CriticalAntiDepBreaker.cpp revision 360784
1//===- CriticalAntiDepBreaker.cpp - Anti-dep breaker ----------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements the CriticalAntiDepBreaker class, which
10// implements register anti-dependence breaking along a blocks
11// critical path during post-RA scheduler.
12//
13//===----------------------------------------------------------------------===//
14
15#include "CriticalAntiDepBreaker.h"
16#include "llvm/ADT/ArrayRef.h"
17#include "llvm/ADT/BitVector.h"
18#include "llvm/ADT/DenseMap.h"
19#include "llvm/ADT/SmallVector.h"
20#include "llvm/CodeGen/MachineBasicBlock.h"
21#include "llvm/CodeGen/MachineFrameInfo.h"
22#include "llvm/CodeGen/MachineFunction.h"
23#include "llvm/CodeGen/MachineInstr.h"
24#include "llvm/CodeGen/MachineOperand.h"
25#include "llvm/CodeGen/MachineRegisterInfo.h"
26#include "llvm/CodeGen/RegisterClassInfo.h"
27#include "llvm/CodeGen/ScheduleDAG.h"
28#include "llvm/CodeGen/TargetInstrInfo.h"
29#include "llvm/CodeGen/TargetRegisterInfo.h"
30#include "llvm/CodeGen/TargetSubtargetInfo.h"
31#include "llvm/MC/MCInstrDesc.h"
32#include "llvm/MC/MCRegisterInfo.h"
33#include "llvm/Support/Debug.h"
34#include "llvm/Support/raw_ostream.h"
35#include <cassert>
36#include <map>
37#include <utility>
38#include <vector>
39
40using namespace llvm;
41
42#define DEBUG_TYPE "post-RA-sched"
43
44CriticalAntiDepBreaker::CriticalAntiDepBreaker(MachineFunction &MFi,
45                                               const RegisterClassInfo &RCI)
46    : AntiDepBreaker(), MF(MFi), MRI(MF.getRegInfo()),
47      TII(MF.getSubtarget().getInstrInfo()),
48      TRI(MF.getSubtarget().getRegisterInfo()), RegClassInfo(RCI),
49      Classes(TRI->getNumRegs(), nullptr), KillIndices(TRI->getNumRegs(), 0),
50      DefIndices(TRI->getNumRegs(), 0), KeepRegs(TRI->getNumRegs(), false) {}
51
52CriticalAntiDepBreaker::~CriticalAntiDepBreaker() = default;
53
54void CriticalAntiDepBreaker::StartBlock(MachineBasicBlock *BB) {
55  const unsigned BBSize = BB->size();
56  for (unsigned i = 0, e = TRI->getNumRegs(); i != e; ++i) {
57    // Clear out the register class data.
58    Classes[i] = nullptr;
59
60    // Initialize the indices to indicate that no registers are live.
61    KillIndices[i] = ~0u;
62    DefIndices[i] = BBSize;
63  }
64
65  // Clear "do not change" set.
66  KeepRegs.reset();
67
68  bool IsReturnBlock = BB->isReturnBlock();
69
70  // Examine the live-in regs of all successors.
71  for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(),
72         SE = BB->succ_end(); SI != SE; ++SI)
73    for (const auto &LI : (*SI)->liveins()) {
74      for (MCRegAliasIterator AI(LI.PhysReg, TRI, true); AI.isValid(); ++AI) {
75        unsigned Reg = *AI;
76        Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
77        KillIndices[Reg] = BBSize;
78        DefIndices[Reg] = ~0u;
79      }
80    }
81
82  // Mark live-out callee-saved registers. In a return block this is
83  // all callee-saved registers. In non-return this is any
84  // callee-saved register that is not saved in the prolog.
85  const MachineFrameInfo &MFI = MF.getFrameInfo();
86  BitVector Pristine = MFI.getPristineRegs(MF);
87  for (const MCPhysReg *I = MF.getRegInfo().getCalleeSavedRegs(); *I;
88       ++I) {
89    unsigned Reg = *I;
90    if (!IsReturnBlock && !Pristine.test(Reg))
91      continue;
92    for (MCRegAliasIterator AI(*I, TRI, true); AI.isValid(); ++AI) {
93      unsigned Reg = *AI;
94      Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
95      KillIndices[Reg] = BBSize;
96      DefIndices[Reg] = ~0u;
97    }
98  }
99}
100
101void CriticalAntiDepBreaker::FinishBlock() {
102  RegRefs.clear();
103  KeepRegs.reset();
104}
105
106void CriticalAntiDepBreaker::Observe(MachineInstr &MI, unsigned Count,
107                                     unsigned InsertPosIndex) {
108  // Kill instructions can define registers but are really nops, and there might
109  // be a real definition earlier that needs to be paired with uses dominated by
110  // this kill.
111
112  // FIXME: It may be possible to remove the isKill() restriction once PR18663
113  // has been properly fixed. There can be value in processing kills as seen in
114  // the AggressiveAntiDepBreaker class.
115  if (MI.isDebugInstr() || MI.isKill())
116    return;
117  assert(Count < InsertPosIndex && "Instruction index out of expected range!");
118
119  for (unsigned Reg = 0; Reg != TRI->getNumRegs(); ++Reg) {
120    if (KillIndices[Reg] != ~0u) {
121      // If Reg is currently live, then mark that it can't be renamed as
122      // we don't know the extent of its live-range anymore (now that it
123      // has been scheduled).
124      Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
125      KillIndices[Reg] = Count;
126    } else if (DefIndices[Reg] < InsertPosIndex && DefIndices[Reg] >= Count) {
127      // Any register which was defined within the previous scheduling region
128      // may have been rescheduled and its lifetime may overlap with registers
129      // in ways not reflected in our current liveness state. For each such
130      // register, adjust the liveness state to be conservatively correct.
131      Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
132
133      // Move the def index to the end of the previous region, to reflect
134      // that the def could theoretically have been scheduled at the end.
135      DefIndices[Reg] = InsertPosIndex;
136    }
137  }
138
139  PrescanInstruction(MI);
140  ScanInstruction(MI, Count);
141}
142
143/// CriticalPathStep - Return the next SUnit after SU on the bottom-up
144/// critical path.
145static const SDep *CriticalPathStep(const SUnit *SU) {
146  const SDep *Next = nullptr;
147  unsigned NextDepth = 0;
148  // Find the predecessor edge with the greatest depth.
149  for (SUnit::const_pred_iterator P = SU->Preds.begin(), PE = SU->Preds.end();
150       P != PE; ++P) {
151    const SUnit *PredSU = P->getSUnit();
152    unsigned PredLatency = P->getLatency();
153    unsigned PredTotalLatency = PredSU->getDepth() + PredLatency;
154    // In the case of a latency tie, prefer an anti-dependency edge over
155    // other types of edges.
156    if (NextDepth < PredTotalLatency ||
157        (NextDepth == PredTotalLatency && P->getKind() == SDep::Anti)) {
158      NextDepth = PredTotalLatency;
159      Next = &*P;
160    }
161  }
162  return Next;
163}
164
165void CriticalAntiDepBreaker::PrescanInstruction(MachineInstr &MI) {
166  // It's not safe to change register allocation for source operands of
167  // instructions that have special allocation requirements. Also assume all
168  // registers used in a call must not be changed (ABI).
169  // FIXME: The issue with predicated instruction is more complex. We are being
170  // conservative here because the kill markers cannot be trusted after
171  // if-conversion:
172  // %r6 = LDR %sp, %reg0, 92, 14, %reg0; mem:LD4[FixedStack14]
173  // ...
174  // STR %r0, killed %r6, %reg0, 0, 0, %cpsr; mem:ST4[%395]
175  // %r6 = LDR %sp, %reg0, 100, 0, %cpsr; mem:LD4[FixedStack12]
176  // STR %r0, killed %r6, %reg0, 0, 14, %reg0; mem:ST4[%396](align=8)
177  //
178  // The first R6 kill is not really a kill since it's killed by a predicated
179  // instruction which may not be executed. The second R6 def may or may not
180  // re-define R6 so it's not safe to change it since the last R6 use cannot be
181  // changed.
182  bool Special =
183      MI.isCall() || MI.hasExtraSrcRegAllocReq() || TII->isPredicated(MI);
184
185  // Scan the register operands for this instruction and update
186  // Classes and RegRefs.
187  for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
188    MachineOperand &MO = MI.getOperand(i);
189    if (!MO.isReg()) continue;
190    Register Reg = MO.getReg();
191    if (Reg == 0) continue;
192    const TargetRegisterClass *NewRC = nullptr;
193
194    if (i < MI.getDesc().getNumOperands())
195      NewRC = TII->getRegClass(MI.getDesc(), i, TRI, MF);
196
197    // For now, only allow the register to be changed if its register
198    // class is consistent across all uses.
199    if (!Classes[Reg] && NewRC)
200      Classes[Reg] = NewRC;
201    else if (!NewRC || Classes[Reg] != NewRC)
202      Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
203
204    // Now check for aliases.
205    for (MCRegAliasIterator AI(Reg, TRI, false); AI.isValid(); ++AI) {
206      // If an alias of the reg is used during the live range, give up.
207      // Note that this allows us to skip checking if AntiDepReg
208      // overlaps with any of the aliases, among other things.
209      unsigned AliasReg = *AI;
210      if (Classes[AliasReg]) {
211        Classes[AliasReg] = reinterpret_cast<TargetRegisterClass *>(-1);
212        Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
213      }
214    }
215
216    // If we're still willing to consider this register, note the reference.
217    if (Classes[Reg] != reinterpret_cast<TargetRegisterClass *>(-1))
218      RegRefs.insert(std::make_pair(Reg, &MO));
219
220    // If this reg is tied and live (Classes[Reg] is set to -1), we can't change
221    // it or any of its sub or super regs. We need to use KeepRegs to mark the
222    // reg because not all uses of the same reg within an instruction are
223    // necessarily tagged as tied.
224    // Example: an x86 "xor %eax, %eax" will have one source operand tied to the
225    // def register but not the second (see PR20020 for details).
226    // FIXME: can this check be relaxed to account for undef uses
227    // of a register? In the above 'xor' example, the uses of %eax are undef, so
228    // earlier instructions could still replace %eax even though the 'xor'
229    // itself can't be changed.
230    if (MI.isRegTiedToUseOperand(i) &&
231        Classes[Reg] == reinterpret_cast<TargetRegisterClass *>(-1)) {
232      for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true);
233           SubRegs.isValid(); ++SubRegs) {
234        KeepRegs.set(*SubRegs);
235      }
236      for (MCSuperRegIterator SuperRegs(Reg, TRI);
237           SuperRegs.isValid(); ++SuperRegs) {
238        KeepRegs.set(*SuperRegs);
239      }
240    }
241
242    if (MO.isUse() && Special) {
243      if (!KeepRegs.test(Reg)) {
244        for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true);
245             SubRegs.isValid(); ++SubRegs)
246          KeepRegs.set(*SubRegs);
247      }
248    }
249  }
250}
251
252void CriticalAntiDepBreaker::ScanInstruction(MachineInstr &MI, unsigned Count) {
253  // Update liveness.
254  // Proceeding upwards, registers that are defed but not used in this
255  // instruction are now dead.
256  assert(!MI.isKill() && "Attempting to scan a kill instruction");
257
258  if (!TII->isPredicated(MI)) {
259    // Predicated defs are modeled as read + write, i.e. similar to two
260    // address updates.
261    for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
262      MachineOperand &MO = MI.getOperand(i);
263
264      if (MO.isRegMask()) {
265        auto ClobbersPhysRegAndSubRegs = [&](unsigned PhysReg) {
266          for (MCSubRegIterator SRI(PhysReg, TRI, true); SRI.isValid(); ++SRI)
267            if (!MO.clobbersPhysReg(*SRI))
268              return false;
269
270          return true;
271        };
272
273        for (unsigned i = 0, e = TRI->getNumRegs(); i != e; ++i) {
274          if (ClobbersPhysRegAndSubRegs(i)) {
275            DefIndices[i] = Count;
276            KillIndices[i] = ~0u;
277            KeepRegs.reset(i);
278            Classes[i] = nullptr;
279            RegRefs.erase(i);
280          }
281        }
282      }
283
284      if (!MO.isReg()) continue;
285      Register Reg = MO.getReg();
286      if (Reg == 0) continue;
287      if (!MO.isDef()) continue;
288
289      // Ignore two-addr defs.
290      if (MI.isRegTiedToUseOperand(i))
291        continue;
292
293      // If we've already marked this reg as unchangeable, don't remove
294      // it or any of its subregs from KeepRegs.
295      bool Keep = KeepRegs.test(Reg);
296
297      // For the reg itself and all subregs: update the def to current;
298      // reset the kill state, any restrictions, and references.
299      for (MCSubRegIterator SRI(Reg, TRI, true); SRI.isValid(); ++SRI) {
300        unsigned SubregReg = *SRI;
301        DefIndices[SubregReg] = Count;
302        KillIndices[SubregReg] = ~0u;
303        Classes[SubregReg] = nullptr;
304        RegRefs.erase(SubregReg);
305        if (!Keep)
306          KeepRegs.reset(SubregReg);
307      }
308      // Conservatively mark super-registers as unusable.
309      for (MCSuperRegIterator SR(Reg, TRI); SR.isValid(); ++SR)
310        Classes[*SR] = reinterpret_cast<TargetRegisterClass *>(-1);
311    }
312  }
313  for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
314    MachineOperand &MO = MI.getOperand(i);
315    if (!MO.isReg()) continue;
316    Register Reg = MO.getReg();
317    if (Reg == 0) continue;
318    if (!MO.isUse()) continue;
319
320    const TargetRegisterClass *NewRC = nullptr;
321    if (i < MI.getDesc().getNumOperands())
322      NewRC = TII->getRegClass(MI.getDesc(), i, TRI, MF);
323
324    // For now, only allow the register to be changed if its register
325    // class is consistent across all uses.
326    if (!Classes[Reg] && NewRC)
327      Classes[Reg] = NewRC;
328    else if (!NewRC || Classes[Reg] != NewRC)
329      Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
330
331    RegRefs.insert(std::make_pair(Reg, &MO));
332
333    // It wasn't previously live but now it is, this is a kill.
334    // Repeat for all aliases.
335    for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) {
336      unsigned AliasReg = *AI;
337      if (KillIndices[AliasReg] == ~0u) {
338        KillIndices[AliasReg] = Count;
339        DefIndices[AliasReg] = ~0u;
340      }
341    }
342  }
343}
344
345// Check all machine operands that reference the antidependent register and must
346// be replaced by NewReg. Return true if any of their parent instructions may
347// clobber the new register.
348//
349// Note: AntiDepReg may be referenced by a two-address instruction such that
350// it's use operand is tied to a def operand. We guard against the case in which
351// the two-address instruction also defines NewReg, as may happen with
352// pre/postincrement loads. In this case, both the use and def operands are in
353// RegRefs because the def is inserted by PrescanInstruction and not erased
354// during ScanInstruction. So checking for an instruction with definitions of
355// both NewReg and AntiDepReg covers it.
356bool
357CriticalAntiDepBreaker::isNewRegClobberedByRefs(RegRefIter RegRefBegin,
358                                                RegRefIter RegRefEnd,
359                                                unsigned NewReg) {
360  for (RegRefIter I = RegRefBegin; I != RegRefEnd; ++I ) {
361    MachineOperand *RefOper = I->second;
362
363    // Don't allow the instruction defining AntiDepReg to earlyclobber its
364    // operands, in case they may be assigned to NewReg. In this case antidep
365    // breaking must fail, but it's too rare to bother optimizing.
366    if (RefOper->isDef() && RefOper->isEarlyClobber())
367      return true;
368
369    // Handle cases in which this instruction defines NewReg.
370    MachineInstr *MI = RefOper->getParent();
371    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
372      const MachineOperand &CheckOper = MI->getOperand(i);
373
374      if (CheckOper.isRegMask() && CheckOper.clobbersPhysReg(NewReg))
375        return true;
376
377      if (!CheckOper.isReg() || !CheckOper.isDef() ||
378          CheckOper.getReg() != NewReg)
379        continue;
380
381      // Don't allow the instruction to define NewReg and AntiDepReg.
382      // When AntiDepReg is renamed it will be an illegal op.
383      if (RefOper->isDef())
384        return true;
385
386      // Don't allow an instruction using AntiDepReg to be earlyclobbered by
387      // NewReg.
388      if (CheckOper.isEarlyClobber())
389        return true;
390
391      // Don't allow inline asm to define NewReg at all. Who knows what it's
392      // doing with it.
393      if (MI->isInlineAsm())
394        return true;
395    }
396  }
397  return false;
398}
399
400unsigned CriticalAntiDepBreaker::
401findSuitableFreeRegister(RegRefIter RegRefBegin,
402                         RegRefIter RegRefEnd,
403                         unsigned AntiDepReg,
404                         unsigned LastNewReg,
405                         const TargetRegisterClass *RC,
406                         SmallVectorImpl<unsigned> &Forbid) {
407  ArrayRef<MCPhysReg> Order = RegClassInfo.getOrder(RC);
408  for (unsigned i = 0; i != Order.size(); ++i) {
409    unsigned NewReg = Order[i];
410    // Don't replace a register with itself.
411    if (NewReg == AntiDepReg) continue;
412    // Don't replace a register with one that was recently used to repair
413    // an anti-dependence with this AntiDepReg, because that would
414    // re-introduce that anti-dependence.
415    if (NewReg == LastNewReg) continue;
416    // If any instructions that define AntiDepReg also define the NewReg, it's
417    // not suitable.  For example, Instruction with multiple definitions can
418    // result in this condition.
419    if (isNewRegClobberedByRefs(RegRefBegin, RegRefEnd, NewReg)) continue;
420    // If NewReg is dead and NewReg's most recent def is not before
421    // AntiDepReg's kill, it's safe to replace AntiDepReg with NewReg.
422    assert(((KillIndices[AntiDepReg] == ~0u) != (DefIndices[AntiDepReg] == ~0u))
423           && "Kill and Def maps aren't consistent for AntiDepReg!");
424    assert(((KillIndices[NewReg] == ~0u) != (DefIndices[NewReg] == ~0u))
425           && "Kill and Def maps aren't consistent for NewReg!");
426    if (KillIndices[NewReg] != ~0u ||
427        Classes[NewReg] == reinterpret_cast<TargetRegisterClass *>(-1) ||
428        KillIndices[AntiDepReg] > DefIndices[NewReg])
429      continue;
430    // If NewReg overlaps any of the forbidden registers, we can't use it.
431    bool Forbidden = false;
432    for (SmallVectorImpl<unsigned>::iterator it = Forbid.begin(),
433           ite = Forbid.end(); it != ite; ++it)
434      if (TRI->regsOverlap(NewReg, *it)) {
435        Forbidden = true;
436        break;
437      }
438    if (Forbidden) continue;
439    return NewReg;
440  }
441
442  // No registers are free and available!
443  return 0;
444}
445
446unsigned CriticalAntiDepBreaker::
447BreakAntiDependencies(const std::vector<SUnit> &SUnits,
448                      MachineBasicBlock::iterator Begin,
449                      MachineBasicBlock::iterator End,
450                      unsigned InsertPosIndex,
451                      DbgValueVector &DbgValues) {
452  // The code below assumes that there is at least one instruction,
453  // so just duck out immediately if the block is empty.
454  if (SUnits.empty()) return 0;
455
456  // Keep a map of the MachineInstr*'s back to the SUnit representing them.
457  // This is used for updating debug information.
458  //
459  // FIXME: Replace this with the existing map in ScheduleDAGInstrs::MISUnitMap
460  DenseMap<MachineInstr *, const SUnit *> MISUnitMap;
461
462  // Find the node at the bottom of the critical path.
463  const SUnit *Max = nullptr;
464  for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
465    const SUnit *SU = &SUnits[i];
466    MISUnitMap[SU->getInstr()] = SU;
467    if (!Max || SU->getDepth() + SU->Latency > Max->getDepth() + Max->Latency)
468      Max = SU;
469  }
470  assert(Max && "Failed to find bottom of the critical path");
471
472#ifndef NDEBUG
473  {
474    LLVM_DEBUG(dbgs() << "Critical path has total latency "
475                      << (Max->getDepth() + Max->Latency) << "\n");
476    LLVM_DEBUG(dbgs() << "Available regs:");
477    for (unsigned Reg = 0; Reg < TRI->getNumRegs(); ++Reg) {
478      if (KillIndices[Reg] == ~0u)
479        LLVM_DEBUG(dbgs() << " " << printReg(Reg, TRI));
480    }
481    LLVM_DEBUG(dbgs() << '\n');
482  }
483#endif
484
485  // Track progress along the critical path through the SUnit graph as we walk
486  // the instructions.
487  const SUnit *CriticalPathSU = Max;
488  MachineInstr *CriticalPathMI = CriticalPathSU->getInstr();
489
490  // Consider this pattern:
491  //   A = ...
492  //   ... = A
493  //   A = ...
494  //   ... = A
495  //   A = ...
496  //   ... = A
497  //   A = ...
498  //   ... = A
499  // There are three anti-dependencies here, and without special care,
500  // we'd break all of them using the same register:
501  //   A = ...
502  //   ... = A
503  //   B = ...
504  //   ... = B
505  //   B = ...
506  //   ... = B
507  //   B = ...
508  //   ... = B
509  // because at each anti-dependence, B is the first register that
510  // isn't A which is free.  This re-introduces anti-dependencies
511  // at all but one of the original anti-dependencies that we were
512  // trying to break.  To avoid this, keep track of the most recent
513  // register that each register was replaced with, avoid
514  // using it to repair an anti-dependence on the same register.
515  // This lets us produce this:
516  //   A = ...
517  //   ... = A
518  //   B = ...
519  //   ... = B
520  //   C = ...
521  //   ... = C
522  //   B = ...
523  //   ... = B
524  // This still has an anti-dependence on B, but at least it isn't on the
525  // original critical path.
526  //
527  // TODO: If we tracked more than one register here, we could potentially
528  // fix that remaining critical edge too. This is a little more involved,
529  // because unlike the most recent register, less recent registers should
530  // still be considered, though only if no other registers are available.
531  std::vector<unsigned> LastNewReg(TRI->getNumRegs(), 0);
532
533  // Attempt to break anti-dependence edges on the critical path. Walk the
534  // instructions from the bottom up, tracking information about liveness
535  // as we go to help determine which registers are available.
536  unsigned Broken = 0;
537  unsigned Count = InsertPosIndex - 1;
538  for (MachineBasicBlock::iterator I = End, E = Begin; I != E; --Count) {
539    MachineInstr &MI = *--I;
540    // Kill instructions can define registers but are really nops, and there
541    // might be a real definition earlier that needs to be paired with uses
542    // dominated by this kill.
543
544    // FIXME: It may be possible to remove the isKill() restriction once PR18663
545    // has been properly fixed. There can be value in processing kills as seen
546    // in the AggressiveAntiDepBreaker class.
547    if (MI.isDebugInstr() || MI.isKill())
548      continue;
549
550    // Check if this instruction has a dependence on the critical path that
551    // is an anti-dependence that we may be able to break. If it is, set
552    // AntiDepReg to the non-zero register associated with the anti-dependence.
553    //
554    // We limit our attention to the critical path as a heuristic to avoid
555    // breaking anti-dependence edges that aren't going to significantly
556    // impact the overall schedule. There are a limited number of registers
557    // and we want to save them for the important edges.
558    //
559    // TODO: Instructions with multiple defs could have multiple
560    // anti-dependencies. The current code here only knows how to break one
561    // edge per instruction. Note that we'd have to be able to break all of
562    // the anti-dependencies in an instruction in order to be effective.
563    unsigned AntiDepReg = 0;
564    if (&MI == CriticalPathMI) {
565      if (const SDep *Edge = CriticalPathStep(CriticalPathSU)) {
566        const SUnit *NextSU = Edge->getSUnit();
567
568        // Only consider anti-dependence edges.
569        if (Edge->getKind() == SDep::Anti) {
570          AntiDepReg = Edge->getReg();
571          assert(AntiDepReg != 0 && "Anti-dependence on reg0?");
572          if (!MRI.isAllocatable(AntiDepReg))
573            // Don't break anti-dependencies on non-allocatable registers.
574            AntiDepReg = 0;
575          else if (KeepRegs.test(AntiDepReg))
576            // Don't break anti-dependencies if a use down below requires
577            // this exact register.
578            AntiDepReg = 0;
579          else {
580            // If the SUnit has other dependencies on the SUnit that it
581            // anti-depends on, don't bother breaking the anti-dependency
582            // since those edges would prevent such units from being
583            // scheduled past each other regardless.
584            //
585            // Also, if there are dependencies on other SUnits with the
586            // same register as the anti-dependency, don't attempt to
587            // break it.
588            for (SUnit::const_pred_iterator P = CriticalPathSU->Preds.begin(),
589                 PE = CriticalPathSU->Preds.end(); P != PE; ++P)
590              if (P->getSUnit() == NextSU ?
591                    (P->getKind() != SDep::Anti || P->getReg() != AntiDepReg) :
592                    (P->getKind() == SDep::Data && P->getReg() == AntiDepReg)) {
593                AntiDepReg = 0;
594                break;
595              }
596          }
597        }
598        CriticalPathSU = NextSU;
599        CriticalPathMI = CriticalPathSU->getInstr();
600      } else {
601        // We've reached the end of the critical path.
602        CriticalPathSU = nullptr;
603        CriticalPathMI = nullptr;
604      }
605    }
606
607    PrescanInstruction(MI);
608
609    SmallVector<unsigned, 2> ForbidRegs;
610
611    // If MI's defs have a special allocation requirement, don't allow
612    // any def registers to be changed. Also assume all registers
613    // defined in a call must not be changed (ABI).
614    if (MI.isCall() || MI.hasExtraDefRegAllocReq() || TII->isPredicated(MI))
615      // If this instruction's defs have special allocation requirement, don't
616      // break this anti-dependency.
617      AntiDepReg = 0;
618    else if (AntiDepReg) {
619      // If this instruction has a use of AntiDepReg, breaking it
620      // is invalid.  If the instruction defines other registers,
621      // save a list of them so that we don't pick a new register
622      // that overlaps any of them.
623      for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
624        MachineOperand &MO = MI.getOperand(i);
625        if (!MO.isReg()) continue;
626        Register Reg = MO.getReg();
627        if (Reg == 0) continue;
628        if (MO.isUse() && TRI->regsOverlap(AntiDepReg, Reg)) {
629          AntiDepReg = 0;
630          break;
631        }
632        if (MO.isDef() && Reg != AntiDepReg)
633          ForbidRegs.push_back(Reg);
634      }
635    }
636
637    // Determine AntiDepReg's register class, if it is live and is
638    // consistently used within a single class.
639    const TargetRegisterClass *RC = AntiDepReg != 0 ? Classes[AntiDepReg]
640                                                    : nullptr;
641    assert((AntiDepReg == 0 || RC != nullptr) &&
642           "Register should be live if it's causing an anti-dependence!");
643    if (RC == reinterpret_cast<TargetRegisterClass *>(-1))
644      AntiDepReg = 0;
645
646    // Look for a suitable register to use to break the anti-dependence.
647    //
648    // TODO: Instead of picking the first free register, consider which might
649    // be the best.
650    if (AntiDepReg != 0) {
651      std::pair<std::multimap<unsigned, MachineOperand *>::iterator,
652                std::multimap<unsigned, MachineOperand *>::iterator>
653        Range = RegRefs.equal_range(AntiDepReg);
654      if (unsigned NewReg = findSuitableFreeRegister(Range.first, Range.second,
655                                                     AntiDepReg,
656                                                     LastNewReg[AntiDepReg],
657                                                     RC, ForbidRegs)) {
658        LLVM_DEBUG(dbgs() << "Breaking anti-dependence edge on "
659                          << printReg(AntiDepReg, TRI) << " with "
660                          << RegRefs.count(AntiDepReg) << " references"
661                          << " using " << printReg(NewReg, TRI) << "!\n");
662
663        // Update the references to the old register to refer to the new
664        // register.
665        for (std::multimap<unsigned, MachineOperand *>::iterator
666             Q = Range.first, QE = Range.second; Q != QE; ++Q) {
667          Q->second->setReg(NewReg);
668          // If the SU for the instruction being updated has debug information
669          // related to the anti-dependency register, make sure to update that
670          // as well.
671          const SUnit *SU = MISUnitMap[Q->second->getParent()];
672          if (!SU) continue;
673          UpdateDbgValues(DbgValues, Q->second->getParent(),
674                          AntiDepReg, NewReg);
675        }
676
677        // We just went back in time and modified history; the
678        // liveness information for the anti-dependence reg is now
679        // inconsistent. Set the state as if it were dead.
680        Classes[NewReg] = Classes[AntiDepReg];
681        DefIndices[NewReg] = DefIndices[AntiDepReg];
682        KillIndices[NewReg] = KillIndices[AntiDepReg];
683        assert(((KillIndices[NewReg] == ~0u) !=
684                (DefIndices[NewReg] == ~0u)) &&
685             "Kill and Def maps aren't consistent for NewReg!");
686
687        Classes[AntiDepReg] = nullptr;
688        DefIndices[AntiDepReg] = KillIndices[AntiDepReg];
689        KillIndices[AntiDepReg] = ~0u;
690        assert(((KillIndices[AntiDepReg] == ~0u) !=
691                (DefIndices[AntiDepReg] == ~0u)) &&
692             "Kill and Def maps aren't consistent for AntiDepReg!");
693
694        RegRefs.erase(AntiDepReg);
695        LastNewReg[AntiDepReg] = NewReg;
696        ++Broken;
697      }
698    }
699
700    ScanInstruction(MI, Count);
701  }
702
703  return Broken;
704}
705