Alignment.h revision 360784
1//===-- llvm/Support/Alignment.h - Useful alignment functions ---*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file contains types to represent alignments.
10// They are instrumented to guarantee some invariants are preserved and prevent
11// invalid manipulations.
12//
13// - Align represents an alignment in bytes, it is always set and always a valid
14// power of two, its minimum value is 1 which means no alignment requirements.
15//
16// - MaybeAlign is an optional type, it may be undefined or set. When it's set
17// you can get the underlying Align type by using the getValue() method.
18//
19//===----------------------------------------------------------------------===//
20
21#ifndef LLVM_SUPPORT_ALIGNMENT_H_
22#define LLVM_SUPPORT_ALIGNMENT_H_
23
24#include "llvm/ADT/Optional.h"
25#include "llvm/Support/Compiler.h"
26#include "llvm/Support/MathExtras.h"
27#include <cassert>
28#include <limits>
29
30namespace llvm {
31
32#define ALIGN_CHECK_ISPOSITIVE(decl)                                           \
33  assert(decl > 0 && (#decl " should be defined"))
34#define ALIGN_CHECK_ISSET(decl)                                                \
35  assert(decl.hasValue() && (#decl " should be defined"))
36
37/// This struct is a compact representation of a valid (non-zero power of two)
38/// alignment.
39/// It is suitable for use as static global constants.
40struct Align {
41private:
42  uint8_t ShiftValue = 0; /// The log2 of the required alignment.
43                          /// ShiftValue is less than 64 by construction.
44
45  friend struct MaybeAlign;
46  friend unsigned Log2(Align);
47  friend bool operator==(Align Lhs, Align Rhs);
48  friend bool operator!=(Align Lhs, Align Rhs);
49  friend bool operator<=(Align Lhs, Align Rhs);
50  friend bool operator>=(Align Lhs, Align Rhs);
51  friend bool operator<(Align Lhs, Align Rhs);
52  friend bool operator>(Align Lhs, Align Rhs);
53  friend unsigned encode(struct MaybeAlign A);
54  friend struct MaybeAlign decodeMaybeAlign(unsigned Value);
55
56  /// A trivial type to allow construction of constexpr Align.
57  /// This is currently needed to workaround a bug in GCC 5.3 which prevents
58  /// definition of constexpr assign operators.
59  /// https://stackoverflow.com/questions/46756288/explicitly-defaulted-function-cannot-be-declared-as-constexpr-because-the-implic
60  /// FIXME: Remove this, make all assign operators constexpr and introduce user
61  /// defined literals when we don't have to support GCC 5.3 anymore.
62  /// https://llvm.org/docs/GettingStarted.html#getting-a-modern-host-c-toolchain
63  struct LogValue {
64    uint8_t Log;
65  };
66
67public:
68  /// Default is byte-aligned.
69  constexpr Align() = default;
70  /// Do not perform checks in case of copy/move construct/assign, because the
71  /// checks have been performed when building `Other`.
72  constexpr Align(const Align &Other) = default;
73  constexpr Align(Align &&Other) = default;
74  Align &operator=(const Align &Other) = default;
75  Align &operator=(Align &&Other) = default;
76
77  explicit Align(uint64_t Value) {
78    assert(Value > 0 && "Value must not be 0");
79    assert(llvm::isPowerOf2_64(Value) && "Alignment is not a power of 2");
80    ShiftValue = Log2_64(Value);
81    assert(ShiftValue < 64 && "Broken invariant");
82  }
83
84  /// This is a hole in the type system and should not be abused.
85  /// Needed to interact with C for instance.
86  uint64_t value() const { return uint64_t(1) << ShiftValue; }
87
88  /// Returns a default constructed Align which corresponds to no alignment.
89  /// This is useful to test for unalignment as it conveys clear semantic.
90  /// `if (A != Align::None())`
91  /// would be better than
92  /// `if (A > Align(1))`
93  constexpr static const Align None() { return Align(); }
94
95  /// Allow constructions of constexpr Align.
96  template <size_t kValue> constexpr static LogValue Constant() {
97    return LogValue{static_cast<uint8_t>(CTLog2<kValue>())};
98  }
99
100  /// Allow constructions of constexpr Align from types.
101  /// Compile time equivalent to Align(alignof(T)).
102  template <typename T> constexpr static LogValue Of() {
103    return Constant<std::alignment_of<T>::value>();
104  }
105
106  /// Constexpr constructor from LogValue type.
107  constexpr Align(LogValue CA) : ShiftValue(CA.Log) {}
108};
109
110/// Treats the value 0 as a 1, so Align is always at least 1.
111inline Align assumeAligned(uint64_t Value) {
112  return Value ? Align(Value) : Align();
113}
114
115/// This struct is a compact representation of a valid (power of two) or
116/// undefined (0) alignment.
117struct MaybeAlign : public llvm::Optional<Align> {
118private:
119  using UP = llvm::Optional<Align>;
120
121public:
122  /// Default is undefined.
123  MaybeAlign() = default;
124  /// Do not perform checks in case of copy/move construct/assign, because the
125  /// checks have been performed when building `Other`.
126  MaybeAlign(const MaybeAlign &Other) = default;
127  MaybeAlign &operator=(const MaybeAlign &Other) = default;
128  MaybeAlign(MaybeAlign &&Other) = default;
129  MaybeAlign &operator=(MaybeAlign &&Other) = default;
130
131  /// Use llvm::Optional<Align> constructor.
132  using UP::UP;
133
134  explicit MaybeAlign(uint64_t Value) {
135    assert((Value == 0 || llvm::isPowerOf2_64(Value)) &&
136           "Alignment is neither 0 nor a power of 2");
137    if (Value)
138      emplace(Value);
139  }
140
141  /// For convenience, returns a valid alignment or 1 if undefined.
142  Align valueOrOne() const { return hasValue() ? getValue() : Align(); }
143};
144
145/// Checks that SizeInBytes is a multiple of the alignment.
146inline bool isAligned(Align Lhs, uint64_t SizeInBytes) {
147  return SizeInBytes % Lhs.value() == 0;
148}
149
150/// Checks that SizeInBytes is a multiple of the alignment.
151/// Returns false if the alignment is undefined.
152inline bool isAligned(MaybeAlign Lhs, uint64_t SizeInBytes) {
153  ALIGN_CHECK_ISSET(Lhs);
154  return SizeInBytes % (*Lhs).value() == 0;
155}
156
157/// Checks that Addr is a multiple of the alignment.
158inline bool isAddrAligned(Align Lhs, const void *Addr) {
159  return isAligned(Lhs, reinterpret_cast<uintptr_t>(Addr));
160}
161
162/// Returns a multiple of A needed to store `Size` bytes.
163inline uint64_t alignTo(uint64_t Size, Align A) {
164  const uint64_t value = A.value();
165  // The following line is equivalent to `(Size + value - 1) / value * value`.
166
167  // The division followed by a multiplication can be thought of as a right
168  // shift followed by a left shift which zeros out the extra bits produced in
169  // the bump; `~(value - 1)` is a mask where all those bits being zeroed out
170  // are just zero.
171
172  // Most compilers can generate this code but the pattern may be missed when
173  // multiple functions gets inlined.
174  return (Size + value - 1) & ~(value - 1);
175}
176
177/// Returns a multiple of A needed to store `Size` bytes.
178/// Returns `Size` if current alignment is undefined.
179inline uint64_t alignTo(uint64_t Size, MaybeAlign A) {
180  return A ? alignTo(Size, A.getValue()) : Size;
181}
182
183/// Aligns `Addr` to `Alignment` bytes, rounding up.
184inline uintptr_t alignAddr(const void *Addr, Align Alignment) {
185  uintptr_t ArithAddr = reinterpret_cast<uintptr_t>(Addr);
186  assert(static_cast<uintptr_t>(ArithAddr + Alignment.value() - 1) >=
187             ArithAddr && "Overflow");
188  return alignTo(ArithAddr, Alignment);
189}
190
191/// Returns the offset to the next integer (mod 2**64) that is greater than
192/// or equal to \p Value and is a multiple of \p Align.
193inline uint64_t offsetToAlignment(uint64_t Value, Align Alignment) {
194  return alignTo(Value, Alignment) - Value;
195}
196
197/// Returns the necessary adjustment for aligning `Addr` to `Alignment`
198/// bytes, rounding up.
199inline uint64_t offsetToAlignedAddr(const void *Addr, Align Alignment) {
200  return offsetToAlignment(reinterpret_cast<uintptr_t>(Addr), Alignment);
201}
202
203/// Returns the log2 of the alignment.
204inline unsigned Log2(Align A) { return A.ShiftValue; }
205
206/// Returns the log2 of the alignment.
207/// \pre A must be defined.
208inline unsigned Log2(MaybeAlign A) {
209  ALIGN_CHECK_ISSET(A);
210  return Log2(A.getValue());
211}
212
213/// Returns the alignment that satisfies both alignments.
214/// Same semantic as MinAlign.
215inline Align commonAlignment(Align A, Align B) { return std::min(A, B); }
216
217/// Returns the alignment that satisfies both alignments.
218/// Same semantic as MinAlign.
219inline Align commonAlignment(Align A, uint64_t Offset) {
220  return Align(MinAlign(A.value(), Offset));
221}
222
223/// Returns the alignment that satisfies both alignments.
224/// Same semantic as MinAlign.
225inline MaybeAlign commonAlignment(MaybeAlign A, MaybeAlign B) {
226  return A && B ? commonAlignment(*A, *B) : A ? A : B;
227}
228
229/// Returns the alignment that satisfies both alignments.
230/// Same semantic as MinAlign.
231inline MaybeAlign commonAlignment(MaybeAlign A, uint64_t Offset) {
232  return MaybeAlign(MinAlign((*A).value(), Offset));
233}
234
235/// Returns a representation of the alignment that encodes undefined as 0.
236inline unsigned encode(MaybeAlign A) { return A ? A->ShiftValue + 1 : 0; }
237
238/// Dual operation of the encode function above.
239inline MaybeAlign decodeMaybeAlign(unsigned Value) {
240  if (Value == 0)
241    return MaybeAlign();
242  Align Out;
243  Out.ShiftValue = Value - 1;
244  return Out;
245}
246
247/// Returns a representation of the alignment, the encoded value is positive by
248/// definition.
249inline unsigned encode(Align A) { return encode(MaybeAlign(A)); }
250
251/// Comparisons between Align and scalars. Rhs must be positive.
252inline bool operator==(Align Lhs, uint64_t Rhs) {
253  ALIGN_CHECK_ISPOSITIVE(Rhs);
254  return Lhs.value() == Rhs;
255}
256inline bool operator!=(Align Lhs, uint64_t Rhs) {
257  ALIGN_CHECK_ISPOSITIVE(Rhs);
258  return Lhs.value() != Rhs;
259}
260inline bool operator<=(Align Lhs, uint64_t Rhs) {
261  ALIGN_CHECK_ISPOSITIVE(Rhs);
262  return Lhs.value() <= Rhs;
263}
264inline bool operator>=(Align Lhs, uint64_t Rhs) {
265  ALIGN_CHECK_ISPOSITIVE(Rhs);
266  return Lhs.value() >= Rhs;
267}
268inline bool operator<(Align Lhs, uint64_t Rhs) {
269  ALIGN_CHECK_ISPOSITIVE(Rhs);
270  return Lhs.value() < Rhs;
271}
272inline bool operator>(Align Lhs, uint64_t Rhs) {
273  ALIGN_CHECK_ISPOSITIVE(Rhs);
274  return Lhs.value() > Rhs;
275}
276
277/// Comparisons between MaybeAlign and scalars.
278inline bool operator==(MaybeAlign Lhs, uint64_t Rhs) {
279  return Lhs ? (*Lhs).value() == Rhs : Rhs == 0;
280}
281inline bool operator!=(MaybeAlign Lhs, uint64_t Rhs) {
282  return Lhs ? (*Lhs).value() != Rhs : Rhs != 0;
283}
284inline bool operator<=(MaybeAlign Lhs, uint64_t Rhs) {
285  ALIGN_CHECK_ISSET(Lhs);
286  ALIGN_CHECK_ISPOSITIVE(Rhs);
287  return (*Lhs).value() <= Rhs;
288}
289inline bool operator>=(MaybeAlign Lhs, uint64_t Rhs) {
290  ALIGN_CHECK_ISSET(Lhs);
291  ALIGN_CHECK_ISPOSITIVE(Rhs);
292  return (*Lhs).value() >= Rhs;
293}
294inline bool operator<(MaybeAlign Lhs, uint64_t Rhs) {
295  ALIGN_CHECK_ISSET(Lhs);
296  ALIGN_CHECK_ISPOSITIVE(Rhs);
297  return (*Lhs).value() < Rhs;
298}
299inline bool operator>(MaybeAlign Lhs, uint64_t Rhs) {
300  ALIGN_CHECK_ISSET(Lhs);
301  ALIGN_CHECK_ISPOSITIVE(Rhs);
302  return (*Lhs).value() > Rhs;
303}
304
305/// Comparisons operators between Align.
306inline bool operator==(Align Lhs, Align Rhs) {
307  return Lhs.ShiftValue == Rhs.ShiftValue;
308}
309inline bool operator!=(Align Lhs, Align Rhs) {
310  return Lhs.ShiftValue != Rhs.ShiftValue;
311}
312inline bool operator<=(Align Lhs, Align Rhs) {
313  return Lhs.ShiftValue <= Rhs.ShiftValue;
314}
315inline bool operator>=(Align Lhs, Align Rhs) {
316  return Lhs.ShiftValue >= Rhs.ShiftValue;
317}
318inline bool operator<(Align Lhs, Align Rhs) {
319  return Lhs.ShiftValue < Rhs.ShiftValue;
320}
321inline bool operator>(Align Lhs, Align Rhs) {
322  return Lhs.ShiftValue > Rhs.ShiftValue;
323}
324
325/// Comparisons operators between Align and MaybeAlign.
326inline bool operator==(Align Lhs, MaybeAlign Rhs) {
327  ALIGN_CHECK_ISSET(Rhs);
328  return Lhs.value() == (*Rhs).value();
329}
330inline bool operator!=(Align Lhs, MaybeAlign Rhs) {
331  ALIGN_CHECK_ISSET(Rhs);
332  return Lhs.value() != (*Rhs).value();
333}
334inline bool operator<=(Align Lhs, MaybeAlign Rhs) {
335  ALIGN_CHECK_ISSET(Rhs);
336  return Lhs.value() <= (*Rhs).value();
337}
338inline bool operator>=(Align Lhs, MaybeAlign Rhs) {
339  ALIGN_CHECK_ISSET(Rhs);
340  return Lhs.value() >= (*Rhs).value();
341}
342inline bool operator<(Align Lhs, MaybeAlign Rhs) {
343  ALIGN_CHECK_ISSET(Rhs);
344  return Lhs.value() < (*Rhs).value();
345}
346inline bool operator>(Align Lhs, MaybeAlign Rhs) {
347  ALIGN_CHECK_ISSET(Rhs);
348  return Lhs.value() > (*Rhs).value();
349}
350
351/// Comparisons operators between MaybeAlign and Align.
352inline bool operator==(MaybeAlign Lhs, Align Rhs) {
353  ALIGN_CHECK_ISSET(Lhs);
354  return Lhs && (*Lhs).value() == Rhs.value();
355}
356inline bool operator!=(MaybeAlign Lhs, Align Rhs) {
357  ALIGN_CHECK_ISSET(Lhs);
358  return Lhs && (*Lhs).value() != Rhs.value();
359}
360inline bool operator<=(MaybeAlign Lhs, Align Rhs) {
361  ALIGN_CHECK_ISSET(Lhs);
362  return Lhs && (*Lhs).value() <= Rhs.value();
363}
364inline bool operator>=(MaybeAlign Lhs, Align Rhs) {
365  ALIGN_CHECK_ISSET(Lhs);
366  return Lhs && (*Lhs).value() >= Rhs.value();
367}
368inline bool operator<(MaybeAlign Lhs, Align Rhs) {
369  ALIGN_CHECK_ISSET(Lhs);
370  return Lhs && (*Lhs).value() < Rhs.value();
371}
372inline bool operator>(MaybeAlign Lhs, Align Rhs) {
373  ALIGN_CHECK_ISSET(Lhs);
374  return Lhs && (*Lhs).value() > Rhs.value();
375}
376
377inline Align operator/(Align Lhs, uint64_t Divisor) {
378  assert(llvm::isPowerOf2_64(Divisor) &&
379         "Divisor must be positive and a power of 2");
380  assert(Lhs != 1 && "Can't halve byte alignment");
381  return Align(Lhs.value() / Divisor);
382}
383
384inline MaybeAlign operator/(MaybeAlign Lhs, uint64_t Divisor) {
385  assert(llvm::isPowerOf2_64(Divisor) &&
386         "Divisor must be positive and a power of 2");
387  return Lhs ? Lhs.getValue() / Divisor : MaybeAlign();
388}
389
390inline Align max(MaybeAlign Lhs, Align Rhs) {
391  return Lhs && *Lhs > Rhs ? *Lhs : Rhs;
392}
393
394inline Align max(Align Lhs, MaybeAlign Rhs) {
395  return Rhs && *Rhs > Lhs ? *Rhs : Lhs;
396}
397
398#undef ALIGN_CHECK_ISPOSITIVE
399#undef ALIGN_CHECK_ISSET
400
401} // namespace llvm
402
403#endif // LLVM_SUPPORT_ALIGNMENT_H_
404