Allocator.h revision 360784
1//===- Allocator.h - Simple memory allocation abstraction -------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8/// \file
9///
10/// This file defines the MallocAllocator and BumpPtrAllocator interfaces. Both
11/// of these conform to an LLVM "Allocator" concept which consists of an
12/// Allocate method accepting a size and alignment, and a Deallocate accepting
13/// a pointer and size. Further, the LLVM "Allocator" concept has overloads of
14/// Allocate and Deallocate for setting size and alignment based on the final
15/// type. These overloads are typically provided by a base class template \c
16/// AllocatorBase.
17///
18//===----------------------------------------------------------------------===//
19
20#ifndef LLVM_SUPPORT_ALLOCATOR_H
21#define LLVM_SUPPORT_ALLOCATOR_H
22
23#include "llvm/ADT/Optional.h"
24#include "llvm/ADT/SmallVector.h"
25#include "llvm/Support/Alignment.h"
26#include "llvm/Support/Compiler.h"
27#include "llvm/Support/ErrorHandling.h"
28#include "llvm/Support/MathExtras.h"
29#include "llvm/Support/MemAlloc.h"
30#include <algorithm>
31#include <cassert>
32#include <cstddef>
33#include <cstdint>
34#include <cstdlib>
35#include <iterator>
36#include <type_traits>
37#include <utility>
38
39namespace llvm {
40
41/// CRTP base class providing obvious overloads for the core \c
42/// Allocate() methods of LLVM-style allocators.
43///
44/// This base class both documents the full public interface exposed by all
45/// LLVM-style allocators, and redirects all of the overloads to a single core
46/// set of methods which the derived class must define.
47template <typename DerivedT> class AllocatorBase {
48public:
49  /// Allocate \a Size bytes of \a Alignment aligned memory. This method
50  /// must be implemented by \c DerivedT.
51  void *Allocate(size_t Size, size_t Alignment) {
52#ifdef __clang__
53    static_assert(static_cast<void *(AllocatorBase::*)(size_t, size_t)>(
54                      &AllocatorBase::Allocate) !=
55                      static_cast<void *(DerivedT::*)(size_t, size_t)>(
56                          &DerivedT::Allocate),
57                  "Class derives from AllocatorBase without implementing the "
58                  "core Allocate(size_t, size_t) overload!");
59#endif
60    return static_cast<DerivedT *>(this)->Allocate(Size, Alignment);
61  }
62
63  /// Deallocate \a Ptr to \a Size bytes of memory allocated by this
64  /// allocator.
65  void Deallocate(const void *Ptr, size_t Size) {
66#ifdef __clang__
67    static_assert(static_cast<void (AllocatorBase::*)(const void *, size_t)>(
68                      &AllocatorBase::Deallocate) !=
69                      static_cast<void (DerivedT::*)(const void *, size_t)>(
70                          &DerivedT::Deallocate),
71                  "Class derives from AllocatorBase without implementing the "
72                  "core Deallocate(void *) overload!");
73#endif
74    return static_cast<DerivedT *>(this)->Deallocate(Ptr, Size);
75  }
76
77  // The rest of these methods are helpers that redirect to one of the above
78  // core methods.
79
80  /// Allocate space for a sequence of objects without constructing them.
81  template <typename T> T *Allocate(size_t Num = 1) {
82    return static_cast<T *>(Allocate(Num * sizeof(T), alignof(T)));
83  }
84
85  /// Deallocate space for a sequence of objects without constructing them.
86  template <typename T>
87  typename std::enable_if<
88      !std::is_same<typename std::remove_cv<T>::type, void>::value, void>::type
89  Deallocate(T *Ptr, size_t Num = 1) {
90    Deallocate(static_cast<const void *>(Ptr), Num * sizeof(T));
91  }
92};
93
94class MallocAllocator : public AllocatorBase<MallocAllocator> {
95public:
96  void Reset() {}
97
98  LLVM_ATTRIBUTE_RETURNS_NONNULL void *Allocate(size_t Size,
99                                                size_t /*Alignment*/) {
100    return safe_malloc(Size);
101  }
102
103  // Pull in base class overloads.
104  using AllocatorBase<MallocAllocator>::Allocate;
105
106  void Deallocate(const void *Ptr, size_t /*Size*/) {
107    free(const_cast<void *>(Ptr));
108  }
109
110  // Pull in base class overloads.
111  using AllocatorBase<MallocAllocator>::Deallocate;
112
113  void PrintStats() const {}
114};
115
116namespace detail {
117
118// We call out to an external function to actually print the message as the
119// printing code uses Allocator.h in its implementation.
120void printBumpPtrAllocatorStats(unsigned NumSlabs, size_t BytesAllocated,
121                                size_t TotalMemory);
122
123} // end namespace detail
124
125/// Allocate memory in an ever growing pool, as if by bump-pointer.
126///
127/// This isn't strictly a bump-pointer allocator as it uses backing slabs of
128/// memory rather than relying on a boundless contiguous heap. However, it has
129/// bump-pointer semantics in that it is a monotonically growing pool of memory
130/// where every allocation is found by merely allocating the next N bytes in
131/// the slab, or the next N bytes in the next slab.
132///
133/// Note that this also has a threshold for forcing allocations above a certain
134/// size into their own slab.
135///
136/// The BumpPtrAllocatorImpl template defaults to using a MallocAllocator
137/// object, which wraps malloc, to allocate memory, but it can be changed to
138/// use a custom allocator.
139template <typename AllocatorT = MallocAllocator, size_t SlabSize = 4096,
140          size_t SizeThreshold = SlabSize>
141class BumpPtrAllocatorImpl
142    : public AllocatorBase<
143          BumpPtrAllocatorImpl<AllocatorT, SlabSize, SizeThreshold>> {
144public:
145  static_assert(SizeThreshold <= SlabSize,
146                "The SizeThreshold must be at most the SlabSize to ensure "
147                "that objects larger than a slab go into their own memory "
148                "allocation.");
149
150  BumpPtrAllocatorImpl() = default;
151
152  template <typename T>
153  BumpPtrAllocatorImpl(T &&Allocator)
154      : Allocator(std::forward<T &&>(Allocator)) {}
155
156  // Manually implement a move constructor as we must clear the old allocator's
157  // slabs as a matter of correctness.
158  BumpPtrAllocatorImpl(BumpPtrAllocatorImpl &&Old)
159      : CurPtr(Old.CurPtr), End(Old.End), Slabs(std::move(Old.Slabs)),
160        CustomSizedSlabs(std::move(Old.CustomSizedSlabs)),
161        BytesAllocated(Old.BytesAllocated), RedZoneSize(Old.RedZoneSize),
162        Allocator(std::move(Old.Allocator)) {
163    Old.CurPtr = Old.End = nullptr;
164    Old.BytesAllocated = 0;
165    Old.Slabs.clear();
166    Old.CustomSizedSlabs.clear();
167  }
168
169  ~BumpPtrAllocatorImpl() {
170    DeallocateSlabs(Slabs.begin(), Slabs.end());
171    DeallocateCustomSizedSlabs();
172  }
173
174  BumpPtrAllocatorImpl &operator=(BumpPtrAllocatorImpl &&RHS) {
175    DeallocateSlabs(Slabs.begin(), Slabs.end());
176    DeallocateCustomSizedSlabs();
177
178    CurPtr = RHS.CurPtr;
179    End = RHS.End;
180    BytesAllocated = RHS.BytesAllocated;
181    RedZoneSize = RHS.RedZoneSize;
182    Slabs = std::move(RHS.Slabs);
183    CustomSizedSlabs = std::move(RHS.CustomSizedSlabs);
184    Allocator = std::move(RHS.Allocator);
185
186    RHS.CurPtr = RHS.End = nullptr;
187    RHS.BytesAllocated = 0;
188    RHS.Slabs.clear();
189    RHS.CustomSizedSlabs.clear();
190    return *this;
191  }
192
193  /// Deallocate all but the current slab and reset the current pointer
194  /// to the beginning of it, freeing all memory allocated so far.
195  void Reset() {
196    // Deallocate all but the first slab, and deallocate all custom-sized slabs.
197    DeallocateCustomSizedSlabs();
198    CustomSizedSlabs.clear();
199
200    if (Slabs.empty())
201      return;
202
203    // Reset the state.
204    BytesAllocated = 0;
205    CurPtr = (char *)Slabs.front();
206    End = CurPtr + SlabSize;
207
208    __asan_poison_memory_region(*Slabs.begin(), computeSlabSize(0));
209    DeallocateSlabs(std::next(Slabs.begin()), Slabs.end());
210    Slabs.erase(std::next(Slabs.begin()), Slabs.end());
211  }
212
213  /// Allocate space at the specified alignment.
214  LLVM_ATTRIBUTE_RETURNS_NONNULL LLVM_ATTRIBUTE_RETURNS_NOALIAS void *
215  Allocate(size_t Size, Align Alignment) {
216    // Keep track of how many bytes we've allocated.
217    BytesAllocated += Size;
218
219    size_t Adjustment = offsetToAlignedAddr(CurPtr, Alignment);
220    assert(Adjustment + Size >= Size && "Adjustment + Size must not overflow");
221
222    size_t SizeToAllocate = Size;
223#if LLVM_ADDRESS_SANITIZER_BUILD
224    // Add trailing bytes as a "red zone" under ASan.
225    SizeToAllocate += RedZoneSize;
226#endif
227
228    // Check if we have enough space.
229    if (Adjustment + SizeToAllocate <= size_t(End - CurPtr)) {
230      char *AlignedPtr = CurPtr + Adjustment;
231      CurPtr = AlignedPtr + SizeToAllocate;
232      // Update the allocation point of this memory block in MemorySanitizer.
233      // Without this, MemorySanitizer messages for values originated from here
234      // will point to the allocation of the entire slab.
235      __msan_allocated_memory(AlignedPtr, Size);
236      // Similarly, tell ASan about this space.
237      __asan_unpoison_memory_region(AlignedPtr, Size);
238      return AlignedPtr;
239    }
240
241    // If Size is really big, allocate a separate slab for it.
242    size_t PaddedSize = SizeToAllocate + Alignment.value() - 1;
243    if (PaddedSize > SizeThreshold) {
244      void *NewSlab = Allocator.Allocate(PaddedSize, 0);
245      // We own the new slab and don't want anyone reading anyting other than
246      // pieces returned from this method.  So poison the whole slab.
247      __asan_poison_memory_region(NewSlab, PaddedSize);
248      CustomSizedSlabs.push_back(std::make_pair(NewSlab, PaddedSize));
249
250      uintptr_t AlignedAddr = alignAddr(NewSlab, Alignment);
251      assert(AlignedAddr + Size <= (uintptr_t)NewSlab + PaddedSize);
252      char *AlignedPtr = (char*)AlignedAddr;
253      __msan_allocated_memory(AlignedPtr, Size);
254      __asan_unpoison_memory_region(AlignedPtr, Size);
255      return AlignedPtr;
256    }
257
258    // Otherwise, start a new slab and try again.
259    StartNewSlab();
260    uintptr_t AlignedAddr = alignAddr(CurPtr, Alignment);
261    assert(AlignedAddr + SizeToAllocate <= (uintptr_t)End &&
262           "Unable to allocate memory!");
263    char *AlignedPtr = (char*)AlignedAddr;
264    CurPtr = AlignedPtr + SizeToAllocate;
265    __msan_allocated_memory(AlignedPtr, Size);
266    __asan_unpoison_memory_region(AlignedPtr, Size);
267    return AlignedPtr;
268  }
269
270  inline LLVM_ATTRIBUTE_RETURNS_NONNULL LLVM_ATTRIBUTE_RETURNS_NOALIAS void *
271  Allocate(size_t Size, size_t Alignment) {
272    assert(Alignment > 0 && "0-byte alignment is not allowed. Use 1 instead.");
273    return Allocate(Size, Align(Alignment));
274  }
275
276  // Pull in base class overloads.
277  using AllocatorBase<BumpPtrAllocatorImpl>::Allocate;
278
279  // Bump pointer allocators are expected to never free their storage; and
280  // clients expect pointers to remain valid for non-dereferencing uses even
281  // after deallocation.
282  void Deallocate(const void *Ptr, size_t Size) {
283    __asan_poison_memory_region(Ptr, Size);
284  }
285
286  // Pull in base class overloads.
287  using AllocatorBase<BumpPtrAllocatorImpl>::Deallocate;
288
289  size_t GetNumSlabs() const { return Slabs.size() + CustomSizedSlabs.size(); }
290
291  /// \return An index uniquely and reproducibly identifying
292  /// an input pointer \p Ptr in the given allocator.
293  /// The returned value is negative iff the object is inside a custom-size
294  /// slab.
295  /// Returns an empty optional if the pointer is not found in the allocator.
296  llvm::Optional<int64_t> identifyObject(const void *Ptr) {
297    const char *P = static_cast<const char *>(Ptr);
298    int64_t InSlabIdx = 0;
299    for (size_t Idx = 0, E = Slabs.size(); Idx < E; Idx++) {
300      const char *S = static_cast<const char *>(Slabs[Idx]);
301      if (P >= S && P < S + computeSlabSize(Idx))
302        return InSlabIdx + static_cast<int64_t>(P - S);
303      InSlabIdx += static_cast<int64_t>(computeSlabSize(Idx));
304    }
305
306    // Use negative index to denote custom sized slabs.
307    int64_t InCustomSizedSlabIdx = -1;
308    for (size_t Idx = 0, E = CustomSizedSlabs.size(); Idx < E; Idx++) {
309      const char *S = static_cast<const char *>(CustomSizedSlabs[Idx].first);
310      size_t Size = CustomSizedSlabs[Idx].second;
311      if (P >= S && P < S + Size)
312        return InCustomSizedSlabIdx - static_cast<int64_t>(P - S);
313      InCustomSizedSlabIdx -= static_cast<int64_t>(Size);
314    }
315    return None;
316  }
317
318  /// A wrapper around identifyObject that additionally asserts that
319  /// the object is indeed within the allocator.
320  /// \return An index uniquely and reproducibly identifying
321  /// an input pointer \p Ptr in the given allocator.
322  int64_t identifyKnownObject(const void *Ptr) {
323    Optional<int64_t> Out = identifyObject(Ptr);
324    assert(Out && "Wrong allocator used");
325    return *Out;
326  }
327
328  /// A wrapper around identifyKnownObject. Accepts type information
329  /// about the object and produces a smaller identifier by relying on
330  /// the alignment information. Note that sub-classes may have different
331  /// alignment, so the most base class should be passed as template parameter
332  /// in order to obtain correct results. For that reason automatic template
333  /// parameter deduction is disabled.
334  /// \return An index uniquely and reproducibly identifying
335  /// an input pointer \p Ptr in the given allocator. This identifier is
336  /// different from the ones produced by identifyObject and
337  /// identifyAlignedObject.
338  template <typename T>
339  int64_t identifyKnownAlignedObject(const void *Ptr) {
340    int64_t Out = identifyKnownObject(Ptr);
341    assert(Out % alignof(T) == 0 && "Wrong alignment information");
342    return Out / alignof(T);
343  }
344
345  size_t getTotalMemory() const {
346    size_t TotalMemory = 0;
347    for (auto I = Slabs.begin(), E = Slabs.end(); I != E; ++I)
348      TotalMemory += computeSlabSize(std::distance(Slabs.begin(), I));
349    for (auto &PtrAndSize : CustomSizedSlabs)
350      TotalMemory += PtrAndSize.second;
351    return TotalMemory;
352  }
353
354  size_t getBytesAllocated() const { return BytesAllocated; }
355
356  void setRedZoneSize(size_t NewSize) {
357    RedZoneSize = NewSize;
358  }
359
360  void PrintStats() const {
361    detail::printBumpPtrAllocatorStats(Slabs.size(), BytesAllocated,
362                                       getTotalMemory());
363  }
364
365private:
366  /// The current pointer into the current slab.
367  ///
368  /// This points to the next free byte in the slab.
369  char *CurPtr = nullptr;
370
371  /// The end of the current slab.
372  char *End = nullptr;
373
374  /// The slabs allocated so far.
375  SmallVector<void *, 4> Slabs;
376
377  /// Custom-sized slabs allocated for too-large allocation requests.
378  SmallVector<std::pair<void *, size_t>, 0> CustomSizedSlabs;
379
380  /// How many bytes we've allocated.
381  ///
382  /// Used so that we can compute how much space was wasted.
383  size_t BytesAllocated = 0;
384
385  /// The number of bytes to put between allocations when running under
386  /// a sanitizer.
387  size_t RedZoneSize = 1;
388
389  /// The allocator instance we use to get slabs of memory.
390  AllocatorT Allocator;
391
392  static size_t computeSlabSize(unsigned SlabIdx) {
393    // Scale the actual allocated slab size based on the number of slabs
394    // allocated. Every 128 slabs allocated, we double the allocated size to
395    // reduce allocation frequency, but saturate at multiplying the slab size by
396    // 2^30.
397    return SlabSize * ((size_t)1 << std::min<size_t>(30, SlabIdx / 128));
398  }
399
400  /// Allocate a new slab and move the bump pointers over into the new
401  /// slab, modifying CurPtr and End.
402  void StartNewSlab() {
403    size_t AllocatedSlabSize = computeSlabSize(Slabs.size());
404
405    void *NewSlab = Allocator.Allocate(AllocatedSlabSize, 0);
406    // We own the new slab and don't want anyone reading anything other than
407    // pieces returned from this method.  So poison the whole slab.
408    __asan_poison_memory_region(NewSlab, AllocatedSlabSize);
409
410    Slabs.push_back(NewSlab);
411    CurPtr = (char *)(NewSlab);
412    End = ((char *)NewSlab) + AllocatedSlabSize;
413  }
414
415  /// Deallocate a sequence of slabs.
416  void DeallocateSlabs(SmallVectorImpl<void *>::iterator I,
417                       SmallVectorImpl<void *>::iterator E) {
418    for (; I != E; ++I) {
419      size_t AllocatedSlabSize =
420          computeSlabSize(std::distance(Slabs.begin(), I));
421      Allocator.Deallocate(*I, AllocatedSlabSize);
422    }
423  }
424
425  /// Deallocate all memory for custom sized slabs.
426  void DeallocateCustomSizedSlabs() {
427    for (auto &PtrAndSize : CustomSizedSlabs) {
428      void *Ptr = PtrAndSize.first;
429      size_t Size = PtrAndSize.second;
430      Allocator.Deallocate(Ptr, Size);
431    }
432  }
433
434  template <typename T> friend class SpecificBumpPtrAllocator;
435};
436
437/// The standard BumpPtrAllocator which just uses the default template
438/// parameters.
439typedef BumpPtrAllocatorImpl<> BumpPtrAllocator;
440
441/// A BumpPtrAllocator that allows only elements of a specific type to be
442/// allocated.
443///
444/// This allows calling the destructor in DestroyAll() and when the allocator is
445/// destroyed.
446template <typename T> class SpecificBumpPtrAllocator {
447  BumpPtrAllocator Allocator;
448
449public:
450  SpecificBumpPtrAllocator() {
451    // Because SpecificBumpPtrAllocator walks the memory to call destructors,
452    // it can't have red zones between allocations.
453    Allocator.setRedZoneSize(0);
454  }
455  SpecificBumpPtrAllocator(SpecificBumpPtrAllocator &&Old)
456      : Allocator(std::move(Old.Allocator)) {}
457  ~SpecificBumpPtrAllocator() { DestroyAll(); }
458
459  SpecificBumpPtrAllocator &operator=(SpecificBumpPtrAllocator &&RHS) {
460    Allocator = std::move(RHS.Allocator);
461    return *this;
462  }
463
464  /// Call the destructor of each allocated object and deallocate all but the
465  /// current slab and reset the current pointer to the beginning of it, freeing
466  /// all memory allocated so far.
467  void DestroyAll() {
468    auto DestroyElements = [](char *Begin, char *End) {
469      assert(Begin == (char *)alignAddr(Begin, Align::Of<T>()));
470      for (char *Ptr = Begin; Ptr + sizeof(T) <= End; Ptr += sizeof(T))
471        reinterpret_cast<T *>(Ptr)->~T();
472    };
473
474    for (auto I = Allocator.Slabs.begin(), E = Allocator.Slabs.end(); I != E;
475         ++I) {
476      size_t AllocatedSlabSize = BumpPtrAllocator::computeSlabSize(
477          std::distance(Allocator.Slabs.begin(), I));
478      char *Begin = (char *)alignAddr(*I, Align::Of<T>());
479      char *End = *I == Allocator.Slabs.back() ? Allocator.CurPtr
480                                               : (char *)*I + AllocatedSlabSize;
481
482      DestroyElements(Begin, End);
483    }
484
485    for (auto &PtrAndSize : Allocator.CustomSizedSlabs) {
486      void *Ptr = PtrAndSize.first;
487      size_t Size = PtrAndSize.second;
488      DestroyElements((char *)alignAddr(Ptr, Align::Of<T>()),
489                      (char *)Ptr + Size);
490    }
491
492    Allocator.Reset();
493  }
494
495  /// Allocate space for an array of objects without constructing them.
496  T *Allocate(size_t num = 1) { return Allocator.Allocate<T>(num); }
497};
498
499} // end namespace llvm
500
501template <typename AllocatorT, size_t SlabSize, size_t SizeThreshold>
502void *operator new(size_t Size,
503                   llvm::BumpPtrAllocatorImpl<AllocatorT, SlabSize,
504                                              SizeThreshold> &Allocator) {
505  struct S {
506    char c;
507    union {
508      double D;
509      long double LD;
510      long long L;
511      void *P;
512    } x;
513  };
514  return Allocator.Allocate(
515      Size, std::min((size_t)llvm::NextPowerOf2(Size), offsetof(S, x)));
516}
517
518template <typename AllocatorT, size_t SlabSize, size_t SizeThreshold>
519void operator delete(
520    void *, llvm::BumpPtrAllocatorImpl<AllocatorT, SlabSize, SizeThreshold> &) {
521}
522
523#endif // LLVM_SUPPORT_ALLOCATOR_H
524