JSON.h revision 360784
1//===--- JSON.h - JSON values, parsing and serialization -------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===---------------------------------------------------------------------===//
8///
9/// \file
10/// This file supports working with JSON data.
11///
12/// It comprises:
13///
14/// - classes which hold dynamically-typed parsed JSON structures
15///   These are value types that can be composed, inspected, and modified.
16///   See json::Value, and the related types json::Object and json::Array.
17///
18/// - functions to parse JSON text into Values, and to serialize Values to text.
19///   See parse(), operator<<, and format_provider.
20///
21/// - a convention and helpers for mapping between json::Value and user-defined
22///   types. See fromJSON(), ObjectMapper, and the class comment on Value.
23///
24/// - an output API json::OStream which can emit JSON without materializing
25///   all structures as json::Value.
26///
27/// Typically, JSON data would be read from an external source, parsed into
28/// a Value, and then converted into some native data structure before doing
29/// real work on it. (And vice versa when writing).
30///
31/// Other serialization mechanisms you may consider:
32///
33/// - YAML is also text-based, and more human-readable than JSON. It's a more
34///   complex format and data model, and YAML parsers aren't ubiquitous.
35///   YAMLParser.h is a streaming parser suitable for parsing large documents
36///   (including JSON, as YAML is a superset). It can be awkward to use
37///   directly. YAML I/O (YAMLTraits.h) provides data mapping that is more
38///   declarative than the toJSON/fromJSON conventions here.
39///
40/// - LLVM bitstream is a space- and CPU- efficient binary format. Typically it
41///   encodes LLVM IR ("bitcode"), but it can be a container for other data.
42///   Low-level reader/writer libraries are in Bitstream/Bitstream*.h
43///
44//===---------------------------------------------------------------------===//
45
46#ifndef LLVM_SUPPORT_JSON_H
47#define LLVM_SUPPORT_JSON_H
48
49#include "llvm/ADT/DenseMap.h"
50#include "llvm/ADT/SmallVector.h"
51#include "llvm/ADT/StringRef.h"
52#include "llvm/Support/Error.h"
53#include "llvm/Support/FormatVariadic.h"
54#include "llvm/Support/raw_ostream.h"
55#include <map>
56
57namespace llvm {
58namespace json {
59
60// === String encodings ===
61//
62// JSON strings are character sequences (not byte sequences like std::string).
63// We need to know the encoding, and for simplicity only support UTF-8.
64//
65//   - When parsing, invalid UTF-8 is a syntax error like any other
66//
67//   - When creating Values from strings, callers must ensure they are UTF-8.
68//        with asserts on, invalid UTF-8 will crash the program
69//        with asserts off, we'll substitute the replacement character (U+FFFD)
70//     Callers can use json::isUTF8() and json::fixUTF8() for validation.
71//
72//   - When retrieving strings from Values (e.g. asString()), the result will
73//     always be valid UTF-8.
74
75/// Returns true if \p S is valid UTF-8, which is required for use as JSON.
76/// If it returns false, \p Offset is set to a byte offset near the first error.
77bool isUTF8(llvm::StringRef S, size_t *ErrOffset = nullptr);
78/// Replaces invalid UTF-8 sequences in \p S with the replacement character
79/// (U+FFFD). The returned string is valid UTF-8.
80/// This is much slower than isUTF8, so test that first.
81std::string fixUTF8(llvm::StringRef S);
82
83class Array;
84class ObjectKey;
85class Value;
86template <typename T> Value toJSON(const llvm::Optional<T> &Opt);
87
88/// An Object is a JSON object, which maps strings to heterogenous JSON values.
89/// It simulates DenseMap<ObjectKey, Value>. ObjectKey is a maybe-owned string.
90class Object {
91  using Storage = DenseMap<ObjectKey, Value, llvm::DenseMapInfo<StringRef>>;
92  Storage M;
93
94public:
95  using key_type = ObjectKey;
96  using mapped_type = Value;
97  using value_type = Storage::value_type;
98  using iterator = Storage::iterator;
99  using const_iterator = Storage::const_iterator;
100
101  Object() = default;
102  // KV is a trivial key-value struct for list-initialization.
103  // (using std::pair forces extra copies).
104  struct KV;
105  explicit Object(std::initializer_list<KV> Properties);
106
107  iterator begin() { return M.begin(); }
108  const_iterator begin() const { return M.begin(); }
109  iterator end() { return M.end(); }
110  const_iterator end() const { return M.end(); }
111
112  bool empty() const { return M.empty(); }
113  size_t size() const { return M.size(); }
114
115  void clear() { M.clear(); }
116  std::pair<iterator, bool> insert(KV E);
117  template <typename... Ts>
118  std::pair<iterator, bool> try_emplace(const ObjectKey &K, Ts &&... Args) {
119    return M.try_emplace(K, std::forward<Ts>(Args)...);
120  }
121  template <typename... Ts>
122  std::pair<iterator, bool> try_emplace(ObjectKey &&K, Ts &&... Args) {
123    return M.try_emplace(std::move(K), std::forward<Ts>(Args)...);
124  }
125  bool erase(StringRef K);
126  void erase(iterator I) { M.erase(I); }
127
128  iterator find(StringRef K) { return M.find_as(K); }
129  const_iterator find(StringRef K) const { return M.find_as(K); }
130  // operator[] acts as if Value was default-constructible as null.
131  Value &operator[](const ObjectKey &K);
132  Value &operator[](ObjectKey &&K);
133  // Look up a property, returning nullptr if it doesn't exist.
134  Value *get(StringRef K);
135  const Value *get(StringRef K) const;
136  // Typed accessors return None/nullptr if
137  //   - the property doesn't exist
138  //   - or it has the wrong type
139  llvm::Optional<std::nullptr_t> getNull(StringRef K) const;
140  llvm::Optional<bool> getBoolean(StringRef K) const;
141  llvm::Optional<double> getNumber(StringRef K) const;
142  llvm::Optional<int64_t> getInteger(StringRef K) const;
143  llvm::Optional<llvm::StringRef> getString(StringRef K) const;
144  const json::Object *getObject(StringRef K) const;
145  json::Object *getObject(StringRef K);
146  const json::Array *getArray(StringRef K) const;
147  json::Array *getArray(StringRef K);
148};
149bool operator==(const Object &LHS, const Object &RHS);
150inline bool operator!=(const Object &LHS, const Object &RHS) {
151  return !(LHS == RHS);
152}
153
154/// An Array is a JSON array, which contains heterogeneous JSON values.
155/// It simulates std::vector<Value>.
156class Array {
157  std::vector<Value> V;
158
159public:
160  using value_type = Value;
161  using iterator = std::vector<Value>::iterator;
162  using const_iterator = std::vector<Value>::const_iterator;
163
164  Array() = default;
165  explicit Array(std::initializer_list<Value> Elements);
166  template <typename Collection> explicit Array(const Collection &C) {
167    for (const auto &V : C)
168      emplace_back(V);
169  }
170
171  Value &operator[](size_t I) { return V[I]; }
172  const Value &operator[](size_t I) const { return V[I]; }
173  Value &front() { return V.front(); }
174  const Value &front() const { return V.front(); }
175  Value &back() { return V.back(); }
176  const Value &back() const { return V.back(); }
177  Value *data() { return V.data(); }
178  const Value *data() const { return V.data(); }
179
180  iterator begin() { return V.begin(); }
181  const_iterator begin() const { return V.begin(); }
182  iterator end() { return V.end(); }
183  const_iterator end() const { return V.end(); }
184
185  bool empty() const { return V.empty(); }
186  size_t size() const { return V.size(); }
187  void reserve(size_t S) { V.reserve(S); }
188
189  void clear() { V.clear(); }
190  void push_back(const Value &E) { V.push_back(E); }
191  void push_back(Value &&E) { V.push_back(std::move(E)); }
192  template <typename... Args> void emplace_back(Args &&... A) {
193    V.emplace_back(std::forward<Args>(A)...);
194  }
195  void pop_back() { V.pop_back(); }
196  // FIXME: insert() takes const_iterator since C++11, old libstdc++ disagrees.
197  iterator insert(iterator P, const Value &E) { return V.insert(P, E); }
198  iterator insert(iterator P, Value &&E) {
199    return V.insert(P, std::move(E));
200  }
201  template <typename It> iterator insert(iterator P, It A, It Z) {
202    return V.insert(P, A, Z);
203  }
204  template <typename... Args> iterator emplace(const_iterator P, Args &&... A) {
205    return V.emplace(P, std::forward<Args>(A)...);
206  }
207
208  friend bool operator==(const Array &L, const Array &R) { return L.V == R.V; }
209};
210inline bool operator!=(const Array &L, const Array &R) { return !(L == R); }
211
212/// A Value is an JSON value of unknown type.
213/// They can be copied, but should generally be moved.
214///
215/// === Composing values ===
216///
217/// You can implicitly construct Values from:
218///   - strings: std::string, SmallString, formatv, StringRef, char*
219///              (char*, and StringRef are references, not copies!)
220///   - numbers
221///   - booleans
222///   - null: nullptr
223///   - arrays: {"foo", 42.0, false}
224///   - serializable things: types with toJSON(const T&)->Value, found by ADL
225///
226/// They can also be constructed from object/array helpers:
227///   - json::Object is a type like map<ObjectKey, Value>
228///   - json::Array is a type like vector<Value>
229/// These can be list-initialized, or used to build up collections in a loop.
230/// json::ary(Collection) converts all items in a collection to Values.
231///
232/// === Inspecting values ===
233///
234/// Each Value is one of the JSON kinds:
235///   null    (nullptr_t)
236///   boolean (bool)
237///   number  (double or int64)
238///   string  (StringRef)
239///   array   (json::Array)
240///   object  (json::Object)
241///
242/// The kind can be queried directly, or implicitly via the typed accessors:
243///   if (Optional<StringRef> S = E.getAsString()
244///     assert(E.kind() == Value::String);
245///
246/// Array and Object also have typed indexing accessors for easy traversal:
247///   Expected<Value> E = parse(R"( {"options": {"font": "sans-serif"}} )");
248///   if (Object* O = E->getAsObject())
249///     if (Object* Opts = O->getObject("options"))
250///       if (Optional<StringRef> Font = Opts->getString("font"))
251///         assert(Opts->at("font").kind() == Value::String);
252///
253/// === Converting JSON values to C++ types ===
254///
255/// The convention is to have a deserializer function findable via ADL:
256///     fromJSON(const json::Value&, T&)->bool
257/// Deserializers are provided for:
258///   - bool
259///   - int and int64_t
260///   - double
261///   - std::string
262///   - vector<T>, where T is deserializable
263///   - map<string, T>, where T is deserializable
264///   - Optional<T>, where T is deserializable
265/// ObjectMapper can help writing fromJSON() functions for object types.
266///
267/// For conversion in the other direction, the serializer function is:
268///    toJSON(const T&) -> json::Value
269/// If this exists, then it also allows constructing Value from T, and can
270/// be used to serialize vector<T>, map<string, T>, and Optional<T>.
271///
272/// === Serialization ===
273///
274/// Values can be serialized to JSON:
275///   1) raw_ostream << Value                    // Basic formatting.
276///   2) raw_ostream << formatv("{0}", Value)    // Basic formatting.
277///   3) raw_ostream << formatv("{0:2}", Value)  // Pretty-print with indent 2.
278///
279/// And parsed:
280///   Expected<Value> E = json::parse("[1, 2, null]");
281///   assert(E && E->kind() == Value::Array);
282class Value {
283public:
284  enum Kind {
285    Null,
286    Boolean,
287    /// Number values can store both int64s and doubles at full precision,
288    /// depending on what they were constructed/parsed from.
289    Number,
290    String,
291    Array,
292    Object,
293  };
294
295  // It would be nice to have Value() be null. But that would make {} null too.
296  Value(const Value &M) { copyFrom(M); }
297  Value(Value &&M) { moveFrom(std::move(M)); }
298  Value(std::initializer_list<Value> Elements);
299  Value(json::Array &&Elements) : Type(T_Array) {
300    create<json::Array>(std::move(Elements));
301  }
302  template <typename Elt>
303  Value(const std::vector<Elt> &C) : Value(json::Array(C)) {}
304  Value(json::Object &&Properties) : Type(T_Object) {
305    create<json::Object>(std::move(Properties));
306  }
307  template <typename Elt>
308  Value(const std::map<std::string, Elt> &C) : Value(json::Object(C)) {}
309  // Strings: types with value semantics. Must be valid UTF-8.
310  Value(std::string V) : Type(T_String) {
311    if (LLVM_UNLIKELY(!isUTF8(V))) {
312      assert(false && "Invalid UTF-8 in value used as JSON");
313      V = fixUTF8(std::move(V));
314    }
315    create<std::string>(std::move(V));
316  }
317  Value(const llvm::SmallVectorImpl<char> &V)
318      : Value(std::string(V.begin(), V.end())) {}
319  Value(const llvm::formatv_object_base &V) : Value(V.str()) {}
320  // Strings: types with reference semantics. Must be valid UTF-8.
321  Value(StringRef V) : Type(T_StringRef) {
322    create<llvm::StringRef>(V);
323    if (LLVM_UNLIKELY(!isUTF8(V))) {
324      assert(false && "Invalid UTF-8 in value used as JSON");
325      *this = Value(fixUTF8(V));
326    }
327  }
328  Value(const char *V) : Value(StringRef(V)) {}
329  Value(std::nullptr_t) : Type(T_Null) {}
330  // Boolean (disallow implicit conversions).
331  // (The last template parameter is a dummy to keep templates distinct.)
332  template <
333      typename T,
334      typename = typename std::enable_if<std::is_same<T, bool>::value>::type,
335      bool = false>
336  Value(T B) : Type(T_Boolean) {
337    create<bool>(B);
338  }
339  // Integers (except boolean). Must be non-narrowing convertible to int64_t.
340  template <
341      typename T,
342      typename = typename std::enable_if<std::is_integral<T>::value>::type,
343      typename = typename std::enable_if<!std::is_same<T, bool>::value>::type>
344  Value(T I) : Type(T_Integer) {
345    create<int64_t>(int64_t{I});
346  }
347  // Floating point. Must be non-narrowing convertible to double.
348  template <typename T,
349            typename =
350                typename std::enable_if<std::is_floating_point<T>::value>::type,
351            double * = nullptr>
352  Value(T D) : Type(T_Double) {
353    create<double>(double{D});
354  }
355  // Serializable types: with a toJSON(const T&)->Value function, found by ADL.
356  template <typename T,
357            typename = typename std::enable_if<std::is_same<
358                Value, decltype(toJSON(*(const T *)nullptr))>::value>,
359            Value * = nullptr>
360  Value(const T &V) : Value(toJSON(V)) {}
361
362  Value &operator=(const Value &M) {
363    destroy();
364    copyFrom(M);
365    return *this;
366  }
367  Value &operator=(Value &&M) {
368    destroy();
369    moveFrom(std::move(M));
370    return *this;
371  }
372  ~Value() { destroy(); }
373
374  Kind kind() const {
375    switch (Type) {
376    case T_Null:
377      return Null;
378    case T_Boolean:
379      return Boolean;
380    case T_Double:
381    case T_Integer:
382      return Number;
383    case T_String:
384    case T_StringRef:
385      return String;
386    case T_Object:
387      return Object;
388    case T_Array:
389      return Array;
390    }
391    llvm_unreachable("Unknown kind");
392  }
393
394  // Typed accessors return None/nullptr if the Value is not of this type.
395  llvm::Optional<std::nullptr_t> getAsNull() const {
396    if (LLVM_LIKELY(Type == T_Null))
397      return nullptr;
398    return llvm::None;
399  }
400  llvm::Optional<bool> getAsBoolean() const {
401    if (LLVM_LIKELY(Type == T_Boolean))
402      return as<bool>();
403    return llvm::None;
404  }
405  llvm::Optional<double> getAsNumber() const {
406    if (LLVM_LIKELY(Type == T_Double))
407      return as<double>();
408    if (LLVM_LIKELY(Type == T_Integer))
409      return as<int64_t>();
410    return llvm::None;
411  }
412  // Succeeds if the Value is a Number, and exactly representable as int64_t.
413  llvm::Optional<int64_t> getAsInteger() const {
414    if (LLVM_LIKELY(Type == T_Integer))
415      return as<int64_t>();
416    if (LLVM_LIKELY(Type == T_Double)) {
417      double D = as<double>();
418      if (LLVM_LIKELY(std::modf(D, &D) == 0.0 &&
419                      D >= double(std::numeric_limits<int64_t>::min()) &&
420                      D <= double(std::numeric_limits<int64_t>::max())))
421        return D;
422    }
423    return llvm::None;
424  }
425  llvm::Optional<llvm::StringRef> getAsString() const {
426    if (Type == T_String)
427      return llvm::StringRef(as<std::string>());
428    if (LLVM_LIKELY(Type == T_StringRef))
429      return as<llvm::StringRef>();
430    return llvm::None;
431  }
432  const json::Object *getAsObject() const {
433    return LLVM_LIKELY(Type == T_Object) ? &as<json::Object>() : nullptr;
434  }
435  json::Object *getAsObject() {
436    return LLVM_LIKELY(Type == T_Object) ? &as<json::Object>() : nullptr;
437  }
438  const json::Array *getAsArray() const {
439    return LLVM_LIKELY(Type == T_Array) ? &as<json::Array>() : nullptr;
440  }
441  json::Array *getAsArray() {
442    return LLVM_LIKELY(Type == T_Array) ? &as<json::Array>() : nullptr;
443  }
444
445private:
446  void destroy();
447  void copyFrom(const Value &M);
448  // We allow moving from *const* Values, by marking all members as mutable!
449  // This hack is needed to support initializer-list syntax efficiently.
450  // (std::initializer_list<T> is a container of const T).
451  void moveFrom(const Value &&M);
452  friend class Array;
453  friend class Object;
454
455  template <typename T, typename... U> void create(U &&... V) {
456    new (reinterpret_cast<T *>(Union.buffer)) T(std::forward<U>(V)...);
457  }
458  template <typename T> T &as() const {
459    // Using this two-step static_cast via void * instead of reinterpret_cast
460    // silences a -Wstrict-aliasing false positive from GCC6 and earlier.
461    void *Storage = static_cast<void *>(Union.buffer);
462    return *static_cast<T *>(Storage);
463  }
464
465  friend class OStream;
466
467  enum ValueType : char {
468    T_Null,
469    T_Boolean,
470    T_Double,
471    T_Integer,
472    T_StringRef,
473    T_String,
474    T_Object,
475    T_Array,
476  };
477  // All members mutable, see moveFrom().
478  mutable ValueType Type;
479  mutable llvm::AlignedCharArrayUnion<bool, double, int64_t, llvm::StringRef,
480                                      std::string, json::Array, json::Object>
481      Union;
482  friend bool operator==(const Value &, const Value &);
483};
484
485bool operator==(const Value &, const Value &);
486inline bool operator!=(const Value &L, const Value &R) { return !(L == R); }
487
488/// ObjectKey is a used to capture keys in Object. Like Value but:
489///   - only strings are allowed
490///   - it's optimized for the string literal case (Owned == nullptr)
491/// Like Value, strings must be UTF-8. See isUTF8 documentation for details.
492class ObjectKey {
493public:
494  ObjectKey(const char *S) : ObjectKey(StringRef(S)) {}
495  ObjectKey(std::string S) : Owned(new std::string(std::move(S))) {
496    if (LLVM_UNLIKELY(!isUTF8(*Owned))) {
497      assert(false && "Invalid UTF-8 in value used as JSON");
498      *Owned = fixUTF8(std::move(*Owned));
499    }
500    Data = *Owned;
501  }
502  ObjectKey(llvm::StringRef S) : Data(S) {
503    if (LLVM_UNLIKELY(!isUTF8(Data))) {
504      assert(false && "Invalid UTF-8 in value used as JSON");
505      *this = ObjectKey(fixUTF8(S));
506    }
507  }
508  ObjectKey(const llvm::SmallVectorImpl<char> &V)
509      : ObjectKey(std::string(V.begin(), V.end())) {}
510  ObjectKey(const llvm::formatv_object_base &V) : ObjectKey(V.str()) {}
511
512  ObjectKey(const ObjectKey &C) { *this = C; }
513  ObjectKey(ObjectKey &&C) : ObjectKey(static_cast<const ObjectKey &&>(C)) {}
514  ObjectKey &operator=(const ObjectKey &C) {
515    if (C.Owned) {
516      Owned.reset(new std::string(*C.Owned));
517      Data = *Owned;
518    } else {
519      Data = C.Data;
520    }
521    return *this;
522  }
523  ObjectKey &operator=(ObjectKey &&) = default;
524
525  operator llvm::StringRef() const { return Data; }
526  std::string str() const { return Data.str(); }
527
528private:
529  // FIXME: this is unneccesarily large (3 pointers). Pointer + length + owned
530  // could be 2 pointers at most.
531  std::unique_ptr<std::string> Owned;
532  llvm::StringRef Data;
533};
534
535inline bool operator==(const ObjectKey &L, const ObjectKey &R) {
536  return llvm::StringRef(L) == llvm::StringRef(R);
537}
538inline bool operator!=(const ObjectKey &L, const ObjectKey &R) {
539  return !(L == R);
540}
541inline bool operator<(const ObjectKey &L, const ObjectKey &R) {
542  return StringRef(L) < StringRef(R);
543}
544
545struct Object::KV {
546  ObjectKey K;
547  Value V;
548};
549
550inline Object::Object(std::initializer_list<KV> Properties) {
551  for (const auto &P : Properties) {
552    auto R = try_emplace(P.K, nullptr);
553    if (R.second)
554      R.first->getSecond().moveFrom(std::move(P.V));
555  }
556}
557inline std::pair<Object::iterator, bool> Object::insert(KV E) {
558  return try_emplace(std::move(E.K), std::move(E.V));
559}
560inline bool Object::erase(StringRef K) {
561  return M.erase(ObjectKey(K));
562}
563
564// Standard deserializers are provided for primitive types.
565// See comments on Value.
566inline bool fromJSON(const Value &E, std::string &Out) {
567  if (auto S = E.getAsString()) {
568    Out = *S;
569    return true;
570  }
571  return false;
572}
573inline bool fromJSON(const Value &E, int &Out) {
574  if (auto S = E.getAsInteger()) {
575    Out = *S;
576    return true;
577  }
578  return false;
579}
580inline bool fromJSON(const Value &E, int64_t &Out) {
581  if (auto S = E.getAsInteger()) {
582    Out = *S;
583    return true;
584  }
585  return false;
586}
587inline bool fromJSON(const Value &E, double &Out) {
588  if (auto S = E.getAsNumber()) {
589    Out = *S;
590    return true;
591  }
592  return false;
593}
594inline bool fromJSON(const Value &E, bool &Out) {
595  if (auto S = E.getAsBoolean()) {
596    Out = *S;
597    return true;
598  }
599  return false;
600}
601template <typename T> bool fromJSON(const Value &E, llvm::Optional<T> &Out) {
602  if (E.getAsNull()) {
603    Out = llvm::None;
604    return true;
605  }
606  T Result;
607  if (!fromJSON(E, Result))
608    return false;
609  Out = std::move(Result);
610  return true;
611}
612template <typename T> bool fromJSON(const Value &E, std::vector<T> &Out) {
613  if (auto *A = E.getAsArray()) {
614    Out.clear();
615    Out.resize(A->size());
616    for (size_t I = 0; I < A->size(); ++I)
617      if (!fromJSON((*A)[I], Out[I]))
618        return false;
619    return true;
620  }
621  return false;
622}
623template <typename T>
624bool fromJSON(const Value &E, std::map<std::string, T> &Out) {
625  if (auto *O = E.getAsObject()) {
626    Out.clear();
627    for (const auto &KV : *O)
628      if (!fromJSON(KV.second, Out[llvm::StringRef(KV.first)]))
629        return false;
630    return true;
631  }
632  return false;
633}
634
635// Allow serialization of Optional<T> for supported T.
636template <typename T> Value toJSON(const llvm::Optional<T> &Opt) {
637  return Opt ? Value(*Opt) : Value(nullptr);
638}
639
640/// Helper for mapping JSON objects onto protocol structs.
641///
642/// Example:
643/// \code
644///   bool fromJSON(const Value &E, MyStruct &R) {
645///     ObjectMapper O(E);
646///     if (!O || !O.map("mandatory_field", R.MandatoryField))
647///       return false;
648///     O.map("optional_field", R.OptionalField);
649///     return true;
650///   }
651/// \endcode
652class ObjectMapper {
653public:
654  ObjectMapper(const Value &E) : O(E.getAsObject()) {}
655
656  /// True if the expression is an object.
657  /// Must be checked before calling map().
658  operator bool() { return O; }
659
660  /// Maps a property to a field, if it exists.
661  template <typename T> bool map(StringRef Prop, T &Out) {
662    assert(*this && "Must check this is an object before calling map()");
663    if (const Value *E = O->get(Prop))
664      return fromJSON(*E, Out);
665    return false;
666  }
667
668  /// Maps a property to a field, if it exists.
669  /// (Optional requires special handling, because missing keys are OK).
670  template <typename T> bool map(StringRef Prop, llvm::Optional<T> &Out) {
671    assert(*this && "Must check this is an object before calling map()");
672    if (const Value *E = O->get(Prop))
673      return fromJSON(*E, Out);
674    Out = llvm::None;
675    return true;
676  }
677
678private:
679  const Object *O;
680};
681
682/// Parses the provided JSON source, or returns a ParseError.
683/// The returned Value is self-contained and owns its strings (they do not refer
684/// to the original source).
685llvm::Expected<Value> parse(llvm::StringRef JSON);
686
687class ParseError : public llvm::ErrorInfo<ParseError> {
688  const char *Msg;
689  unsigned Line, Column, Offset;
690
691public:
692  static char ID;
693  ParseError(const char *Msg, unsigned Line, unsigned Column, unsigned Offset)
694      : Msg(Msg), Line(Line), Column(Column), Offset(Offset) {}
695  void log(llvm::raw_ostream &OS) const override {
696    OS << llvm::formatv("[{0}:{1}, byte={2}]: {3}", Line, Column, Offset, Msg);
697  }
698  std::error_code convertToErrorCode() const override {
699    return llvm::inconvertibleErrorCode();
700  }
701};
702
703/// json::OStream allows writing well-formed JSON without materializing
704/// all structures as json::Value ahead of time.
705/// It's faster, lower-level, and less safe than OS << json::Value.
706///
707/// Only one "top-level" object can be written to a stream.
708/// Simplest usage involves passing lambdas (Blocks) to fill in containers:
709///
710///   json::OStream J(OS);
711///   J.array([&]{
712///     for (const Event &E : Events)
713///       J.object([&] {
714///         J.attribute("timestamp", int64_t(E.Time));
715///         J.attributeArray("participants", [&] {
716///           for (const Participant &P : E.Participants)
717///             J.value(P.toString());
718///         });
719///       });
720///   });
721///
722/// This would produce JSON like:
723///
724///   [
725///     {
726///       "timestamp": 19287398741,
727///       "participants": [
728///         "King Kong",
729///         "Miley Cyrus",
730///         "Cleopatra"
731///       ]
732///     },
733///     ...
734///   ]
735///
736/// The lower level begin/end methods (arrayBegin()) are more flexible but
737/// care must be taken to pair them correctly:
738///
739///   json::OStream J(OS);
740//    J.arrayBegin();
741///   for (const Event &E : Events) {
742///     J.objectBegin();
743///     J.attribute("timestamp", int64_t(E.Time));
744///     J.attributeBegin("participants");
745///     for (const Participant &P : E.Participants)
746///       J.value(P.toString());
747///     J.attributeEnd();
748///     J.objectEnd();
749///   }
750///   J.arrayEnd();
751///
752/// If the call sequence isn't valid JSON, asserts will fire in debug mode.
753/// This can be mismatched begin()/end() pairs, trying to emit attributes inside
754/// an array, and so on.
755/// With asserts disabled, this is undefined behavior.
756class OStream {
757 public:
758  using Block = llvm::function_ref<void()>;
759  // If IndentSize is nonzero, output is pretty-printed.
760  explicit OStream(llvm::raw_ostream &OS, unsigned IndentSize = 0)
761      : OS(OS), IndentSize(IndentSize) {
762    Stack.emplace_back();
763  }
764  ~OStream() {
765    assert(Stack.size() == 1 && "Unmatched begin()/end()");
766    assert(Stack.back().Ctx == Singleton);
767    assert(Stack.back().HasValue && "Did not write top-level value");
768  }
769
770  /// Flushes the underlying ostream. OStream does not buffer internally.
771  void flush() { OS.flush(); }
772
773  // High level functions to output a value.
774  // Valid at top-level (exactly once), in an attribute value (exactly once),
775  // or in an array (any number of times).
776
777  /// Emit a self-contained value (number, string, vector<string> etc).
778  void value(const Value &V);
779  /// Emit an array whose elements are emitted in the provided Block.
780  void array(Block Contents) {
781    arrayBegin();
782    Contents();
783    arrayEnd();
784  }
785  /// Emit an object whose elements are emitted in the provided Block.
786  void object(Block Contents) {
787    objectBegin();
788    Contents();
789    objectEnd();
790  }
791
792  // High level functions to output object attributes.
793  // Valid only within an object (any number of times).
794
795  /// Emit an attribute whose value is self-contained (number, vector<int> etc).
796  void attribute(llvm::StringRef Key, const Value& Contents) {
797    attributeImpl(Key, [&] { value(Contents); });
798  }
799  /// Emit an attribute whose value is an array with elements from the Block.
800  void attributeArray(llvm::StringRef Key, Block Contents) {
801    attributeImpl(Key, [&] { array(Contents); });
802  }
803  /// Emit an attribute whose value is an object with attributes from the Block.
804  void attributeObject(llvm::StringRef Key, Block Contents) {
805    attributeImpl(Key, [&] { object(Contents); });
806  }
807
808  // Low-level begin/end functions to output arrays, objects, and attributes.
809  // Must be correctly paired. Allowed contexts are as above.
810
811  void arrayBegin();
812  void arrayEnd();
813  void objectBegin();
814  void objectEnd();
815  void attributeBegin(llvm::StringRef Key);
816  void attributeEnd();
817
818 private:
819  void attributeImpl(llvm::StringRef Key, Block Contents) {
820    attributeBegin(Key);
821    Contents();
822    attributeEnd();
823  }
824
825  void valueBegin();
826  void newline();
827
828  enum Context {
829    Singleton, // Top level, or object attribute.
830    Array,
831    Object,
832  };
833  struct State {
834    Context Ctx = Singleton;
835    bool HasValue = false;
836  };
837  llvm::SmallVector<State, 16> Stack; // Never empty.
838  llvm::raw_ostream &OS;
839  unsigned IndentSize;
840  unsigned Indent = 0;
841};
842
843/// Serializes this Value to JSON, writing it to the provided stream.
844/// The formatting is compact (no extra whitespace) and deterministic.
845/// For pretty-printing, use the formatv() format_provider below.
846inline llvm::raw_ostream &operator<<(llvm::raw_ostream &OS, const Value &V) {
847  OStream(OS).value(V);
848  return OS;
849}
850} // namespace json
851
852/// Allow printing json::Value with formatv().
853/// The default style is basic/compact formatting, like operator<<.
854/// A format string like formatv("{0:2}", Value) pretty-prints with indent 2.
855template <> struct format_provider<llvm::json::Value> {
856  static void format(const llvm::json::Value &, raw_ostream &, StringRef);
857};
858} // namespace llvm
859
860#endif
861