GenericDomTreeConstruction.h revision 360784
1//===- GenericDomTreeConstruction.h - Dominator Calculation ------*- C++ -*-==//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8/// \file
9///
10/// Generic dominator tree construction - This file provides routines to
11/// construct immediate dominator information for a flow-graph based on the
12/// Semi-NCA algorithm described in this dissertation:
13///
14///   Linear-Time Algorithms for Dominators and Related Problems
15///   Loukas Georgiadis, Princeton University, November 2005, pp. 21-23:
16///   ftp://ftp.cs.princeton.edu/reports/2005/737.pdf
17///
18/// Semi-NCA algorithm runs in O(n^2) worst-case time but usually slightly
19/// faster than Simple Lengauer-Tarjan in practice.
20///
21/// O(n^2) worst cases happen when the computation of nearest common ancestors
22/// requires O(n) average time, which is very unlikely in real world. If this
23/// ever turns out to be an issue, consider implementing a hybrid algorithm.
24///
25/// The file uses the Depth Based Search algorithm to perform incremental
26/// updates (insertion and deletions). The implemented algorithm is based on
27/// this publication:
28///
29///   An Experimental Study of Dynamic Dominators
30///   Loukas Georgiadis, et al., April 12 2016, pp. 5-7, 9-10:
31///   https://arxiv.org/pdf/1604.02711.pdf
32///
33//===----------------------------------------------------------------------===//
34
35#ifndef LLVM_SUPPORT_GENERICDOMTREECONSTRUCTION_H
36#define LLVM_SUPPORT_GENERICDOMTREECONSTRUCTION_H
37
38#include <queue>
39#include "llvm/ADT/ArrayRef.h"
40#include "llvm/ADT/DenseSet.h"
41#include "llvm/ADT/DepthFirstIterator.h"
42#include "llvm/ADT/PointerIntPair.h"
43#include "llvm/ADT/SmallPtrSet.h"
44#include "llvm/Support/Debug.h"
45#include "llvm/Support/GenericDomTree.h"
46
47#define DEBUG_TYPE "dom-tree-builder"
48
49namespace llvm {
50namespace DomTreeBuilder {
51
52template <typename DomTreeT>
53struct SemiNCAInfo {
54  using NodePtr = typename DomTreeT::NodePtr;
55  using NodeT = typename DomTreeT::NodeType;
56  using TreeNodePtr = DomTreeNodeBase<NodeT> *;
57  using RootsT = decltype(DomTreeT::Roots);
58  static constexpr bool IsPostDom = DomTreeT::IsPostDominator;
59
60  // Information record used by Semi-NCA during tree construction.
61  struct InfoRec {
62    unsigned DFSNum = 0;
63    unsigned Parent = 0;
64    unsigned Semi = 0;
65    NodePtr Label = nullptr;
66    NodePtr IDom = nullptr;
67    SmallVector<NodePtr, 2> ReverseChildren;
68  };
69
70  // Number to node mapping is 1-based. Initialize the mapping to start with
71  // a dummy element.
72  std::vector<NodePtr> NumToNode = {nullptr};
73  DenseMap<NodePtr, InfoRec> NodeToInfo;
74
75  using UpdateT = typename DomTreeT::UpdateType;
76  using UpdateKind = typename DomTreeT::UpdateKind;
77  struct BatchUpdateInfo {
78    SmallVector<UpdateT, 4> Updates;
79    using NodePtrAndKind = PointerIntPair<NodePtr, 1, UpdateKind>;
80
81    // In order to be able to walk a CFG that is out of sync with the CFG
82    // DominatorTree last knew about, use the list of updates to reconstruct
83    // previous CFG versions of the current CFG. For each node, we store a set
84    // of its virtually added/deleted future successors and predecessors.
85    // Note that these children are from the future relative to what the
86    // DominatorTree knows about -- using them to gets us some snapshot of the
87    // CFG from the past (relative to the state of the CFG).
88    DenseMap<NodePtr, SmallVector<NodePtrAndKind, 4>> FutureSuccessors;
89    DenseMap<NodePtr, SmallVector<NodePtrAndKind, 4>> FuturePredecessors;
90    // Remembers if the whole tree was recalculated at some point during the
91    // current batch update.
92    bool IsRecalculated = false;
93  };
94
95  BatchUpdateInfo *BatchUpdates;
96  using BatchUpdatePtr = BatchUpdateInfo *;
97
98  // If BUI is a nullptr, then there's no batch update in progress.
99  SemiNCAInfo(BatchUpdatePtr BUI) : BatchUpdates(BUI) {}
100
101  void clear() {
102    NumToNode = {nullptr}; // Restore to initial state with a dummy start node.
103    NodeToInfo.clear();
104    // Don't reset the pointer to BatchUpdateInfo here -- if there's an update
105    // in progress, we need this information to continue it.
106  }
107
108  template <bool Inverse>
109  struct ChildrenGetter {
110    using ResultTy = SmallVector<NodePtr, 8>;
111
112    static ResultTy Get(NodePtr N, std::integral_constant<bool, false>) {
113      auto RChildren = reverse(children<NodePtr>(N));
114      return ResultTy(RChildren.begin(), RChildren.end());
115    }
116
117    static ResultTy Get(NodePtr N, std::integral_constant<bool, true>) {
118      auto IChildren = inverse_children<NodePtr>(N);
119      return ResultTy(IChildren.begin(), IChildren.end());
120    }
121
122    using Tag = std::integral_constant<bool, Inverse>;
123
124    // The function below is the core part of the batch updater. It allows the
125    // Depth Based Search algorithm to perform incremental updates in lockstep
126    // with updates to the CFG. We emulated lockstep CFG updates by getting its
127    // next snapshots by reverse-applying future updates.
128    static ResultTy Get(NodePtr N, BatchUpdatePtr BUI) {
129      ResultTy Res = Get(N, Tag());
130      // If there's no batch update in progress, simply return node's children.
131      if (!BUI) return Res;
132
133      // CFG children are actually its *most current* children, and we have to
134      // reverse-apply the future updates to get the node's children at the
135      // point in time the update was performed.
136      auto &FutureChildren = (Inverse != IsPostDom) ? BUI->FuturePredecessors
137                                                    : BUI->FutureSuccessors;
138      auto FCIt = FutureChildren.find(N);
139      if (FCIt == FutureChildren.end()) return Res;
140
141      for (auto ChildAndKind : FCIt->second) {
142        const NodePtr Child = ChildAndKind.getPointer();
143        const UpdateKind UK = ChildAndKind.getInt();
144
145        // Reverse-apply the future update.
146        if (UK == UpdateKind::Insert) {
147          // If there's an insertion in the future, it means that the edge must
148          // exist in the current CFG, but was not present in it before.
149          assert(llvm::find(Res, Child) != Res.end()
150                 && "Expected child not found in the CFG");
151          Res.erase(std::remove(Res.begin(), Res.end(), Child), Res.end());
152          LLVM_DEBUG(dbgs() << "\tHiding edge " << BlockNamePrinter(N) << " -> "
153                            << BlockNamePrinter(Child) << "\n");
154        } else {
155          // If there's an deletion in the future, it means that the edge cannot
156          // exist in the current CFG, but existed in it before.
157          assert(llvm::find(Res, Child) == Res.end() &&
158                 "Unexpected child found in the CFG");
159          LLVM_DEBUG(dbgs() << "\tShowing virtual edge " << BlockNamePrinter(N)
160                            << " -> " << BlockNamePrinter(Child) << "\n");
161          Res.push_back(Child);
162        }
163      }
164
165      return Res;
166    }
167  };
168
169  NodePtr getIDom(NodePtr BB) const {
170    auto InfoIt = NodeToInfo.find(BB);
171    if (InfoIt == NodeToInfo.end()) return nullptr;
172
173    return InfoIt->second.IDom;
174  }
175
176  TreeNodePtr getNodeForBlock(NodePtr BB, DomTreeT &DT) {
177    if (TreeNodePtr Node = DT.getNode(BB)) return Node;
178
179    // Haven't calculated this node yet?  Get or calculate the node for the
180    // immediate dominator.
181    NodePtr IDom = getIDom(BB);
182
183    assert(IDom || DT.DomTreeNodes[nullptr]);
184    TreeNodePtr IDomNode = getNodeForBlock(IDom, DT);
185
186    // Add a new tree node for this NodeT, and link it as a child of
187    // IDomNode
188    return (DT.DomTreeNodes[BB] = IDomNode->addChild(
189        std::make_unique<DomTreeNodeBase<NodeT>>(BB, IDomNode)))
190        .get();
191  }
192
193  static bool AlwaysDescend(NodePtr, NodePtr) { return true; }
194
195  struct BlockNamePrinter {
196    NodePtr N;
197
198    BlockNamePrinter(NodePtr Block) : N(Block) {}
199    BlockNamePrinter(TreeNodePtr TN) : N(TN ? TN->getBlock() : nullptr) {}
200
201    friend raw_ostream &operator<<(raw_ostream &O, const BlockNamePrinter &BP) {
202      if (!BP.N)
203        O << "nullptr";
204      else
205        BP.N->printAsOperand(O, false);
206
207      return O;
208    }
209  };
210
211  // Custom DFS implementation which can skip nodes based on a provided
212  // predicate. It also collects ReverseChildren so that we don't have to spend
213  // time getting predecessors in SemiNCA.
214  //
215  // If IsReverse is set to true, the DFS walk will be performed backwards
216  // relative to IsPostDom -- using reverse edges for dominators and forward
217  // edges for postdominators.
218  template <bool IsReverse = false, typename DescendCondition>
219  unsigned runDFS(NodePtr V, unsigned LastNum, DescendCondition Condition,
220                  unsigned AttachToNum) {
221    assert(V);
222    SmallVector<NodePtr, 64> WorkList = {V};
223    if (NodeToInfo.count(V) != 0) NodeToInfo[V].Parent = AttachToNum;
224
225    while (!WorkList.empty()) {
226      const NodePtr BB = WorkList.pop_back_val();
227      auto &BBInfo = NodeToInfo[BB];
228
229      // Visited nodes always have positive DFS numbers.
230      if (BBInfo.DFSNum != 0) continue;
231      BBInfo.DFSNum = BBInfo.Semi = ++LastNum;
232      BBInfo.Label = BB;
233      NumToNode.push_back(BB);
234
235      constexpr bool Direction = IsReverse != IsPostDom;  // XOR.
236      for (const NodePtr Succ :
237           ChildrenGetter<Direction>::Get(BB, BatchUpdates)) {
238        const auto SIT = NodeToInfo.find(Succ);
239        // Don't visit nodes more than once but remember to collect
240        // ReverseChildren.
241        if (SIT != NodeToInfo.end() && SIT->second.DFSNum != 0) {
242          if (Succ != BB) SIT->second.ReverseChildren.push_back(BB);
243          continue;
244        }
245
246        if (!Condition(BB, Succ)) continue;
247
248        // It's fine to add Succ to the map, because we know that it will be
249        // visited later.
250        auto &SuccInfo = NodeToInfo[Succ];
251        WorkList.push_back(Succ);
252        SuccInfo.Parent = LastNum;
253        SuccInfo.ReverseChildren.push_back(BB);
254      }
255    }
256
257    return LastNum;
258  }
259
260  // V is a predecessor of W. eval() returns V if V < W, otherwise the minimum
261  // of sdom(U), where U > W and there is a virtual forest path from U to V. The
262  // virtual forest consists of linked edges of processed vertices.
263  //
264  // We can follow Parent pointers (virtual forest edges) to determine the
265  // ancestor U with minimum sdom(U). But it is slow and thus we employ the path
266  // compression technique to speed up to O(m*log(n)). Theoretically the virtual
267  // forest can be organized as balanced trees to achieve almost linear
268  // O(m*alpha(m,n)) running time. But it requires two auxiliary arrays (Size
269  // and Child) and is unlikely to be faster than the simple implementation.
270  //
271  // For each vertex V, its Label points to the vertex with the minimal sdom(U)
272  // (Semi) in its path from V (included) to NodeToInfo[V].Parent (excluded).
273  NodePtr eval(NodePtr V, unsigned LastLinked,
274               SmallVectorImpl<InfoRec *> &Stack) {
275    InfoRec *VInfo = &NodeToInfo[V];
276    if (VInfo->Parent < LastLinked)
277      return VInfo->Label;
278
279    // Store ancestors except the last (root of a virtual tree) into a stack.
280    assert(Stack.empty());
281    do {
282      Stack.push_back(VInfo);
283      VInfo = &NodeToInfo[NumToNode[VInfo->Parent]];
284    } while (VInfo->Parent >= LastLinked);
285
286    // Path compression. Point each vertex's Parent to the root and update its
287    // Label if any of its ancestors (PInfo->Label) has a smaller Semi.
288    const InfoRec *PInfo = VInfo;
289    const InfoRec *PLabelInfo = &NodeToInfo[PInfo->Label];
290    do {
291      VInfo = Stack.pop_back_val();
292      VInfo->Parent = PInfo->Parent;
293      const InfoRec *VLabelInfo = &NodeToInfo[VInfo->Label];
294      if (PLabelInfo->Semi < VLabelInfo->Semi)
295        VInfo->Label = PInfo->Label;
296      else
297        PLabelInfo = VLabelInfo;
298      PInfo = VInfo;
299    } while (!Stack.empty());
300    return VInfo->Label;
301  }
302
303  // This function requires DFS to be run before calling it.
304  void runSemiNCA(DomTreeT &DT, const unsigned MinLevel = 0) {
305    const unsigned NextDFSNum(NumToNode.size());
306    // Initialize IDoms to spanning tree parents.
307    for (unsigned i = 1; i < NextDFSNum; ++i) {
308      const NodePtr V = NumToNode[i];
309      auto &VInfo = NodeToInfo[V];
310      VInfo.IDom = NumToNode[VInfo.Parent];
311    }
312
313    // Step #1: Calculate the semidominators of all vertices.
314    SmallVector<InfoRec *, 32> EvalStack;
315    for (unsigned i = NextDFSNum - 1; i >= 2; --i) {
316      NodePtr W = NumToNode[i];
317      auto &WInfo = NodeToInfo[W];
318
319      // Initialize the semi dominator to point to the parent node.
320      WInfo.Semi = WInfo.Parent;
321      for (const auto &N : WInfo.ReverseChildren) {
322        if (NodeToInfo.count(N) == 0)  // Skip unreachable predecessors.
323          continue;
324
325        const TreeNodePtr TN = DT.getNode(N);
326        // Skip predecessors whose level is above the subtree we are processing.
327        if (TN && TN->getLevel() < MinLevel)
328          continue;
329
330        unsigned SemiU = NodeToInfo[eval(N, i + 1, EvalStack)].Semi;
331        if (SemiU < WInfo.Semi) WInfo.Semi = SemiU;
332      }
333    }
334
335    // Step #2: Explicitly define the immediate dominator of each vertex.
336    //          IDom[i] = NCA(SDom[i], SpanningTreeParent(i)).
337    // Note that the parents were stored in IDoms and later got invalidated
338    // during path compression in Eval.
339    for (unsigned i = 2; i < NextDFSNum; ++i) {
340      const NodePtr W = NumToNode[i];
341      auto &WInfo = NodeToInfo[W];
342      const unsigned SDomNum = NodeToInfo[NumToNode[WInfo.Semi]].DFSNum;
343      NodePtr WIDomCandidate = WInfo.IDom;
344      while (NodeToInfo[WIDomCandidate].DFSNum > SDomNum)
345        WIDomCandidate = NodeToInfo[WIDomCandidate].IDom;
346
347      WInfo.IDom = WIDomCandidate;
348    }
349  }
350
351  // PostDominatorTree always has a virtual root that represents a virtual CFG
352  // node that serves as a single exit from the function. All the other exits
353  // (CFG nodes with terminators and nodes in infinite loops are logically
354  // connected to this virtual CFG exit node).
355  // This functions maps a nullptr CFG node to the virtual root tree node.
356  void addVirtualRoot() {
357    assert(IsPostDom && "Only postdominators have a virtual root");
358    assert(NumToNode.size() == 1 && "SNCAInfo must be freshly constructed");
359
360    auto &BBInfo = NodeToInfo[nullptr];
361    BBInfo.DFSNum = BBInfo.Semi = 1;
362    BBInfo.Label = nullptr;
363
364    NumToNode.push_back(nullptr);  // NumToNode[1] = nullptr;
365  }
366
367  // For postdominators, nodes with no forward successors are trivial roots that
368  // are always selected as tree roots. Roots with forward successors correspond
369  // to CFG nodes within infinite loops.
370  static bool HasForwardSuccessors(const NodePtr N, BatchUpdatePtr BUI) {
371    assert(N && "N must be a valid node");
372    return !ChildrenGetter<false>::Get(N, BUI).empty();
373  }
374
375  static NodePtr GetEntryNode(const DomTreeT &DT) {
376    assert(DT.Parent && "Parent not set");
377    return GraphTraits<typename DomTreeT::ParentPtr>::getEntryNode(DT.Parent);
378  }
379
380  // Finds all roots without relaying on the set of roots already stored in the
381  // tree.
382  // We define roots to be some non-redundant set of the CFG nodes
383  static RootsT FindRoots(const DomTreeT &DT, BatchUpdatePtr BUI) {
384    assert(DT.Parent && "Parent pointer is not set");
385    RootsT Roots;
386
387    // For dominators, function entry CFG node is always a tree root node.
388    if (!IsPostDom) {
389      Roots.push_back(GetEntryNode(DT));
390      return Roots;
391    }
392
393    SemiNCAInfo SNCA(BUI);
394
395    // PostDominatorTree always has a virtual root.
396    SNCA.addVirtualRoot();
397    unsigned Num = 1;
398
399    LLVM_DEBUG(dbgs() << "\t\tLooking for trivial roots\n");
400
401    // Step #1: Find all the trivial roots that are going to will definitely
402    // remain tree roots.
403    unsigned Total = 0;
404    // It may happen that there are some new nodes in the CFG that are result of
405    // the ongoing batch update, but we cannot really pretend that they don't
406    // exist -- we won't see any outgoing or incoming edges to them, so it's
407    // fine to discover them here, as they would end up appearing in the CFG at
408    // some point anyway.
409    for (const NodePtr N : nodes(DT.Parent)) {
410      ++Total;
411      // If it has no *successors*, it is definitely a root.
412      if (!HasForwardSuccessors(N, BUI)) {
413        Roots.push_back(N);
414        // Run DFS not to walk this part of CFG later.
415        Num = SNCA.runDFS(N, Num, AlwaysDescend, 1);
416        LLVM_DEBUG(dbgs() << "Found a new trivial root: " << BlockNamePrinter(N)
417                          << "\n");
418        LLVM_DEBUG(dbgs() << "Last visited node: "
419                          << BlockNamePrinter(SNCA.NumToNode[Num]) << "\n");
420      }
421    }
422
423    LLVM_DEBUG(dbgs() << "\t\tLooking for non-trivial roots\n");
424
425    // Step #2: Find all non-trivial root candidates. Those are CFG nodes that
426    // are reverse-unreachable were not visited by previous DFS walks (i.e. CFG
427    // nodes in infinite loops).
428    bool HasNonTrivialRoots = false;
429    // Accounting for the virtual exit, see if we had any reverse-unreachable
430    // nodes.
431    if (Total + 1 != Num) {
432      HasNonTrivialRoots = true;
433      // Make another DFS pass over all other nodes to find the
434      // reverse-unreachable blocks, and find the furthest paths we'll be able
435      // to make.
436      // Note that this looks N^2, but it's really 2N worst case, if every node
437      // is unreachable. This is because we are still going to only visit each
438      // unreachable node once, we may just visit it in two directions,
439      // depending on how lucky we get.
440      SmallPtrSet<NodePtr, 4> ConnectToExitBlock;
441      for (const NodePtr I : nodes(DT.Parent)) {
442        if (SNCA.NodeToInfo.count(I) == 0) {
443          LLVM_DEBUG(dbgs()
444                     << "\t\t\tVisiting node " << BlockNamePrinter(I) << "\n");
445          // Find the furthest away we can get by following successors, then
446          // follow them in reverse.  This gives us some reasonable answer about
447          // the post-dom tree inside any infinite loop. In particular, it
448          // guarantees we get to the farthest away point along *some*
449          // path. This also matches the GCC's behavior.
450          // If we really wanted a totally complete picture of dominance inside
451          // this infinite loop, we could do it with SCC-like algorithms to find
452          // the lowest and highest points in the infinite loop.  In theory, it
453          // would be nice to give the canonical backedge for the loop, but it's
454          // expensive and does not always lead to a minimal set of roots.
455          LLVM_DEBUG(dbgs() << "\t\t\tRunning forward DFS\n");
456
457          const unsigned NewNum = SNCA.runDFS<true>(I, Num, AlwaysDescend, Num);
458          const NodePtr FurthestAway = SNCA.NumToNode[NewNum];
459          LLVM_DEBUG(dbgs() << "\t\t\tFound a new furthest away node "
460                            << "(non-trivial root): "
461                            << BlockNamePrinter(FurthestAway) << "\n");
462          ConnectToExitBlock.insert(FurthestAway);
463          Roots.push_back(FurthestAway);
464          LLVM_DEBUG(dbgs() << "\t\t\tPrev DFSNum: " << Num << ", new DFSNum: "
465                            << NewNum << "\n\t\t\tRemoving DFS info\n");
466          for (unsigned i = NewNum; i > Num; --i) {
467            const NodePtr N = SNCA.NumToNode[i];
468            LLVM_DEBUG(dbgs() << "\t\t\t\tRemoving DFS info for "
469                              << BlockNamePrinter(N) << "\n");
470            SNCA.NodeToInfo.erase(N);
471            SNCA.NumToNode.pop_back();
472          }
473          const unsigned PrevNum = Num;
474          LLVM_DEBUG(dbgs() << "\t\t\tRunning reverse DFS\n");
475          Num = SNCA.runDFS(FurthestAway, Num, AlwaysDescend, 1);
476          for (unsigned i = PrevNum + 1; i <= Num; ++i)
477            LLVM_DEBUG(dbgs() << "\t\t\t\tfound node "
478                              << BlockNamePrinter(SNCA.NumToNode[i]) << "\n");
479        }
480      }
481    }
482
483    LLVM_DEBUG(dbgs() << "Total: " << Total << ", Num: " << Num << "\n");
484    LLVM_DEBUG(dbgs() << "Discovered CFG nodes:\n");
485    LLVM_DEBUG(for (size_t i = 0; i <= Num; ++i) dbgs()
486               << i << ": " << BlockNamePrinter(SNCA.NumToNode[i]) << "\n");
487
488    assert((Total + 1 == Num) && "Everything should have been visited");
489
490    // Step #3: If we found some non-trivial roots, make them non-redundant.
491    if (HasNonTrivialRoots) RemoveRedundantRoots(DT, BUI, Roots);
492
493    LLVM_DEBUG(dbgs() << "Found roots: ");
494    LLVM_DEBUG(for (auto *Root
495                    : Roots) dbgs()
496               << BlockNamePrinter(Root) << " ");
497    LLVM_DEBUG(dbgs() << "\n");
498
499    return Roots;
500  }
501
502  // This function only makes sense for postdominators.
503  // We define roots to be some set of CFG nodes where (reverse) DFS walks have
504  // to start in order to visit all the CFG nodes (including the
505  // reverse-unreachable ones).
506  // When the search for non-trivial roots is done it may happen that some of
507  // the non-trivial roots are reverse-reachable from other non-trivial roots,
508  // which makes them redundant. This function removes them from the set of
509  // input roots.
510  static void RemoveRedundantRoots(const DomTreeT &DT, BatchUpdatePtr BUI,
511                                   RootsT &Roots) {
512    assert(IsPostDom && "This function is for postdominators only");
513    LLVM_DEBUG(dbgs() << "Removing redundant roots\n");
514
515    SemiNCAInfo SNCA(BUI);
516
517    for (unsigned i = 0; i < Roots.size(); ++i) {
518      auto &Root = Roots[i];
519      // Trivial roots are always non-redundant.
520      if (!HasForwardSuccessors(Root, BUI)) continue;
521      LLVM_DEBUG(dbgs() << "\tChecking if " << BlockNamePrinter(Root)
522                        << " remains a root\n");
523      SNCA.clear();
524      // Do a forward walk looking for the other roots.
525      const unsigned Num = SNCA.runDFS<true>(Root, 0, AlwaysDescend, 0);
526      // Skip the start node and begin from the second one (note that DFS uses
527      // 1-based indexing).
528      for (unsigned x = 2; x <= Num; ++x) {
529        const NodePtr N = SNCA.NumToNode[x];
530        // If we wound another root in a (forward) DFS walk, remove the current
531        // root from the set of roots, as it is reverse-reachable from the other
532        // one.
533        if (llvm::find(Roots, N) != Roots.end()) {
534          LLVM_DEBUG(dbgs() << "\tForward DFS walk found another root "
535                            << BlockNamePrinter(N) << "\n\tRemoving root "
536                            << BlockNamePrinter(Root) << "\n");
537          std::swap(Root, Roots.back());
538          Roots.pop_back();
539
540          // Root at the back takes the current root's place.
541          // Start the next loop iteration with the same index.
542          --i;
543          break;
544        }
545      }
546    }
547  }
548
549  template <typename DescendCondition>
550  void doFullDFSWalk(const DomTreeT &DT, DescendCondition DC) {
551    if (!IsPostDom) {
552      assert(DT.Roots.size() == 1 && "Dominators should have a singe root");
553      runDFS(DT.Roots[0], 0, DC, 0);
554      return;
555    }
556
557    addVirtualRoot();
558    unsigned Num = 1;
559    for (const NodePtr Root : DT.Roots) Num = runDFS(Root, Num, DC, 0);
560  }
561
562  static void CalculateFromScratch(DomTreeT &DT, BatchUpdatePtr BUI) {
563    auto *Parent = DT.Parent;
564    DT.reset();
565    DT.Parent = Parent;
566    SemiNCAInfo SNCA(nullptr);  // Since we are rebuilding the whole tree,
567                                // there's no point doing it incrementally.
568
569    // Step #0: Number blocks in depth-first order and initialize variables used
570    // in later stages of the algorithm.
571    DT.Roots = FindRoots(DT, nullptr);
572    SNCA.doFullDFSWalk(DT, AlwaysDescend);
573
574    SNCA.runSemiNCA(DT);
575    if (BUI) {
576      BUI->IsRecalculated = true;
577      LLVM_DEBUG(
578          dbgs() << "DomTree recalculated, skipping future batch updates\n");
579    }
580
581    if (DT.Roots.empty()) return;
582
583    // Add a node for the root. If the tree is a PostDominatorTree it will be
584    // the virtual exit (denoted by (BasicBlock *) nullptr) which postdominates
585    // all real exits (including multiple exit blocks, infinite loops).
586    NodePtr Root = IsPostDom ? nullptr : DT.Roots[0];
587
588    DT.RootNode = (DT.DomTreeNodes[Root] =
589                       std::make_unique<DomTreeNodeBase<NodeT>>(Root, nullptr))
590        .get();
591    SNCA.attachNewSubtree(DT, DT.RootNode);
592  }
593
594  void attachNewSubtree(DomTreeT& DT, const TreeNodePtr AttachTo) {
595    // Attach the first unreachable block to AttachTo.
596    NodeToInfo[NumToNode[1]].IDom = AttachTo->getBlock();
597    // Loop over all of the discovered blocks in the function...
598    for (size_t i = 1, e = NumToNode.size(); i != e; ++i) {
599      NodePtr W = NumToNode[i];
600      LLVM_DEBUG(dbgs() << "\tdiscovered a new reachable node "
601                        << BlockNamePrinter(W) << "\n");
602
603      // Don't replace this with 'count', the insertion side effect is important
604      if (DT.DomTreeNodes[W]) continue;  // Haven't calculated this node yet?
605
606      NodePtr ImmDom = getIDom(W);
607
608      // Get or calculate the node for the immediate dominator.
609      TreeNodePtr IDomNode = getNodeForBlock(ImmDom, DT);
610
611      // Add a new tree node for this BasicBlock, and link it as a child of
612      // IDomNode.
613      DT.DomTreeNodes[W] = IDomNode->addChild(
614          std::make_unique<DomTreeNodeBase<NodeT>>(W, IDomNode));
615    }
616  }
617
618  void reattachExistingSubtree(DomTreeT &DT, const TreeNodePtr AttachTo) {
619    NodeToInfo[NumToNode[1]].IDom = AttachTo->getBlock();
620    for (size_t i = 1, e = NumToNode.size(); i != e; ++i) {
621      const NodePtr N = NumToNode[i];
622      const TreeNodePtr TN = DT.getNode(N);
623      assert(TN);
624      const TreeNodePtr NewIDom = DT.getNode(NodeToInfo[N].IDom);
625      TN->setIDom(NewIDom);
626    }
627  }
628
629  // Helper struct used during edge insertions.
630  struct InsertionInfo {
631    struct Compare {
632      bool operator()(TreeNodePtr LHS, TreeNodePtr RHS) const {
633        return LHS->getLevel() < RHS->getLevel();
634      }
635    };
636
637    // Bucket queue of tree nodes ordered by descending level. For simplicity,
638    // we use a priority_queue here.
639    std::priority_queue<TreeNodePtr, SmallVector<TreeNodePtr, 8>,
640                        Compare>
641        Bucket;
642    SmallDenseSet<TreeNodePtr, 8> Visited;
643    SmallVector<TreeNodePtr, 8> Affected;
644#ifndef NDEBUG
645    SmallVector<TreeNodePtr, 8> VisitedUnaffected;
646#endif
647  };
648
649  static void InsertEdge(DomTreeT &DT, const BatchUpdatePtr BUI,
650                         const NodePtr From, const NodePtr To) {
651    assert((From || IsPostDom) &&
652           "From has to be a valid CFG node or a virtual root");
653    assert(To && "Cannot be a nullptr");
654    LLVM_DEBUG(dbgs() << "Inserting edge " << BlockNamePrinter(From) << " -> "
655                      << BlockNamePrinter(To) << "\n");
656    TreeNodePtr FromTN = DT.getNode(From);
657
658    if (!FromTN) {
659      // Ignore edges from unreachable nodes for (forward) dominators.
660      if (!IsPostDom) return;
661
662      // The unreachable node becomes a new root -- a tree node for it.
663      TreeNodePtr VirtualRoot = DT.getNode(nullptr);
664      FromTN =
665          (DT.DomTreeNodes[From] = VirtualRoot->addChild(
666               std::make_unique<DomTreeNodeBase<NodeT>>(From, VirtualRoot)))
667              .get();
668      DT.Roots.push_back(From);
669    }
670
671    DT.DFSInfoValid = false;
672
673    const TreeNodePtr ToTN = DT.getNode(To);
674    if (!ToTN)
675      InsertUnreachable(DT, BUI, FromTN, To);
676    else
677      InsertReachable(DT, BUI, FromTN, ToTN);
678  }
679
680  // Determines if some existing root becomes reverse-reachable after the
681  // insertion. Rebuilds the whole tree if that situation happens.
682  static bool UpdateRootsBeforeInsertion(DomTreeT &DT, const BatchUpdatePtr BUI,
683                                         const TreeNodePtr From,
684                                         const TreeNodePtr To) {
685    assert(IsPostDom && "This function is only for postdominators");
686    // Destination node is not attached to the virtual root, so it cannot be a
687    // root.
688    if (!DT.isVirtualRoot(To->getIDom())) return false;
689
690    auto RIt = llvm::find(DT.Roots, To->getBlock());
691    if (RIt == DT.Roots.end())
692      return false;  // To is not a root, nothing to update.
693
694    LLVM_DEBUG(dbgs() << "\t\tAfter the insertion, " << BlockNamePrinter(To)
695                      << " is no longer a root\n\t\tRebuilding the tree!!!\n");
696
697    CalculateFromScratch(DT, BUI);
698    return true;
699  }
700
701  static bool isPermutation(const SmallVectorImpl<NodePtr> &A,
702                            const SmallVectorImpl<NodePtr> &B) {
703    if (A.size() != B.size())
704      return false;
705    SmallPtrSet<NodePtr, 4> Set(A.begin(), A.end());
706    for (NodePtr N : B)
707      if (Set.count(N) == 0)
708        return false;
709    return true;
710  }
711
712  // Updates the set of roots after insertion or deletion. This ensures that
713  // roots are the same when after a series of updates and when the tree would
714  // be built from scratch.
715  static void UpdateRootsAfterUpdate(DomTreeT &DT, const BatchUpdatePtr BUI) {
716    assert(IsPostDom && "This function is only for postdominators");
717
718    // The tree has only trivial roots -- nothing to update.
719    if (std::none_of(DT.Roots.begin(), DT.Roots.end(), [BUI](const NodePtr N) {
720          return HasForwardSuccessors(N, BUI);
721        }))
722      return;
723
724    // Recalculate the set of roots.
725    RootsT Roots = FindRoots(DT, BUI);
726    if (!isPermutation(DT.Roots, Roots)) {
727      // The roots chosen in the CFG have changed. This is because the
728      // incremental algorithm does not really know or use the set of roots and
729      // can make a different (implicit) decision about which node within an
730      // infinite loop becomes a root.
731
732      LLVM_DEBUG(dbgs() << "Roots are different in updated trees\n"
733                        << "The entire tree needs to be rebuilt\n");
734      // It may be possible to update the tree without recalculating it, but
735      // we do not know yet how to do it, and it happens rarely in practise.
736      CalculateFromScratch(DT, BUI);
737    }
738  }
739
740  // Handles insertion to a node already in the dominator tree.
741  static void InsertReachable(DomTreeT &DT, const BatchUpdatePtr BUI,
742                              const TreeNodePtr From, const TreeNodePtr To) {
743    LLVM_DEBUG(dbgs() << "\tReachable " << BlockNamePrinter(From->getBlock())
744                      << " -> " << BlockNamePrinter(To->getBlock()) << "\n");
745    if (IsPostDom && UpdateRootsBeforeInsertion(DT, BUI, From, To)) return;
746    // DT.findNCD expects both pointers to be valid. When From is a virtual
747    // root, then its CFG block pointer is a nullptr, so we have to 'compute'
748    // the NCD manually.
749    const NodePtr NCDBlock =
750        (From->getBlock() && To->getBlock())
751            ? DT.findNearestCommonDominator(From->getBlock(), To->getBlock())
752            : nullptr;
753    assert(NCDBlock || DT.isPostDominator());
754    const TreeNodePtr NCD = DT.getNode(NCDBlock);
755    assert(NCD);
756
757    LLVM_DEBUG(dbgs() << "\t\tNCA == " << BlockNamePrinter(NCD) << "\n");
758    const unsigned NCDLevel = NCD->getLevel();
759
760    // Based on Lemma 2.5 from the second paper, after insertion of (From,To), v
761    // is affected iff depth(NCD)+1 < depth(v) && a path P from To to v exists
762    // where every w on P s.t. depth(v) <= depth(w)
763    //
764    // This reduces to a widest path problem (maximizing the depth of the
765    // minimum vertex in the path) which can be solved by a modified version of
766    // Dijkstra with a bucket queue (named depth-based search in the paper).
767
768    // To is in the path, so depth(NCD)+1 < depth(v) <= depth(To). Nothing
769    // affected if this does not hold.
770    if (NCDLevel + 1 >= To->getLevel())
771      return;
772
773    InsertionInfo II;
774    SmallVector<TreeNodePtr, 8> UnaffectedOnCurrentLevel;
775    II.Bucket.push(To);
776    II.Visited.insert(To);
777
778    while (!II.Bucket.empty()) {
779      TreeNodePtr TN = II.Bucket.top();
780      II.Bucket.pop();
781      II.Affected.push_back(TN);
782
783      const unsigned CurrentLevel = TN->getLevel();
784      LLVM_DEBUG(dbgs() << "Mark " << BlockNamePrinter(TN) <<
785                 "as affected, CurrentLevel " << CurrentLevel << "\n");
786
787      assert(TN->getBlock() && II.Visited.count(TN) && "Preconditions!");
788
789      while (true) {
790        // Unlike regular Dijkstra, we have an inner loop to expand more
791        // vertices. The first iteration is for the (affected) vertex popped
792        // from II.Bucket and the rest are for vertices in
793        // UnaffectedOnCurrentLevel, which may eventually expand to affected
794        // vertices.
795        //
796        // Invariant: there is an optimal path from `To` to TN with the minimum
797        // depth being CurrentLevel.
798        for (const NodePtr Succ :
799             ChildrenGetter<IsPostDom>::Get(TN->getBlock(), BUI)) {
800          const TreeNodePtr SuccTN = DT.getNode(Succ);
801          assert(SuccTN &&
802                 "Unreachable successor found at reachable insertion");
803          const unsigned SuccLevel = SuccTN->getLevel();
804
805          LLVM_DEBUG(dbgs() << "\tSuccessor " << BlockNamePrinter(Succ)
806                            << ", level = " << SuccLevel << "\n");
807
808          // There is an optimal path from `To` to Succ with the minimum depth
809          // being min(CurrentLevel, SuccLevel).
810          //
811          // If depth(NCD)+1 < depth(Succ) is not satisfied, Succ is unaffected
812          // and no affected vertex may be reached by a path passing through it.
813          // Stop here. Also, Succ may be visited by other predecessors but the
814          // first visit has the optimal path. Stop if Succ has been visited.
815          if (SuccLevel <= NCDLevel + 1 || !II.Visited.insert(SuccTN).second)
816            continue;
817
818          if (SuccLevel > CurrentLevel) {
819            // Succ is unaffected but it may (transitively) expand to affected
820            // vertices. Store it in UnaffectedOnCurrentLevel.
821            LLVM_DEBUG(dbgs() << "\t\tMarking visited not affected "
822                              << BlockNamePrinter(Succ) << "\n");
823            UnaffectedOnCurrentLevel.push_back(SuccTN);
824#ifndef NDEBUG
825            II.VisitedUnaffected.push_back(SuccTN);
826#endif
827          } else {
828            // The condition is satisfied (Succ is affected). Add Succ to the
829            // bucket queue.
830            LLVM_DEBUG(dbgs() << "\t\tAdd " << BlockNamePrinter(Succ)
831                              << " to a Bucket\n");
832            II.Bucket.push(SuccTN);
833          }
834        }
835
836        if (UnaffectedOnCurrentLevel.empty())
837          break;
838        TN = UnaffectedOnCurrentLevel.pop_back_val();
839        LLVM_DEBUG(dbgs() << " Next: " << BlockNamePrinter(TN) << "\n");
840      }
841    }
842
843    // Finish by updating immediate dominators and levels.
844    UpdateInsertion(DT, BUI, NCD, II);
845  }
846
847  // Updates immediate dominators and levels after insertion.
848  static void UpdateInsertion(DomTreeT &DT, const BatchUpdatePtr BUI,
849                              const TreeNodePtr NCD, InsertionInfo &II) {
850    LLVM_DEBUG(dbgs() << "Updating NCD = " << BlockNamePrinter(NCD) << "\n");
851
852    for (const TreeNodePtr TN : II.Affected) {
853      LLVM_DEBUG(dbgs() << "\tIDom(" << BlockNamePrinter(TN)
854                        << ") = " << BlockNamePrinter(NCD) << "\n");
855      TN->setIDom(NCD);
856    }
857
858#ifndef NDEBUG
859    for (const TreeNodePtr TN : II.VisitedUnaffected)
860      assert(TN->getLevel() == TN->getIDom()->getLevel() + 1 &&
861             "TN should have been updated by an affected ancestor");
862#endif
863
864    if (IsPostDom) UpdateRootsAfterUpdate(DT, BUI);
865  }
866
867  // Handles insertion to previously unreachable nodes.
868  static void InsertUnreachable(DomTreeT &DT, const BatchUpdatePtr BUI,
869                                const TreeNodePtr From, const NodePtr To) {
870    LLVM_DEBUG(dbgs() << "Inserting " << BlockNamePrinter(From)
871                      << " -> (unreachable) " << BlockNamePrinter(To) << "\n");
872
873    // Collect discovered edges to already reachable nodes.
874    SmallVector<std::pair<NodePtr, TreeNodePtr>, 8> DiscoveredEdgesToReachable;
875    // Discover and connect nodes that became reachable with the insertion.
876    ComputeUnreachableDominators(DT, BUI, To, From, DiscoveredEdgesToReachable);
877
878    LLVM_DEBUG(dbgs() << "Inserted " << BlockNamePrinter(From)
879                      << " -> (prev unreachable) " << BlockNamePrinter(To)
880                      << "\n");
881
882    // Used the discovered edges and inset discovered connecting (incoming)
883    // edges.
884    for (const auto &Edge : DiscoveredEdgesToReachable) {
885      LLVM_DEBUG(dbgs() << "\tInserting discovered connecting edge "
886                        << BlockNamePrinter(Edge.first) << " -> "
887                        << BlockNamePrinter(Edge.second) << "\n");
888      InsertReachable(DT, BUI, DT.getNode(Edge.first), Edge.second);
889    }
890  }
891
892  // Connects nodes that become reachable with an insertion.
893  static void ComputeUnreachableDominators(
894      DomTreeT &DT, const BatchUpdatePtr BUI, const NodePtr Root,
895      const TreeNodePtr Incoming,
896      SmallVectorImpl<std::pair<NodePtr, TreeNodePtr>>
897          &DiscoveredConnectingEdges) {
898    assert(!DT.getNode(Root) && "Root must not be reachable");
899
900    // Visit only previously unreachable nodes.
901    auto UnreachableDescender = [&DT, &DiscoveredConnectingEdges](NodePtr From,
902                                                                  NodePtr To) {
903      const TreeNodePtr ToTN = DT.getNode(To);
904      if (!ToTN) return true;
905
906      DiscoveredConnectingEdges.push_back({From, ToTN});
907      return false;
908    };
909
910    SemiNCAInfo SNCA(BUI);
911    SNCA.runDFS(Root, 0, UnreachableDescender, 0);
912    SNCA.runSemiNCA(DT);
913    SNCA.attachNewSubtree(DT, Incoming);
914
915    LLVM_DEBUG(dbgs() << "After adding unreachable nodes\n");
916  }
917
918  static void DeleteEdge(DomTreeT &DT, const BatchUpdatePtr BUI,
919                         const NodePtr From, const NodePtr To) {
920    assert(From && To && "Cannot disconnect nullptrs");
921    LLVM_DEBUG(dbgs() << "Deleting edge " << BlockNamePrinter(From) << " -> "
922                      << BlockNamePrinter(To) << "\n");
923
924#ifndef NDEBUG
925    // Ensure that the edge was in fact deleted from the CFG before informing
926    // the DomTree about it.
927    // The check is O(N), so run it only in debug configuration.
928    auto IsSuccessor = [BUI](const NodePtr SuccCandidate, const NodePtr Of) {
929      auto Successors = ChildrenGetter<IsPostDom>::Get(Of, BUI);
930      return llvm::find(Successors, SuccCandidate) != Successors.end();
931    };
932    (void)IsSuccessor;
933    assert(!IsSuccessor(To, From) && "Deleted edge still exists in the CFG!");
934#endif
935
936    const TreeNodePtr FromTN = DT.getNode(From);
937    // Deletion in an unreachable subtree -- nothing to do.
938    if (!FromTN) return;
939
940    const TreeNodePtr ToTN = DT.getNode(To);
941    if (!ToTN) {
942      LLVM_DEBUG(
943          dbgs() << "\tTo (" << BlockNamePrinter(To)
944                 << ") already unreachable -- there is no edge to delete\n");
945      return;
946    }
947
948    const NodePtr NCDBlock = DT.findNearestCommonDominator(From, To);
949    const TreeNodePtr NCD = DT.getNode(NCDBlock);
950
951    // If To dominates From -- nothing to do.
952    if (ToTN != NCD) {
953      DT.DFSInfoValid = false;
954
955      const TreeNodePtr ToIDom = ToTN->getIDom();
956      LLVM_DEBUG(dbgs() << "\tNCD " << BlockNamePrinter(NCD) << ", ToIDom "
957                        << BlockNamePrinter(ToIDom) << "\n");
958
959      // To remains reachable after deletion.
960      // (Based on the caption under Figure 4. from the second paper.)
961      if (FromTN != ToIDom || HasProperSupport(DT, BUI, ToTN))
962        DeleteReachable(DT, BUI, FromTN, ToTN);
963      else
964        DeleteUnreachable(DT, BUI, ToTN);
965    }
966
967    if (IsPostDom) UpdateRootsAfterUpdate(DT, BUI);
968  }
969
970  // Handles deletions that leave destination nodes reachable.
971  static void DeleteReachable(DomTreeT &DT, const BatchUpdatePtr BUI,
972                              const TreeNodePtr FromTN,
973                              const TreeNodePtr ToTN) {
974    LLVM_DEBUG(dbgs() << "Deleting reachable " << BlockNamePrinter(FromTN)
975                      << " -> " << BlockNamePrinter(ToTN) << "\n");
976    LLVM_DEBUG(dbgs() << "\tRebuilding subtree\n");
977
978    // Find the top of the subtree that needs to be rebuilt.
979    // (Based on the lemma 2.6 from the second paper.)
980    const NodePtr ToIDom =
981        DT.findNearestCommonDominator(FromTN->getBlock(), ToTN->getBlock());
982    assert(ToIDom || DT.isPostDominator());
983    const TreeNodePtr ToIDomTN = DT.getNode(ToIDom);
984    assert(ToIDomTN);
985    const TreeNodePtr PrevIDomSubTree = ToIDomTN->getIDom();
986    // Top of the subtree to rebuild is the root node. Rebuild the tree from
987    // scratch.
988    if (!PrevIDomSubTree) {
989      LLVM_DEBUG(dbgs() << "The entire tree needs to be rebuilt\n");
990      CalculateFromScratch(DT, BUI);
991      return;
992    }
993
994    // Only visit nodes in the subtree starting at To.
995    const unsigned Level = ToIDomTN->getLevel();
996    auto DescendBelow = [Level, &DT](NodePtr, NodePtr To) {
997      return DT.getNode(To)->getLevel() > Level;
998    };
999
1000    LLVM_DEBUG(dbgs() << "\tTop of subtree: " << BlockNamePrinter(ToIDomTN)
1001                      << "\n");
1002
1003    SemiNCAInfo SNCA(BUI);
1004    SNCA.runDFS(ToIDom, 0, DescendBelow, 0);
1005    LLVM_DEBUG(dbgs() << "\tRunning Semi-NCA\n");
1006    SNCA.runSemiNCA(DT, Level);
1007    SNCA.reattachExistingSubtree(DT, PrevIDomSubTree);
1008  }
1009
1010  // Checks if a node has proper support, as defined on the page 3 and later
1011  // explained on the page 7 of the second paper.
1012  static bool HasProperSupport(DomTreeT &DT, const BatchUpdatePtr BUI,
1013                               const TreeNodePtr TN) {
1014    LLVM_DEBUG(dbgs() << "IsReachableFromIDom " << BlockNamePrinter(TN)
1015                      << "\n");
1016    for (const NodePtr Pred :
1017         ChildrenGetter<!IsPostDom>::Get(TN->getBlock(), BUI)) {
1018      LLVM_DEBUG(dbgs() << "\tPred " << BlockNamePrinter(Pred) << "\n");
1019      if (!DT.getNode(Pred)) continue;
1020
1021      const NodePtr Support =
1022          DT.findNearestCommonDominator(TN->getBlock(), Pred);
1023      LLVM_DEBUG(dbgs() << "\tSupport " << BlockNamePrinter(Support) << "\n");
1024      if (Support != TN->getBlock()) {
1025        LLVM_DEBUG(dbgs() << "\t" << BlockNamePrinter(TN)
1026                          << " is reachable from support "
1027                          << BlockNamePrinter(Support) << "\n");
1028        return true;
1029      }
1030    }
1031
1032    return false;
1033  }
1034
1035  // Handle deletions that make destination node unreachable.
1036  // (Based on the lemma 2.7 from the second paper.)
1037  static void DeleteUnreachable(DomTreeT &DT, const BatchUpdatePtr BUI,
1038                                const TreeNodePtr ToTN) {
1039    LLVM_DEBUG(dbgs() << "Deleting unreachable subtree "
1040                      << BlockNamePrinter(ToTN) << "\n");
1041    assert(ToTN);
1042    assert(ToTN->getBlock());
1043
1044    if (IsPostDom) {
1045      // Deletion makes a region reverse-unreachable and creates a new root.
1046      // Simulate that by inserting an edge from the virtual root to ToTN and
1047      // adding it as a new root.
1048      LLVM_DEBUG(dbgs() << "\tDeletion made a region reverse-unreachable\n");
1049      LLVM_DEBUG(dbgs() << "\tAdding new root " << BlockNamePrinter(ToTN)
1050                        << "\n");
1051      DT.Roots.push_back(ToTN->getBlock());
1052      InsertReachable(DT, BUI, DT.getNode(nullptr), ToTN);
1053      return;
1054    }
1055
1056    SmallVector<NodePtr, 16> AffectedQueue;
1057    const unsigned Level = ToTN->getLevel();
1058
1059    // Traverse destination node's descendants with greater level in the tree
1060    // and collect visited nodes.
1061    auto DescendAndCollect = [Level, &AffectedQueue, &DT](NodePtr, NodePtr To) {
1062      const TreeNodePtr TN = DT.getNode(To);
1063      assert(TN);
1064      if (TN->getLevel() > Level) return true;
1065      if (llvm::find(AffectedQueue, To) == AffectedQueue.end())
1066        AffectedQueue.push_back(To);
1067
1068      return false;
1069    };
1070
1071    SemiNCAInfo SNCA(BUI);
1072    unsigned LastDFSNum =
1073        SNCA.runDFS(ToTN->getBlock(), 0, DescendAndCollect, 0);
1074
1075    TreeNodePtr MinNode = ToTN;
1076
1077    // Identify the top of the subtree to rebuild by finding the NCD of all
1078    // the affected nodes.
1079    for (const NodePtr N : AffectedQueue) {
1080      const TreeNodePtr TN = DT.getNode(N);
1081      const NodePtr NCDBlock =
1082          DT.findNearestCommonDominator(TN->getBlock(), ToTN->getBlock());
1083      assert(NCDBlock || DT.isPostDominator());
1084      const TreeNodePtr NCD = DT.getNode(NCDBlock);
1085      assert(NCD);
1086
1087      LLVM_DEBUG(dbgs() << "Processing affected node " << BlockNamePrinter(TN)
1088                        << " with NCD = " << BlockNamePrinter(NCD)
1089                        << ", MinNode =" << BlockNamePrinter(MinNode) << "\n");
1090      if (NCD != TN && NCD->getLevel() < MinNode->getLevel()) MinNode = NCD;
1091    }
1092
1093    // Root reached, rebuild the whole tree from scratch.
1094    if (!MinNode->getIDom()) {
1095      LLVM_DEBUG(dbgs() << "The entire tree needs to be rebuilt\n");
1096      CalculateFromScratch(DT, BUI);
1097      return;
1098    }
1099
1100    // Erase the unreachable subtree in reverse preorder to process all children
1101    // before deleting their parent.
1102    for (unsigned i = LastDFSNum; i > 0; --i) {
1103      const NodePtr N = SNCA.NumToNode[i];
1104      const TreeNodePtr TN = DT.getNode(N);
1105      LLVM_DEBUG(dbgs() << "Erasing node " << BlockNamePrinter(TN) << "\n");
1106
1107      EraseNode(DT, TN);
1108    }
1109
1110    // The affected subtree start at the To node -- there's no extra work to do.
1111    if (MinNode == ToTN) return;
1112
1113    LLVM_DEBUG(dbgs() << "DeleteUnreachable: running DFS with MinNode = "
1114                      << BlockNamePrinter(MinNode) << "\n");
1115    const unsigned MinLevel = MinNode->getLevel();
1116    const TreeNodePtr PrevIDom = MinNode->getIDom();
1117    assert(PrevIDom);
1118    SNCA.clear();
1119
1120    // Identify nodes that remain in the affected subtree.
1121    auto DescendBelow = [MinLevel, &DT](NodePtr, NodePtr To) {
1122      const TreeNodePtr ToTN = DT.getNode(To);
1123      return ToTN && ToTN->getLevel() > MinLevel;
1124    };
1125    SNCA.runDFS(MinNode->getBlock(), 0, DescendBelow, 0);
1126
1127    LLVM_DEBUG(dbgs() << "Previous IDom(MinNode) = "
1128                      << BlockNamePrinter(PrevIDom) << "\nRunning Semi-NCA\n");
1129
1130    // Rebuild the remaining part of affected subtree.
1131    SNCA.runSemiNCA(DT, MinLevel);
1132    SNCA.reattachExistingSubtree(DT, PrevIDom);
1133  }
1134
1135  // Removes leaf tree nodes from the dominator tree.
1136  static void EraseNode(DomTreeT &DT, const TreeNodePtr TN) {
1137    assert(TN);
1138    assert(TN->getNumChildren() == 0 && "Not a tree leaf");
1139
1140    const TreeNodePtr IDom = TN->getIDom();
1141    assert(IDom);
1142
1143    auto ChIt = llvm::find(IDom->Children, TN);
1144    assert(ChIt != IDom->Children.end());
1145    std::swap(*ChIt, IDom->Children.back());
1146    IDom->Children.pop_back();
1147
1148    DT.DomTreeNodes.erase(TN->getBlock());
1149  }
1150
1151  //~~
1152  //===--------------------- DomTree Batch Updater --------------------------===
1153  //~~
1154
1155  static void ApplyUpdates(DomTreeT &DT, ArrayRef<UpdateT> Updates) {
1156    const size_t NumUpdates = Updates.size();
1157    if (NumUpdates == 0)
1158      return;
1159
1160    // Take the fast path for a single update and avoid running the batch update
1161    // machinery.
1162    if (NumUpdates == 1) {
1163      const auto &Update = Updates.front();
1164      if (Update.getKind() == UpdateKind::Insert)
1165        DT.insertEdge(Update.getFrom(), Update.getTo());
1166      else
1167        DT.deleteEdge(Update.getFrom(), Update.getTo());
1168
1169      return;
1170    }
1171
1172    BatchUpdateInfo BUI;
1173    LLVM_DEBUG(dbgs() << "Legalizing " << BUI.Updates.size() << " updates\n");
1174    cfg::LegalizeUpdates<NodePtr>(Updates, BUI.Updates, IsPostDom);
1175
1176    const size_t NumLegalized = BUI.Updates.size();
1177    BUI.FutureSuccessors.reserve(NumLegalized);
1178    BUI.FuturePredecessors.reserve(NumLegalized);
1179
1180    // Use the legalized future updates to initialize future successors and
1181    // predecessors. Note that these sets will only decrease size over time, as
1182    // the next CFG snapshots slowly approach the actual (current) CFG.
1183    for (UpdateT &U : BUI.Updates) {
1184      BUI.FutureSuccessors[U.getFrom()].push_back({U.getTo(), U.getKind()});
1185      BUI.FuturePredecessors[U.getTo()].push_back({U.getFrom(), U.getKind()});
1186    }
1187
1188#if 0
1189    // FIXME: The LLVM_DEBUG macro only plays well with a modular
1190    // build of LLVM when the header is marked as textual, but doing
1191    // so causes redefinition errors.
1192    LLVM_DEBUG(dbgs() << "About to apply " << NumLegalized << " updates\n");
1193    LLVM_DEBUG(if (NumLegalized < 32) for (const auto &U
1194                                           : reverse(BUI.Updates)) {
1195      dbgs() << "\t";
1196      U.dump();
1197      dbgs() << "\n";
1198    });
1199    LLVM_DEBUG(dbgs() << "\n");
1200#endif
1201
1202    // Recalculate the DominatorTree when the number of updates
1203    // exceeds a threshold, which usually makes direct updating slower than
1204    // recalculation. We select this threshold proportional to the
1205    // size of the DominatorTree. The constant is selected
1206    // by choosing the one with an acceptable performance on some real-world
1207    // inputs.
1208
1209    // Make unittests of the incremental algorithm work
1210    if (DT.DomTreeNodes.size() <= 100) {
1211      if (NumLegalized > DT.DomTreeNodes.size())
1212        CalculateFromScratch(DT, &BUI);
1213    } else if (NumLegalized > DT.DomTreeNodes.size() / 40)
1214      CalculateFromScratch(DT, &BUI);
1215
1216    // If the DominatorTree was recalculated at some point, stop the batch
1217    // updates. Full recalculations ignore batch updates and look at the actual
1218    // CFG.
1219    for (size_t i = 0; i < NumLegalized && !BUI.IsRecalculated; ++i)
1220      ApplyNextUpdate(DT, BUI);
1221  }
1222
1223  static void ApplyNextUpdate(DomTreeT &DT, BatchUpdateInfo &BUI) {
1224    assert(!BUI.Updates.empty() && "No updates to apply!");
1225    UpdateT CurrentUpdate = BUI.Updates.pop_back_val();
1226#if 0
1227    // FIXME: The LLVM_DEBUG macro only plays well with a modular
1228    // build of LLVM when the header is marked as textual, but doing
1229    // so causes redefinition errors.
1230    LLVM_DEBUG(dbgs() << "Applying update: ");
1231    LLVM_DEBUG(CurrentUpdate.dump(); dbgs() << "\n");
1232#endif
1233
1234    // Move to the next snapshot of the CFG by removing the reverse-applied
1235    // current update. Since updates are performed in the same order they are
1236    // legalized it's sufficient to pop the last item here.
1237    auto &FS = BUI.FutureSuccessors[CurrentUpdate.getFrom()];
1238    assert(FS.back().getPointer() == CurrentUpdate.getTo() &&
1239           FS.back().getInt() == CurrentUpdate.getKind());
1240    FS.pop_back();
1241    if (FS.empty()) BUI.FutureSuccessors.erase(CurrentUpdate.getFrom());
1242
1243    auto &FP = BUI.FuturePredecessors[CurrentUpdate.getTo()];
1244    assert(FP.back().getPointer() == CurrentUpdate.getFrom() &&
1245           FP.back().getInt() == CurrentUpdate.getKind());
1246    FP.pop_back();
1247    if (FP.empty()) BUI.FuturePredecessors.erase(CurrentUpdate.getTo());
1248
1249    if (CurrentUpdate.getKind() == UpdateKind::Insert)
1250      InsertEdge(DT, &BUI, CurrentUpdate.getFrom(), CurrentUpdate.getTo());
1251    else
1252      DeleteEdge(DT, &BUI, CurrentUpdate.getFrom(), CurrentUpdate.getTo());
1253  }
1254
1255  //~~
1256  //===--------------- DomTree correctness verification ---------------------===
1257  //~~
1258
1259  // Check if the tree has correct roots. A DominatorTree always has a single
1260  // root which is the function's entry node. A PostDominatorTree can have
1261  // multiple roots - one for each node with no successors and for infinite
1262  // loops.
1263  // Running time: O(N).
1264  bool verifyRoots(const DomTreeT &DT) {
1265    if (!DT.Parent && !DT.Roots.empty()) {
1266      errs() << "Tree has no parent but has roots!\n";
1267      errs().flush();
1268      return false;
1269    }
1270
1271    if (!IsPostDom) {
1272      if (DT.Roots.empty()) {
1273        errs() << "Tree doesn't have a root!\n";
1274        errs().flush();
1275        return false;
1276      }
1277
1278      if (DT.getRoot() != GetEntryNode(DT)) {
1279        errs() << "Tree's root is not its parent's entry node!\n";
1280        errs().flush();
1281        return false;
1282      }
1283    }
1284
1285    RootsT ComputedRoots = FindRoots(DT, nullptr);
1286    if (!isPermutation(DT.Roots, ComputedRoots)) {
1287      errs() << "Tree has different roots than freshly computed ones!\n";
1288      errs() << "\tPDT roots: ";
1289      for (const NodePtr N : DT.Roots) errs() << BlockNamePrinter(N) << ", ";
1290      errs() << "\n\tComputed roots: ";
1291      for (const NodePtr N : ComputedRoots)
1292        errs() << BlockNamePrinter(N) << ", ";
1293      errs() << "\n";
1294      errs().flush();
1295      return false;
1296    }
1297
1298    return true;
1299  }
1300
1301  // Checks if the tree contains all reachable nodes in the input graph.
1302  // Running time: O(N).
1303  bool verifyReachability(const DomTreeT &DT) {
1304    clear();
1305    doFullDFSWalk(DT, AlwaysDescend);
1306
1307    for (auto &NodeToTN : DT.DomTreeNodes) {
1308      const TreeNodePtr TN = NodeToTN.second.get();
1309      const NodePtr BB = TN->getBlock();
1310
1311      // Virtual root has a corresponding virtual CFG node.
1312      if (DT.isVirtualRoot(TN)) continue;
1313
1314      if (NodeToInfo.count(BB) == 0) {
1315        errs() << "DomTree node " << BlockNamePrinter(BB)
1316               << " not found by DFS walk!\n";
1317        errs().flush();
1318
1319        return false;
1320      }
1321    }
1322
1323    for (const NodePtr N : NumToNode) {
1324      if (N && !DT.getNode(N)) {
1325        errs() << "CFG node " << BlockNamePrinter(N)
1326               << " not found in the DomTree!\n";
1327        errs().flush();
1328
1329        return false;
1330      }
1331    }
1332
1333    return true;
1334  }
1335
1336  // Check if for every parent with a level L in the tree all of its children
1337  // have level L + 1.
1338  // Running time: O(N).
1339  static bool VerifyLevels(const DomTreeT &DT) {
1340    for (auto &NodeToTN : DT.DomTreeNodes) {
1341      const TreeNodePtr TN = NodeToTN.second.get();
1342      const NodePtr BB = TN->getBlock();
1343      if (!BB) continue;
1344
1345      const TreeNodePtr IDom = TN->getIDom();
1346      if (!IDom && TN->getLevel() != 0) {
1347        errs() << "Node without an IDom " << BlockNamePrinter(BB)
1348               << " has a nonzero level " << TN->getLevel() << "!\n";
1349        errs().flush();
1350
1351        return false;
1352      }
1353
1354      if (IDom && TN->getLevel() != IDom->getLevel() + 1) {
1355        errs() << "Node " << BlockNamePrinter(BB) << " has level "
1356               << TN->getLevel() << " while its IDom "
1357               << BlockNamePrinter(IDom->getBlock()) << " has level "
1358               << IDom->getLevel() << "!\n";
1359        errs().flush();
1360
1361        return false;
1362      }
1363    }
1364
1365    return true;
1366  }
1367
1368  // Check if the computed DFS numbers are correct. Note that DFS info may not
1369  // be valid, and when that is the case, we don't verify the numbers.
1370  // Running time: O(N log(N)).
1371  static bool VerifyDFSNumbers(const DomTreeT &DT) {
1372    if (!DT.DFSInfoValid || !DT.Parent)
1373      return true;
1374
1375    const NodePtr RootBB = IsPostDom ? nullptr : DT.getRoots()[0];
1376    const TreeNodePtr Root = DT.getNode(RootBB);
1377
1378    auto PrintNodeAndDFSNums = [](const TreeNodePtr TN) {
1379      errs() << BlockNamePrinter(TN) << " {" << TN->getDFSNumIn() << ", "
1380             << TN->getDFSNumOut() << '}';
1381    };
1382
1383    // Verify the root's DFS In number. Although DFS numbering would also work
1384    // if we started from some other value, we assume 0-based numbering.
1385    if (Root->getDFSNumIn() != 0) {
1386      errs() << "DFSIn number for the tree root is not:\n\t";
1387      PrintNodeAndDFSNums(Root);
1388      errs() << '\n';
1389      errs().flush();
1390      return false;
1391    }
1392
1393    // For each tree node verify if children's DFS numbers cover their parent's
1394    // DFS numbers with no gaps.
1395    for (const auto &NodeToTN : DT.DomTreeNodes) {
1396      const TreeNodePtr Node = NodeToTN.second.get();
1397
1398      // Handle tree leaves.
1399      if (Node->getChildren().empty()) {
1400        if (Node->getDFSNumIn() + 1 != Node->getDFSNumOut()) {
1401          errs() << "Tree leaf should have DFSOut = DFSIn + 1:\n\t";
1402          PrintNodeAndDFSNums(Node);
1403          errs() << '\n';
1404          errs().flush();
1405          return false;
1406        }
1407
1408        continue;
1409      }
1410
1411      // Make a copy and sort it such that it is possible to check if there are
1412      // no gaps between DFS numbers of adjacent children.
1413      SmallVector<TreeNodePtr, 8> Children(Node->begin(), Node->end());
1414      llvm::sort(Children, [](const TreeNodePtr Ch1, const TreeNodePtr Ch2) {
1415        return Ch1->getDFSNumIn() < Ch2->getDFSNumIn();
1416      });
1417
1418      auto PrintChildrenError = [Node, &Children, PrintNodeAndDFSNums](
1419          const TreeNodePtr FirstCh, const TreeNodePtr SecondCh) {
1420        assert(FirstCh);
1421
1422        errs() << "Incorrect DFS numbers for:\n\tParent ";
1423        PrintNodeAndDFSNums(Node);
1424
1425        errs() << "\n\tChild ";
1426        PrintNodeAndDFSNums(FirstCh);
1427
1428        if (SecondCh) {
1429          errs() << "\n\tSecond child ";
1430          PrintNodeAndDFSNums(SecondCh);
1431        }
1432
1433        errs() << "\nAll children: ";
1434        for (const TreeNodePtr Ch : Children) {
1435          PrintNodeAndDFSNums(Ch);
1436          errs() << ", ";
1437        }
1438
1439        errs() << '\n';
1440        errs().flush();
1441      };
1442
1443      if (Children.front()->getDFSNumIn() != Node->getDFSNumIn() + 1) {
1444        PrintChildrenError(Children.front(), nullptr);
1445        return false;
1446      }
1447
1448      if (Children.back()->getDFSNumOut() + 1 != Node->getDFSNumOut()) {
1449        PrintChildrenError(Children.back(), nullptr);
1450        return false;
1451      }
1452
1453      for (size_t i = 0, e = Children.size() - 1; i != e; ++i) {
1454        if (Children[i]->getDFSNumOut() + 1 != Children[i + 1]->getDFSNumIn()) {
1455          PrintChildrenError(Children[i], Children[i + 1]);
1456          return false;
1457        }
1458      }
1459    }
1460
1461    return true;
1462  }
1463
1464  // The below routines verify the correctness of the dominator tree relative to
1465  // the CFG it's coming from.  A tree is a dominator tree iff it has two
1466  // properties, called the parent property and the sibling property.  Tarjan
1467  // and Lengauer prove (but don't explicitly name) the properties as part of
1468  // the proofs in their 1972 paper, but the proofs are mostly part of proving
1469  // things about semidominators and idoms, and some of them are simply asserted
1470  // based on even earlier papers (see, e.g., lemma 2).  Some papers refer to
1471  // these properties as "valid" and "co-valid".  See, e.g., "Dominators,
1472  // directed bipolar orders, and independent spanning trees" by Loukas
1473  // Georgiadis and Robert E. Tarjan, as well as "Dominator Tree Verification
1474  // and Vertex-Disjoint Paths " by the same authors.
1475
1476  // A very simple and direct explanation of these properties can be found in
1477  // "An Experimental Study of Dynamic Dominators", found at
1478  // https://arxiv.org/abs/1604.02711
1479
1480  // The easiest way to think of the parent property is that it's a requirement
1481  // of being a dominator.  Let's just take immediate dominators.  For PARENT to
1482  // be an immediate dominator of CHILD, all paths in the CFG must go through
1483  // PARENT before they hit CHILD.  This implies that if you were to cut PARENT
1484  // out of the CFG, there should be no paths to CHILD that are reachable.  If
1485  // there are, then you now have a path from PARENT to CHILD that goes around
1486  // PARENT and still reaches CHILD, which by definition, means PARENT can't be
1487  // a dominator of CHILD (let alone an immediate one).
1488
1489  // The sibling property is similar.  It says that for each pair of sibling
1490  // nodes in the dominator tree (LEFT and RIGHT) , they must not dominate each
1491  // other.  If sibling LEFT dominated sibling RIGHT, it means there are no
1492  // paths in the CFG from sibling LEFT to sibling RIGHT that do not go through
1493  // LEFT, and thus, LEFT is really an ancestor (in the dominator tree) of
1494  // RIGHT, not a sibling.
1495
1496  // It is possible to verify the parent and sibling properties in
1497  // linear time, but the algorithms are complex. Instead, we do it in a
1498  // straightforward N^2 and N^3 way below, using direct path reachability.
1499
1500  // Checks if the tree has the parent property: if for all edges from V to W in
1501  // the input graph, such that V is reachable, the parent of W in the tree is
1502  // an ancestor of V in the tree.
1503  // Running time: O(N^2).
1504  //
1505  // This means that if a node gets disconnected from the graph, then all of
1506  // the nodes it dominated previously will now become unreachable.
1507  bool verifyParentProperty(const DomTreeT &DT) {
1508    for (auto &NodeToTN : DT.DomTreeNodes) {
1509      const TreeNodePtr TN = NodeToTN.second.get();
1510      const NodePtr BB = TN->getBlock();
1511      if (!BB || TN->getChildren().empty()) continue;
1512
1513      LLVM_DEBUG(dbgs() << "Verifying parent property of node "
1514                        << BlockNamePrinter(TN) << "\n");
1515      clear();
1516      doFullDFSWalk(DT, [BB](NodePtr From, NodePtr To) {
1517        return From != BB && To != BB;
1518      });
1519
1520      for (TreeNodePtr Child : TN->getChildren())
1521        if (NodeToInfo.count(Child->getBlock()) != 0) {
1522          errs() << "Child " << BlockNamePrinter(Child)
1523                 << " reachable after its parent " << BlockNamePrinter(BB)
1524                 << " is removed!\n";
1525          errs().flush();
1526
1527          return false;
1528        }
1529    }
1530
1531    return true;
1532  }
1533
1534  // Check if the tree has sibling property: if a node V does not dominate a
1535  // node W for all siblings V and W in the tree.
1536  // Running time: O(N^3).
1537  //
1538  // This means that if a node gets disconnected from the graph, then all of its
1539  // siblings will now still be reachable.
1540  bool verifySiblingProperty(const DomTreeT &DT) {
1541    for (auto &NodeToTN : DT.DomTreeNodes) {
1542      const TreeNodePtr TN = NodeToTN.second.get();
1543      const NodePtr BB = TN->getBlock();
1544      if (!BB || TN->getChildren().empty()) continue;
1545
1546      const auto &Siblings = TN->getChildren();
1547      for (const TreeNodePtr N : Siblings) {
1548        clear();
1549        NodePtr BBN = N->getBlock();
1550        doFullDFSWalk(DT, [BBN](NodePtr From, NodePtr To) {
1551          return From != BBN && To != BBN;
1552        });
1553
1554        for (const TreeNodePtr S : Siblings) {
1555          if (S == N) continue;
1556
1557          if (NodeToInfo.count(S->getBlock()) == 0) {
1558            errs() << "Node " << BlockNamePrinter(S)
1559                   << " not reachable when its sibling " << BlockNamePrinter(N)
1560                   << " is removed!\n";
1561            errs().flush();
1562
1563            return false;
1564          }
1565        }
1566      }
1567    }
1568
1569    return true;
1570  }
1571
1572  // Check if the given tree is the same as a freshly computed one for the same
1573  // Parent.
1574  // Running time: O(N^2), but faster in practise (same as tree construction).
1575  //
1576  // Note that this does not check if that the tree construction algorithm is
1577  // correct and should be only used for fast (but possibly unsound)
1578  // verification.
1579  static bool IsSameAsFreshTree(const DomTreeT &DT) {
1580    DomTreeT FreshTree;
1581    FreshTree.recalculate(*DT.Parent);
1582    const bool Different = DT.compare(FreshTree);
1583
1584    if (Different) {
1585      errs() << (DT.isPostDominator() ? "Post" : "")
1586             << "DominatorTree is different than a freshly computed one!\n"
1587             << "\tCurrent:\n";
1588      DT.print(errs());
1589      errs() << "\n\tFreshly computed tree:\n";
1590      FreshTree.print(errs());
1591      errs().flush();
1592    }
1593
1594    return !Different;
1595  }
1596};
1597
1598template <class DomTreeT>
1599void Calculate(DomTreeT &DT) {
1600  SemiNCAInfo<DomTreeT>::CalculateFromScratch(DT, nullptr);
1601}
1602
1603template <typename DomTreeT>
1604void CalculateWithUpdates(DomTreeT &DT,
1605                          ArrayRef<typename DomTreeT::UpdateType> Updates) {
1606  // TODO: Move BUI creation in common method, reuse in ApplyUpdates.
1607  typename SemiNCAInfo<DomTreeT>::BatchUpdateInfo BUI;
1608  LLVM_DEBUG(dbgs() << "Legalizing " << BUI.Updates.size() << " updates\n");
1609  cfg::LegalizeUpdates<typename DomTreeT::NodePtr>(Updates, BUI.Updates,
1610                                                   DomTreeT::IsPostDominator);
1611  const size_t NumLegalized = BUI.Updates.size();
1612  BUI.FutureSuccessors.reserve(NumLegalized);
1613  BUI.FuturePredecessors.reserve(NumLegalized);
1614  for (auto &U : BUI.Updates) {
1615    BUI.FutureSuccessors[U.getFrom()].push_back({U.getTo(), U.getKind()});
1616    BUI.FuturePredecessors[U.getTo()].push_back({U.getFrom(), U.getKind()});
1617  }
1618
1619  SemiNCAInfo<DomTreeT>::CalculateFromScratch(DT, &BUI);
1620}
1621
1622template <class DomTreeT>
1623void InsertEdge(DomTreeT &DT, typename DomTreeT::NodePtr From,
1624                typename DomTreeT::NodePtr To) {
1625  if (DT.isPostDominator()) std::swap(From, To);
1626  SemiNCAInfo<DomTreeT>::InsertEdge(DT, nullptr, From, To);
1627}
1628
1629template <class DomTreeT>
1630void DeleteEdge(DomTreeT &DT, typename DomTreeT::NodePtr From,
1631                typename DomTreeT::NodePtr To) {
1632  if (DT.isPostDominator()) std::swap(From, To);
1633  SemiNCAInfo<DomTreeT>::DeleteEdge(DT, nullptr, From, To);
1634}
1635
1636template <class DomTreeT>
1637void ApplyUpdates(DomTreeT &DT,
1638                  ArrayRef<typename DomTreeT::UpdateType> Updates) {
1639  SemiNCAInfo<DomTreeT>::ApplyUpdates(DT, Updates);
1640}
1641
1642template <class DomTreeT>
1643bool Verify(const DomTreeT &DT, typename DomTreeT::VerificationLevel VL) {
1644  SemiNCAInfo<DomTreeT> SNCA(nullptr);
1645
1646  // Simplist check is to compare against a new tree. This will also
1647  // usefully print the old and new trees, if they are different.
1648  if (!SNCA.IsSameAsFreshTree(DT))
1649    return false;
1650
1651  // Common checks to verify the properties of the tree. O(N log N) at worst
1652  if (!SNCA.verifyRoots(DT) || !SNCA.verifyReachability(DT) ||
1653      !SNCA.VerifyLevels(DT) || !SNCA.VerifyDFSNumbers(DT))
1654    return false;
1655
1656  // Extra checks depending on VerificationLevel. Up to O(N^3)
1657  if (VL == DomTreeT::VerificationLevel::Basic ||
1658      VL == DomTreeT::VerificationLevel::Full)
1659    if (!SNCA.verifyParentProperty(DT))
1660      return false;
1661  if (VL == DomTreeT::VerificationLevel::Full)
1662    if (!SNCA.verifySiblingProperty(DT))
1663      return false;
1664
1665  return true;
1666}
1667
1668}  // namespace DomTreeBuilder
1669}  // namespace llvm
1670
1671#undef DEBUG_TYPE
1672
1673#endif
1674