defined by a terminator.
427    if (ValMapping.NumBreakDowns == 1) {
428      // There is nothing to repair, but we may actually lie on
429      // the repairing cost because of the PHIs already proceeded
430      // as already stated.
431      // Though the code will be correct.
432      assert(false && "Repairing cost may not be accurate");
433    } else {
434      // We need to do non-local repairing. Basically, patch all
435      // the uses (i.e., phis) that we already proceeded.
436      // For now, just say this mapping is not possible.
437      RepairPt.switchTo(RepairingPlacement::RepairingKind::Impossible);
438    }
439  }
440}
441
442RegBankSelect::MappingCost RegBankSelect::computeMapping(
443    MachineInstr &MI, const RegisterBankInfo::InstructionMapping &InstrMapping,
444    SmallVectorImpl<RepairingPlacement> &RepairPts,
445    const RegBankSelect::MappingCost *BestCost) {
446  assert((MBFI || !BestCost) && "Costs comparison require MBFI");
447
448  if (!InstrMapping.isValid())
449    return MappingCost::ImpossibleCost();
450
451  // If mapped with InstrMapping, MI will have the recorded cost.
452  MappingCost Cost(MBFI ? MBFI->getBlockFreq(MI.getParent()) : 1);
453  bool Saturated = Cost.addLocalCost(InstrMapping.getCost());
454  assert(!Saturated && "Possible mapping saturated the cost");
455  LLVM_DEBUG(dbgs() << "Evaluating mapping cost for: " << MI);
456  LLVM_DEBUG(dbgs() << "With: " << InstrMapping << '\n');
457  RepairPts.clear();
458  if (BestCost && Cost > *BestCost) {
459    LLVM_DEBUG(dbgs() << "Mapping is too expensive from the start\n");
460    return Cost;
461  }
462
463  // Moreover, to realize this mapping, the register bank of each operand must
464  // match this mapping. In other words, we may need to locally reassign the
465  // register banks. Account for that repairing cost as well.
466  // In this context, local means in the surrounding of MI.
467  for (unsigned OpIdx = 0, EndOpIdx = InstrMapping.getNumOperands();
468       OpIdx != EndOpIdx; ++OpIdx) {
469    const MachineOperand &MO = MI.getOperand(OpIdx);
470    if (!MO.isReg())
471      continue;
472    Register Reg = MO.getReg();
473    if (!Reg)
474      continue;
475    LLVM_DEBUG(dbgs() << "Opd" << OpIdx << '\n');
476    const RegisterBankInfo::ValueMapping &ValMapping =
477        InstrMapping.getOperandMapping(OpIdx);
478    // If Reg is already properly mapped, this is free.
479    bool Assign;
480    if (assignmentMatch(Reg, ValMapping, Assign)) {
481      LLVM_DEBUG(dbgs() << "=> is free (match).\n");
482      continue;
483    }
484    if (Assign) {
485      LLVM_DEBUG(dbgs() << "=> is free (simple assignment).\n");
486      RepairPts.emplace_back(RepairingPlacement(MI, OpIdx, *TRI, *this,
487                                                RepairingPlacement::Reassign));
488      continue;
489    }
490
491    // Find the insertion point for the repairing code.
492    RepairPts.emplace_back(
493        RepairingPlacement(MI, OpIdx, *TRI, *this, RepairingPlacement::Insert));
494    RepairingPlacement &RepairPt = RepairPts.back();
495
496    // If we need to split a basic block to materialize this insertion point,
497    // we may give a higher cost to this mapping.
498    // Nevertheless, we may get away with the split, so try that first.
499    if (RepairPt.hasSplit())
500      tryAvoidingSplit(RepairPt, MO, ValMapping);
501
502    // Check that the materialization of the repairing is possible.
503    if (!RepairPt.canMaterialize()) {
504      LLVM_DEBUG(dbgs() << "Mapping involves impossible repairing\n");
505      return MappingCost::ImpossibleCost();
506    }
507
508    // Account for the split cost and repair cost.
509    // Unless the cost is already saturated or we do not care about the cost.
510    if (!BestCost || Saturated)
511      continue;
512
513    // To get accurate information we need MBFI and MBPI.
514    // Thus, if we end up here this information should be here.
515    assert(MBFI && MBPI && "Cost computation requires MBFI and MBPI");
516
517    // FIXME: We will have to rework the repairing cost model.
518    // The repairing cost depends on the register bank that MO has.
519    // However, when we break down the value into different values,
520    // MO may not have a register bank while still needing repairing.
521    // For the fast mode, we don't compute the cost so that is fine,
522    // but still for the repairing code, we will have to make a choice.
523    // For the greedy mode, we should choose greedily what is the best
524    // choice based on the next use of MO.
525
526    // Sums up the repairing cost of MO at each insertion point.
527    uint64_t RepairCost = getRepairCost(MO, ValMapping);
528
529    // This is an impossible to repair cost.
530    if (RepairCost == std::numeric_limits<unsigned>::max())
531      return MappingCost::ImpossibleCost();
532
533    // Bias used for splitting: 5%.
534    const uint64_t PercentageForBias = 5;
535    uint64_t Bias = (RepairCost * PercentageForBias + 99) / 100;
536    // We should not need more than a couple of instructions to repair
537    // an assignment. In other words, the computation should not
538    // overflow because the repairing cost is free of basic block
539    // frequency.
540    assert(((RepairCost < RepairCost * PercentageForBias) &&
541            (RepairCost * PercentageForBias <
542             RepairCost * PercentageForBias + 99)) &&
543           "Repairing involves more than a billion of instructions?!");
544    for (const std::unique_ptr<InsertPoint> &InsertPt : RepairPt) {
545      assert(InsertPt->canMaterialize() && "We should not have made it here");
546      // We will applied some basic block frequency and those uses uint64_t.
547      if (!InsertPt->isSplit())
548        Saturated = Cost.addLocalCost(RepairCost);
549      else {
550        uint64_t CostForInsertPt = RepairCost;
551        // Again we shouldn't overflow here givent that
552        // CostForInsertPt is frequency free at this point.
553        assert(CostForInsertPt + Bias > CostForInsertPt &&
554               "Repairing + split bias overflows");
555        CostForInsertPt += Bias;
556        uint64_t PtCost = InsertPt->frequency(*this) * CostForInsertPt;
557        // Check if we just overflowed.
558        if ((Saturated = PtCost < CostForInsertPt))
559          Cost.saturate();
560        else
561          Saturated = Cost.addNonLocalCost(PtCost);
562      }
563
564      // Stop looking into what it takes to repair, this is already
565      // too expensive.
566      if (BestCost && Cost > *BestCost) {
567        LLVM_DEBUG(dbgs() << "Mapping is too expensive, stop processing\n");
568        return Cost;
569      }
570
571      // No need to accumulate more cost information.
572      // We need to still gather the repairing information though.
573      if (Saturated)
574        break;
575    }
576  }
577  LLVM_DEBUG(dbgs() << "Total cost is: " << Cost << "\n");
578  return Cost;
579}
580
581bool RegBankSelect::applyMapping(
582    MachineInstr &MI, const RegisterBankInfo::InstructionMapping &InstrMapping,
583    SmallVectorImpl<RegBankSelect::RepairingPlacement> &RepairPts) {
584  // OpdMapper will hold all the information needed for the rewriting.
585  RegisterBankInfo::OperandsMapper OpdMapper(MI, InstrMapping, *MRI);
586
587  // First, place the repairing code.
588  for (RepairingPlacement &RepairPt : RepairPts) {
589    if (!RepairPt.canMaterialize() ||
590        RepairPt.getKind() == RepairingPlacement::Impossible)
591      return false;
592    assert(RepairPt.getKind() != RepairingPlacement::None &&
593           "This should not make its way in the list");
594    unsigned OpIdx = RepairPt.getOpIdx();
595    MachineOperand &MO = MI.getOperand(OpIdx);
596    const RegisterBankInfo::ValueMapping &ValMapping =
597        InstrMapping.getOperandMapping(OpIdx);
598    Register Reg = MO.getReg();
599
600    switch (RepairPt.getKind()) {
601    case RepairingPlacement::Reassign:
602      assert(ValMapping.NumBreakDowns == 1 &&
603             "Reassignment should only be for simple mapping");
604      MRI->setRegBank(Reg, *ValMapping.BreakDown[0].RegBank);
605      break;
606    case RepairingPlacement::Insert:
607      OpdMapper.createVRegs(OpIdx);
608      if (!repairReg(MO, ValMapping, RepairPt, OpdMapper.getVRegs(OpIdx)))
609        return false;
610      break;
611    default:
612      llvm_unreachable("Other kind should not happen");
613    }
614  }
615
616  // Second, rewrite the instruction.
617  LLVM_DEBUG(dbgs() << "Actual mapping of the operands: " << OpdMapper << '\n');
618  RBI->applyMapping(OpdMapper);
619
620  return true;
621}
622
623bool RegBankSelect::assignInstr(MachineInstr &MI) {
624  LLVM_DEBUG(dbgs() << "Assign: " << MI);
625  // Remember the repairing placement for all the operands.
626  SmallVector<RepairingPlacement, 4> RepairPts;
627
628  const RegisterBankInfo::InstructionMapping *BestMapping;
629  if (OptMode == RegBankSelect::Mode::Fast) {
630    BestMapping = &RBI->getInstrMapping(MI);
631    MappingCost DefaultCost = computeMapping(MI, *BestMapping, RepairPts);
632    (void)DefaultCost;
633    if (DefaultCost == MappingCost::ImpossibleCost())
634      return false;
635  } else {
636    RegisterBankInfo::InstructionMappings PossibleMappings =
637        RBI->getInstrPossibleMappings(MI);
638    if (PossibleMappings.empty())
639      return false;
640    BestMapping = &findBestMapping(MI, PossibleMappings, RepairPts);
641  }
642  // Make sure the mapping is valid for MI.
643  assert(BestMapping->verify(MI) && "Invalid instruction mapping");
644
645  LLVM_DEBUG(dbgs() << "Best Mapping: " << *BestMapping << '\n');
646
647  // After this call, MI may not be valid anymore.
648  // Do not use it.
649  return applyMapping(MI, *BestMapping, RepairPts);
650}
651
652bool RegBankSelect::runOnMachineFunction(MachineFunction &MF) {
653  // If the ISel pipeline failed, do not bother running that pass.
654  if (MF.getProperties().hasProperty(
655          MachineFunctionProperties::Property::FailedISel))
656    return false;
657
658  LLVM_DEBUG(dbgs() << "Assign register banks for: " << MF.getName() << '\n');
659  const Function &F = MF.getFunction();
660  Mode SaveOptMode = OptMode;
661  if (F.hasOptNone())
662    OptMode = Mode::Fast;
663  init(MF);
664
665#ifndef NDEBUG
666  // Check that our input is fully legal: we require the function to have the
667  // Legalized property, so it should be.
668  // FIXME: This should be in the MachineVerifier.
669  if (!DisableGISelLegalityCheck)
670    if (const MachineInstr *MI = machineFunctionIsIllegal(MF)) {
671      reportGISelFailure(MF, *TPC, *MORE, "gisel-regbankselect",
672                         "instruction is not legal", *MI);
673      return false;
674    }
675#endif
676
677  // Walk the function and assign register banks to all operands.
678  // Use a RPOT to make sure all registers are assigned before we choose
679  // the best mapping of the current instruction.
680  ReversePostOrderTraversal<MachineFunction*> RPOT(&MF);
681  for (MachineBasicBlock *MBB : RPOT) {
682    // Set a sensible insertion point so that subsequent calls to
683    // MIRBuilder.
684    MIRBuilder.setMBB(*MBB);
685    for (MachineBasicBlock::iterator MII = MBB->begin(), End = MBB->end();
686         MII != End;) {
687      // MI might be invalidated by the assignment, so move the
688      // iterator before hand.
689      MachineInstr &MI = *MII++;
690
691      // Ignore target-specific post-isel instructions: they should use proper
692      // regclasses.
693      if (isTargetSpecificOpcode(MI.getOpcode()) && !MI.isPreISelOpcode())
694        continue;
695
696      if (!assignInstr(MI)) {
697        reportGISelFailure(MF, *TPC, *MORE, "gisel-regbankselect",
698                           "unable to map instruction", MI);
699        return false;
700      }
701
702      // It's possible the mapping changed control flow, and moved the following
703      // instruction to a new block, so figure out the new parent.
704      if (MII != End) {
705        MachineBasicBlock *NextInstBB = MII->getParent();
706        if (NextInstBB != MBB) {
707          LLVM_DEBUG(dbgs() << "Instruction mapping changed control flow\n");
708          MBB = NextInstBB;
709          MIRBuilder.setMBB(*MBB);
710          End = MBB->end();
711        }
712      }
713    }
714  }
715
716  OptMode = SaveOptMode;
717  return false;
718}
719
720//------------------------------------------------------------------------------
721//                  Helper Classes Implementation
722//------------------------------------------------------------------------------
723RegBankSelect::RepairingPlacement::RepairingPlacement(
724    MachineInstr &MI, unsigned OpIdx, const TargetRegisterInfo &TRI, Pass &P,
725    RepairingPlacement::RepairingKind Kind)
726    // Default is, we are going to insert code to repair OpIdx.
727    : Kind(Kind), OpIdx(OpIdx),
728      CanMaterialize(Kind != RepairingKind::Impossible), P(P) {
729  const MachineOperand &MO = MI.getOperand(OpIdx);
730  assert(MO.isReg() && "Trying to repair a non-reg operand");
731
732  if (Kind != RepairingKind::Insert)
733    return;
734
735  // Repairings for definitions happen after MI, uses happen before.
736  bool Before = !MO.isDef();
737
738  // Check if we are done with MI.
739  if (!MI.isPHI() && !MI.isTerminator()) {
740    addInsertPoint(MI, Before);
741    // We are done with the initialization.
742    return;
743  }
744
745  // Now, look for the special cases.
746  if (MI.isPHI()) {
747    // - PHI must be the first instructions:
748    //   * Before, we have to split the related incoming edge.
749    //   * After, move the insertion point past the last phi.
750    if (!Before) {
751      MachineBasicBlock::iterator It = MI.getParent()->getFirstNonPHI();
752      if (It != MI.getParent()->end())
753        addInsertPoint(*It, /*Before*/ true);
754      else
755        addInsertPoint(*(--It), /*Before*/ false);
756      return;
757    }
758    // We repair a use of a phi, we may need to split the related edge.
759    MachineBasicBlock &Pred = *MI.getOperand(OpIdx + 1).getMBB();
760    // Check if we can move the insertion point prior to the
761    // terminators of the predecessor.
762    Register Reg = MO.getReg();
763    MachineBasicBlock::iterator It = Pred.getLastNonDebugInstr();
764    for (auto Begin = Pred.begin(); It != Begin && It->isTerminator(); --It)
765      if (It->modifiesRegister(Reg, &TRI)) {
766        // We cannot hoist the repairing code in the predecessor.
767        // Split the edge.
768        addInsertPoint(Pred, *MI.getParent());
769        return;
770      }
771    // At this point, we can insert in Pred.
772
773    // - If It is invalid, Pred is empty and we can insert in Pred
774    //   wherever we want.
775    // - If It is valid, It is the first non-terminator, insert after It.
776    if (It == Pred.end())
777      addInsertPoint(Pred, /*Beginning*/ false);
778    else
779      addInsertPoint(*It, /*Before*/ false);
780  } else {
781    // - Terminators must be the last instructions:
782    //   * Before, move the insert point before the first terminator.
783    //   * After, we have to split the outcoming edges.
784    if (Before) {
785      // Check whether Reg is defined by any terminator.
786      MachineBasicBlock::reverse_iterator It = MI;
787      auto REnd = MI.getParent()->rend();
788
789      for (; It != REnd && It->isTerminator(); ++It) {
790        assert(!It->modifiesRegister(MO.getReg(), &TRI) &&
791               "copy insertion in middle of terminators not handled");
792      }
793
794      if (It == REnd) {
795        addInsertPoint(*MI.getParent()->begin(), true);
796        return;
797      }
798
799      // We are sure to be right before the first terminator.
800      addInsertPoint(*It, /*Before*/ false);
801      return;
802    }
803    // Make sure Reg is not redefined by other terminators, otherwise
804    // we do not know how to split.
805    for (MachineBasicBlock::iterator It = MI, End = MI.getParent()->end();
806         ++It != End;)
807      // The machine verifier should reject this kind of code.
808      assert(It->modifiesRegister(MO.getReg(), &TRI) &&
809             "Do not know where to split");
810    // Split each outcoming edges.
811    MachineBasicBlock &Src = *MI.getParent();
812    for (auto &Succ : Src.successors())
813      addInsertPoint(Src, Succ);
814  }
815}
816
817void RegBankSelect::RepairingPlacement::addInsertPoint(MachineInstr &MI,
818                                                       bool Before) {
819  addInsertPoint(*new InstrInsertPoint(MI, Before));
820}
821
822void RegBankSelect::RepairingPlacement::addInsertPoint(MachineBasicBlock &MBB,
823                                                       bool Beginning) {
824  addInsertPoint(*new MBBInsertPoint(MBB, Beginning));
825}
826
827void RegBankSelect::RepairingPlacement::addInsertPoint(MachineBasicBlock &Src,
828                                                       MachineBasicBlock &Dst) {
829  addInsertPoint(*new EdgeInsertPoint(Src, Dst, P));
830}
831
832void RegBankSelect::RepairingPlacement::addInsertPoint(
833    RegBankSelect::InsertPoint &Point) {
834  CanMaterialize &= Point.canMaterialize();
835  HasSplit |= Point.isSplit();
836  InsertPoints.emplace_back(&Point);
837}
838
839RegBankSelect::InstrInsertPoint::InstrInsertPoint(MachineInstr &Instr,
840                                                  bool Before)
841    : InsertPoint(), Instr(Instr), Before(Before) {
842  // Since we do not support splitting, we do not need to update
843  // liveness and such, so do not do anything with P.
844  assert((!Before || !Instr.isPHI()) &&
845         "Splitting before phis requires more points");
846  assert((!Before || !Instr.getNextNode() || !Instr.getNextNode()->isPHI()) &&
847         "Splitting between phis does not make sense");
848}
849
850void RegBankSelect::InstrInsertPoint::materialize() {
851  if (isSplit()) {
852    // Slice and return the beginning of the new block.
853    // If we need to split between the terminators, we theoritically
854    // need to know where the first and second set of terminators end
855    // to update the successors properly.
856    // Now, in pratice, we should have a maximum of 2 branch
857    // instructions; one conditional and one unconditional. Therefore
858    // we know how to update the successor by looking at the target of
859    // the unconditional branch.
860    // If we end up splitting at some point, then, we should update
861    // the liveness information and such. I.e., we would need to
862    // access P here.
863    // The machine verifier should actually make sure such cases
864    // cannot happen.
865    llvm_unreachable("Not yet implemented");
866  }
867  // Otherwise the insertion point is just the current or next
868  // instruction depending on Before. I.e., there is nothing to do
869  // here.
870}
871
872bool RegBankSelect::InstrInsertPoint::isSplit() const {
873  // If the insertion point is after a terminator, we need to split.
874  if (!Before)
875    return Instr.isTerminator();
876  // If we insert before an instruction that is after a terminator,
877  // we are still after a terminator.
878  return Instr.getPrevNode() && Instr.getPrevNode()->isTerminator();
879}
880
881uint64_t RegBankSelect::InstrInsertPoint::frequency(const Pass &P) const {
882  // Even if we need to split, because we insert between terminators,
883  // this split has actually the same frequency as the instruction.
884  const MachineBlockFrequencyInfo *MBFI =
885      P.getAnalysisIfAvailable<MachineBlockFrequencyInfo>();
886  if (!MBFI)
887    return 1;
888  return MBFI->getBlockFreq(Instr.getParent()).getFrequency();
889}
890
891uint64_t RegBankSelect::MBBInsertPoint::frequency(const Pass &P) const {
892  const MachineBlockFrequencyInfo *MBFI =
893      P.getAnalysisIfAvailable<MachineBlockFrequencyInfo>();
894  if (!MBFI)
895    return 1;
896  return MBFI->getBlockFreq(&MBB).getFrequency();
897}
898
899void RegBankSelect::EdgeInsertPoint::materialize() {
900  // If we end up repairing twice at the same place before materializing the
901  // insertion point, we may think we have to split an edge twice.
902  // We should have a factory for the insert point such that identical points
903  // are the same instance.
904  assert(Src.isSuccessor(DstOrSplit) && DstOrSplit->isPredecessor(&Src) &&
905         "This point has already been split");
906  MachineBasicBlock *NewBB = Src.SplitCriticalEdge(DstOrSplit, P);
907  assert(NewBB && "Invalid call to materialize");
908  // We reuse the destination block to hold the information of the new block.
909  DstOrSplit = NewBB;
910}
911
912uint64_t RegBankSelect::EdgeInsertPoint::frequency(const Pass &P) const {
913  const MachineBlockFrequencyInfo *MBFI =
914      P.getAnalysisIfAvailable<MachineBlockFrequencyInfo>();
915  if (!MBFI)
916    return 1;
917  if (WasMaterialized)
918    return MBFI->getBlockFreq(DstOrSplit).getFrequency();
919
920  const MachineBranchProbabilityInfo *MBPI =
921      P.getAnalysisIfAvailable<MachineBranchProbabilityInfo>();
922  if (!MBPI)
923    return 1;
924  // The basic block will be on the edge.
925  return (MBFI->getBlockFreq(&Src) * MBPI->getEdgeProbability(&Src, DstOrSplit))
926      .getFrequency();
927}
928
929bool RegBankSelect::EdgeInsertPoint::canMaterialize() const {
930  // If this is not a critical edge, we should not have used this insert
931  // point. Indeed, either the successor or the predecessor should
932  // have do.
933  assert(Src.succ_size() > 1 && DstOrSplit->pred_size() > 1 &&
934         "Edge is not critical");
935  return Src.canSplitCriticalEdge(DstOrSplit);
936}
937
938RegBankSelect::MappingCost::MappingCost(const BlockFrequency &LocalFreq)
939    : LocalFreq(LocalFreq.getFrequency()) {}
940
941bool RegBankSelect::MappingCost::addLocalCost(uint64_t Cost) {
942  // Check if this overflows.
943  if (LocalCost + Cost < LocalCost) {
944    saturate();
945    return true;
946  }
947  LocalCost += Cost;
948  return isSaturated();
949}
950
951bool RegBankSelect::MappingCost::addNonLocalCost(uint64_t Cost) {
952  // Check if this overflows.
953  if (NonLocalCost + Cost < NonLocalCost) {
954    saturate();
955    return true;
956  }
957  NonLocalCost += Cost;
958  return isSaturated();
959}
960
961bool RegBankSelect::MappingCost::isSaturated() const {
962  return LocalCost == UINT64_MAX - 1 && NonLocalCost == UINT64_MAX &&
963         LocalFreq == UINT64_MAX;
964}
965
966void RegBankSelect::MappingCost::saturate() {
967  *this = ImpossibleCost();
968  --LocalCost;
969}
970
971RegBankSelect::MappingCost RegBankSelect::MappingCost::ImpossibleCost() {
972  return MappingCost(UINT64_MAX, UINT64_MAX, UINT64_MAX);
973}
974
975bool RegBankSelect::MappingCost::operator<(const MappingCost &Cost) const {
976  // Sort out the easy cases.
977  if (*this == Cost)
978    return false;
979  // If one is impossible to realize the other is cheaper unless it is
980  // impossible as well.
981  if ((*this == ImpossibleCost()) || (Cost == ImpossibleCost()))
982    return (*this == ImpossibleCost()) < (Cost == ImpossibleCost());
983  // If one is saturated the other is cheaper, unless it is saturated
984  // as well.
985  if (isSaturated() || Cost.isSaturated())
986    return isSaturated() < Cost.isSaturated();
987  // At this point we know both costs hold sensible values.
988
989  // If both values have a different base frequency, there is no much
990  // we can do but to scale everything.
991  // However, if they have the same base frequency we can avoid making
992  // complicated computation.
993  uint64_t ThisLocalAdjust;
994  uint64_t OtherLocalAdjust;
995  if (LLVM_LIKELY(LocalFreq == Cost.LocalFreq)) {
996
997    // At this point, we know the local costs are comparable.
998    // Do the case that do not involve potential overflow first.
999    if (NonLocalCost == Cost.NonLocalCost)
1000      // Since the non-local costs do not discriminate on the result,
1001      // just compare the local costs.
1002      return LocalCost < Cost.LocalCost;
1003
1004    // The base costs are comparable so we may only keep the relative
1005    // value to increase our chances of avoiding overflows.
1006    ThisLocalAdjust = 0;
1007    OtherLocalAdjust = 0;
1008    if (LocalCost < Cost.LocalCost)
1009      OtherLocalAdjust = Cost.LocalCost - LocalCost;
1010    else
1011      ThisLocalAdjust = LocalCost - Cost.LocalCost;
1012  } else {
1013    ThisLocalAdjust = LocalCost;
1014    OtherLocalAdjust = Cost.LocalCost;
1015  }
1016
1017  // The non-local costs are comparable, just keep the relative value.
1018  uint64_t ThisNonLocalAdjust = 0;
1019  uint64_t OtherNonLocalAdjust = 0;
1020  if (NonLocalCost < Cost.NonLocalCost)
1021    OtherNonLocalAdjust = Cost.NonLocalCost - NonLocalCost;
1022  else
1023    ThisNonLocalAdjust = NonLocalCost - Cost.NonLocalCost;
1024  // Scale everything to make them comparable.
1025  uint64_t ThisScaledCost = ThisLocalAdjust * LocalFreq;
1026  // Check for overflow on that operation.
1027  bool ThisOverflows = ThisLocalAdjust && (ThisScaledCost < ThisLocalAdjust ||
1028                                           ThisScaledCost < LocalFreq);
1029  uint64_t OtherScaledCost = OtherLocalAdjust * Cost.LocalFreq;
1030  // Check for overflow on the last operation.
1031  bool OtherOverflows =
1032      OtherLocalAdjust &&
1033      (OtherScaledCost < OtherLocalAdjust || OtherScaledCost < Cost.LocalFreq);
1034  // Add the non-local costs.
1035  ThisOverflows |= ThisNonLocalAdjust &&
1036                   ThisScaledCost + ThisNonLocalAdjust < ThisNonLocalAdjust;
1037  ThisScaledCost += ThisNonLocalAdjust;
1038  OtherOverflows |= OtherNonLocalAdjust &&
1039                    OtherScaledCost + OtherNonLocalAdjust < OtherNonLocalAdjust;
1040  OtherScaledCost += OtherNonLocalAdjust;
1041  // If both overflows, we cannot compare without additional
1042  // precision, e.g., APInt. Just give up on that case.
1043  if (ThisOverflows && OtherOverflows)
1044    return false;
1045  // If one overflows but not the other, we can still compare.
1046  if (ThisOverflows || OtherOverflows)
1047    return ThisOverflows < OtherOverflows;
1048  // Otherwise, just compare the values.
1049  return ThisScaledCost < OtherScaledCost;
1050}
1051
1052bool RegBankSelect::MappingCost::operator==(const MappingCost &Cost) const {
1053  return LocalCost == Cost.LocalCost && NonLocalCost == Cost.NonLocalCost &&
1054         LocalFreq == Cost.LocalFreq;
1055}
1056
1057#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1058LLVM_DUMP_METHOD void RegBankSelect::MappingCost::dump() const {
1059  print(dbgs());
1060  dbgs() << '\n';
1061}
1062#endif
1063
1064void RegBankSelect::MappingCost::print(raw_ostream &OS) const {
1065  if (*this == ImpossibleCost()) {
1066    OS << "impossible";
1067    return;
1068  }
1069  if (isSaturated()) {
1070    OS << "saturated";
1071    return;
1072  }
1073  OS << LocalFreq << " * " << LocalCost << " + " << NonLocalCost;
1074}
1075