DependenceGraphBuilder.cpp revision 360784
1//===- DependenceGraphBuilder.cpp ------------------------------------------==//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8// This file implements common steps of the build algorithm for construction
9// of dependence graphs such as DDG and PDG.
10//===----------------------------------------------------------------------===//
11
12#include "llvm/Analysis/DependenceGraphBuilder.h"
13#include "llvm/ADT/EnumeratedArray.h"
14#include "llvm/ADT/SCCIterator.h"
15#include "llvm/ADT/Statistic.h"
16#include "llvm/Analysis/DDG.h"
17
18using namespace llvm;
19
20#define DEBUG_TYPE "dgb"
21
22STATISTIC(TotalGraphs, "Number of dependence graphs created.");
23STATISTIC(TotalDefUseEdges, "Number of def-use edges created.");
24STATISTIC(TotalMemoryEdges, "Number of memory dependence edges created.");
25STATISTIC(TotalFineGrainedNodes, "Number of fine-grained nodes created.");
26STATISTIC(TotalPiBlockNodes, "Number of pi-block nodes created.");
27STATISTIC(TotalConfusedEdges,
28          "Number of confused memory dependencies between two nodes.");
29STATISTIC(TotalEdgeReversals,
30          "Number of times the source and sink of dependence was reversed to "
31          "expose cycles in the graph.");
32
33using InstructionListType = SmallVector<Instruction *, 2>;
34
35//===--------------------------------------------------------------------===//
36// AbstractDependenceGraphBuilder implementation
37//===--------------------------------------------------------------------===//
38
39template <class G>
40void AbstractDependenceGraphBuilder<G>::computeInstructionOrdinals() {
41  // The BBList is expected to be in program order.
42  size_t NextOrdinal = 1;
43  for (auto *BB : BBList)
44    for (auto &I : *BB)
45      InstOrdinalMap.insert(std::make_pair(&I, NextOrdinal++));
46}
47
48template <class G>
49void AbstractDependenceGraphBuilder<G>::createFineGrainedNodes() {
50  ++TotalGraphs;
51  assert(IMap.empty() && "Expected empty instruction map at start");
52  for (BasicBlock *BB : BBList)
53    for (Instruction &I : *BB) {
54      auto &NewNode = createFineGrainedNode(I);
55      IMap.insert(std::make_pair(&I, &NewNode));
56      NodeOrdinalMap.insert(std::make_pair(&NewNode, getOrdinal(I)));
57      ++TotalFineGrainedNodes;
58    }
59}
60
61template <class G>
62void AbstractDependenceGraphBuilder<G>::createAndConnectRootNode() {
63  // Create a root node that connects to every connected component of the graph.
64  // This is done to allow graph iterators to visit all the disjoint components
65  // of the graph, in a single walk.
66  //
67  // This algorithm works by going through each node of the graph and for each
68  // node N, do a DFS starting from N. A rooted edge is established between the
69  // root node and N (if N is not yet visited). All the nodes reachable from N
70  // are marked as visited and are skipped in the DFS of subsequent nodes.
71  //
72  // Note: This algorithm tries to limit the number of edges out of the root
73  // node to some extent, but there may be redundant edges created depending on
74  // the iteration order. For example for a graph {A -> B}, an edge from the
75  // root node is added to both nodes if B is visited before A. While it does
76  // not result in minimal number of edges, this approach saves compile-time
77  // while keeping the number of edges in check.
78  auto &RootNode = createRootNode();
79  df_iterator_default_set<const NodeType *, 4> Visited;
80  for (auto *N : Graph) {
81    if (*N == RootNode)
82      continue;
83    for (auto I : depth_first_ext(N, Visited))
84      if (I == N)
85        createRootedEdge(RootNode, *N);
86  }
87}
88
89template <class G> void AbstractDependenceGraphBuilder<G>::createPiBlocks() {
90  if (!shouldCreatePiBlocks())
91    return;
92
93  LLVM_DEBUG(dbgs() << "==== Start of Creation of Pi-Blocks ===\n");
94
95  // The overall algorithm is as follows:
96  // 1. Identify SCCs and for each SCC create a pi-block node containing all
97  //    the nodes in that SCC.
98  // 2. Identify incoming edges incident to the nodes inside of the SCC and
99  //    reconnect them to the pi-block node.
100  // 3. Identify outgoing edges from the nodes inside of the SCC to nodes
101  //    outside of it and reconnect them so that the edges are coming out of the
102  //    SCC node instead.
103
104  // Adding nodes as we iterate through the SCCs cause the SCC
105  // iterators to get invalidated. To prevent this invalidation, we first
106  // collect a list of nodes that are part of an SCC, and then iterate over
107  // those lists to create the pi-block nodes. Each element of the list is a
108  // list of nodes in an SCC. Note: trivial SCCs containing a single node are
109  // ignored.
110  SmallVector<NodeListType, 4> ListOfSCCs;
111  for (auto &SCC : make_range(scc_begin(&Graph), scc_end(&Graph))) {
112    if (SCC.size() > 1)
113      ListOfSCCs.emplace_back(SCC.begin(), SCC.end());
114  }
115
116  for (NodeListType &NL : ListOfSCCs) {
117    LLVM_DEBUG(dbgs() << "Creating pi-block node with " << NL.size()
118                      << " nodes in it.\n");
119
120    // SCC iterator may put the nodes in an order that's different from the
121    // program order. To preserve original program order, we sort the list of
122    // nodes based on ordinal numbers computed earlier.
123    llvm::sort(NL, [&](NodeType *LHS, NodeType *RHS) {
124      return getOrdinal(*LHS) < getOrdinal(*RHS);
125    });
126
127    NodeType &PiNode = createPiBlock(NL);
128    ++TotalPiBlockNodes;
129
130    // Build a set to speed up the lookup for edges whose targets
131    // are inside the SCC.
132    SmallPtrSet<NodeType *, 4> NodesInSCC(NL.begin(), NL.end());
133
134    // We have the set of nodes in the SCC. We go through the set of nodes
135    // that are outside of the SCC and look for edges that cross the two sets.
136    for (NodeType *N : Graph) {
137
138      // Skip the SCC node and all the nodes inside of it.
139      if (*N == PiNode || NodesInSCC.count(N))
140        continue;
141
142      for (NodeType *SCCNode : NL) {
143
144        enum Direction {
145          Incoming,      // Incoming edges to the SCC
146          Outgoing,      // Edges going ot of the SCC
147          DirectionCount // To make the enum usable as an array index.
148        };
149
150        // Use these flags to help us avoid creating redundant edges. If there
151        // are more than one edges from an outside node to inside nodes, we only
152        // keep one edge from that node to the pi-block node. Similarly, if
153        // there are more than one edges from inside nodes to an outside node,
154        // we only keep one edge from the pi-block node to the outside node.
155        // There is a flag defined for each direction (incoming vs outgoing) and
156        // for each type of edge supported, using a two-dimensional boolean
157        // array.
158        using EdgeKind = typename EdgeType::EdgeKind;
159        EnumeratedArray<bool, EdgeKind> EdgeAlreadyCreated[DirectionCount]{
160            false, false};
161
162        auto createEdgeOfKind = [this](NodeType &Src, NodeType &Dst,
163                                       const EdgeKind K) {
164          switch (K) {
165          case EdgeKind::RegisterDefUse:
166            createDefUseEdge(Src, Dst);
167            break;
168          case EdgeKind::MemoryDependence:
169            createMemoryEdge(Src, Dst);
170            break;
171          case EdgeKind::Rooted:
172            createRootedEdge(Src, Dst);
173            break;
174          default:
175            llvm_unreachable("Unsupported type of edge.");
176          }
177        };
178
179        auto reconnectEdges = [&](NodeType *Src, NodeType *Dst, NodeType *New,
180                                  const Direction Dir) {
181          if (!Src->hasEdgeTo(*Dst))
182            return;
183          LLVM_DEBUG(dbgs()
184                     << "reconnecting("
185                     << (Dir == Direction::Incoming ? "incoming)" : "outgoing)")
186                     << ":\nSrc:" << *Src << "\nDst:" << *Dst
187                     << "\nNew:" << *New << "\n");
188          assert((Dir == Direction::Incoming || Dir == Direction::Outgoing) &&
189                 "Invalid direction.");
190
191          SmallVector<EdgeType *, 10> EL;
192          Src->findEdgesTo(*Dst, EL);
193          for (EdgeType *OldEdge : EL) {
194            EdgeKind Kind = OldEdge->getKind();
195            if (!EdgeAlreadyCreated[Dir][Kind]) {
196              if (Dir == Direction::Incoming) {
197                createEdgeOfKind(*Src, *New, Kind);
198                LLVM_DEBUG(dbgs() << "created edge from Src to New.\n");
199              } else if (Dir == Direction::Outgoing) {
200                createEdgeOfKind(*New, *Dst, Kind);
201                LLVM_DEBUG(dbgs() << "created edge from New to Dst.\n");
202              }
203              EdgeAlreadyCreated[Dir][Kind] = true;
204            }
205            Src->removeEdge(*OldEdge);
206            destroyEdge(*OldEdge);
207            LLVM_DEBUG(dbgs() << "removed old edge between Src and Dst.\n\n");
208          }
209        };
210
211        // Process incoming edges incident to the pi-block node.
212        reconnectEdges(N, SCCNode, &PiNode, Direction::Incoming);
213
214        // Process edges that are coming out of the pi-block node.
215        reconnectEdges(SCCNode, N, &PiNode, Direction::Outgoing);
216      }
217    }
218  }
219
220  // Ordinal maps are no longer needed.
221  InstOrdinalMap.clear();
222  NodeOrdinalMap.clear();
223
224  LLVM_DEBUG(dbgs() << "==== End of Creation of Pi-Blocks ===\n");
225}
226
227template <class G> void AbstractDependenceGraphBuilder<G>::createDefUseEdges() {
228  for (NodeType *N : Graph) {
229    InstructionListType SrcIList;
230    N->collectInstructions([](const Instruction *I) { return true; }, SrcIList);
231
232    // Use a set to mark the targets that we link to N, so we don't add
233    // duplicate def-use edges when more than one instruction in a target node
234    // use results of instructions that are contained in N.
235    SmallPtrSet<NodeType *, 4> VisitedTargets;
236
237    for (Instruction *II : SrcIList) {
238      for (User *U : II->users()) {
239        Instruction *UI = dyn_cast<Instruction>(U);
240        if (!UI)
241          continue;
242        NodeType *DstNode = nullptr;
243        if (IMap.find(UI) != IMap.end())
244          DstNode = IMap.find(UI)->second;
245
246        // In the case of loops, the scope of the subgraph is all the
247        // basic blocks (and instructions within them) belonging to the loop. We
248        // simply ignore all the edges coming from (or going into) instructions
249        // or basic blocks outside of this range.
250        if (!DstNode) {
251          LLVM_DEBUG(
252              dbgs()
253              << "skipped def-use edge since the sink" << *UI
254              << " is outside the range of instructions being considered.\n");
255          continue;
256        }
257
258        // Self dependencies are ignored because they are redundant and
259        // uninteresting.
260        if (DstNode == N) {
261          LLVM_DEBUG(dbgs()
262                     << "skipped def-use edge since the sink and the source ("
263                     << N << ") are the same.\n");
264          continue;
265        }
266
267        if (VisitedTargets.insert(DstNode).second) {
268          createDefUseEdge(*N, *DstNode);
269          ++TotalDefUseEdges;
270        }
271      }
272    }
273  }
274}
275
276template <class G>
277void AbstractDependenceGraphBuilder<G>::createMemoryDependencyEdges() {
278  using DGIterator = typename G::iterator;
279  auto isMemoryAccess = [](const Instruction *I) {
280    return I->mayReadOrWriteMemory();
281  };
282  for (DGIterator SrcIt = Graph.begin(), E = Graph.end(); SrcIt != E; ++SrcIt) {
283    InstructionListType SrcIList;
284    (*SrcIt)->collectInstructions(isMemoryAccess, SrcIList);
285    if (SrcIList.empty())
286      continue;
287
288    for (DGIterator DstIt = SrcIt; DstIt != E; ++DstIt) {
289      if (**SrcIt == **DstIt)
290        continue;
291      InstructionListType DstIList;
292      (*DstIt)->collectInstructions(isMemoryAccess, DstIList);
293      if (DstIList.empty())
294        continue;
295      bool ForwardEdgeCreated = false;
296      bool BackwardEdgeCreated = false;
297      for (Instruction *ISrc : SrcIList) {
298        for (Instruction *IDst : DstIList) {
299          auto D = DI.depends(ISrc, IDst, true);
300          if (!D)
301            continue;
302
303          // If we have a dependence with its left-most non-'=' direction
304          // being '>' we need to reverse the direction of the edge, because
305          // the source of the dependence cannot occur after the sink. For
306          // confused dependencies, we will create edges in both directions to
307          // represent the possibility of a cycle.
308
309          auto createConfusedEdges = [&](NodeType &Src, NodeType &Dst) {
310            if (!ForwardEdgeCreated) {
311              createMemoryEdge(Src, Dst);
312              ++TotalMemoryEdges;
313            }
314            if (!BackwardEdgeCreated) {
315              createMemoryEdge(Dst, Src);
316              ++TotalMemoryEdges;
317            }
318            ForwardEdgeCreated = BackwardEdgeCreated = true;
319            ++TotalConfusedEdges;
320          };
321
322          auto createForwardEdge = [&](NodeType &Src, NodeType &Dst) {
323            if (!ForwardEdgeCreated) {
324              createMemoryEdge(Src, Dst);
325              ++TotalMemoryEdges;
326            }
327            ForwardEdgeCreated = true;
328          };
329
330          auto createBackwardEdge = [&](NodeType &Src, NodeType &Dst) {
331            if (!BackwardEdgeCreated) {
332              createMemoryEdge(Dst, Src);
333              ++TotalMemoryEdges;
334            }
335            BackwardEdgeCreated = true;
336          };
337
338          if (D->isConfused())
339            createConfusedEdges(**SrcIt, **DstIt);
340          else if (D->isOrdered() && !D->isLoopIndependent()) {
341            bool ReversedEdge = false;
342            for (unsigned Level = 1; Level <= D->getLevels(); ++Level) {
343              if (D->getDirection(Level) == Dependence::DVEntry::EQ)
344                continue;
345              else if (D->getDirection(Level) == Dependence::DVEntry::GT) {
346                createBackwardEdge(**SrcIt, **DstIt);
347                ReversedEdge = true;
348                ++TotalEdgeReversals;
349                break;
350              } else if (D->getDirection(Level) == Dependence::DVEntry::LT)
351                break;
352              else {
353                createConfusedEdges(**SrcIt, **DstIt);
354                break;
355              }
356            }
357            if (!ReversedEdge)
358              createForwardEdge(**SrcIt, **DstIt);
359          } else
360            createForwardEdge(**SrcIt, **DstIt);
361
362          // Avoid creating duplicate edges.
363          if (ForwardEdgeCreated && BackwardEdgeCreated)
364            break;
365        }
366
367        // If we've created edges in both directions, there is no more
368        // unique edge that we can create between these two nodes, so we
369        // can exit early.
370        if (ForwardEdgeCreated && BackwardEdgeCreated)
371          break;
372      }
373    }
374  }
375}
376
377template <class G>
378void AbstractDependenceGraphBuilder<G>::sortNodesTopologically() {
379
380  // If we don't create pi-blocks, then we may not have a DAG.
381  if (!shouldCreatePiBlocks())
382    return;
383
384  SmallVector<NodeType *, 64> NodesInPO;
385  using NodeKind = typename NodeType::NodeKind;
386  for (NodeType *N : post_order(&Graph)) {
387    if (N->getKind() == NodeKind::PiBlock) {
388      // Put members of the pi-block right after the pi-block itself, for
389      // convenience.
390      const NodeListType &PiBlockMembers = getNodesInPiBlock(*N);
391      NodesInPO.insert(NodesInPO.end(), PiBlockMembers.begin(),
392                       PiBlockMembers.end());
393    }
394    NodesInPO.push_back(N);
395  }
396
397  size_t OldSize = Graph.Nodes.size();
398  Graph.Nodes.clear();
399  for (NodeType *N : reverse(NodesInPO))
400    Graph.Nodes.push_back(N);
401  if (Graph.Nodes.size() != OldSize)
402    assert(false &&
403           "Expected the number of nodes to stay the same after the sort");
404}
405
406template class llvm::AbstractDependenceGraphBuilder<DataDependenceGraph>;
407template class llvm::DependenceGraphInfo<DDGNode>;
408