AtomicExpandPass.cpp revision 360784
1//===- AtomicExpandPass.cpp - Expand atomic instructions ------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file contains a pass (at IR level) to replace atomic instructions with
10// __atomic_* library calls, or target specific instruction which implement the
11// same semantics in a way which better fits the target backend.  This can
12// include the use of (intrinsic-based) load-linked/store-conditional loops,
13// AtomicCmpXchg, or type coercions.
14//
15//===----------------------------------------------------------------------===//
16
17#include "llvm/ADT/ArrayRef.h"
18#include "llvm/ADT/STLExtras.h"
19#include "llvm/ADT/SmallVector.h"
20#include "llvm/CodeGen/AtomicExpandUtils.h"
21#include "llvm/CodeGen/RuntimeLibcalls.h"
22#include "llvm/CodeGen/TargetLowering.h"
23#include "llvm/CodeGen/TargetPassConfig.h"
24#include "llvm/CodeGen/TargetSubtargetInfo.h"
25#include "llvm/CodeGen/ValueTypes.h"
26#include "llvm/IR/Attributes.h"
27#include "llvm/IR/BasicBlock.h"
28#include "llvm/IR/Constant.h"
29#include "llvm/IR/Constants.h"
30#include "llvm/IR/DataLayout.h"
31#include "llvm/IR/DerivedTypes.h"
32#include "llvm/IR/Function.h"
33#include "llvm/IR/IRBuilder.h"
34#include "llvm/IR/InstIterator.h"
35#include "llvm/IR/Instruction.h"
36#include "llvm/IR/Instructions.h"
37#include "llvm/IR/Module.h"
38#include "llvm/IR/Type.h"
39#include "llvm/IR/User.h"
40#include "llvm/IR/Value.h"
41#include "llvm/InitializePasses.h"
42#include "llvm/Pass.h"
43#include "llvm/Support/AtomicOrdering.h"
44#include "llvm/Support/Casting.h"
45#include "llvm/Support/Debug.h"
46#include "llvm/Support/ErrorHandling.h"
47#include "llvm/Support/raw_ostream.h"
48#include "llvm/Target/TargetMachine.h"
49#include <cassert>
50#include <cstdint>
51#include <iterator>
52
53using namespace llvm;
54
55#define DEBUG_TYPE "atomic-expand"
56
57namespace {
58
59  class AtomicExpand: public FunctionPass {
60    const TargetLowering *TLI = nullptr;
61
62  public:
63    static char ID; // Pass identification, replacement for typeid
64
65    AtomicExpand() : FunctionPass(ID) {
66      initializeAtomicExpandPass(*PassRegistry::getPassRegistry());
67    }
68
69    bool runOnFunction(Function &F) override;
70
71  private:
72    bool bracketInstWithFences(Instruction *I, AtomicOrdering Order);
73    IntegerType *getCorrespondingIntegerType(Type *T, const DataLayout &DL);
74    LoadInst *convertAtomicLoadToIntegerType(LoadInst *LI);
75    bool tryExpandAtomicLoad(LoadInst *LI);
76    bool expandAtomicLoadToLL(LoadInst *LI);
77    bool expandAtomicLoadToCmpXchg(LoadInst *LI);
78    StoreInst *convertAtomicStoreToIntegerType(StoreInst *SI);
79    bool expandAtomicStore(StoreInst *SI);
80    bool tryExpandAtomicRMW(AtomicRMWInst *AI);
81    Value *
82    insertRMWLLSCLoop(IRBuilder<> &Builder, Type *ResultTy, Value *Addr,
83                      AtomicOrdering MemOpOrder,
84                      function_ref<Value *(IRBuilder<> &, Value *)> PerformOp);
85    void expandAtomicOpToLLSC(
86        Instruction *I, Type *ResultTy, Value *Addr, AtomicOrdering MemOpOrder,
87        function_ref<Value *(IRBuilder<> &, Value *)> PerformOp);
88    void expandPartwordAtomicRMW(
89        AtomicRMWInst *I,
90        TargetLoweringBase::AtomicExpansionKind ExpansionKind);
91    AtomicRMWInst *widenPartwordAtomicRMW(AtomicRMWInst *AI);
92    void expandPartwordCmpXchg(AtomicCmpXchgInst *I);
93    void expandAtomicRMWToMaskedIntrinsic(AtomicRMWInst *AI);
94    void expandAtomicCmpXchgToMaskedIntrinsic(AtomicCmpXchgInst *CI);
95
96    AtomicCmpXchgInst *convertCmpXchgToIntegerType(AtomicCmpXchgInst *CI);
97    static Value *insertRMWCmpXchgLoop(
98        IRBuilder<> &Builder, Type *ResultType, Value *Addr,
99        AtomicOrdering MemOpOrder,
100        function_ref<Value *(IRBuilder<> &, Value *)> PerformOp,
101        CreateCmpXchgInstFun CreateCmpXchg);
102    bool tryExpandAtomicCmpXchg(AtomicCmpXchgInst *CI);
103
104    bool expandAtomicCmpXchg(AtomicCmpXchgInst *CI);
105    bool isIdempotentRMW(AtomicRMWInst *RMWI);
106    bool simplifyIdempotentRMW(AtomicRMWInst *RMWI);
107
108    bool expandAtomicOpToLibcall(Instruction *I, unsigned Size, unsigned Align,
109                                 Value *PointerOperand, Value *ValueOperand,
110                                 Value *CASExpected, AtomicOrdering Ordering,
111                                 AtomicOrdering Ordering2,
112                                 ArrayRef<RTLIB::Libcall> Libcalls);
113    void expandAtomicLoadToLibcall(LoadInst *LI);
114    void expandAtomicStoreToLibcall(StoreInst *LI);
115    void expandAtomicRMWToLibcall(AtomicRMWInst *I);
116    void expandAtomicCASToLibcall(AtomicCmpXchgInst *I);
117
118    friend bool
119    llvm::expandAtomicRMWToCmpXchg(AtomicRMWInst *AI,
120                                   CreateCmpXchgInstFun CreateCmpXchg);
121  };
122
123} // end anonymous namespace
124
125char AtomicExpand::ID = 0;
126
127char &llvm::AtomicExpandID = AtomicExpand::ID;
128
129INITIALIZE_PASS(AtomicExpand, DEBUG_TYPE, "Expand Atomic instructions",
130                false, false)
131
132FunctionPass *llvm::createAtomicExpandPass() { return new AtomicExpand(); }
133
134// Helper functions to retrieve the size of atomic instructions.
135static unsigned getAtomicOpSize(LoadInst *LI) {
136  const DataLayout &DL = LI->getModule()->getDataLayout();
137  return DL.getTypeStoreSize(LI->getType());
138}
139
140static unsigned getAtomicOpSize(StoreInst *SI) {
141  const DataLayout &DL = SI->getModule()->getDataLayout();
142  return DL.getTypeStoreSize(SI->getValueOperand()->getType());
143}
144
145static unsigned getAtomicOpSize(AtomicRMWInst *RMWI) {
146  const DataLayout &DL = RMWI->getModule()->getDataLayout();
147  return DL.getTypeStoreSize(RMWI->getValOperand()->getType());
148}
149
150static unsigned getAtomicOpSize(AtomicCmpXchgInst *CASI) {
151  const DataLayout &DL = CASI->getModule()->getDataLayout();
152  return DL.getTypeStoreSize(CASI->getCompareOperand()->getType());
153}
154
155// Helper functions to retrieve the alignment of atomic instructions.
156static unsigned getAtomicOpAlign(LoadInst *LI) {
157  unsigned Align = LI->getAlignment();
158  // In the future, if this IR restriction is relaxed, we should
159  // return DataLayout::getABITypeAlignment when there's no align
160  // value.
161  assert(Align != 0 && "An atomic LoadInst always has an explicit alignment");
162  return Align;
163}
164
165static unsigned getAtomicOpAlign(StoreInst *SI) {
166  unsigned Align = SI->getAlignment();
167  // In the future, if this IR restriction is relaxed, we should
168  // return DataLayout::getABITypeAlignment when there's no align
169  // value.
170  assert(Align != 0 && "An atomic StoreInst always has an explicit alignment");
171  return Align;
172}
173
174static unsigned getAtomicOpAlign(AtomicRMWInst *RMWI) {
175  // TODO(PR27168): This instruction has no alignment attribute, but unlike the
176  // default alignment for load/store, the default here is to assume
177  // it has NATURAL alignment, not DataLayout-specified alignment.
178  const DataLayout &DL = RMWI->getModule()->getDataLayout();
179  return DL.getTypeStoreSize(RMWI->getValOperand()->getType());
180}
181
182static unsigned getAtomicOpAlign(AtomicCmpXchgInst *CASI) {
183  // TODO(PR27168): same comment as above.
184  const DataLayout &DL = CASI->getModule()->getDataLayout();
185  return DL.getTypeStoreSize(CASI->getCompareOperand()->getType());
186}
187
188// Determine if a particular atomic operation has a supported size,
189// and is of appropriate alignment, to be passed through for target
190// lowering. (Versus turning into a __atomic libcall)
191template <typename Inst>
192static bool atomicSizeSupported(const TargetLowering *TLI, Inst *I) {
193  unsigned Size = getAtomicOpSize(I);
194  unsigned Align = getAtomicOpAlign(I);
195  return Align >= Size && Size <= TLI->getMaxAtomicSizeInBitsSupported() / 8;
196}
197
198bool AtomicExpand::runOnFunction(Function &F) {
199  auto *TPC = getAnalysisIfAvailable<TargetPassConfig>();
200  if (!TPC)
201    return false;
202
203  auto &TM = TPC->getTM<TargetMachine>();
204  if (!TM.getSubtargetImpl(F)->enableAtomicExpand())
205    return false;
206  TLI = TM.getSubtargetImpl(F)->getTargetLowering();
207
208  SmallVector<Instruction *, 1> AtomicInsts;
209
210  // Changing control-flow while iterating through it is a bad idea, so gather a
211  // list of all atomic instructions before we start.
212  for (inst_iterator II = inst_begin(F), E = inst_end(F); II != E; ++II) {
213    Instruction *I = &*II;
214    if (I->isAtomic() && !isa<FenceInst>(I))
215      AtomicInsts.push_back(I);
216  }
217
218  bool MadeChange = false;
219  for (auto I : AtomicInsts) {
220    auto LI = dyn_cast<LoadInst>(I);
221    auto SI = dyn_cast<StoreInst>(I);
222    auto RMWI = dyn_cast<AtomicRMWInst>(I);
223    auto CASI = dyn_cast<AtomicCmpXchgInst>(I);
224    assert((LI || SI || RMWI || CASI) && "Unknown atomic instruction");
225
226    // If the Size/Alignment is not supported, replace with a libcall.
227    if (LI) {
228      if (!atomicSizeSupported(TLI, LI)) {
229        expandAtomicLoadToLibcall(LI);
230        MadeChange = true;
231        continue;
232      }
233    } else if (SI) {
234      if (!atomicSizeSupported(TLI, SI)) {
235        expandAtomicStoreToLibcall(SI);
236        MadeChange = true;
237        continue;
238      }
239    } else if (RMWI) {
240      if (!atomicSizeSupported(TLI, RMWI)) {
241        expandAtomicRMWToLibcall(RMWI);
242        MadeChange = true;
243        continue;
244      }
245    } else if (CASI) {
246      if (!atomicSizeSupported(TLI, CASI)) {
247        expandAtomicCASToLibcall(CASI);
248        MadeChange = true;
249        continue;
250      }
251    }
252
253    if (TLI->shouldInsertFencesForAtomic(I)) {
254      auto FenceOrdering = AtomicOrdering::Monotonic;
255      if (LI && isAcquireOrStronger(LI->getOrdering())) {
256        FenceOrdering = LI->getOrdering();
257        LI->setOrdering(AtomicOrdering::Monotonic);
258      } else if (SI && isReleaseOrStronger(SI->getOrdering())) {
259        FenceOrdering = SI->getOrdering();
260        SI->setOrdering(AtomicOrdering::Monotonic);
261      } else if (RMWI && (isReleaseOrStronger(RMWI->getOrdering()) ||
262                          isAcquireOrStronger(RMWI->getOrdering()))) {
263        FenceOrdering = RMWI->getOrdering();
264        RMWI->setOrdering(AtomicOrdering::Monotonic);
265      } else if (CASI &&
266                 TLI->shouldExpandAtomicCmpXchgInIR(CASI) ==
267                     TargetLoweringBase::AtomicExpansionKind::None &&
268                 (isReleaseOrStronger(CASI->getSuccessOrdering()) ||
269                  isAcquireOrStronger(CASI->getSuccessOrdering()))) {
270        // If a compare and swap is lowered to LL/SC, we can do smarter fence
271        // insertion, with a stronger one on the success path than on the
272        // failure path. As a result, fence insertion is directly done by
273        // expandAtomicCmpXchg in that case.
274        FenceOrdering = CASI->getSuccessOrdering();
275        CASI->setSuccessOrdering(AtomicOrdering::Monotonic);
276        CASI->setFailureOrdering(AtomicOrdering::Monotonic);
277      }
278
279      if (FenceOrdering != AtomicOrdering::Monotonic) {
280        MadeChange |= bracketInstWithFences(I, FenceOrdering);
281      }
282    }
283
284    if (LI) {
285      if (LI->getType()->isFloatingPointTy()) {
286        // TODO: add a TLI hook to control this so that each target can
287        // convert to lowering the original type one at a time.
288        LI = convertAtomicLoadToIntegerType(LI);
289        assert(LI->getType()->isIntegerTy() && "invariant broken");
290        MadeChange = true;
291      }
292
293      MadeChange |= tryExpandAtomicLoad(LI);
294    } else if (SI) {
295      if (SI->getValueOperand()->getType()->isFloatingPointTy()) {
296        // TODO: add a TLI hook to control this so that each target can
297        // convert to lowering the original type one at a time.
298        SI = convertAtomicStoreToIntegerType(SI);
299        assert(SI->getValueOperand()->getType()->isIntegerTy() &&
300               "invariant broken");
301        MadeChange = true;
302      }
303
304      if (TLI->shouldExpandAtomicStoreInIR(SI))
305        MadeChange |= expandAtomicStore(SI);
306    } else if (RMWI) {
307      // There are two different ways of expanding RMW instructions:
308      // - into a load if it is idempotent
309      // - into a Cmpxchg/LL-SC loop otherwise
310      // we try them in that order.
311
312      if (isIdempotentRMW(RMWI) && simplifyIdempotentRMW(RMWI)) {
313        MadeChange = true;
314      } else {
315        unsigned MinCASSize = TLI->getMinCmpXchgSizeInBits() / 8;
316        unsigned ValueSize = getAtomicOpSize(RMWI);
317        AtomicRMWInst::BinOp Op = RMWI->getOperation();
318        if (ValueSize < MinCASSize &&
319            (Op == AtomicRMWInst::Or || Op == AtomicRMWInst::Xor ||
320             Op == AtomicRMWInst::And)) {
321          RMWI = widenPartwordAtomicRMW(RMWI);
322          MadeChange = true;
323        }
324
325        MadeChange |= tryExpandAtomicRMW(RMWI);
326      }
327    } else if (CASI) {
328      // TODO: when we're ready to make the change at the IR level, we can
329      // extend convertCmpXchgToInteger for floating point too.
330      assert(!CASI->getCompareOperand()->getType()->isFloatingPointTy() &&
331             "unimplemented - floating point not legal at IR level");
332      if (CASI->getCompareOperand()->getType()->isPointerTy() ) {
333        // TODO: add a TLI hook to control this so that each target can
334        // convert to lowering the original type one at a time.
335        CASI = convertCmpXchgToIntegerType(CASI);
336        assert(CASI->getCompareOperand()->getType()->isIntegerTy() &&
337               "invariant broken");
338        MadeChange = true;
339      }
340
341      MadeChange |= tryExpandAtomicCmpXchg(CASI);
342    }
343  }
344  return MadeChange;
345}
346
347bool AtomicExpand::bracketInstWithFences(Instruction *I, AtomicOrdering Order) {
348  IRBuilder<> Builder(I);
349
350  auto LeadingFence = TLI->emitLeadingFence(Builder, I, Order);
351
352  auto TrailingFence = TLI->emitTrailingFence(Builder, I, Order);
353  // We have a guard here because not every atomic operation generates a
354  // trailing fence.
355  if (TrailingFence)
356    TrailingFence->moveAfter(I);
357
358  return (LeadingFence || TrailingFence);
359}
360
361/// Get the iX type with the same bitwidth as T.
362IntegerType *AtomicExpand::getCorrespondingIntegerType(Type *T,
363                                                       const DataLayout &DL) {
364  EVT VT = TLI->getMemValueType(DL, T);
365  unsigned BitWidth = VT.getStoreSizeInBits();
366  assert(BitWidth == VT.getSizeInBits() && "must be a power of two");
367  return IntegerType::get(T->getContext(), BitWidth);
368}
369
370/// Convert an atomic load of a non-integral type to an integer load of the
371/// equivalent bitwidth.  See the function comment on
372/// convertAtomicStoreToIntegerType for background.
373LoadInst *AtomicExpand::convertAtomicLoadToIntegerType(LoadInst *LI) {
374  auto *M = LI->getModule();
375  Type *NewTy = getCorrespondingIntegerType(LI->getType(),
376                                            M->getDataLayout());
377
378  IRBuilder<> Builder(LI);
379
380  Value *Addr = LI->getPointerOperand();
381  Type *PT = PointerType::get(NewTy,
382                              Addr->getType()->getPointerAddressSpace());
383  Value *NewAddr = Builder.CreateBitCast(Addr, PT);
384
385  auto *NewLI = Builder.CreateLoad(NewTy, NewAddr);
386  NewLI->setAlignment(MaybeAlign(LI->getAlignment()));
387  NewLI->setVolatile(LI->isVolatile());
388  NewLI->setAtomic(LI->getOrdering(), LI->getSyncScopeID());
389  LLVM_DEBUG(dbgs() << "Replaced " << *LI << " with " << *NewLI << "\n");
390
391  Value *NewVal = Builder.CreateBitCast(NewLI, LI->getType());
392  LI->replaceAllUsesWith(NewVal);
393  LI->eraseFromParent();
394  return NewLI;
395}
396
397bool AtomicExpand::tryExpandAtomicLoad(LoadInst *LI) {
398  switch (TLI->shouldExpandAtomicLoadInIR(LI)) {
399  case TargetLoweringBase::AtomicExpansionKind::None:
400    return false;
401  case TargetLoweringBase::AtomicExpansionKind::LLSC:
402    expandAtomicOpToLLSC(
403        LI, LI->getType(), LI->getPointerOperand(), LI->getOrdering(),
404        [](IRBuilder<> &Builder, Value *Loaded) { return Loaded; });
405    return true;
406  case TargetLoweringBase::AtomicExpansionKind::LLOnly:
407    return expandAtomicLoadToLL(LI);
408  case TargetLoweringBase::AtomicExpansionKind::CmpXChg:
409    return expandAtomicLoadToCmpXchg(LI);
410  default:
411    llvm_unreachable("Unhandled case in tryExpandAtomicLoad");
412  }
413}
414
415bool AtomicExpand::expandAtomicLoadToLL(LoadInst *LI) {
416  IRBuilder<> Builder(LI);
417
418  // On some architectures, load-linked instructions are atomic for larger
419  // sizes than normal loads. For example, the only 64-bit load guaranteed
420  // to be single-copy atomic by ARM is an ldrexd (A3.5.3).
421  Value *Val =
422      TLI->emitLoadLinked(Builder, LI->getPointerOperand(), LI->getOrdering());
423  TLI->emitAtomicCmpXchgNoStoreLLBalance(Builder);
424
425  LI->replaceAllUsesWith(Val);
426  LI->eraseFromParent();
427
428  return true;
429}
430
431bool AtomicExpand::expandAtomicLoadToCmpXchg(LoadInst *LI) {
432  IRBuilder<> Builder(LI);
433  AtomicOrdering Order = LI->getOrdering();
434  if (Order == AtomicOrdering::Unordered)
435    Order = AtomicOrdering::Monotonic;
436
437  Value *Addr = LI->getPointerOperand();
438  Type *Ty = cast<PointerType>(Addr->getType())->getElementType();
439  Constant *DummyVal = Constant::getNullValue(Ty);
440
441  Value *Pair = Builder.CreateAtomicCmpXchg(
442      Addr, DummyVal, DummyVal, Order,
443      AtomicCmpXchgInst::getStrongestFailureOrdering(Order));
444  Value *Loaded = Builder.CreateExtractValue(Pair, 0, "loaded");
445
446  LI->replaceAllUsesWith(Loaded);
447  LI->eraseFromParent();
448
449  return true;
450}
451
452/// Convert an atomic store of a non-integral type to an integer store of the
453/// equivalent bitwidth.  We used to not support floating point or vector
454/// atomics in the IR at all.  The backends learned to deal with the bitcast
455/// idiom because that was the only way of expressing the notion of a atomic
456/// float or vector store.  The long term plan is to teach each backend to
457/// instruction select from the original atomic store, but as a migration
458/// mechanism, we convert back to the old format which the backends understand.
459/// Each backend will need individual work to recognize the new format.
460StoreInst *AtomicExpand::convertAtomicStoreToIntegerType(StoreInst *SI) {
461  IRBuilder<> Builder(SI);
462  auto *M = SI->getModule();
463  Type *NewTy = getCorrespondingIntegerType(SI->getValueOperand()->getType(),
464                                            M->getDataLayout());
465  Value *NewVal = Builder.CreateBitCast(SI->getValueOperand(), NewTy);
466
467  Value *Addr = SI->getPointerOperand();
468  Type *PT = PointerType::get(NewTy,
469                              Addr->getType()->getPointerAddressSpace());
470  Value *NewAddr = Builder.CreateBitCast(Addr, PT);
471
472  StoreInst *NewSI = Builder.CreateStore(NewVal, NewAddr);
473  NewSI->setAlignment(MaybeAlign(SI->getAlignment()));
474  NewSI->setVolatile(SI->isVolatile());
475  NewSI->setAtomic(SI->getOrdering(), SI->getSyncScopeID());
476  LLVM_DEBUG(dbgs() << "Replaced " << *SI << " with " << *NewSI << "\n");
477  SI->eraseFromParent();
478  return NewSI;
479}
480
481bool AtomicExpand::expandAtomicStore(StoreInst *SI) {
482  // This function is only called on atomic stores that are too large to be
483  // atomic if implemented as a native store. So we replace them by an
484  // atomic swap, that can be implemented for example as a ldrex/strex on ARM
485  // or lock cmpxchg8/16b on X86, as these are atomic for larger sizes.
486  // It is the responsibility of the target to only signal expansion via
487  // shouldExpandAtomicRMW in cases where this is required and possible.
488  IRBuilder<> Builder(SI);
489  AtomicRMWInst *AI =
490      Builder.CreateAtomicRMW(AtomicRMWInst::Xchg, SI->getPointerOperand(),
491                              SI->getValueOperand(), SI->getOrdering());
492  SI->eraseFromParent();
493
494  // Now we have an appropriate swap instruction, lower it as usual.
495  return tryExpandAtomicRMW(AI);
496}
497
498static void createCmpXchgInstFun(IRBuilder<> &Builder, Value *Addr,
499                                 Value *Loaded, Value *NewVal,
500                                 AtomicOrdering MemOpOrder,
501                                 Value *&Success, Value *&NewLoaded) {
502  Type *OrigTy = NewVal->getType();
503
504  // This code can go away when cmpxchg supports FP types.
505  bool NeedBitcast = OrigTy->isFloatingPointTy();
506  if (NeedBitcast) {
507    IntegerType *IntTy = Builder.getIntNTy(OrigTy->getPrimitiveSizeInBits());
508    unsigned AS = Addr->getType()->getPointerAddressSpace();
509    Addr = Builder.CreateBitCast(Addr, IntTy->getPointerTo(AS));
510    NewVal = Builder.CreateBitCast(NewVal, IntTy);
511    Loaded = Builder.CreateBitCast(Loaded, IntTy);
512  }
513
514  Value* Pair = Builder.CreateAtomicCmpXchg(
515      Addr, Loaded, NewVal, MemOpOrder,
516      AtomicCmpXchgInst::getStrongestFailureOrdering(MemOpOrder));
517  Success = Builder.CreateExtractValue(Pair, 1, "success");
518  NewLoaded = Builder.CreateExtractValue(Pair, 0, "newloaded");
519
520  if (NeedBitcast)
521    NewLoaded = Builder.CreateBitCast(NewLoaded, OrigTy);
522}
523
524/// Emit IR to implement the given atomicrmw operation on values in registers,
525/// returning the new value.
526static Value *performAtomicOp(AtomicRMWInst::BinOp Op, IRBuilder<> &Builder,
527                              Value *Loaded, Value *Inc) {
528  Value *NewVal;
529  switch (Op) {
530  case AtomicRMWInst::Xchg:
531    return Inc;
532  case AtomicRMWInst::Add:
533    return Builder.CreateAdd(Loaded, Inc, "new");
534  case AtomicRMWInst::Sub:
535    return Builder.CreateSub(Loaded, Inc, "new");
536  case AtomicRMWInst::And:
537    return Builder.CreateAnd(Loaded, Inc, "new");
538  case AtomicRMWInst::Nand:
539    return Builder.CreateNot(Builder.CreateAnd(Loaded, Inc), "new");
540  case AtomicRMWInst::Or:
541    return Builder.CreateOr(Loaded, Inc, "new");
542  case AtomicRMWInst::Xor:
543    return Builder.CreateXor(Loaded, Inc, "new");
544  case AtomicRMWInst::Max:
545    NewVal = Builder.CreateICmpSGT(Loaded, Inc);
546    return Builder.CreateSelect(NewVal, Loaded, Inc, "new");
547  case AtomicRMWInst::Min:
548    NewVal = Builder.CreateICmpSLE(Loaded, Inc);
549    return Builder.CreateSelect(NewVal, Loaded, Inc, "new");
550  case AtomicRMWInst::UMax:
551    NewVal = Builder.CreateICmpUGT(Loaded, Inc);
552    return Builder.CreateSelect(NewVal, Loaded, Inc, "new");
553  case AtomicRMWInst::UMin:
554    NewVal = Builder.CreateICmpULE(Loaded, Inc);
555    return Builder.CreateSelect(NewVal, Loaded, Inc, "new");
556  case AtomicRMWInst::FAdd:
557    return Builder.CreateFAdd(Loaded, Inc, "new");
558  case AtomicRMWInst::FSub:
559    return Builder.CreateFSub(Loaded, Inc, "new");
560  default:
561    llvm_unreachable("Unknown atomic op");
562  }
563}
564
565bool AtomicExpand::tryExpandAtomicRMW(AtomicRMWInst *AI) {
566  switch (TLI->shouldExpandAtomicRMWInIR(AI)) {
567  case TargetLoweringBase::AtomicExpansionKind::None:
568    return false;
569  case TargetLoweringBase::AtomicExpansionKind::LLSC: {
570    unsigned MinCASSize = TLI->getMinCmpXchgSizeInBits() / 8;
571    unsigned ValueSize = getAtomicOpSize(AI);
572    if (ValueSize < MinCASSize) {
573      llvm_unreachable(
574          "MinCmpXchgSizeInBits not yet supported for LL/SC architectures.");
575    } else {
576      auto PerformOp = [&](IRBuilder<> &Builder, Value *Loaded) {
577        return performAtomicOp(AI->getOperation(), Builder, Loaded,
578                               AI->getValOperand());
579      };
580      expandAtomicOpToLLSC(AI, AI->getType(), AI->getPointerOperand(),
581                           AI->getOrdering(), PerformOp);
582    }
583    return true;
584  }
585  case TargetLoweringBase::AtomicExpansionKind::CmpXChg: {
586    unsigned MinCASSize = TLI->getMinCmpXchgSizeInBits() / 8;
587    unsigned ValueSize = getAtomicOpSize(AI);
588    if (ValueSize < MinCASSize) {
589      // TODO: Handle atomicrmw fadd/fsub
590      if (AI->getType()->isFloatingPointTy())
591        return false;
592
593      expandPartwordAtomicRMW(AI,
594                              TargetLoweringBase::AtomicExpansionKind::CmpXChg);
595    } else {
596      expandAtomicRMWToCmpXchg(AI, createCmpXchgInstFun);
597    }
598    return true;
599  }
600  case TargetLoweringBase::AtomicExpansionKind::MaskedIntrinsic: {
601    expandAtomicRMWToMaskedIntrinsic(AI);
602    return true;
603  }
604  default:
605    llvm_unreachable("Unhandled case in tryExpandAtomicRMW");
606  }
607}
608
609namespace {
610
611/// Result values from createMaskInstrs helper.
612struct PartwordMaskValues {
613  Type *WordType;
614  Type *ValueType;
615  Value *AlignedAddr;
616  Value *ShiftAmt;
617  Value *Mask;
618  Value *Inv_Mask;
619};
620
621} // end anonymous namespace
622
623/// This is a helper function which builds instructions to provide
624/// values necessary for partword atomic operations. It takes an
625/// incoming address, Addr, and ValueType, and constructs the address,
626/// shift-amounts and masks needed to work with a larger value of size
627/// WordSize.
628///
629/// AlignedAddr: Addr rounded down to a multiple of WordSize
630///
631/// ShiftAmt: Number of bits to right-shift a WordSize value loaded
632///           from AlignAddr for it to have the same value as if
633///           ValueType was loaded from Addr.
634///
635/// Mask: Value to mask with the value loaded from AlignAddr to
636///       include only the part that would've been loaded from Addr.
637///
638/// Inv_Mask: The inverse of Mask.
639static PartwordMaskValues createMaskInstrs(IRBuilder<> &Builder, Instruction *I,
640                                           Type *ValueType, Value *Addr,
641                                           unsigned WordSize) {
642  PartwordMaskValues Ret;
643
644  BasicBlock *BB = I->getParent();
645  Function *F = BB->getParent();
646  Module *M = I->getModule();
647
648  LLVMContext &Ctx = F->getContext();
649  const DataLayout &DL = M->getDataLayout();
650
651  unsigned ValueSize = DL.getTypeStoreSize(ValueType);
652
653  assert(ValueSize < WordSize);
654
655  Ret.ValueType = ValueType;
656  Ret.WordType = Type::getIntNTy(Ctx, WordSize * 8);
657
658  Type *WordPtrType =
659      Ret.WordType->getPointerTo(Addr->getType()->getPointerAddressSpace());
660
661  Value *AddrInt = Builder.CreatePtrToInt(Addr, DL.getIntPtrType(Ctx));
662  Ret.AlignedAddr = Builder.CreateIntToPtr(
663      Builder.CreateAnd(AddrInt, ~(uint64_t)(WordSize - 1)), WordPtrType,
664      "AlignedAddr");
665
666  Value *PtrLSB = Builder.CreateAnd(AddrInt, WordSize - 1, "PtrLSB");
667  if (DL.isLittleEndian()) {
668    // turn bytes into bits
669    Ret.ShiftAmt = Builder.CreateShl(PtrLSB, 3);
670  } else {
671    // turn bytes into bits, and count from the other side.
672    Ret.ShiftAmt =
673        Builder.CreateShl(Builder.CreateXor(PtrLSB, WordSize - ValueSize), 3);
674  }
675
676  Ret.ShiftAmt = Builder.CreateTrunc(Ret.ShiftAmt, Ret.WordType, "ShiftAmt");
677  Ret.Mask = Builder.CreateShl(
678      ConstantInt::get(Ret.WordType, (1 << (ValueSize * 8)) - 1), Ret.ShiftAmt,
679      "Mask");
680  Ret.Inv_Mask = Builder.CreateNot(Ret.Mask, "Inv_Mask");
681
682  return Ret;
683}
684
685/// Emit IR to implement a masked version of a given atomicrmw
686/// operation. (That is, only the bits under the Mask should be
687/// affected by the operation)
688static Value *performMaskedAtomicOp(AtomicRMWInst::BinOp Op,
689                                    IRBuilder<> &Builder, Value *Loaded,
690                                    Value *Shifted_Inc, Value *Inc,
691                                    const PartwordMaskValues &PMV) {
692  // TODO: update to use
693  // https://graphics.stanford.edu/~seander/bithacks.html#MaskedMerge in order
694  // to merge bits from two values without requiring PMV.Inv_Mask.
695  switch (Op) {
696  case AtomicRMWInst::Xchg: {
697    Value *Loaded_MaskOut = Builder.CreateAnd(Loaded, PMV.Inv_Mask);
698    Value *FinalVal = Builder.CreateOr(Loaded_MaskOut, Shifted_Inc);
699    return FinalVal;
700  }
701  case AtomicRMWInst::Or:
702  case AtomicRMWInst::Xor:
703  case AtomicRMWInst::And:
704    llvm_unreachable("Or/Xor/And handled by widenPartwordAtomicRMW");
705  case AtomicRMWInst::Add:
706  case AtomicRMWInst::Sub:
707  case AtomicRMWInst::Nand: {
708    // The other arithmetic ops need to be masked into place.
709    Value *NewVal = performAtomicOp(Op, Builder, Loaded, Shifted_Inc);
710    Value *NewVal_Masked = Builder.CreateAnd(NewVal, PMV.Mask);
711    Value *Loaded_MaskOut = Builder.CreateAnd(Loaded, PMV.Inv_Mask);
712    Value *FinalVal = Builder.CreateOr(Loaded_MaskOut, NewVal_Masked);
713    return FinalVal;
714  }
715  case AtomicRMWInst::Max:
716  case AtomicRMWInst::Min:
717  case AtomicRMWInst::UMax:
718  case AtomicRMWInst::UMin: {
719    // Finally, comparison ops will operate on the full value, so
720    // truncate down to the original size, and expand out again after
721    // doing the operation.
722    Value *Loaded_Shiftdown = Builder.CreateTrunc(
723        Builder.CreateLShr(Loaded, PMV.ShiftAmt), PMV.ValueType);
724    Value *NewVal = performAtomicOp(Op, Builder, Loaded_Shiftdown, Inc);
725    Value *NewVal_Shiftup = Builder.CreateShl(
726        Builder.CreateZExt(NewVal, PMV.WordType), PMV.ShiftAmt);
727    Value *Loaded_MaskOut = Builder.CreateAnd(Loaded, PMV.Inv_Mask);
728    Value *FinalVal = Builder.CreateOr(Loaded_MaskOut, NewVal_Shiftup);
729    return FinalVal;
730  }
731  default:
732    llvm_unreachable("Unknown atomic op");
733  }
734}
735
736/// Expand a sub-word atomicrmw operation into an appropriate
737/// word-sized operation.
738///
739/// It will create an LL/SC or cmpxchg loop, as appropriate, the same
740/// way as a typical atomicrmw expansion. The only difference here is
741/// that the operation inside of the loop must operate only upon a
742/// part of the value.
743void AtomicExpand::expandPartwordAtomicRMW(
744    AtomicRMWInst *AI, TargetLoweringBase::AtomicExpansionKind ExpansionKind) {
745  assert(ExpansionKind == TargetLoweringBase::AtomicExpansionKind::CmpXChg);
746
747  AtomicOrdering MemOpOrder = AI->getOrdering();
748
749  IRBuilder<> Builder(AI);
750
751  PartwordMaskValues PMV =
752      createMaskInstrs(Builder, AI, AI->getType(), AI->getPointerOperand(),
753                       TLI->getMinCmpXchgSizeInBits() / 8);
754
755  Value *ValOperand_Shifted =
756      Builder.CreateShl(Builder.CreateZExt(AI->getValOperand(), PMV.WordType),
757                        PMV.ShiftAmt, "ValOperand_Shifted");
758
759  auto PerformPartwordOp = [&](IRBuilder<> &Builder, Value *Loaded) {
760    return performMaskedAtomicOp(AI->getOperation(), Builder, Loaded,
761                                 ValOperand_Shifted, AI->getValOperand(), PMV);
762  };
763
764  // TODO: When we're ready to support LLSC conversions too, use
765  // insertRMWLLSCLoop here for ExpansionKind==LLSC.
766  Value *OldResult =
767      insertRMWCmpXchgLoop(Builder, PMV.WordType, PMV.AlignedAddr, MemOpOrder,
768                           PerformPartwordOp, createCmpXchgInstFun);
769  Value *FinalOldResult = Builder.CreateTrunc(
770      Builder.CreateLShr(OldResult, PMV.ShiftAmt), PMV.ValueType);
771  AI->replaceAllUsesWith(FinalOldResult);
772  AI->eraseFromParent();
773}
774
775// Widen the bitwise atomicrmw (or/xor/and) to the minimum supported width.
776AtomicRMWInst *AtomicExpand::widenPartwordAtomicRMW(AtomicRMWInst *AI) {
777  IRBuilder<> Builder(AI);
778  AtomicRMWInst::BinOp Op = AI->getOperation();
779
780  assert((Op == AtomicRMWInst::Or || Op == AtomicRMWInst::Xor ||
781          Op == AtomicRMWInst::And) &&
782         "Unable to widen operation");
783
784  PartwordMaskValues PMV =
785      createMaskInstrs(Builder, AI, AI->getType(), AI->getPointerOperand(),
786                       TLI->getMinCmpXchgSizeInBits() / 8);
787
788  Value *ValOperand_Shifted =
789      Builder.CreateShl(Builder.CreateZExt(AI->getValOperand(), PMV.WordType),
790                        PMV.ShiftAmt, "ValOperand_Shifted");
791
792  Value *NewOperand;
793
794  if (Op == AtomicRMWInst::And)
795    NewOperand =
796        Builder.CreateOr(PMV.Inv_Mask, ValOperand_Shifted, "AndOperand");
797  else
798    NewOperand = ValOperand_Shifted;
799
800  AtomicRMWInst *NewAI = Builder.CreateAtomicRMW(Op, PMV.AlignedAddr,
801                                                 NewOperand, AI->getOrdering());
802
803  Value *FinalOldResult = Builder.CreateTrunc(
804      Builder.CreateLShr(NewAI, PMV.ShiftAmt), PMV.ValueType);
805  AI->replaceAllUsesWith(FinalOldResult);
806  AI->eraseFromParent();
807  return NewAI;
808}
809
810void AtomicExpand::expandPartwordCmpXchg(AtomicCmpXchgInst *CI) {
811  // The basic idea here is that we're expanding a cmpxchg of a
812  // smaller memory size up to a word-sized cmpxchg. To do this, we
813  // need to add a retry-loop for strong cmpxchg, so that
814  // modifications to other parts of the word don't cause a spurious
815  // failure.
816
817  // This generates code like the following:
818  //     [[Setup mask values PMV.*]]
819  //     %NewVal_Shifted = shl i32 %NewVal, %PMV.ShiftAmt
820  //     %Cmp_Shifted = shl i32 %Cmp, %PMV.ShiftAmt
821  //     %InitLoaded = load i32* %addr
822  //     %InitLoaded_MaskOut = and i32 %InitLoaded, %PMV.Inv_Mask
823  //     br partword.cmpxchg.loop
824  // partword.cmpxchg.loop:
825  //     %Loaded_MaskOut = phi i32 [ %InitLoaded_MaskOut, %entry ],
826  //        [ %OldVal_MaskOut, %partword.cmpxchg.failure ]
827  //     %FullWord_NewVal = or i32 %Loaded_MaskOut, %NewVal_Shifted
828  //     %FullWord_Cmp = or i32 %Loaded_MaskOut, %Cmp_Shifted
829  //     %NewCI = cmpxchg i32* %PMV.AlignedAddr, i32 %FullWord_Cmp,
830  //        i32 %FullWord_NewVal success_ordering failure_ordering
831  //     %OldVal = extractvalue { i32, i1 } %NewCI, 0
832  //     %Success = extractvalue { i32, i1 } %NewCI, 1
833  //     br i1 %Success, label %partword.cmpxchg.end,
834  //        label %partword.cmpxchg.failure
835  // partword.cmpxchg.failure:
836  //     %OldVal_MaskOut = and i32 %OldVal, %PMV.Inv_Mask
837  //     %ShouldContinue = icmp ne i32 %Loaded_MaskOut, %OldVal_MaskOut
838  //     br i1 %ShouldContinue, label %partword.cmpxchg.loop,
839  //         label %partword.cmpxchg.end
840  // partword.cmpxchg.end:
841  //    %tmp1 = lshr i32 %OldVal, %PMV.ShiftAmt
842  //    %FinalOldVal = trunc i32 %tmp1 to i8
843  //    %tmp2 = insertvalue { i8, i1 } undef, i8 %FinalOldVal, 0
844  //    %Res = insertvalue { i8, i1 } %25, i1 %Success, 1
845
846  Value *Addr = CI->getPointerOperand();
847  Value *Cmp = CI->getCompareOperand();
848  Value *NewVal = CI->getNewValOperand();
849
850  BasicBlock *BB = CI->getParent();
851  Function *F = BB->getParent();
852  IRBuilder<> Builder(CI);
853  LLVMContext &Ctx = Builder.getContext();
854
855  const int WordSize = TLI->getMinCmpXchgSizeInBits() / 8;
856
857  BasicBlock *EndBB =
858      BB->splitBasicBlock(CI->getIterator(), "partword.cmpxchg.end");
859  auto FailureBB =
860      BasicBlock::Create(Ctx, "partword.cmpxchg.failure", F, EndBB);
861  auto LoopBB = BasicBlock::Create(Ctx, "partword.cmpxchg.loop", F, FailureBB);
862
863  // The split call above "helpfully" added a branch at the end of BB
864  // (to the wrong place).
865  std::prev(BB->end())->eraseFromParent();
866  Builder.SetInsertPoint(BB);
867
868  PartwordMaskValues PMV = createMaskInstrs(
869      Builder, CI, CI->getCompareOperand()->getType(), Addr, WordSize);
870
871  // Shift the incoming values over, into the right location in the word.
872  Value *NewVal_Shifted =
873      Builder.CreateShl(Builder.CreateZExt(NewVal, PMV.WordType), PMV.ShiftAmt);
874  Value *Cmp_Shifted =
875      Builder.CreateShl(Builder.CreateZExt(Cmp, PMV.WordType), PMV.ShiftAmt);
876
877  // Load the entire current word, and mask into place the expected and new
878  // values
879  LoadInst *InitLoaded = Builder.CreateLoad(PMV.WordType, PMV.AlignedAddr);
880  InitLoaded->setVolatile(CI->isVolatile());
881  Value *InitLoaded_MaskOut = Builder.CreateAnd(InitLoaded, PMV.Inv_Mask);
882  Builder.CreateBr(LoopBB);
883
884  // partword.cmpxchg.loop:
885  Builder.SetInsertPoint(LoopBB);
886  PHINode *Loaded_MaskOut = Builder.CreatePHI(PMV.WordType, 2);
887  Loaded_MaskOut->addIncoming(InitLoaded_MaskOut, BB);
888
889  // Mask/Or the expected and new values into place in the loaded word.
890  Value *FullWord_NewVal = Builder.CreateOr(Loaded_MaskOut, NewVal_Shifted);
891  Value *FullWord_Cmp = Builder.CreateOr(Loaded_MaskOut, Cmp_Shifted);
892  AtomicCmpXchgInst *NewCI = Builder.CreateAtomicCmpXchg(
893      PMV.AlignedAddr, FullWord_Cmp, FullWord_NewVal, CI->getSuccessOrdering(),
894      CI->getFailureOrdering(), CI->getSyncScopeID());
895  NewCI->setVolatile(CI->isVolatile());
896  // When we're building a strong cmpxchg, we need a loop, so you
897  // might think we could use a weak cmpxchg inside. But, using strong
898  // allows the below comparison for ShouldContinue, and we're
899  // expecting the underlying cmpxchg to be a machine instruction,
900  // which is strong anyways.
901  NewCI->setWeak(CI->isWeak());
902
903  Value *OldVal = Builder.CreateExtractValue(NewCI, 0);
904  Value *Success = Builder.CreateExtractValue(NewCI, 1);
905
906  if (CI->isWeak())
907    Builder.CreateBr(EndBB);
908  else
909    Builder.CreateCondBr(Success, EndBB, FailureBB);
910
911  // partword.cmpxchg.failure:
912  Builder.SetInsertPoint(FailureBB);
913  // Upon failure, verify that the masked-out part of the loaded value
914  // has been modified.  If it didn't, abort the cmpxchg, since the
915  // masked-in part must've.
916  Value *OldVal_MaskOut = Builder.CreateAnd(OldVal, PMV.Inv_Mask);
917  Value *ShouldContinue = Builder.CreateICmpNE(Loaded_MaskOut, OldVal_MaskOut);
918  Builder.CreateCondBr(ShouldContinue, LoopBB, EndBB);
919
920  // Add the second value to the phi from above
921  Loaded_MaskOut->addIncoming(OldVal_MaskOut, FailureBB);
922
923  // partword.cmpxchg.end:
924  Builder.SetInsertPoint(CI);
925
926  Value *FinalOldVal = Builder.CreateTrunc(
927      Builder.CreateLShr(OldVal, PMV.ShiftAmt), PMV.ValueType);
928  Value *Res = UndefValue::get(CI->getType());
929  Res = Builder.CreateInsertValue(Res, FinalOldVal, 0);
930  Res = Builder.CreateInsertValue(Res, Success, 1);
931
932  CI->replaceAllUsesWith(Res);
933  CI->eraseFromParent();
934}
935
936void AtomicExpand::expandAtomicOpToLLSC(
937    Instruction *I, Type *ResultType, Value *Addr, AtomicOrdering MemOpOrder,
938    function_ref<Value *(IRBuilder<> &, Value *)> PerformOp) {
939  IRBuilder<> Builder(I);
940  Value *Loaded =
941      insertRMWLLSCLoop(Builder, ResultType, Addr, MemOpOrder, PerformOp);
942
943  I->replaceAllUsesWith(Loaded);
944  I->eraseFromParent();
945}
946
947void AtomicExpand::expandAtomicRMWToMaskedIntrinsic(AtomicRMWInst *AI) {
948  IRBuilder<> Builder(AI);
949
950  PartwordMaskValues PMV =
951      createMaskInstrs(Builder, AI, AI->getType(), AI->getPointerOperand(),
952                       TLI->getMinCmpXchgSizeInBits() / 8);
953
954  // The value operand must be sign-extended for signed min/max so that the
955  // target's signed comparison instructions can be used. Otherwise, just
956  // zero-ext.
957  Instruction::CastOps CastOp = Instruction::ZExt;
958  AtomicRMWInst::BinOp RMWOp = AI->getOperation();
959  if (RMWOp == AtomicRMWInst::Max || RMWOp == AtomicRMWInst::Min)
960    CastOp = Instruction::SExt;
961
962  Value *ValOperand_Shifted = Builder.CreateShl(
963      Builder.CreateCast(CastOp, AI->getValOperand(), PMV.WordType),
964      PMV.ShiftAmt, "ValOperand_Shifted");
965  Value *OldResult = TLI->emitMaskedAtomicRMWIntrinsic(
966      Builder, AI, PMV.AlignedAddr, ValOperand_Shifted, PMV.Mask, PMV.ShiftAmt,
967      AI->getOrdering());
968  Value *FinalOldResult = Builder.CreateTrunc(
969      Builder.CreateLShr(OldResult, PMV.ShiftAmt), PMV.ValueType);
970  AI->replaceAllUsesWith(FinalOldResult);
971  AI->eraseFromParent();
972}
973
974void AtomicExpand::expandAtomicCmpXchgToMaskedIntrinsic(AtomicCmpXchgInst *CI) {
975  IRBuilder<> Builder(CI);
976
977  PartwordMaskValues PMV = createMaskInstrs(
978      Builder, CI, CI->getCompareOperand()->getType(), CI->getPointerOperand(),
979      TLI->getMinCmpXchgSizeInBits() / 8);
980
981  Value *CmpVal_Shifted = Builder.CreateShl(
982      Builder.CreateZExt(CI->getCompareOperand(), PMV.WordType), PMV.ShiftAmt,
983      "CmpVal_Shifted");
984  Value *NewVal_Shifted = Builder.CreateShl(
985      Builder.CreateZExt(CI->getNewValOperand(), PMV.WordType), PMV.ShiftAmt,
986      "NewVal_Shifted");
987  Value *OldVal = TLI->emitMaskedAtomicCmpXchgIntrinsic(
988      Builder, CI, PMV.AlignedAddr, CmpVal_Shifted, NewVal_Shifted, PMV.Mask,
989      CI->getSuccessOrdering());
990  Value *FinalOldVal = Builder.CreateTrunc(
991      Builder.CreateLShr(OldVal, PMV.ShiftAmt), PMV.ValueType);
992
993  Value *Res = UndefValue::get(CI->getType());
994  Res = Builder.CreateInsertValue(Res, FinalOldVal, 0);
995  Value *Success = Builder.CreateICmpEQ(
996      CmpVal_Shifted, Builder.CreateAnd(OldVal, PMV.Mask), "Success");
997  Res = Builder.CreateInsertValue(Res, Success, 1);
998
999  CI->replaceAllUsesWith(Res);
1000  CI->eraseFromParent();
1001}
1002
1003Value *AtomicExpand::insertRMWLLSCLoop(
1004    IRBuilder<> &Builder, Type *ResultTy, Value *Addr,
1005    AtomicOrdering MemOpOrder,
1006    function_ref<Value *(IRBuilder<> &, Value *)> PerformOp) {
1007  LLVMContext &Ctx = Builder.getContext();
1008  BasicBlock *BB = Builder.GetInsertBlock();
1009  Function *F = BB->getParent();
1010
1011  // Given: atomicrmw some_op iN* %addr, iN %incr ordering
1012  //
1013  // The standard expansion we produce is:
1014  //     [...]
1015  // atomicrmw.start:
1016  //     %loaded = @load.linked(%addr)
1017  //     %new = some_op iN %loaded, %incr
1018  //     %stored = @store_conditional(%new, %addr)
1019  //     %try_again = icmp i32 ne %stored, 0
1020  //     br i1 %try_again, label %loop, label %atomicrmw.end
1021  // atomicrmw.end:
1022  //     [...]
1023  BasicBlock *ExitBB =
1024      BB->splitBasicBlock(Builder.GetInsertPoint(), "atomicrmw.end");
1025  BasicBlock *LoopBB =  BasicBlock::Create(Ctx, "atomicrmw.start", F, ExitBB);
1026
1027  // The split call above "helpfully" added a branch at the end of BB (to the
1028  // wrong place).
1029  std::prev(BB->end())->eraseFromParent();
1030  Builder.SetInsertPoint(BB);
1031  Builder.CreateBr(LoopBB);
1032
1033  // Start the main loop block now that we've taken care of the preliminaries.
1034  Builder.SetInsertPoint(LoopBB);
1035  Value *Loaded = TLI->emitLoadLinked(Builder, Addr, MemOpOrder);
1036
1037  Value *NewVal = PerformOp(Builder, Loaded);
1038
1039  Value *StoreSuccess =
1040      TLI->emitStoreConditional(Builder, NewVal, Addr, MemOpOrder);
1041  Value *TryAgain = Builder.CreateICmpNE(
1042      StoreSuccess, ConstantInt::get(IntegerType::get(Ctx, 32), 0), "tryagain");
1043  Builder.CreateCondBr(TryAgain, LoopBB, ExitBB);
1044
1045  Builder.SetInsertPoint(ExitBB, ExitBB->begin());
1046  return Loaded;
1047}
1048
1049/// Convert an atomic cmpxchg of a non-integral type to an integer cmpxchg of
1050/// the equivalent bitwidth.  We used to not support pointer cmpxchg in the
1051/// IR.  As a migration step, we convert back to what use to be the standard
1052/// way to represent a pointer cmpxchg so that we can update backends one by
1053/// one.
1054AtomicCmpXchgInst *AtomicExpand::convertCmpXchgToIntegerType(AtomicCmpXchgInst *CI) {
1055  auto *M = CI->getModule();
1056  Type *NewTy = getCorrespondingIntegerType(CI->getCompareOperand()->getType(),
1057                                            M->getDataLayout());
1058
1059  IRBuilder<> Builder(CI);
1060
1061  Value *Addr = CI->getPointerOperand();
1062  Type *PT = PointerType::get(NewTy,
1063                              Addr->getType()->getPointerAddressSpace());
1064  Value *NewAddr = Builder.CreateBitCast(Addr, PT);
1065
1066  Value *NewCmp = Builder.CreatePtrToInt(CI->getCompareOperand(), NewTy);
1067  Value *NewNewVal = Builder.CreatePtrToInt(CI->getNewValOperand(), NewTy);
1068
1069
1070  auto *NewCI = Builder.CreateAtomicCmpXchg(NewAddr, NewCmp, NewNewVal,
1071                                            CI->getSuccessOrdering(),
1072                                            CI->getFailureOrdering(),
1073                                            CI->getSyncScopeID());
1074  NewCI->setVolatile(CI->isVolatile());
1075  NewCI->setWeak(CI->isWeak());
1076  LLVM_DEBUG(dbgs() << "Replaced " << *CI << " with " << *NewCI << "\n");
1077
1078  Value *OldVal = Builder.CreateExtractValue(NewCI, 0);
1079  Value *Succ = Builder.CreateExtractValue(NewCI, 1);
1080
1081  OldVal = Builder.CreateIntToPtr(OldVal, CI->getCompareOperand()->getType());
1082
1083  Value *Res = UndefValue::get(CI->getType());
1084  Res = Builder.CreateInsertValue(Res, OldVal, 0);
1085  Res = Builder.CreateInsertValue(Res, Succ, 1);
1086
1087  CI->replaceAllUsesWith(Res);
1088  CI->eraseFromParent();
1089  return NewCI;
1090}
1091
1092bool AtomicExpand::expandAtomicCmpXchg(AtomicCmpXchgInst *CI) {
1093  AtomicOrdering SuccessOrder = CI->getSuccessOrdering();
1094  AtomicOrdering FailureOrder = CI->getFailureOrdering();
1095  Value *Addr = CI->getPointerOperand();
1096  BasicBlock *BB = CI->getParent();
1097  Function *F = BB->getParent();
1098  LLVMContext &Ctx = F->getContext();
1099  // If shouldInsertFencesForAtomic() returns true, then the target does not
1100  // want to deal with memory orders, and emitLeading/TrailingFence should take
1101  // care of everything. Otherwise, emitLeading/TrailingFence are no-op and we
1102  // should preserve the ordering.
1103  bool ShouldInsertFencesForAtomic = TLI->shouldInsertFencesForAtomic(CI);
1104  AtomicOrdering MemOpOrder =
1105      ShouldInsertFencesForAtomic ? AtomicOrdering::Monotonic : SuccessOrder;
1106
1107  // In implementations which use a barrier to achieve release semantics, we can
1108  // delay emitting this barrier until we know a store is actually going to be
1109  // attempted. The cost of this delay is that we need 2 copies of the block
1110  // emitting the load-linked, affecting code size.
1111  //
1112  // Ideally, this logic would be unconditional except for the minsize check
1113  // since in other cases the extra blocks naturally collapse down to the
1114  // minimal loop. Unfortunately, this puts too much stress on later
1115  // optimisations so we avoid emitting the extra logic in those cases too.
1116  bool HasReleasedLoadBB = !CI->isWeak() && ShouldInsertFencesForAtomic &&
1117                           SuccessOrder != AtomicOrdering::Monotonic &&
1118                           SuccessOrder != AtomicOrdering::Acquire &&
1119                           !F->hasMinSize();
1120
1121  // There's no overhead for sinking the release barrier in a weak cmpxchg, so
1122  // do it even on minsize.
1123  bool UseUnconditionalReleaseBarrier = F->hasMinSize() && !CI->isWeak();
1124
1125  // Given: cmpxchg some_op iN* %addr, iN %desired, iN %new success_ord fail_ord
1126  //
1127  // The full expansion we produce is:
1128  //     [...]
1129  // cmpxchg.start:
1130  //     %unreleasedload = @load.linked(%addr)
1131  //     %should_store = icmp eq %unreleasedload, %desired
1132  //     br i1 %should_store, label %cmpxchg.fencedstore,
1133  //                          label %cmpxchg.nostore
1134  // cmpxchg.releasingstore:
1135  //     fence?
1136  //     br label cmpxchg.trystore
1137  // cmpxchg.trystore:
1138  //     %loaded.trystore = phi [%unreleasedload, %releasingstore],
1139  //                            [%releasedload, %cmpxchg.releasedload]
1140  //     %stored = @store_conditional(%new, %addr)
1141  //     %success = icmp eq i32 %stored, 0
1142  //     br i1 %success, label %cmpxchg.success,
1143  //                     label %cmpxchg.releasedload/%cmpxchg.failure
1144  // cmpxchg.releasedload:
1145  //     %releasedload = @load.linked(%addr)
1146  //     %should_store = icmp eq %releasedload, %desired
1147  //     br i1 %should_store, label %cmpxchg.trystore,
1148  //                          label %cmpxchg.failure
1149  // cmpxchg.success:
1150  //     fence?
1151  //     br label %cmpxchg.end
1152  // cmpxchg.nostore:
1153  //     %loaded.nostore = phi [%unreleasedload, %cmpxchg.start],
1154  //                           [%releasedload,
1155  //                               %cmpxchg.releasedload/%cmpxchg.trystore]
1156  //     @load_linked_fail_balance()?
1157  //     br label %cmpxchg.failure
1158  // cmpxchg.failure:
1159  //     fence?
1160  //     br label %cmpxchg.end
1161  // cmpxchg.end:
1162  //     %loaded = phi [%loaded.nostore, %cmpxchg.failure],
1163  //                   [%loaded.trystore, %cmpxchg.trystore]
1164  //     %success = phi i1 [true, %cmpxchg.success], [false, %cmpxchg.failure]
1165  //     %restmp = insertvalue { iN, i1 } undef, iN %loaded, 0
1166  //     %res = insertvalue { iN, i1 } %restmp, i1 %success, 1
1167  //     [...]
1168  BasicBlock *ExitBB = BB->splitBasicBlock(CI->getIterator(), "cmpxchg.end");
1169  auto FailureBB = BasicBlock::Create(Ctx, "cmpxchg.failure", F, ExitBB);
1170  auto NoStoreBB = BasicBlock::Create(Ctx, "cmpxchg.nostore", F, FailureBB);
1171  auto SuccessBB = BasicBlock::Create(Ctx, "cmpxchg.success", F, NoStoreBB);
1172  auto ReleasedLoadBB =
1173      BasicBlock::Create(Ctx, "cmpxchg.releasedload", F, SuccessBB);
1174  auto TryStoreBB =
1175      BasicBlock::Create(Ctx, "cmpxchg.trystore", F, ReleasedLoadBB);
1176  auto ReleasingStoreBB =
1177      BasicBlock::Create(Ctx, "cmpxchg.fencedstore", F, TryStoreBB);
1178  auto StartBB = BasicBlock::Create(Ctx, "cmpxchg.start", F, ReleasingStoreBB);
1179
1180  // This grabs the DebugLoc from CI
1181  IRBuilder<> Builder(CI);
1182
1183  // The split call above "helpfully" added a branch at the end of BB (to the
1184  // wrong place), but we might want a fence too. It's easiest to just remove
1185  // the branch entirely.
1186  std::prev(BB->end())->eraseFromParent();
1187  Builder.SetInsertPoint(BB);
1188  if (ShouldInsertFencesForAtomic && UseUnconditionalReleaseBarrier)
1189    TLI->emitLeadingFence(Builder, CI, SuccessOrder);
1190  Builder.CreateBr(StartBB);
1191
1192  // Start the main loop block now that we've taken care of the preliminaries.
1193  Builder.SetInsertPoint(StartBB);
1194  Value *UnreleasedLoad = TLI->emitLoadLinked(Builder, Addr, MemOpOrder);
1195  Value *ShouldStore = Builder.CreateICmpEQ(
1196      UnreleasedLoad, CI->getCompareOperand(), "should_store");
1197
1198  // If the cmpxchg doesn't actually need any ordering when it fails, we can
1199  // jump straight past that fence instruction (if it exists).
1200  Builder.CreateCondBr(ShouldStore, ReleasingStoreBB, NoStoreBB);
1201
1202  Builder.SetInsertPoint(ReleasingStoreBB);
1203  if (ShouldInsertFencesForAtomic && !UseUnconditionalReleaseBarrier)
1204    TLI->emitLeadingFence(Builder, CI, SuccessOrder);
1205  Builder.CreateBr(TryStoreBB);
1206
1207  Builder.SetInsertPoint(TryStoreBB);
1208  Value *StoreSuccess = TLI->emitStoreConditional(
1209      Builder, CI->getNewValOperand(), Addr, MemOpOrder);
1210  StoreSuccess = Builder.CreateICmpEQ(
1211      StoreSuccess, ConstantInt::get(Type::getInt32Ty(Ctx), 0), "success");
1212  BasicBlock *RetryBB = HasReleasedLoadBB ? ReleasedLoadBB : StartBB;
1213  Builder.CreateCondBr(StoreSuccess, SuccessBB,
1214                       CI->isWeak() ? FailureBB : RetryBB);
1215
1216  Builder.SetInsertPoint(ReleasedLoadBB);
1217  Value *SecondLoad;
1218  if (HasReleasedLoadBB) {
1219    SecondLoad = TLI->emitLoadLinked(Builder, Addr, MemOpOrder);
1220    ShouldStore = Builder.CreateICmpEQ(SecondLoad, CI->getCompareOperand(),
1221                                       "should_store");
1222
1223    // If the cmpxchg doesn't actually need any ordering when it fails, we can
1224    // jump straight past that fence instruction (if it exists).
1225    Builder.CreateCondBr(ShouldStore, TryStoreBB, NoStoreBB);
1226  } else
1227    Builder.CreateUnreachable();
1228
1229  // Make sure later instructions don't get reordered with a fence if
1230  // necessary.
1231  Builder.SetInsertPoint(SuccessBB);
1232  if (ShouldInsertFencesForAtomic)
1233    TLI->emitTrailingFence(Builder, CI, SuccessOrder);
1234  Builder.CreateBr(ExitBB);
1235
1236  Builder.SetInsertPoint(NoStoreBB);
1237  // In the failing case, where we don't execute the store-conditional, the
1238  // target might want to balance out the load-linked with a dedicated
1239  // instruction (e.g., on ARM, clearing the exclusive monitor).
1240  TLI->emitAtomicCmpXchgNoStoreLLBalance(Builder);
1241  Builder.CreateBr(FailureBB);
1242
1243  Builder.SetInsertPoint(FailureBB);
1244  if (ShouldInsertFencesForAtomic)
1245    TLI->emitTrailingFence(Builder, CI, FailureOrder);
1246  Builder.CreateBr(ExitBB);
1247
1248  // Finally, we have control-flow based knowledge of whether the cmpxchg
1249  // succeeded or not. We expose this to later passes by converting any
1250  // subsequent "icmp eq/ne %loaded, %oldval" into a use of an appropriate
1251  // PHI.
1252  Builder.SetInsertPoint(ExitBB, ExitBB->begin());
1253  PHINode *Success = Builder.CreatePHI(Type::getInt1Ty(Ctx), 2);
1254  Success->addIncoming(ConstantInt::getTrue(Ctx), SuccessBB);
1255  Success->addIncoming(ConstantInt::getFalse(Ctx), FailureBB);
1256
1257  // Setup the builder so we can create any PHIs we need.
1258  Value *Loaded;
1259  if (!HasReleasedLoadBB)
1260    Loaded = UnreleasedLoad;
1261  else {
1262    Builder.SetInsertPoint(TryStoreBB, TryStoreBB->begin());
1263    PHINode *TryStoreLoaded = Builder.CreatePHI(UnreleasedLoad->getType(), 2);
1264    TryStoreLoaded->addIncoming(UnreleasedLoad, ReleasingStoreBB);
1265    TryStoreLoaded->addIncoming(SecondLoad, ReleasedLoadBB);
1266
1267    Builder.SetInsertPoint(NoStoreBB, NoStoreBB->begin());
1268    PHINode *NoStoreLoaded = Builder.CreatePHI(UnreleasedLoad->getType(), 2);
1269    NoStoreLoaded->addIncoming(UnreleasedLoad, StartBB);
1270    NoStoreLoaded->addIncoming(SecondLoad, ReleasedLoadBB);
1271
1272    Builder.SetInsertPoint(ExitBB, ++ExitBB->begin());
1273    PHINode *ExitLoaded = Builder.CreatePHI(UnreleasedLoad->getType(), 2);
1274    ExitLoaded->addIncoming(TryStoreLoaded, SuccessBB);
1275    ExitLoaded->addIncoming(NoStoreLoaded, FailureBB);
1276
1277    Loaded = ExitLoaded;
1278  }
1279
1280  // Look for any users of the cmpxchg that are just comparing the loaded value
1281  // against the desired one, and replace them with the CFG-derived version.
1282  SmallVector<ExtractValueInst *, 2> PrunedInsts;
1283  for (auto User : CI->users()) {
1284    ExtractValueInst *EV = dyn_cast<ExtractValueInst>(User);
1285    if (!EV)
1286      continue;
1287
1288    assert(EV->getNumIndices() == 1 && EV->getIndices()[0] <= 1 &&
1289           "weird extraction from { iN, i1 }");
1290
1291    if (EV->getIndices()[0] == 0)
1292      EV->replaceAllUsesWith(Loaded);
1293    else
1294      EV->replaceAllUsesWith(Success);
1295
1296    PrunedInsts.push_back(EV);
1297  }
1298
1299  // We can remove the instructions now we're no longer iterating through them.
1300  for (auto EV : PrunedInsts)
1301    EV->eraseFromParent();
1302
1303  if (!CI->use_empty()) {
1304    // Some use of the full struct return that we don't understand has happened,
1305    // so we've got to reconstruct it properly.
1306    Value *Res;
1307    Res = Builder.CreateInsertValue(UndefValue::get(CI->getType()), Loaded, 0);
1308    Res = Builder.CreateInsertValue(Res, Success, 1);
1309
1310    CI->replaceAllUsesWith(Res);
1311  }
1312
1313  CI->eraseFromParent();
1314  return true;
1315}
1316
1317bool AtomicExpand::isIdempotentRMW(AtomicRMWInst* RMWI) {
1318  auto C = dyn_cast<ConstantInt>(RMWI->getValOperand());
1319  if(!C)
1320    return false;
1321
1322  AtomicRMWInst::BinOp Op = RMWI->getOperation();
1323  switch(Op) {
1324    case AtomicRMWInst::Add:
1325    case AtomicRMWInst::Sub:
1326    case AtomicRMWInst::Or:
1327    case AtomicRMWInst::Xor:
1328      return C->isZero();
1329    case AtomicRMWInst::And:
1330      return C->isMinusOne();
1331    // FIXME: we could also treat Min/Max/UMin/UMax by the INT_MIN/INT_MAX/...
1332    default:
1333      return false;
1334  }
1335}
1336
1337bool AtomicExpand::simplifyIdempotentRMW(AtomicRMWInst* RMWI) {
1338  if (auto ResultingLoad = TLI->lowerIdempotentRMWIntoFencedLoad(RMWI)) {
1339    tryExpandAtomicLoad(ResultingLoad);
1340    return true;
1341  }
1342  return false;
1343}
1344
1345Value *AtomicExpand::insertRMWCmpXchgLoop(
1346    IRBuilder<> &Builder, Type *ResultTy, Value *Addr,
1347    AtomicOrdering MemOpOrder,
1348    function_ref<Value *(IRBuilder<> &, Value *)> PerformOp,
1349    CreateCmpXchgInstFun CreateCmpXchg) {
1350  LLVMContext &Ctx = Builder.getContext();
1351  BasicBlock *BB = Builder.GetInsertBlock();
1352  Function *F = BB->getParent();
1353
1354  // Given: atomicrmw some_op iN* %addr, iN %incr ordering
1355  //
1356  // The standard expansion we produce is:
1357  //     [...]
1358  //     %init_loaded = load atomic iN* %addr
1359  //     br label %loop
1360  // loop:
1361  //     %loaded = phi iN [ %init_loaded, %entry ], [ %new_loaded, %loop ]
1362  //     %new = some_op iN %loaded, %incr
1363  //     %pair = cmpxchg iN* %addr, iN %loaded, iN %new
1364  //     %new_loaded = extractvalue { iN, i1 } %pair, 0
1365  //     %success = extractvalue { iN, i1 } %pair, 1
1366  //     br i1 %success, label %atomicrmw.end, label %loop
1367  // atomicrmw.end:
1368  //     [...]
1369  BasicBlock *ExitBB =
1370      BB->splitBasicBlock(Builder.GetInsertPoint(), "atomicrmw.end");
1371  BasicBlock *LoopBB = BasicBlock::Create(Ctx, "atomicrmw.start", F, ExitBB);
1372
1373  // The split call above "helpfully" added a branch at the end of BB (to the
1374  // wrong place), but we want a load. It's easiest to just remove
1375  // the branch entirely.
1376  std::prev(BB->end())->eraseFromParent();
1377  Builder.SetInsertPoint(BB);
1378  LoadInst *InitLoaded = Builder.CreateLoad(ResultTy, Addr);
1379  // Atomics require at least natural alignment.
1380  InitLoaded->setAlignment(MaybeAlign(ResultTy->getPrimitiveSizeInBits() / 8));
1381  Builder.CreateBr(LoopBB);
1382
1383  // Start the main loop block now that we've taken care of the preliminaries.
1384  Builder.SetInsertPoint(LoopBB);
1385  PHINode *Loaded = Builder.CreatePHI(ResultTy, 2, "loaded");
1386  Loaded->addIncoming(InitLoaded, BB);
1387
1388  Value *NewVal = PerformOp(Builder, Loaded);
1389
1390  Value *NewLoaded = nullptr;
1391  Value *Success = nullptr;
1392
1393  CreateCmpXchg(Builder, Addr, Loaded, NewVal,
1394                MemOpOrder == AtomicOrdering::Unordered
1395                    ? AtomicOrdering::Monotonic
1396                    : MemOpOrder,
1397                Success, NewLoaded);
1398  assert(Success && NewLoaded);
1399
1400  Loaded->addIncoming(NewLoaded, LoopBB);
1401
1402  Builder.CreateCondBr(Success, ExitBB, LoopBB);
1403
1404  Builder.SetInsertPoint(ExitBB, ExitBB->begin());
1405  return NewLoaded;
1406}
1407
1408bool AtomicExpand::tryExpandAtomicCmpXchg(AtomicCmpXchgInst *CI) {
1409  unsigned MinCASSize = TLI->getMinCmpXchgSizeInBits() / 8;
1410  unsigned ValueSize = getAtomicOpSize(CI);
1411
1412  switch (TLI->shouldExpandAtomicCmpXchgInIR(CI)) {
1413  default:
1414    llvm_unreachable("Unhandled case in tryExpandAtomicCmpXchg");
1415  case TargetLoweringBase::AtomicExpansionKind::None:
1416    if (ValueSize < MinCASSize)
1417      expandPartwordCmpXchg(CI);
1418    return false;
1419  case TargetLoweringBase::AtomicExpansionKind::LLSC: {
1420    assert(ValueSize >= MinCASSize &&
1421           "MinCmpXchgSizeInBits not yet supported for LL/SC expansions.");
1422    return expandAtomicCmpXchg(CI);
1423  }
1424  case TargetLoweringBase::AtomicExpansionKind::MaskedIntrinsic:
1425    expandAtomicCmpXchgToMaskedIntrinsic(CI);
1426    return true;
1427  }
1428}
1429
1430// Note: This function is exposed externally by AtomicExpandUtils.h
1431bool llvm::expandAtomicRMWToCmpXchg(AtomicRMWInst *AI,
1432                                    CreateCmpXchgInstFun CreateCmpXchg) {
1433  IRBuilder<> Builder(AI);
1434  Value *Loaded = AtomicExpand::insertRMWCmpXchgLoop(
1435      Builder, AI->getType(), AI->getPointerOperand(), AI->getOrdering(),
1436      [&](IRBuilder<> &Builder, Value *Loaded) {
1437        return performAtomicOp(AI->getOperation(), Builder, Loaded,
1438                               AI->getValOperand());
1439      },
1440      CreateCmpXchg);
1441
1442  AI->replaceAllUsesWith(Loaded);
1443  AI->eraseFromParent();
1444  return true;
1445}
1446
1447// In order to use one of the sized library calls such as
1448// __atomic_fetch_add_4, the alignment must be sufficient, the size
1449// must be one of the potentially-specialized sizes, and the value
1450// type must actually exist in C on the target (otherwise, the
1451// function wouldn't actually be defined.)
1452static bool canUseSizedAtomicCall(unsigned Size, unsigned Align,
1453                                  const DataLayout &DL) {
1454  // TODO: "LargestSize" is an approximation for "largest type that
1455  // you can express in C". It seems to be the case that int128 is
1456  // supported on all 64-bit platforms, otherwise only up to 64-bit
1457  // integers are supported. If we get this wrong, then we'll try to
1458  // call a sized libcall that doesn't actually exist. There should
1459  // really be some more reliable way in LLVM of determining integer
1460  // sizes which are valid in the target's C ABI...
1461  unsigned LargestSize = DL.getLargestLegalIntTypeSizeInBits() >= 64 ? 16 : 8;
1462  return Align >= Size &&
1463         (Size == 1 || Size == 2 || Size == 4 || Size == 8 || Size == 16) &&
1464         Size <= LargestSize;
1465}
1466
1467void AtomicExpand::expandAtomicLoadToLibcall(LoadInst *I) {
1468  static const RTLIB::Libcall Libcalls[6] = {
1469      RTLIB::ATOMIC_LOAD,   RTLIB::ATOMIC_LOAD_1, RTLIB::ATOMIC_LOAD_2,
1470      RTLIB::ATOMIC_LOAD_4, RTLIB::ATOMIC_LOAD_8, RTLIB::ATOMIC_LOAD_16};
1471  unsigned Size = getAtomicOpSize(I);
1472  unsigned Align = getAtomicOpAlign(I);
1473
1474  bool expanded = expandAtomicOpToLibcall(
1475      I, Size, Align, I->getPointerOperand(), nullptr, nullptr,
1476      I->getOrdering(), AtomicOrdering::NotAtomic, Libcalls);
1477  (void)expanded;
1478  assert(expanded && "expandAtomicOpToLibcall shouldn't fail tor Load");
1479}
1480
1481void AtomicExpand::expandAtomicStoreToLibcall(StoreInst *I) {
1482  static const RTLIB::Libcall Libcalls[6] = {
1483      RTLIB::ATOMIC_STORE,   RTLIB::ATOMIC_STORE_1, RTLIB::ATOMIC_STORE_2,
1484      RTLIB::ATOMIC_STORE_4, RTLIB::ATOMIC_STORE_8, RTLIB::ATOMIC_STORE_16};
1485  unsigned Size = getAtomicOpSize(I);
1486  unsigned Align = getAtomicOpAlign(I);
1487
1488  bool expanded = expandAtomicOpToLibcall(
1489      I, Size, Align, I->getPointerOperand(), I->getValueOperand(), nullptr,
1490      I->getOrdering(), AtomicOrdering::NotAtomic, Libcalls);
1491  (void)expanded;
1492  assert(expanded && "expandAtomicOpToLibcall shouldn't fail tor Store");
1493}
1494
1495void AtomicExpand::expandAtomicCASToLibcall(AtomicCmpXchgInst *I) {
1496  static const RTLIB::Libcall Libcalls[6] = {
1497      RTLIB::ATOMIC_COMPARE_EXCHANGE,   RTLIB::ATOMIC_COMPARE_EXCHANGE_1,
1498      RTLIB::ATOMIC_COMPARE_EXCHANGE_2, RTLIB::ATOMIC_COMPARE_EXCHANGE_4,
1499      RTLIB::ATOMIC_COMPARE_EXCHANGE_8, RTLIB::ATOMIC_COMPARE_EXCHANGE_16};
1500  unsigned Size = getAtomicOpSize(I);
1501  unsigned Align = getAtomicOpAlign(I);
1502
1503  bool expanded = expandAtomicOpToLibcall(
1504      I, Size, Align, I->getPointerOperand(), I->getNewValOperand(),
1505      I->getCompareOperand(), I->getSuccessOrdering(), I->getFailureOrdering(),
1506      Libcalls);
1507  (void)expanded;
1508  assert(expanded && "expandAtomicOpToLibcall shouldn't fail tor CAS");
1509}
1510
1511static ArrayRef<RTLIB::Libcall> GetRMWLibcall(AtomicRMWInst::BinOp Op) {
1512  static const RTLIB::Libcall LibcallsXchg[6] = {
1513      RTLIB::ATOMIC_EXCHANGE,   RTLIB::ATOMIC_EXCHANGE_1,
1514      RTLIB::ATOMIC_EXCHANGE_2, RTLIB::ATOMIC_EXCHANGE_4,
1515      RTLIB::ATOMIC_EXCHANGE_8, RTLIB::ATOMIC_EXCHANGE_16};
1516  static const RTLIB::Libcall LibcallsAdd[6] = {
1517      RTLIB::UNKNOWN_LIBCALL,    RTLIB::ATOMIC_FETCH_ADD_1,
1518      RTLIB::ATOMIC_FETCH_ADD_2, RTLIB::ATOMIC_FETCH_ADD_4,
1519      RTLIB::ATOMIC_FETCH_ADD_8, RTLIB::ATOMIC_FETCH_ADD_16};
1520  static const RTLIB::Libcall LibcallsSub[6] = {
1521      RTLIB::UNKNOWN_LIBCALL,    RTLIB::ATOMIC_FETCH_SUB_1,
1522      RTLIB::ATOMIC_FETCH_SUB_2, RTLIB::ATOMIC_FETCH_SUB_4,
1523      RTLIB::ATOMIC_FETCH_SUB_8, RTLIB::ATOMIC_FETCH_SUB_16};
1524  static const RTLIB::Libcall LibcallsAnd[6] = {
1525      RTLIB::UNKNOWN_LIBCALL,    RTLIB::ATOMIC_FETCH_AND_1,
1526      RTLIB::ATOMIC_FETCH_AND_2, RTLIB::ATOMIC_FETCH_AND_4,
1527      RTLIB::ATOMIC_FETCH_AND_8, RTLIB::ATOMIC_FETCH_AND_16};
1528  static const RTLIB::Libcall LibcallsOr[6] = {
1529      RTLIB::UNKNOWN_LIBCALL,   RTLIB::ATOMIC_FETCH_OR_1,
1530      RTLIB::ATOMIC_FETCH_OR_2, RTLIB::ATOMIC_FETCH_OR_4,
1531      RTLIB::ATOMIC_FETCH_OR_8, RTLIB::ATOMIC_FETCH_OR_16};
1532  static const RTLIB::Libcall LibcallsXor[6] = {
1533      RTLIB::UNKNOWN_LIBCALL,    RTLIB::ATOMIC_FETCH_XOR_1,
1534      RTLIB::ATOMIC_FETCH_XOR_2, RTLIB::ATOMIC_FETCH_XOR_4,
1535      RTLIB::ATOMIC_FETCH_XOR_8, RTLIB::ATOMIC_FETCH_XOR_16};
1536  static const RTLIB::Libcall LibcallsNand[6] = {
1537      RTLIB::UNKNOWN_LIBCALL,     RTLIB::ATOMIC_FETCH_NAND_1,
1538      RTLIB::ATOMIC_FETCH_NAND_2, RTLIB::ATOMIC_FETCH_NAND_4,
1539      RTLIB::ATOMIC_FETCH_NAND_8, RTLIB::ATOMIC_FETCH_NAND_16};
1540
1541  switch (Op) {
1542  case AtomicRMWInst::BAD_BINOP:
1543    llvm_unreachable("Should not have BAD_BINOP.");
1544  case AtomicRMWInst::Xchg:
1545    return makeArrayRef(LibcallsXchg);
1546  case AtomicRMWInst::Add:
1547    return makeArrayRef(LibcallsAdd);
1548  case AtomicRMWInst::Sub:
1549    return makeArrayRef(LibcallsSub);
1550  case AtomicRMWInst::And:
1551    return makeArrayRef(LibcallsAnd);
1552  case AtomicRMWInst::Or:
1553    return makeArrayRef(LibcallsOr);
1554  case AtomicRMWInst::Xor:
1555    return makeArrayRef(LibcallsXor);
1556  case AtomicRMWInst::Nand:
1557    return makeArrayRef(LibcallsNand);
1558  case AtomicRMWInst::Max:
1559  case AtomicRMWInst::Min:
1560  case AtomicRMWInst::UMax:
1561  case AtomicRMWInst::UMin:
1562  case AtomicRMWInst::FAdd:
1563  case AtomicRMWInst::FSub:
1564    // No atomic libcalls are available for max/min/umax/umin.
1565    return {};
1566  }
1567  llvm_unreachable("Unexpected AtomicRMW operation.");
1568}
1569
1570void AtomicExpand::expandAtomicRMWToLibcall(AtomicRMWInst *I) {
1571  ArrayRef<RTLIB::Libcall> Libcalls = GetRMWLibcall(I->getOperation());
1572
1573  unsigned Size = getAtomicOpSize(I);
1574  unsigned Align = getAtomicOpAlign(I);
1575
1576  bool Success = false;
1577  if (!Libcalls.empty())
1578    Success = expandAtomicOpToLibcall(
1579        I, Size, Align, I->getPointerOperand(), I->getValOperand(), nullptr,
1580        I->getOrdering(), AtomicOrdering::NotAtomic, Libcalls);
1581
1582  // The expansion failed: either there were no libcalls at all for
1583  // the operation (min/max), or there were only size-specialized
1584  // libcalls (add/sub/etc) and we needed a generic. So, expand to a
1585  // CAS libcall, via a CAS loop, instead.
1586  if (!Success) {
1587    expandAtomicRMWToCmpXchg(I, [this](IRBuilder<> &Builder, Value *Addr,
1588                                       Value *Loaded, Value *NewVal,
1589                                       AtomicOrdering MemOpOrder,
1590                                       Value *&Success, Value *&NewLoaded) {
1591      // Create the CAS instruction normally...
1592      AtomicCmpXchgInst *Pair = Builder.CreateAtomicCmpXchg(
1593          Addr, Loaded, NewVal, MemOpOrder,
1594          AtomicCmpXchgInst::getStrongestFailureOrdering(MemOpOrder));
1595      Success = Builder.CreateExtractValue(Pair, 1, "success");
1596      NewLoaded = Builder.CreateExtractValue(Pair, 0, "newloaded");
1597
1598      // ...and then expand the CAS into a libcall.
1599      expandAtomicCASToLibcall(Pair);
1600    });
1601  }
1602}
1603
1604// A helper routine for the above expandAtomic*ToLibcall functions.
1605//
1606// 'Libcalls' contains an array of enum values for the particular
1607// ATOMIC libcalls to be emitted. All of the other arguments besides
1608// 'I' are extracted from the Instruction subclass by the
1609// caller. Depending on the particular call, some will be null.
1610bool AtomicExpand::expandAtomicOpToLibcall(
1611    Instruction *I, unsigned Size, unsigned Align, Value *PointerOperand,
1612    Value *ValueOperand, Value *CASExpected, AtomicOrdering Ordering,
1613    AtomicOrdering Ordering2, ArrayRef<RTLIB::Libcall> Libcalls) {
1614  assert(Libcalls.size() == 6);
1615
1616  LLVMContext &Ctx = I->getContext();
1617  Module *M = I->getModule();
1618  const DataLayout &DL = M->getDataLayout();
1619  IRBuilder<> Builder(I);
1620  IRBuilder<> AllocaBuilder(&I->getFunction()->getEntryBlock().front());
1621
1622  bool UseSizedLibcall = canUseSizedAtomicCall(Size, Align, DL);
1623  Type *SizedIntTy = Type::getIntNTy(Ctx, Size * 8);
1624
1625  unsigned AllocaAlignment = DL.getPrefTypeAlignment(SizedIntTy);
1626
1627  // TODO: the "order" argument type is "int", not int32. So
1628  // getInt32Ty may be wrong if the arch uses e.g. 16-bit ints.
1629  ConstantInt *SizeVal64 = ConstantInt::get(Type::getInt64Ty(Ctx), Size);
1630  assert(Ordering != AtomicOrdering::NotAtomic && "expect atomic MO");
1631  Constant *OrderingVal =
1632      ConstantInt::get(Type::getInt32Ty(Ctx), (int)toCABI(Ordering));
1633  Constant *Ordering2Val = nullptr;
1634  if (CASExpected) {
1635    assert(Ordering2 != AtomicOrdering::NotAtomic && "expect atomic MO");
1636    Ordering2Val =
1637        ConstantInt::get(Type::getInt32Ty(Ctx), (int)toCABI(Ordering2));
1638  }
1639  bool HasResult = I->getType() != Type::getVoidTy(Ctx);
1640
1641  RTLIB::Libcall RTLibType;
1642  if (UseSizedLibcall) {
1643    switch (Size) {
1644    case 1: RTLibType = Libcalls[1]; break;
1645    case 2: RTLibType = Libcalls[2]; break;
1646    case 4: RTLibType = Libcalls[3]; break;
1647    case 8: RTLibType = Libcalls[4]; break;
1648    case 16: RTLibType = Libcalls[5]; break;
1649    }
1650  } else if (Libcalls[0] != RTLIB::UNKNOWN_LIBCALL) {
1651    RTLibType = Libcalls[0];
1652  } else {
1653    // Can't use sized function, and there's no generic for this
1654    // operation, so give up.
1655    return false;
1656  }
1657
1658  // Build up the function call. There's two kinds. First, the sized
1659  // variants.  These calls are going to be one of the following (with
1660  // N=1,2,4,8,16):
1661  //  iN    __atomic_load_N(iN *ptr, int ordering)
1662  //  void  __atomic_store_N(iN *ptr, iN val, int ordering)
1663  //  iN    __atomic_{exchange|fetch_*}_N(iN *ptr, iN val, int ordering)
1664  //  bool  __atomic_compare_exchange_N(iN *ptr, iN *expected, iN desired,
1665  //                                    int success_order, int failure_order)
1666  //
1667  // Note that these functions can be used for non-integer atomic
1668  // operations, the values just need to be bitcast to integers on the
1669  // way in and out.
1670  //
1671  // And, then, the generic variants. They look like the following:
1672  //  void  __atomic_load(size_t size, void *ptr, void *ret, int ordering)
1673  //  void  __atomic_store(size_t size, void *ptr, void *val, int ordering)
1674  //  void  __atomic_exchange(size_t size, void *ptr, void *val, void *ret,
1675  //                          int ordering)
1676  //  bool  __atomic_compare_exchange(size_t size, void *ptr, void *expected,
1677  //                                  void *desired, int success_order,
1678  //                                  int failure_order)
1679  //
1680  // The different signatures are built up depending on the
1681  // 'UseSizedLibcall', 'CASExpected', 'ValueOperand', and 'HasResult'
1682  // variables.
1683
1684  AllocaInst *AllocaCASExpected = nullptr;
1685  Value *AllocaCASExpected_i8 = nullptr;
1686  AllocaInst *AllocaValue = nullptr;
1687  Value *AllocaValue_i8 = nullptr;
1688  AllocaInst *AllocaResult = nullptr;
1689  Value *AllocaResult_i8 = nullptr;
1690
1691  Type *ResultTy;
1692  SmallVector<Value *, 6> Args;
1693  AttributeList Attr;
1694
1695  // 'size' argument.
1696  if (!UseSizedLibcall) {
1697    // Note, getIntPtrType is assumed equivalent to size_t.
1698    Args.push_back(ConstantInt::get(DL.getIntPtrType(Ctx), Size));
1699  }
1700
1701  // 'ptr' argument.
1702  // note: This assumes all address spaces share a common libfunc
1703  // implementation and that addresses are convertable.  For systems without
1704  // that property, we'd need to extend this mechanism to support AS-specific
1705  // families of atomic intrinsics.
1706  auto PtrTypeAS = PointerOperand->getType()->getPointerAddressSpace();
1707  Value *PtrVal = Builder.CreateBitCast(PointerOperand,
1708                                        Type::getInt8PtrTy(Ctx, PtrTypeAS));
1709  PtrVal = Builder.CreateAddrSpaceCast(PtrVal, Type::getInt8PtrTy(Ctx));
1710  Args.push_back(PtrVal);
1711
1712  // 'expected' argument, if present.
1713  if (CASExpected) {
1714    AllocaCASExpected = AllocaBuilder.CreateAlloca(CASExpected->getType());
1715    AllocaCASExpected->setAlignment(MaybeAlign(AllocaAlignment));
1716    unsigned AllocaAS =  AllocaCASExpected->getType()->getPointerAddressSpace();
1717
1718    AllocaCASExpected_i8 =
1719      Builder.CreateBitCast(AllocaCASExpected,
1720                            Type::getInt8PtrTy(Ctx, AllocaAS));
1721    Builder.CreateLifetimeStart(AllocaCASExpected_i8, SizeVal64);
1722    Builder.CreateAlignedStore(CASExpected, AllocaCASExpected, AllocaAlignment);
1723    Args.push_back(AllocaCASExpected_i8);
1724  }
1725
1726  // 'val' argument ('desired' for cas), if present.
1727  if (ValueOperand) {
1728    if (UseSizedLibcall) {
1729      Value *IntValue =
1730          Builder.CreateBitOrPointerCast(ValueOperand, SizedIntTy);
1731      Args.push_back(IntValue);
1732    } else {
1733      AllocaValue = AllocaBuilder.CreateAlloca(ValueOperand->getType());
1734      AllocaValue->setAlignment(MaybeAlign(AllocaAlignment));
1735      AllocaValue_i8 =
1736          Builder.CreateBitCast(AllocaValue, Type::getInt8PtrTy(Ctx));
1737      Builder.CreateLifetimeStart(AllocaValue_i8, SizeVal64);
1738      Builder.CreateAlignedStore(ValueOperand, AllocaValue, AllocaAlignment);
1739      Args.push_back(AllocaValue_i8);
1740    }
1741  }
1742
1743  // 'ret' argument.
1744  if (!CASExpected && HasResult && !UseSizedLibcall) {
1745    AllocaResult = AllocaBuilder.CreateAlloca(I->getType());
1746    AllocaResult->setAlignment(MaybeAlign(AllocaAlignment));
1747    unsigned AllocaAS =  AllocaResult->getType()->getPointerAddressSpace();
1748    AllocaResult_i8 =
1749      Builder.CreateBitCast(AllocaResult, Type::getInt8PtrTy(Ctx, AllocaAS));
1750    Builder.CreateLifetimeStart(AllocaResult_i8, SizeVal64);
1751    Args.push_back(AllocaResult_i8);
1752  }
1753
1754  // 'ordering' ('success_order' for cas) argument.
1755  Args.push_back(OrderingVal);
1756
1757  // 'failure_order' argument, if present.
1758  if (Ordering2Val)
1759    Args.push_back(Ordering2Val);
1760
1761  // Now, the return type.
1762  if (CASExpected) {
1763    ResultTy = Type::getInt1Ty(Ctx);
1764    Attr = Attr.addAttribute(Ctx, AttributeList::ReturnIndex, Attribute::ZExt);
1765  } else if (HasResult && UseSizedLibcall)
1766    ResultTy = SizedIntTy;
1767  else
1768    ResultTy = Type::getVoidTy(Ctx);
1769
1770  // Done with setting up arguments and return types, create the call:
1771  SmallVector<Type *, 6> ArgTys;
1772  for (Value *Arg : Args)
1773    ArgTys.push_back(Arg->getType());
1774  FunctionType *FnType = FunctionType::get(ResultTy, ArgTys, false);
1775  FunctionCallee LibcallFn =
1776      M->getOrInsertFunction(TLI->getLibcallName(RTLibType), FnType, Attr);
1777  CallInst *Call = Builder.CreateCall(LibcallFn, Args);
1778  Call->setAttributes(Attr);
1779  Value *Result = Call;
1780
1781  // And then, extract the results...
1782  if (ValueOperand && !UseSizedLibcall)
1783    Builder.CreateLifetimeEnd(AllocaValue_i8, SizeVal64);
1784
1785  if (CASExpected) {
1786    // The final result from the CAS is {load of 'expected' alloca, bool result
1787    // from call}
1788    Type *FinalResultTy = I->getType();
1789    Value *V = UndefValue::get(FinalResultTy);
1790    Value *ExpectedOut = Builder.CreateAlignedLoad(
1791        CASExpected->getType(), AllocaCASExpected, AllocaAlignment);
1792    Builder.CreateLifetimeEnd(AllocaCASExpected_i8, SizeVal64);
1793    V = Builder.CreateInsertValue(V, ExpectedOut, 0);
1794    V = Builder.CreateInsertValue(V, Result, 1);
1795    I->replaceAllUsesWith(V);
1796  } else if (HasResult) {
1797    Value *V;
1798    if (UseSizedLibcall)
1799      V = Builder.CreateBitOrPointerCast(Result, I->getType());
1800    else {
1801      V = Builder.CreateAlignedLoad(I->getType(), AllocaResult,
1802                                    AllocaAlignment);
1803      Builder.CreateLifetimeEnd(AllocaResult_i8, SizeVal64);
1804    }
1805    I->replaceAllUsesWith(V);
1806  }
1807  I->eraseFromParent();
1808  return true;
1809}
1810