Localizer.cpp revision 360784
1//===- Localizer.cpp ---------------------- Localize some instrs -*- C++ -*-==//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8/// \file
9/// This file implements the Localizer class.
10//===----------------------------------------------------------------------===//
11
12#include "llvm/CodeGen/GlobalISel/Localizer.h"
13#include "llvm/ADT/DenseMap.h"
14#include "llvm/Analysis/TargetTransformInfo.h"
15#include "llvm/CodeGen/MachineRegisterInfo.h"
16#include "llvm/InitializePasses.h"
17#include "llvm/Support/Debug.h"
18
19#define DEBUG_TYPE "localizer"
20
21using namespace llvm;
22
23char Localizer::ID = 0;
24INITIALIZE_PASS_BEGIN(Localizer, DEBUG_TYPE,
25                      "Move/duplicate certain instructions close to their use",
26                      false, false)
27INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
28INITIALIZE_PASS_END(Localizer, DEBUG_TYPE,
29                    "Move/duplicate certain instructions close to their use",
30                    false, false)
31
32Localizer::Localizer(std::function<bool(const MachineFunction &)> F)
33    : MachineFunctionPass(ID), DoNotRunPass(F) {}
34
35Localizer::Localizer()
36    : Localizer([](const MachineFunction &) { return false; }) {}
37
38void Localizer::init(MachineFunction &MF) {
39  MRI = &MF.getRegInfo();
40  TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(MF.getFunction());
41}
42
43bool Localizer::shouldLocalize(const MachineInstr &MI) {
44  // Assuming a spill and reload of a value has a cost of 1 instruction each,
45  // this helper function computes the maximum number of uses we should consider
46  // for remat. E.g. on arm64 global addresses take 2 insts to materialize. We
47  // break even in terms of code size when the original MI has 2 users vs
48  // choosing to potentially spill. Any more than 2 users we we have a net code
49  // size increase. This doesn't take into account register pressure though.
50  auto maxUses = [](unsigned RematCost) {
51    // A cost of 1 means remats are basically free.
52    if (RematCost == 1)
53      return UINT_MAX;
54    if (RematCost == 2)
55      return 2U;
56
57    // Remat is too expensive, only sink if there's one user.
58    if (RematCost > 2)
59      return 1U;
60    llvm_unreachable("Unexpected remat cost");
61  };
62
63  // Helper to walk through uses and terminate if we've reached a limit. Saves
64  // us spending time traversing uses if all we want to know is if it's >= min.
65  auto isUsesAtMost = [&](unsigned Reg, unsigned MaxUses) {
66    unsigned NumUses = 0;
67    auto UI = MRI->use_instr_nodbg_begin(Reg), UE = MRI->use_instr_nodbg_end();
68    for (; UI != UE && NumUses < MaxUses; ++UI) {
69      NumUses++;
70    }
71    // If we haven't reached the end yet then there are more than MaxUses users.
72    return UI == UE;
73  };
74
75  switch (MI.getOpcode()) {
76  default:
77    return false;
78  // Constants-like instructions should be close to their users.
79  // We don't want long live-ranges for them.
80  case TargetOpcode::G_CONSTANT:
81  case TargetOpcode::G_FCONSTANT:
82  case TargetOpcode::G_FRAME_INDEX:
83  case TargetOpcode::G_INTTOPTR:
84    return true;
85  case TargetOpcode::G_GLOBAL_VALUE: {
86    unsigned RematCost = TTI->getGISelRematGlobalCost();
87    Register Reg = MI.getOperand(0).getReg();
88    unsigned MaxUses = maxUses(RematCost);
89    if (MaxUses == UINT_MAX)
90      return true; // Remats are "free" so always localize.
91    bool B = isUsesAtMost(Reg, MaxUses);
92    return B;
93  }
94  }
95}
96
97void Localizer::getAnalysisUsage(AnalysisUsage &AU) const {
98  AU.addRequired<TargetTransformInfoWrapperPass>();
99  getSelectionDAGFallbackAnalysisUsage(AU);
100  MachineFunctionPass::getAnalysisUsage(AU);
101}
102
103bool Localizer::isLocalUse(MachineOperand &MOUse, const MachineInstr &Def,
104                           MachineBasicBlock *&InsertMBB) {
105  MachineInstr &MIUse = *MOUse.getParent();
106  InsertMBB = MIUse.getParent();
107  if (MIUse.isPHI())
108    InsertMBB = MIUse.getOperand(MIUse.getOperandNo(&MOUse) + 1).getMBB();
109  return InsertMBB == Def.getParent();
110}
111
112bool Localizer::localizeInterBlock(MachineFunction &MF,
113                                   LocalizedSetVecT &LocalizedInstrs) {
114  bool Changed = false;
115  DenseMap<std::pair<MachineBasicBlock *, unsigned>, unsigned> MBBWithLocalDef;
116
117  // Since the IRTranslator only emits constants into the entry block, and the
118  // rest of the GISel pipeline generally emits constants close to their users,
119  // we only localize instructions in the entry block here. This might change if
120  // we start doing CSE across blocks.
121  auto &MBB = MF.front();
122  for (auto RI = MBB.rbegin(), RE = MBB.rend(); RI != RE; ++RI) {
123    MachineInstr &MI = *RI;
124    if (!shouldLocalize(MI))
125      continue;
126    LLVM_DEBUG(dbgs() << "Should localize: " << MI);
127    assert(MI.getDesc().getNumDefs() == 1 &&
128           "More than one definition not supported yet");
129    Register Reg = MI.getOperand(0).getReg();
130    // Check if all the users of MI are local.
131    // We are going to invalidation the list of use operands, so we
132    // can't use range iterator.
133    for (auto MOIt = MRI->use_begin(Reg), MOItEnd = MRI->use_end();
134         MOIt != MOItEnd;) {
135      MachineOperand &MOUse = *MOIt++;
136      // Check if the use is already local.
137      MachineBasicBlock *InsertMBB;
138      LLVM_DEBUG(MachineInstr &MIUse = *MOUse.getParent();
139                 dbgs() << "Checking use: " << MIUse
140                        << " #Opd: " << MIUse.getOperandNo(&MOUse) << '\n');
141      if (isLocalUse(MOUse, MI, InsertMBB))
142        continue;
143      LLVM_DEBUG(dbgs() << "Fixing non-local use\n");
144      Changed = true;
145      auto MBBAndReg = std::make_pair(InsertMBB, Reg);
146      auto NewVRegIt = MBBWithLocalDef.find(MBBAndReg);
147      if (NewVRegIt == MBBWithLocalDef.end()) {
148        // Create the localized instruction.
149        MachineInstr *LocalizedMI = MF.CloneMachineInstr(&MI);
150        LocalizedInstrs.insert(LocalizedMI);
151        MachineInstr &UseMI = *MOUse.getParent();
152        if (MRI->hasOneUse(Reg) && !UseMI.isPHI())
153          InsertMBB->insert(InsertMBB->SkipPHIsAndLabels(UseMI), LocalizedMI);
154        else
155          InsertMBB->insert(InsertMBB->SkipPHIsAndLabels(InsertMBB->begin()),
156                            LocalizedMI);
157
158        // Set a new register for the definition.
159        Register NewReg = MRI->createGenericVirtualRegister(MRI->getType(Reg));
160        MRI->setRegClassOrRegBank(NewReg, MRI->getRegClassOrRegBank(Reg));
161        LocalizedMI->getOperand(0).setReg(NewReg);
162        NewVRegIt =
163            MBBWithLocalDef.insert(std::make_pair(MBBAndReg, NewReg)).first;
164        LLVM_DEBUG(dbgs() << "Inserted: " << *LocalizedMI);
165      }
166      LLVM_DEBUG(dbgs() << "Update use with: " << printReg(NewVRegIt->second)
167                        << '\n');
168      // Update the user reg.
169      MOUse.setReg(NewVRegIt->second);
170    }
171  }
172  return Changed;
173}
174
175bool Localizer::localizeIntraBlock(LocalizedSetVecT &LocalizedInstrs) {
176  bool Changed = false;
177
178  // For each already-localized instruction which has multiple users, then we
179  // scan the block top down from the current position until we hit one of them.
180
181  // FIXME: Consider doing inst duplication if live ranges are very long due to
182  // many users, but this case may be better served by regalloc improvements.
183
184  for (MachineInstr *MI : LocalizedInstrs) {
185    Register Reg = MI->getOperand(0).getReg();
186    MachineBasicBlock &MBB = *MI->getParent();
187    // All of the user MIs of this reg.
188    SmallPtrSet<MachineInstr *, 32> Users;
189    for (MachineInstr &UseMI : MRI->use_nodbg_instructions(Reg)) {
190      if (!UseMI.isPHI())
191        Users.insert(&UseMI);
192    }
193    // If all the users were PHIs then they're not going to be in our block,
194    // don't try to move this instruction.
195    if (Users.empty())
196      continue;
197
198    MachineBasicBlock::iterator II(MI);
199    ++II;
200    while (II != MBB.end() && !Users.count(&*II))
201      ++II;
202
203    LLVM_DEBUG(dbgs() << "Intra-block: moving " << *MI << " before " << *&*II
204                      << "\n");
205    assert(II != MBB.end() && "Didn't find the user in the MBB");
206    MI->removeFromParent();
207    MBB.insert(II, MI);
208    Changed = true;
209  }
210  return Changed;
211}
212
213bool Localizer::runOnMachineFunction(MachineFunction &MF) {
214  // If the ISel pipeline failed, do not bother running that pass.
215  if (MF.getProperties().hasProperty(
216          MachineFunctionProperties::Property::FailedISel))
217    return false;
218
219  // Don't run the pass if the target asked so.
220  if (DoNotRunPass(MF))
221    return false;
222
223  LLVM_DEBUG(dbgs() << "Localize instructions for: " << MF.getName() << '\n');
224
225  init(MF);
226
227  // Keep track of the instructions we localized. We'll do a second pass of
228  // intra-block localization to further reduce live ranges.
229  LocalizedSetVecT LocalizedInstrs;
230
231  bool Changed = localizeInterBlock(MF, LocalizedInstrs);
232  Changed |= localizeIntraBlock(LocalizedInstrs);
233  return Changed;
234}
235