Value.h revision 360784
1//===- llvm/Value.h - Definition of the Value class -------------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file declares the Value class.
10//
11//===----------------------------------------------------------------------===//
12
13#ifndef LLVM_IR_VALUE_H
14#define LLVM_IR_VALUE_H
15
16#include "llvm-c/Types.h"
17#include "llvm/ADT/STLExtras.h"
18#include "llvm/ADT/iterator_range.h"
19#include "llvm/IR/Use.h"
20#include "llvm/Support/Alignment.h"
21#include "llvm/Support/CBindingWrapping.h"
22#include "llvm/Support/Casting.h"
23#include <cassert>
24#include <iterator>
25#include <memory>
26
27namespace llvm {
28
29class APInt;
30class Argument;
31class BasicBlock;
32class Constant;
33class ConstantData;
34class ConstantAggregate;
35class DataLayout;
36class Function;
37class GlobalAlias;
38class GlobalIFunc;
39class GlobalIndirectSymbol;
40class GlobalObject;
41class GlobalValue;
42class GlobalVariable;
43class InlineAsm;
44class Instruction;
45class LLVMContext;
46class Module;
47class ModuleSlotTracker;
48class raw_ostream;
49template<typename ValueTy> class StringMapEntry;
50class StringRef;
51class Twine;
52class Type;
53class User;
54
55using ValueName = StringMapEntry<Value *>;
56
57//===----------------------------------------------------------------------===//
58//                                 Value Class
59//===----------------------------------------------------------------------===//
60
61/// LLVM Value Representation
62///
63/// This is a very important LLVM class. It is the base class of all values
64/// computed by a program that may be used as operands to other values. Value is
65/// the super class of other important classes such as Instruction and Function.
66/// All Values have a Type. Type is not a subclass of Value. Some values can
67/// have a name and they belong to some Module.  Setting the name on the Value
68/// automatically updates the module's symbol table.
69///
70/// Every value has a "use list" that keeps track of which other Values are
71/// using this Value.  A Value can also have an arbitrary number of ValueHandle
72/// objects that watch it and listen to RAUW and Destroy events.  See
73/// llvm/IR/ValueHandle.h for details.
74class Value {
75  // The least-significant bit of the first word of Value *must* be zero:
76  //   http://www.llvm.org/docs/ProgrammersManual.html#the-waymarking-algorithm
77  Type *VTy;
78  Use *UseList;
79
80  friend class ValueAsMetadata; // Allow access to IsUsedByMD.
81  friend class ValueHandleBase;
82
83  const unsigned char SubclassID;   // Subclass identifier (for isa/dyn_cast)
84  unsigned char HasValueHandle : 1; // Has a ValueHandle pointing to this?
85
86protected:
87  /// Hold subclass data that can be dropped.
88  ///
89  /// This member is similar to SubclassData, however it is for holding
90  /// information which may be used to aid optimization, but which may be
91  /// cleared to zero without affecting conservative interpretation.
92  unsigned char SubclassOptionalData : 7;
93
94private:
95  /// Hold arbitrary subclass data.
96  ///
97  /// This member is defined by this class, but is not used for anything.
98  /// Subclasses can use it to hold whatever state they find useful.  This
99  /// field is initialized to zero by the ctor.
100  unsigned short SubclassData;
101
102protected:
103  /// The number of operands in the subclass.
104  ///
105  /// This member is defined by this class, but not used for anything.
106  /// Subclasses can use it to store their number of operands, if they have
107  /// any.
108  ///
109  /// This is stored here to save space in User on 64-bit hosts.  Since most
110  /// instances of Value have operands, 32-bit hosts aren't significantly
111  /// affected.
112  ///
113  /// Note, this should *NOT* be used directly by any class other than User.
114  /// User uses this value to find the Use list.
115  enum : unsigned { NumUserOperandsBits = 28 };
116  unsigned NumUserOperands : NumUserOperandsBits;
117
118  // Use the same type as the bitfield above so that MSVC will pack them.
119  unsigned IsUsedByMD : 1;
120  unsigned HasName : 1;
121  unsigned HasHungOffUses : 1;
122  unsigned HasDescriptor : 1;
123
124private:
125  template <typename UseT> // UseT == 'Use' or 'const Use'
126  class use_iterator_impl
127      : public std::iterator<std::forward_iterator_tag, UseT *> {
128    friend class Value;
129
130    UseT *U;
131
132    explicit use_iterator_impl(UseT *u) : U(u) {}
133
134  public:
135    use_iterator_impl() : U() {}
136
137    bool operator==(const use_iterator_impl &x) const { return U == x.U; }
138    bool operator!=(const use_iterator_impl &x) const { return !operator==(x); }
139
140    use_iterator_impl &operator++() { // Preincrement
141      assert(U && "Cannot increment end iterator!");
142      U = U->getNext();
143      return *this;
144    }
145
146    use_iterator_impl operator++(int) { // Postincrement
147      auto tmp = *this;
148      ++*this;
149      return tmp;
150    }
151
152    UseT &operator*() const {
153      assert(U && "Cannot dereference end iterator!");
154      return *U;
155    }
156
157    UseT *operator->() const { return &operator*(); }
158
159    operator use_iterator_impl<const UseT>() const {
160      return use_iterator_impl<const UseT>(U);
161    }
162  };
163
164  template <typename UserTy> // UserTy == 'User' or 'const User'
165  class user_iterator_impl
166      : public std::iterator<std::forward_iterator_tag, UserTy *> {
167    use_iterator_impl<Use> UI;
168    explicit user_iterator_impl(Use *U) : UI(U) {}
169    friend class Value;
170
171  public:
172    user_iterator_impl() = default;
173
174    bool operator==(const user_iterator_impl &x) const { return UI == x.UI; }
175    bool operator!=(const user_iterator_impl &x) const { return !operator==(x); }
176
177    /// Returns true if this iterator is equal to user_end() on the value.
178    bool atEnd() const { return *this == user_iterator_impl(); }
179
180    user_iterator_impl &operator++() { // Preincrement
181      ++UI;
182      return *this;
183    }
184
185    user_iterator_impl operator++(int) { // Postincrement
186      auto tmp = *this;
187      ++*this;
188      return tmp;
189    }
190
191    // Retrieve a pointer to the current User.
192    UserTy *operator*() const {
193      return UI->getUser();
194    }
195
196    UserTy *operator->() const { return operator*(); }
197
198    operator user_iterator_impl<const UserTy>() const {
199      return user_iterator_impl<const UserTy>(*UI);
200    }
201
202    Use &getUse() const { return *UI; }
203  };
204
205protected:
206  Value(Type *Ty, unsigned scid);
207
208  /// Value's destructor should be virtual by design, but that would require
209  /// that Value and all of its subclasses have a vtable that effectively
210  /// duplicates the information in the value ID. As a size optimization, the
211  /// destructor has been protected, and the caller should manually call
212  /// deleteValue.
213  ~Value(); // Use deleteValue() to delete a generic Value.
214
215public:
216  Value(const Value &) = delete;
217  Value &operator=(const Value &) = delete;
218
219  /// Delete a pointer to a generic Value.
220  void deleteValue();
221
222  /// Support for debugging, callable in GDB: V->dump()
223  void dump() const;
224
225  /// Implement operator<< on Value.
226  /// @{
227  void print(raw_ostream &O, bool IsForDebug = false) const;
228  void print(raw_ostream &O, ModuleSlotTracker &MST,
229             bool IsForDebug = false) const;
230  /// @}
231
232  /// Print the name of this Value out to the specified raw_ostream.
233  ///
234  /// This is useful when you just want to print 'int %reg126', not the
235  /// instruction that generated it. If you specify a Module for context, then
236  /// even constanst get pretty-printed; for example, the type of a null
237  /// pointer is printed symbolically.
238  /// @{
239  void printAsOperand(raw_ostream &O, bool PrintType = true,
240                      const Module *M = nullptr) const;
241  void printAsOperand(raw_ostream &O, bool PrintType,
242                      ModuleSlotTracker &MST) const;
243  /// @}
244
245  /// All values are typed, get the type of this value.
246  Type *getType() const { return VTy; }
247
248  /// All values hold a context through their type.
249  LLVMContext &getContext() const;
250
251  // All values can potentially be named.
252  bool hasName() const { return HasName; }
253  ValueName *getValueName() const;
254  void setValueName(ValueName *VN);
255
256private:
257  void destroyValueName();
258  enum class ReplaceMetadataUses { No, Yes };
259  void doRAUW(Value *New, ReplaceMetadataUses);
260  void setNameImpl(const Twine &Name);
261
262public:
263  /// Return a constant reference to the value's name.
264  ///
265  /// This guaranteed to return the same reference as long as the value is not
266  /// modified.  If the value has a name, this does a hashtable lookup, so it's
267  /// not free.
268  StringRef getName() const;
269
270  /// Change the name of the value.
271  ///
272  /// Choose a new unique name if the provided name is taken.
273  ///
274  /// \param Name The new name; or "" if the value's name should be removed.
275  void setName(const Twine &Name);
276
277  /// Transfer the name from V to this value.
278  ///
279  /// After taking V's name, sets V's name to empty.
280  ///
281  /// \note It is an error to call V->takeName(V).
282  void takeName(Value *V);
283
284  /// Change all uses of this to point to a new Value.
285  ///
286  /// Go through the uses list for this definition and make each use point to
287  /// "V" instead of "this".  After this completes, 'this's use list is
288  /// guaranteed to be empty.
289  void replaceAllUsesWith(Value *V);
290
291  /// Change non-metadata uses of this to point to a new Value.
292  ///
293  /// Go through the uses list for this definition and make each use point to
294  /// "V" instead of "this". This function skips metadata entries in the list.
295  void replaceNonMetadataUsesWith(Value *V);
296
297  /// Go through the uses list for this definition and make each use point
298  /// to "V" if the callback ShouldReplace returns true for the given Use.
299  /// Unlike replaceAllUsesWith() this function does not support basic block
300  /// values or constant users.
301  void replaceUsesWithIf(Value *New,
302                         llvm::function_ref<bool(Use &U)> ShouldReplace) {
303    assert(New && "Value::replaceUsesWithIf(<null>) is invalid!");
304    assert(New->getType() == getType() &&
305           "replaceUses of value with new value of different type!");
306
307    for (use_iterator UI = use_begin(), E = use_end(); UI != E;) {
308      Use &U = *UI;
309      ++UI;
310      if (!ShouldReplace(U))
311        continue;
312      U.set(New);
313    }
314  }
315
316  /// replaceUsesOutsideBlock - Go through the uses list for this definition and
317  /// make each use point to "V" instead of "this" when the use is outside the
318  /// block. 'This's use list is expected to have at least one element.
319  /// Unlike replaceAllUsesWith() this function does not support basic block
320  /// values or constant users.
321  void replaceUsesOutsideBlock(Value *V, BasicBlock *BB);
322
323  //----------------------------------------------------------------------
324  // Methods for handling the chain of uses of this Value.
325  //
326  // Materializing a function can introduce new uses, so these methods come in
327  // two variants:
328  // The methods that start with materialized_ check the uses that are
329  // currently known given which functions are materialized. Be very careful
330  // when using them since you might not get all uses.
331  // The methods that don't start with materialized_ assert that modules is
332  // fully materialized.
333  void assertModuleIsMaterializedImpl() const;
334  // This indirection exists so we can keep assertModuleIsMaterializedImpl()
335  // around in release builds of Value.cpp to be linked with other code built
336  // in debug mode. But this avoids calling it in any of the release built code.
337  void assertModuleIsMaterialized() const {
338#ifndef NDEBUG
339    assertModuleIsMaterializedImpl();
340#endif
341  }
342
343  bool use_empty() const {
344    assertModuleIsMaterialized();
345    return UseList == nullptr;
346  }
347
348  bool materialized_use_empty() const {
349    return UseList == nullptr;
350  }
351
352  using use_iterator = use_iterator_impl<Use>;
353  using const_use_iterator = use_iterator_impl<const Use>;
354
355  use_iterator materialized_use_begin() { return use_iterator(UseList); }
356  const_use_iterator materialized_use_begin() const {
357    return const_use_iterator(UseList);
358  }
359  use_iterator use_begin() {
360    assertModuleIsMaterialized();
361    return materialized_use_begin();
362  }
363  const_use_iterator use_begin() const {
364    assertModuleIsMaterialized();
365    return materialized_use_begin();
366  }
367  use_iterator use_end() { return use_iterator(); }
368  const_use_iterator use_end() const { return const_use_iterator(); }
369  iterator_range<use_iterator> materialized_uses() {
370    return make_range(materialized_use_begin(), use_end());
371  }
372  iterator_range<const_use_iterator> materialized_uses() const {
373    return make_range(materialized_use_begin(), use_end());
374  }
375  iterator_range<use_iterator> uses() {
376    assertModuleIsMaterialized();
377    return materialized_uses();
378  }
379  iterator_range<const_use_iterator> uses() const {
380    assertModuleIsMaterialized();
381    return materialized_uses();
382  }
383
384  bool user_empty() const {
385    assertModuleIsMaterialized();
386    return UseList == nullptr;
387  }
388
389  using user_iterator = user_iterator_impl<User>;
390  using const_user_iterator = user_iterator_impl<const User>;
391
392  user_iterator materialized_user_begin() { return user_iterator(UseList); }
393  const_user_iterator materialized_user_begin() const {
394    return const_user_iterator(UseList);
395  }
396  user_iterator user_begin() {
397    assertModuleIsMaterialized();
398    return materialized_user_begin();
399  }
400  const_user_iterator user_begin() const {
401    assertModuleIsMaterialized();
402    return materialized_user_begin();
403  }
404  user_iterator user_end() { return user_iterator(); }
405  const_user_iterator user_end() const { return const_user_iterator(); }
406  User *user_back() {
407    assertModuleIsMaterialized();
408    return *materialized_user_begin();
409  }
410  const User *user_back() const {
411    assertModuleIsMaterialized();
412    return *materialized_user_begin();
413  }
414  iterator_range<user_iterator> materialized_users() {
415    return make_range(materialized_user_begin(), user_end());
416  }
417  iterator_range<const_user_iterator> materialized_users() const {
418    return make_range(materialized_user_begin(), user_end());
419  }
420  iterator_range<user_iterator> users() {
421    assertModuleIsMaterialized();
422    return materialized_users();
423  }
424  iterator_range<const_user_iterator> users() const {
425    assertModuleIsMaterialized();
426    return materialized_users();
427  }
428
429  /// Return true if there is exactly one user of this value.
430  ///
431  /// This is specialized because it is a common request and does not require
432  /// traversing the whole use list.
433  bool hasOneUse() const {
434    const_use_iterator I = use_begin(), E = use_end();
435    if (I == E) return false;
436    return ++I == E;
437  }
438
439  /// Return true if this Value has exactly N users.
440  bool hasNUses(unsigned N) const;
441
442  /// Return true if this value has N users or more.
443  ///
444  /// This is logically equivalent to getNumUses() >= N.
445  bool hasNUsesOrMore(unsigned N) const;
446
447  /// Check if this value is used in the specified basic block.
448  bool isUsedInBasicBlock(const BasicBlock *BB) const;
449
450  /// This method computes the number of uses of this Value.
451  ///
452  /// This is a linear time operation.  Use hasOneUse, hasNUses, or
453  /// hasNUsesOrMore to check for specific values.
454  unsigned getNumUses() const;
455
456  /// This method should only be used by the Use class.
457  void addUse(Use &U) { U.addToList(&UseList); }
458
459  /// Concrete subclass of this.
460  ///
461  /// An enumeration for keeping track of the concrete subclass of Value that
462  /// is actually instantiated. Values of this enumeration are kept in the
463  /// Value classes SubclassID field. They are used for concrete type
464  /// identification.
465  enum ValueTy {
466#define HANDLE_VALUE(Name) Name##Val,
467#include "llvm/IR/Value.def"
468
469    // Markers:
470#define HANDLE_CONSTANT_MARKER(Marker, Constant) Marker = Constant##Val,
471#include "llvm/IR/Value.def"
472  };
473
474  /// Return an ID for the concrete type of this object.
475  ///
476  /// This is used to implement the classof checks.  This should not be used
477  /// for any other purpose, as the values may change as LLVM evolves.  Also,
478  /// note that for instructions, the Instruction's opcode is added to
479  /// InstructionVal. So this means three things:
480  /// # there is no value with code InstructionVal (no opcode==0).
481  /// # there are more possible values for the value type than in ValueTy enum.
482  /// # the InstructionVal enumerator must be the highest valued enumerator in
483  ///   the ValueTy enum.
484  unsigned getValueID() const {
485    return SubclassID;
486  }
487
488  /// Return the raw optional flags value contained in this value.
489  ///
490  /// This should only be used when testing two Values for equivalence.
491  unsigned getRawSubclassOptionalData() const {
492    return SubclassOptionalData;
493  }
494
495  /// Clear the optional flags contained in this value.
496  void clearSubclassOptionalData() {
497    SubclassOptionalData = 0;
498  }
499
500  /// Check the optional flags for equality.
501  bool hasSameSubclassOptionalData(const Value *V) const {
502    return SubclassOptionalData == V->SubclassOptionalData;
503  }
504
505  /// Return true if there is a value handle associated with this value.
506  bool hasValueHandle() const { return HasValueHandle; }
507
508  /// Return true if there is metadata referencing this value.
509  bool isUsedByMetadata() const { return IsUsedByMD; }
510
511  /// Return true if this value is a swifterror value.
512  ///
513  /// swifterror values can be either a function argument or an alloca with a
514  /// swifterror attribute.
515  bool isSwiftError() const;
516
517  /// Strip off pointer casts, all-zero GEPs and address space casts.
518  ///
519  /// Returns the original uncasted value.  If this is called on a non-pointer
520  /// value, it returns 'this'.
521  const Value *stripPointerCasts() const;
522  Value *stripPointerCasts() {
523    return const_cast<Value *>(
524        static_cast<const Value *>(this)->stripPointerCasts());
525  }
526
527  /// Strip off pointer casts, all-zero GEPs, address space casts, and aliases.
528  ///
529  /// Returns the original uncasted value.  If this is called on a non-pointer
530  /// value, it returns 'this'.
531  const Value *stripPointerCastsAndAliases() const;
532  Value *stripPointerCastsAndAliases() {
533    return const_cast<Value *>(
534        static_cast<const Value *>(this)->stripPointerCastsAndAliases());
535  }
536
537  /// Strip off pointer casts, all-zero GEPs and address space casts
538  /// but ensures the representation of the result stays the same.
539  ///
540  /// Returns the original uncasted value with the same representation. If this
541  /// is called on a non-pointer value, it returns 'this'.
542  const Value *stripPointerCastsSameRepresentation() const;
543  Value *stripPointerCastsSameRepresentation() {
544    return const_cast<Value *>(static_cast<const Value *>(this)
545                                   ->stripPointerCastsSameRepresentation());
546  }
547
548  /// Strip off pointer casts, all-zero GEPs and invariant group info.
549  ///
550  /// Returns the original uncasted value.  If this is called on a non-pointer
551  /// value, it returns 'this'. This function should be used only in
552  /// Alias analysis.
553  const Value *stripPointerCastsAndInvariantGroups() const;
554  Value *stripPointerCastsAndInvariantGroups() {
555    return const_cast<Value *>(static_cast<const Value *>(this)
556                                   ->stripPointerCastsAndInvariantGroups());
557  }
558
559  /// Strip off pointer casts and all-constant inbounds GEPs.
560  ///
561  /// Returns the original pointer value.  If this is called on a non-pointer
562  /// value, it returns 'this'.
563  const Value *stripInBoundsConstantOffsets() const;
564  Value *stripInBoundsConstantOffsets() {
565    return const_cast<Value *>(
566              static_cast<const Value *>(this)->stripInBoundsConstantOffsets());
567  }
568
569  /// Accumulate the constant offset this value has compared to a base pointer.
570  /// Only 'getelementptr' instructions (GEPs) with constant indices are
571  /// accumulated but other instructions, e.g., casts, are stripped away as
572  /// well. The accumulated constant offset is added to \p Offset and the base
573  /// pointer is returned.
574  ///
575  /// The APInt \p Offset has to have a bit-width equal to the IntPtr type for
576  /// the address space of 'this' pointer value, e.g., use
577  /// DataLayout::getIndexTypeSizeInBits(Ty).
578  ///
579  /// If \p AllowNonInbounds is true, constant offsets in GEPs are stripped and
580  /// accumulated even if the GEP is not "inbounds".
581  ///
582  /// If this is called on a non-pointer value, it returns 'this' and the
583  /// \p Offset is not modified.
584  ///
585  /// Note that this function will never return a nullptr. It will also never
586  /// manipulate the \p Offset in a way that would not match the difference
587  /// between the underlying value and the returned one. Thus, if no constant
588  /// offset was found, the returned value is the underlying one and \p Offset
589  /// is unchanged.
590  const Value *stripAndAccumulateConstantOffsets(const DataLayout &DL,
591                                                 APInt &Offset,
592                                                 bool AllowNonInbounds) const;
593  Value *stripAndAccumulateConstantOffsets(const DataLayout &DL, APInt &Offset,
594                                           bool AllowNonInbounds) {
595    return const_cast<Value *>(
596        static_cast<const Value *>(this)->stripAndAccumulateConstantOffsets(
597            DL, Offset, AllowNonInbounds));
598  }
599
600  /// This is a wrapper around stripAndAccumulateConstantOffsets with the
601  /// in-bounds requirement set to false.
602  const Value *stripAndAccumulateInBoundsConstantOffsets(const DataLayout &DL,
603                                                         APInt &Offset) const {
604    return stripAndAccumulateConstantOffsets(DL, Offset,
605                                             /* AllowNonInbounds */ false);
606  }
607  Value *stripAndAccumulateInBoundsConstantOffsets(const DataLayout &DL,
608                                                   APInt &Offset) {
609    return stripAndAccumulateConstantOffsets(DL, Offset,
610                                             /* AllowNonInbounds */ false);
611  }
612
613  /// Strip off pointer casts and inbounds GEPs.
614  ///
615  /// Returns the original pointer value.  If this is called on a non-pointer
616  /// value, it returns 'this'.
617  const Value *stripInBoundsOffsets() const;
618  Value *stripInBoundsOffsets() {
619    return const_cast<Value *>(
620                      static_cast<const Value *>(this)->stripInBoundsOffsets());
621  }
622
623  /// Returns the number of bytes known to be dereferenceable for the
624  /// pointer value.
625  ///
626  /// If CanBeNull is set by this function the pointer can either be null or be
627  /// dereferenceable up to the returned number of bytes.
628  uint64_t getPointerDereferenceableBytes(const DataLayout &DL,
629                                          bool &CanBeNull) const;
630
631  /// Returns an alignment of the pointer value.
632  ///
633  /// Returns an alignment which is either specified explicitly, e.g. via
634  /// align attribute of a function argument, or guaranteed by DataLayout.
635  MaybeAlign getPointerAlignment(const DataLayout &DL) const;
636
637  /// Translate PHI node to its predecessor from the given basic block.
638  ///
639  /// If this value is a PHI node with CurBB as its parent, return the value in
640  /// the PHI node corresponding to PredBB.  If not, return ourself.  This is
641  /// useful if you want to know the value something has in a predecessor
642  /// block.
643  const Value *DoPHITranslation(const BasicBlock *CurBB,
644                                const BasicBlock *PredBB) const;
645  Value *DoPHITranslation(const BasicBlock *CurBB, const BasicBlock *PredBB) {
646    return const_cast<Value *>(
647             static_cast<const Value *>(this)->DoPHITranslation(CurBB, PredBB));
648  }
649
650  /// The maximum alignment for instructions.
651  ///
652  /// This is the greatest alignment value supported by load, store, and alloca
653  /// instructions, and global values.
654  static const unsigned MaxAlignmentExponent = 29;
655  static const unsigned MaximumAlignment = 1u << MaxAlignmentExponent;
656
657  /// Mutate the type of this Value to be of the specified type.
658  ///
659  /// Note that this is an extremely dangerous operation which can create
660  /// completely invalid IR very easily.  It is strongly recommended that you
661  /// recreate IR objects with the right types instead of mutating them in
662  /// place.
663  void mutateType(Type *Ty) {
664    VTy = Ty;
665  }
666
667  /// Sort the use-list.
668  ///
669  /// Sorts the Value's use-list by Cmp using a stable mergesort.  Cmp is
670  /// expected to compare two \a Use references.
671  template <class Compare> void sortUseList(Compare Cmp);
672
673  /// Reverse the use-list.
674  void reverseUseList();
675
676private:
677  /// Merge two lists together.
678  ///
679  /// Merges \c L and \c R using \c Cmp.  To enable stable sorts, always pushes
680  /// "equal" items from L before items from R.
681  ///
682  /// \return the first element in the list.
683  ///
684  /// \note Completely ignores \a Use::Prev (doesn't read, doesn't update).
685  template <class Compare>
686  static Use *mergeUseLists(Use *L, Use *R, Compare Cmp) {
687    Use *Merged;
688    Use **Next = &Merged;
689
690    while (true) {
691      if (!L) {
692        *Next = R;
693        break;
694      }
695      if (!R) {
696        *Next = L;
697        break;
698      }
699      if (Cmp(*R, *L)) {
700        *Next = R;
701        Next = &R->Next;
702        R = R->Next;
703      } else {
704        *Next = L;
705        Next = &L->Next;
706        L = L->Next;
707      }
708    }
709
710    return Merged;
711  }
712
713protected:
714  unsigned short getSubclassDataFromValue() const { return SubclassData; }
715  void setValueSubclassData(unsigned short D) { SubclassData = D; }
716};
717
718struct ValueDeleter { void operator()(Value *V) { V->deleteValue(); } };
719
720/// Use this instead of std::unique_ptr<Value> or std::unique_ptr<Instruction>.
721/// Those don't work because Value and Instruction's destructors are protected,
722/// aren't virtual, and won't destroy the complete object.
723using unique_value = std::unique_ptr<Value, ValueDeleter>;
724
725inline raw_ostream &operator<<(raw_ostream &OS, const Value &V) {
726  V.print(OS);
727  return OS;
728}
729
730void Use::set(Value *V) {
731  if (Val) removeFromList();
732  Val = V;
733  if (V) V->addUse(*this);
734}
735
736Value *Use::operator=(Value *RHS) {
737  set(RHS);
738  return RHS;
739}
740
741const Use &Use::operator=(const Use &RHS) {
742  set(RHS.Val);
743  return *this;
744}
745
746template <class Compare> void Value::sortUseList(Compare Cmp) {
747  if (!UseList || !UseList->Next)
748    // No need to sort 0 or 1 uses.
749    return;
750
751  // Note: this function completely ignores Prev pointers until the end when
752  // they're fixed en masse.
753
754  // Create a binomial vector of sorted lists, visiting uses one at a time and
755  // merging lists as necessary.
756  const unsigned MaxSlots = 32;
757  Use *Slots[MaxSlots];
758
759  // Collect the first use, turning it into a single-item list.
760  Use *Next = UseList->Next;
761  UseList->Next = nullptr;
762  unsigned NumSlots = 1;
763  Slots[0] = UseList;
764
765  // Collect all but the last use.
766  while (Next->Next) {
767    Use *Current = Next;
768    Next = Current->Next;
769
770    // Turn Current into a single-item list.
771    Current->Next = nullptr;
772
773    // Save Current in the first available slot, merging on collisions.
774    unsigned I;
775    for (I = 0; I < NumSlots; ++I) {
776      if (!Slots[I])
777        break;
778
779      // Merge two lists, doubling the size of Current and emptying slot I.
780      //
781      // Since the uses in Slots[I] originally preceded those in Current, send
782      // Slots[I] in as the left parameter to maintain a stable sort.
783      Current = mergeUseLists(Slots[I], Current, Cmp);
784      Slots[I] = nullptr;
785    }
786    // Check if this is a new slot.
787    if (I == NumSlots) {
788      ++NumSlots;
789      assert(NumSlots <= MaxSlots && "Use list bigger than 2^32");
790    }
791
792    // Found an open slot.
793    Slots[I] = Current;
794  }
795
796  // Merge all the lists together.
797  assert(Next && "Expected one more Use");
798  assert(!Next->Next && "Expected only one Use");
799  UseList = Next;
800  for (unsigned I = 0; I < NumSlots; ++I)
801    if (Slots[I])
802      // Since the uses in Slots[I] originally preceded those in UseList, send
803      // Slots[I] in as the left parameter to maintain a stable sort.
804      UseList = mergeUseLists(Slots[I], UseList, Cmp);
805
806  // Fix the Prev pointers.
807  for (Use *I = UseList, **Prev = &UseList; I; I = I->Next) {
808    I->setPrev(Prev);
809    Prev = &I->Next;
810  }
811}
812
813// isa - Provide some specializations of isa so that we don't have to include
814// the subtype header files to test to see if the value is a subclass...
815//
816template <> struct isa_impl<Constant, Value> {
817  static inline bool doit(const Value &Val) {
818    static_assert(Value::ConstantFirstVal == 0, "Val.getValueID() >= Value::ConstantFirstVal");
819    return Val.getValueID() <= Value::ConstantLastVal;
820  }
821};
822
823template <> struct isa_impl<ConstantData, Value> {
824  static inline bool doit(const Value &Val) {
825    return Val.getValueID() >= Value::ConstantDataFirstVal &&
826           Val.getValueID() <= Value::ConstantDataLastVal;
827  }
828};
829
830template <> struct isa_impl<ConstantAggregate, Value> {
831  static inline bool doit(const Value &Val) {
832    return Val.getValueID() >= Value::ConstantAggregateFirstVal &&
833           Val.getValueID() <= Value::ConstantAggregateLastVal;
834  }
835};
836
837template <> struct isa_impl<Argument, Value> {
838  static inline bool doit (const Value &Val) {
839    return Val.getValueID() == Value::ArgumentVal;
840  }
841};
842
843template <> struct isa_impl<InlineAsm, Value> {
844  static inline bool doit(const Value &Val) {
845    return Val.getValueID() == Value::InlineAsmVal;
846  }
847};
848
849template <> struct isa_impl<Instruction, Value> {
850  static inline bool doit(const Value &Val) {
851    return Val.getValueID() >= Value::InstructionVal;
852  }
853};
854
855template <> struct isa_impl<BasicBlock, Value> {
856  static inline bool doit(const Value &Val) {
857    return Val.getValueID() == Value::BasicBlockVal;
858  }
859};
860
861template <> struct isa_impl<Function, Value> {
862  static inline bool doit(const Value &Val) {
863    return Val.getValueID() == Value::FunctionVal;
864  }
865};
866
867template <> struct isa_impl<GlobalVariable, Value> {
868  static inline bool doit(const Value &Val) {
869    return Val.getValueID() == Value::GlobalVariableVal;
870  }
871};
872
873template <> struct isa_impl<GlobalAlias, Value> {
874  static inline bool doit(const Value &Val) {
875    return Val.getValueID() == Value::GlobalAliasVal;
876  }
877};
878
879template <> struct isa_impl<GlobalIFunc, Value> {
880  static inline bool doit(const Value &Val) {
881    return Val.getValueID() == Value::GlobalIFuncVal;
882  }
883};
884
885template <> struct isa_impl<GlobalIndirectSymbol, Value> {
886  static inline bool doit(const Value &Val) {
887    return isa<GlobalAlias>(Val) || isa<GlobalIFunc>(Val);
888  }
889};
890
891template <> struct isa_impl<GlobalValue, Value> {
892  static inline bool doit(const Value &Val) {
893    return isa<GlobalObject>(Val) || isa<GlobalIndirectSymbol>(Val);
894  }
895};
896
897template <> struct isa_impl<GlobalObject, Value> {
898  static inline bool doit(const Value &Val) {
899    return isa<GlobalVariable>(Val) || isa<Function>(Val);
900  }
901};
902
903// Create wrappers for C Binding types (see CBindingWrapping.h).
904DEFINE_ISA_CONVERSION_FUNCTIONS(Value, LLVMValueRef)
905
906// Specialized opaque value conversions.
907inline Value **unwrap(LLVMValueRef *Vals) {
908  return reinterpret_cast<Value**>(Vals);
909}
910
911template<typename T>
912inline T **unwrap(LLVMValueRef *Vals, unsigned Length) {
913#ifndef NDEBUG
914  for (LLVMValueRef *I = Vals, *E = Vals + Length; I != E; ++I)
915    unwrap<T>(*I); // For side effect of calling assert on invalid usage.
916#endif
917  (void)Length;
918  return reinterpret_cast<T**>(Vals);
919}
920
921inline LLVMValueRef *wrap(const Value **Vals) {
922  return reinterpret_cast<LLVMValueRef*>(const_cast<Value**>(Vals));
923}
924
925} // end namespace llvm
926
927#endif // LLVM_IR_VALUE_H
928