Metadata.h revision 360784
1//===- llvm/IR/Metadata.h - Metadata definitions ----------------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9/// @file
10/// This file contains the declarations for metadata subclasses.
11/// They represent the different flavors of metadata that live in LLVM.
12//
13//===----------------------------------------------------------------------===//
14
15#ifndef LLVM_IR_METADATA_H
16#define LLVM_IR_METADATA_H
17
18#include "llvm/ADT/ArrayRef.h"
19#include "llvm/ADT/DenseMap.h"
20#include "llvm/ADT/DenseMapInfo.h"
21#include "llvm/ADT/None.h"
22#include "llvm/ADT/PointerUnion.h"
23#include "llvm/ADT/STLExtras.h"
24#include "llvm/ADT/SmallVector.h"
25#include "llvm/ADT/StringMap.h"
26#include "llvm/ADT/StringRef.h"
27#include "llvm/ADT/ilist_node.h"
28#include "llvm/ADT/iterator_range.h"
29#include "llvm/IR/Constant.h"
30#include "llvm/IR/LLVMContext.h"
31#include "llvm/IR/Value.h"
32#include "llvm/Support/CBindingWrapping.h"
33#include "llvm/Support/Casting.h"
34#include "llvm/Support/ErrorHandling.h"
35#include <cassert>
36#include <cstddef>
37#include <cstdint>
38#include <iterator>
39#include <memory>
40#include <string>
41#include <type_traits>
42#include <utility>
43
44namespace llvm {
45
46class Module;
47class ModuleSlotTracker;
48class raw_ostream;
49class Type;
50
51enum LLVMConstants : uint32_t {
52  DEBUG_METADATA_VERSION = 3 // Current debug info version number.
53};
54
55/// Root of the metadata hierarchy.
56///
57/// This is a root class for typeless data in the IR.
58class Metadata {
59  friend class ReplaceableMetadataImpl;
60
61  /// RTTI.
62  const unsigned char SubclassID;
63
64protected:
65  /// Active type of storage.
66  enum StorageType { Uniqued, Distinct, Temporary };
67
68  /// Storage flag for non-uniqued, otherwise unowned, metadata.
69  unsigned char Storage : 7;
70  // TODO: expose remaining bits to subclasses.
71
72  unsigned char ImplicitCode : 1;
73
74  unsigned short SubclassData16 = 0;
75  unsigned SubclassData32 = 0;
76
77public:
78  enum MetadataKind {
79#define HANDLE_METADATA_LEAF(CLASS) CLASS##Kind,
80#include "llvm/IR/Metadata.def"
81  };
82
83protected:
84  Metadata(unsigned ID, StorageType Storage)
85      : SubclassID(ID), Storage(Storage), ImplicitCode(false) {
86    static_assert(sizeof(*this) == 8, "Metadata fields poorly packed");
87  }
88
89  ~Metadata() = default;
90
91  /// Default handling of a changed operand, which asserts.
92  ///
93  /// If subclasses pass themselves in as owners to a tracking node reference,
94  /// they must provide an implementation of this method.
95  void handleChangedOperand(void *, Metadata *) {
96    llvm_unreachable("Unimplemented in Metadata subclass");
97  }
98
99public:
100  unsigned getMetadataID() const { return SubclassID; }
101
102  /// User-friendly dump.
103  ///
104  /// If \c M is provided, metadata nodes will be numbered canonically;
105  /// otherwise, pointer addresses are substituted.
106  ///
107  /// Note: this uses an explicit overload instead of default arguments so that
108  /// the nullptr version is easy to call from a debugger.
109  ///
110  /// @{
111  void dump() const;
112  void dump(const Module *M) const;
113  /// @}
114
115  /// Print.
116  ///
117  /// Prints definition of \c this.
118  ///
119  /// If \c M is provided, metadata nodes will be numbered canonically;
120  /// otherwise, pointer addresses are substituted.
121  /// @{
122  void print(raw_ostream &OS, const Module *M = nullptr,
123             bool IsForDebug = false) const;
124  void print(raw_ostream &OS, ModuleSlotTracker &MST, const Module *M = nullptr,
125             bool IsForDebug = false) const;
126  /// @}
127
128  /// Print as operand.
129  ///
130  /// Prints reference of \c this.
131  ///
132  /// If \c M is provided, metadata nodes will be numbered canonically;
133  /// otherwise, pointer addresses are substituted.
134  /// @{
135  void printAsOperand(raw_ostream &OS, const Module *M = nullptr) const;
136  void printAsOperand(raw_ostream &OS, ModuleSlotTracker &MST,
137                      const Module *M = nullptr) const;
138  /// @}
139};
140
141// Create wrappers for C Binding types (see CBindingWrapping.h).
142DEFINE_ISA_CONVERSION_FUNCTIONS(Metadata, LLVMMetadataRef)
143
144// Specialized opaque metadata conversions.
145inline Metadata **unwrap(LLVMMetadataRef *MDs) {
146  return reinterpret_cast<Metadata**>(MDs);
147}
148
149#define HANDLE_METADATA(CLASS) class CLASS;
150#include "llvm/IR/Metadata.def"
151
152// Provide specializations of isa so that we don't need definitions of
153// subclasses to see if the metadata is a subclass.
154#define HANDLE_METADATA_LEAF(CLASS)                                            \
155  template <> struct isa_impl<CLASS, Metadata> {                               \
156    static inline bool doit(const Metadata &MD) {                              \
157      return MD.getMetadataID() == Metadata::CLASS##Kind;                      \
158    }                                                                          \
159  };
160#include "llvm/IR/Metadata.def"
161
162inline raw_ostream &operator<<(raw_ostream &OS, const Metadata &MD) {
163  MD.print(OS);
164  return OS;
165}
166
167/// Metadata wrapper in the Value hierarchy.
168///
169/// A member of the \a Value hierarchy to represent a reference to metadata.
170/// This allows, e.g., instrinsics to have metadata as operands.
171///
172/// Notably, this is the only thing in either hierarchy that is allowed to
173/// reference \a LocalAsMetadata.
174class MetadataAsValue : public Value {
175  friend class ReplaceableMetadataImpl;
176  friend class LLVMContextImpl;
177
178  Metadata *MD;
179
180  MetadataAsValue(Type *Ty, Metadata *MD);
181
182  /// Drop use of metadata (during teardown).
183  void dropUse() { MD = nullptr; }
184
185public:
186  ~MetadataAsValue();
187
188  static MetadataAsValue *get(LLVMContext &Context, Metadata *MD);
189  static MetadataAsValue *getIfExists(LLVMContext &Context, Metadata *MD);
190
191  Metadata *getMetadata() const { return MD; }
192
193  static bool classof(const Value *V) {
194    return V->getValueID() == MetadataAsValueVal;
195  }
196
197private:
198  void handleChangedMetadata(Metadata *MD);
199  void track();
200  void untrack();
201};
202
203/// API for tracking metadata references through RAUW and deletion.
204///
205/// Shared API for updating \a Metadata pointers in subclasses that support
206/// RAUW.
207///
208/// This API is not meant to be used directly.  See \a TrackingMDRef for a
209/// user-friendly tracking reference.
210class MetadataTracking {
211public:
212  /// Track the reference to metadata.
213  ///
214  /// Register \c MD with \c *MD, if the subclass supports tracking.  If \c *MD
215  /// gets RAUW'ed, \c MD will be updated to the new address.  If \c *MD gets
216  /// deleted, \c MD will be set to \c nullptr.
217  ///
218  /// If tracking isn't supported, \c *MD will not change.
219  ///
220  /// \return true iff tracking is supported by \c MD.
221  static bool track(Metadata *&MD) {
222    return track(&MD, *MD, static_cast<Metadata *>(nullptr));
223  }
224
225  /// Track the reference to metadata for \a Metadata.
226  ///
227  /// As \a track(Metadata*&), but with support for calling back to \c Owner to
228  /// tell it that its operand changed.  This could trigger \c Owner being
229  /// re-uniqued.
230  static bool track(void *Ref, Metadata &MD, Metadata &Owner) {
231    return track(Ref, MD, &Owner);
232  }
233
234  /// Track the reference to metadata for \a MetadataAsValue.
235  ///
236  /// As \a track(Metadata*&), but with support for calling back to \c Owner to
237  /// tell it that its operand changed.  This could trigger \c Owner being
238  /// re-uniqued.
239  static bool track(void *Ref, Metadata &MD, MetadataAsValue &Owner) {
240    return track(Ref, MD, &Owner);
241  }
242
243  /// Stop tracking a reference to metadata.
244  ///
245  /// Stops \c *MD from tracking \c MD.
246  static void untrack(Metadata *&MD) { untrack(&MD, *MD); }
247  static void untrack(void *Ref, Metadata &MD);
248
249  /// Move tracking from one reference to another.
250  ///
251  /// Semantically equivalent to \c untrack(MD) followed by \c track(New),
252  /// except that ownership callbacks are maintained.
253  ///
254  /// Note: it is an error if \c *MD does not equal \c New.
255  ///
256  /// \return true iff tracking is supported by \c MD.
257  static bool retrack(Metadata *&MD, Metadata *&New) {
258    return retrack(&MD, *MD, &New);
259  }
260  static bool retrack(void *Ref, Metadata &MD, void *New);
261
262  /// Check whether metadata is replaceable.
263  static bool isReplaceable(const Metadata &MD);
264
265  using OwnerTy = PointerUnion<MetadataAsValue *, Metadata *>;
266
267private:
268  /// Track a reference to metadata for an owner.
269  ///
270  /// Generalized version of tracking.
271  static bool track(void *Ref, Metadata &MD, OwnerTy Owner);
272};
273
274/// Shared implementation of use-lists for replaceable metadata.
275///
276/// Most metadata cannot be RAUW'ed.  This is a shared implementation of
277/// use-lists and associated API for the two that support it (\a ValueAsMetadata
278/// and \a TempMDNode).
279class ReplaceableMetadataImpl {
280  friend class MetadataTracking;
281
282public:
283  using OwnerTy = MetadataTracking::OwnerTy;
284
285private:
286  LLVMContext &Context;
287  uint64_t NextIndex = 0;
288  SmallDenseMap<void *, std::pair<OwnerTy, uint64_t>, 4> UseMap;
289
290public:
291  ReplaceableMetadataImpl(LLVMContext &Context) : Context(Context) {}
292
293  ~ReplaceableMetadataImpl() {
294    assert(UseMap.empty() && "Cannot destroy in-use replaceable metadata");
295  }
296
297  LLVMContext &getContext() const { return Context; }
298
299  /// Replace all uses of this with MD.
300  ///
301  /// Replace all uses of this with \c MD, which is allowed to be null.
302  void replaceAllUsesWith(Metadata *MD);
303
304  /// Resolve all uses of this.
305  ///
306  /// Resolve all uses of this, turning off RAUW permanently.  If \c
307  /// ResolveUsers, call \a MDNode::resolve() on any users whose last operand
308  /// is resolved.
309  void resolveAllUses(bool ResolveUsers = true);
310
311private:
312  void addRef(void *Ref, OwnerTy Owner);
313  void dropRef(void *Ref);
314  void moveRef(void *Ref, void *New, const Metadata &MD);
315
316  /// Lazily construct RAUW support on MD.
317  ///
318  /// If this is an unresolved MDNode, RAUW support will be created on-demand.
319  /// ValueAsMetadata always has RAUW support.
320  static ReplaceableMetadataImpl *getOrCreate(Metadata &MD);
321
322  /// Get RAUW support on MD, if it exists.
323  static ReplaceableMetadataImpl *getIfExists(Metadata &MD);
324
325  /// Check whether this node will support RAUW.
326  ///
327  /// Returns \c true unless getOrCreate() would return null.
328  static bool isReplaceable(const Metadata &MD);
329};
330
331/// Value wrapper in the Metadata hierarchy.
332///
333/// This is a custom value handle that allows other metadata to refer to
334/// classes in the Value hierarchy.
335///
336/// Because of full uniquing support, each value is only wrapped by a single \a
337/// ValueAsMetadata object, so the lookup maps are far more efficient than
338/// those using ValueHandleBase.
339class ValueAsMetadata : public Metadata, ReplaceableMetadataImpl {
340  friend class ReplaceableMetadataImpl;
341  friend class LLVMContextImpl;
342
343  Value *V;
344
345  /// Drop users without RAUW (during teardown).
346  void dropUsers() {
347    ReplaceableMetadataImpl::resolveAllUses(/* ResolveUsers */ false);
348  }
349
350protected:
351  ValueAsMetadata(unsigned ID, Value *V)
352      : Metadata(ID, Uniqued), ReplaceableMetadataImpl(V->getContext()), V(V) {
353    assert(V && "Expected valid value");
354  }
355
356  ~ValueAsMetadata() = default;
357
358public:
359  static ValueAsMetadata *get(Value *V);
360
361  static ConstantAsMetadata *getConstant(Value *C) {
362    return cast<ConstantAsMetadata>(get(C));
363  }
364
365  static LocalAsMetadata *getLocal(Value *Local) {
366    return cast<LocalAsMetadata>(get(Local));
367  }
368
369  static ValueAsMetadata *getIfExists(Value *V);
370
371  static ConstantAsMetadata *getConstantIfExists(Value *C) {
372    return cast_or_null<ConstantAsMetadata>(getIfExists(C));
373  }
374
375  static LocalAsMetadata *getLocalIfExists(Value *Local) {
376    return cast_or_null<LocalAsMetadata>(getIfExists(Local));
377  }
378
379  Value *getValue() const { return V; }
380  Type *getType() const { return V->getType(); }
381  LLVMContext &getContext() const { return V->getContext(); }
382
383  static void handleDeletion(Value *V);
384  static void handleRAUW(Value *From, Value *To);
385
386protected:
387  /// Handle collisions after \a Value::replaceAllUsesWith().
388  ///
389  /// RAUW isn't supported directly for \a ValueAsMetadata, but if the wrapped
390  /// \a Value gets RAUW'ed and the target already exists, this is used to
391  /// merge the two metadata nodes.
392  void replaceAllUsesWith(Metadata *MD) {
393    ReplaceableMetadataImpl::replaceAllUsesWith(MD);
394  }
395
396public:
397  static bool classof(const Metadata *MD) {
398    return MD->getMetadataID() == LocalAsMetadataKind ||
399           MD->getMetadataID() == ConstantAsMetadataKind;
400  }
401};
402
403class ConstantAsMetadata : public ValueAsMetadata {
404  friend class ValueAsMetadata;
405
406  ConstantAsMetadata(Constant *C)
407      : ValueAsMetadata(ConstantAsMetadataKind, C) {}
408
409public:
410  static ConstantAsMetadata *get(Constant *C) {
411    return ValueAsMetadata::getConstant(C);
412  }
413
414  static ConstantAsMetadata *getIfExists(Constant *C) {
415    return ValueAsMetadata::getConstantIfExists(C);
416  }
417
418  Constant *getValue() const {
419    return cast<Constant>(ValueAsMetadata::getValue());
420  }
421
422  static bool classof(const Metadata *MD) {
423    return MD->getMetadataID() == ConstantAsMetadataKind;
424  }
425};
426
427class LocalAsMetadata : public ValueAsMetadata {
428  friend class ValueAsMetadata;
429
430  LocalAsMetadata(Value *Local)
431      : ValueAsMetadata(LocalAsMetadataKind, Local) {
432    assert(!isa<Constant>(Local) && "Expected local value");
433  }
434
435public:
436  static LocalAsMetadata *get(Value *Local) {
437    return ValueAsMetadata::getLocal(Local);
438  }
439
440  static LocalAsMetadata *getIfExists(Value *Local) {
441    return ValueAsMetadata::getLocalIfExists(Local);
442  }
443
444  static bool classof(const Metadata *MD) {
445    return MD->getMetadataID() == LocalAsMetadataKind;
446  }
447};
448
449/// Transitional API for extracting constants from Metadata.
450///
451/// This namespace contains transitional functions for metadata that points to
452/// \a Constants.
453///
454/// In prehistory -- when metadata was a subclass of \a Value -- \a MDNode
455/// operands could refer to any \a Value.  There's was a lot of code like this:
456///
457/// \code
458///     MDNode *N = ...;
459///     auto *CI = dyn_cast<ConstantInt>(N->getOperand(2));
460/// \endcode
461///
462/// Now that \a Value and \a Metadata are in separate hierarchies, maintaining
463/// the semantics for \a isa(), \a cast(), \a dyn_cast() (etc.) requires three
464/// steps: cast in the \a Metadata hierarchy, extraction of the \a Value, and
465/// cast in the \a Value hierarchy.  Besides creating boiler-plate, this
466/// requires subtle control flow changes.
467///
468/// The end-goal is to create a new type of metadata, called (e.g.) \a MDInt,
469/// so that metadata can refer to numbers without traversing a bridge to the \a
470/// Value hierarchy.  In this final state, the code above would look like this:
471///
472/// \code
473///     MDNode *N = ...;
474///     auto *MI = dyn_cast<MDInt>(N->getOperand(2));
475/// \endcode
476///
477/// The API in this namespace supports the transition.  \a MDInt doesn't exist
478/// yet, and even once it does, changing each metadata schema to use it is its
479/// own mini-project.  In the meantime this API prevents us from introducing
480/// complex and bug-prone control flow that will disappear in the end.  In
481/// particular, the above code looks like this:
482///
483/// \code
484///     MDNode *N = ...;
485///     auto *CI = mdconst::dyn_extract<ConstantInt>(N->getOperand(2));
486/// \endcode
487///
488/// The full set of provided functions includes:
489///
490///   mdconst::hasa                <=> isa
491///   mdconst::extract             <=> cast
492///   mdconst::extract_or_null     <=> cast_or_null
493///   mdconst::dyn_extract         <=> dyn_cast
494///   mdconst::dyn_extract_or_null <=> dyn_cast_or_null
495///
496/// The target of the cast must be a subclass of \a Constant.
497namespace mdconst {
498
499namespace detail {
500
501template <class T> T &make();
502template <class T, class Result> struct HasDereference {
503  using Yes = char[1];
504  using No = char[2];
505  template <size_t N> struct SFINAE {};
506
507  template <class U, class V>
508  static Yes &hasDereference(SFINAE<sizeof(static_cast<V>(*make<U>()))> * = 0);
509  template <class U, class V> static No &hasDereference(...);
510
511  static const bool value =
512      sizeof(hasDereference<T, Result>(nullptr)) == sizeof(Yes);
513};
514template <class V, class M> struct IsValidPointer {
515  static const bool value = std::is_base_of<Constant, V>::value &&
516                            HasDereference<M, const Metadata &>::value;
517};
518template <class V, class M> struct IsValidReference {
519  static const bool value = std::is_base_of<Constant, V>::value &&
520                            std::is_convertible<M, const Metadata &>::value;
521};
522
523} // end namespace detail
524
525/// Check whether Metadata has a Value.
526///
527/// As an analogue to \a isa(), check whether \c MD has an \a Value inside of
528/// type \c X.
529template <class X, class Y>
530inline typename std::enable_if<detail::IsValidPointer<X, Y>::value, bool>::type
531hasa(Y &&MD) {
532  assert(MD && "Null pointer sent into hasa");
533  if (auto *V = dyn_cast<ConstantAsMetadata>(MD))
534    return isa<X>(V->getValue());
535  return false;
536}
537template <class X, class Y>
538inline
539    typename std::enable_if<detail::IsValidReference<X, Y &>::value, bool>::type
540    hasa(Y &MD) {
541  return hasa(&MD);
542}
543
544/// Extract a Value from Metadata.
545///
546/// As an analogue to \a cast(), extract the \a Value subclass \c X from \c MD.
547template <class X, class Y>
548inline typename std::enable_if<detail::IsValidPointer<X, Y>::value, X *>::type
549extract(Y &&MD) {
550  return cast<X>(cast<ConstantAsMetadata>(MD)->getValue());
551}
552template <class X, class Y>
553inline
554    typename std::enable_if<detail::IsValidReference<X, Y &>::value, X *>::type
555    extract(Y &MD) {
556  return extract(&MD);
557}
558
559/// Extract a Value from Metadata, allowing null.
560///
561/// As an analogue to \a cast_or_null(), extract the \a Value subclass \c X
562/// from \c MD, allowing \c MD to be null.
563template <class X, class Y>
564inline typename std::enable_if<detail::IsValidPointer<X, Y>::value, X *>::type
565extract_or_null(Y &&MD) {
566  if (auto *V = cast_or_null<ConstantAsMetadata>(MD))
567    return cast<X>(V->getValue());
568  return nullptr;
569}
570
571/// Extract a Value from Metadata, if any.
572///
573/// As an analogue to \a dyn_cast_or_null(), extract the \a Value subclass \c X
574/// from \c MD, return null if \c MD doesn't contain a \a Value or if the \a
575/// Value it does contain is of the wrong subclass.
576template <class X, class Y>
577inline typename std::enable_if<detail::IsValidPointer<X, Y>::value, X *>::type
578dyn_extract(Y &&MD) {
579  if (auto *V = dyn_cast<ConstantAsMetadata>(MD))
580    return dyn_cast<X>(V->getValue());
581  return nullptr;
582}
583
584/// Extract a Value from Metadata, if any, allowing null.
585///
586/// As an analogue to \a dyn_cast_or_null(), extract the \a Value subclass \c X
587/// from \c MD, return null if \c MD doesn't contain a \a Value or if the \a
588/// Value it does contain is of the wrong subclass, allowing \c MD to be null.
589template <class X, class Y>
590inline typename std::enable_if<detail::IsValidPointer<X, Y>::value, X *>::type
591dyn_extract_or_null(Y &&MD) {
592  if (auto *V = dyn_cast_or_null<ConstantAsMetadata>(MD))
593    return dyn_cast<X>(V->getValue());
594  return nullptr;
595}
596
597} // end namespace mdconst
598
599//===----------------------------------------------------------------------===//
600/// A single uniqued string.
601///
602/// These are used to efficiently contain a byte sequence for metadata.
603/// MDString is always unnamed.
604class MDString : public Metadata {
605  friend class StringMapEntryStorage<MDString>;
606
607  StringMapEntry<MDString> *Entry = nullptr;
608
609  MDString() : Metadata(MDStringKind, Uniqued) {}
610
611public:
612  MDString(const MDString &) = delete;
613  MDString &operator=(MDString &&) = delete;
614  MDString &operator=(const MDString &) = delete;
615
616  static MDString *get(LLVMContext &Context, StringRef Str);
617  static MDString *get(LLVMContext &Context, const char *Str) {
618    return get(Context, Str ? StringRef(Str) : StringRef());
619  }
620
621  StringRef getString() const;
622
623  unsigned getLength() const { return (unsigned)getString().size(); }
624
625  using iterator = StringRef::iterator;
626
627  /// Pointer to the first byte of the string.
628  iterator begin() const { return getString().begin(); }
629
630  /// Pointer to one byte past the end of the string.
631  iterator end() const { return getString().end(); }
632
633  const unsigned char *bytes_begin() const { return getString().bytes_begin(); }
634  const unsigned char *bytes_end() const { return getString().bytes_end(); }
635
636  /// Methods for support type inquiry through isa, cast, and dyn_cast.
637  static bool classof(const Metadata *MD) {
638    return MD->getMetadataID() == MDStringKind;
639  }
640};
641
642/// A collection of metadata nodes that might be associated with a
643/// memory access used by the alias-analysis infrastructure.
644struct AAMDNodes {
645  explicit AAMDNodes() = default;
646  explicit AAMDNodes(MDNode *T, MDNode *TS, MDNode *S, MDNode *N)
647      : TBAA(T), TBAAStruct(TS), Scope(S), NoAlias(N) {}
648
649  bool operator==(const AAMDNodes &A) const {
650    return TBAA == A.TBAA && TBAAStruct == A.TBAAStruct && Scope == A.Scope &&
651           NoAlias == A.NoAlias;
652  }
653
654  bool operator!=(const AAMDNodes &A) const { return !(*this == A); }
655
656  explicit operator bool() const {
657    return TBAA || TBAAStruct || Scope || NoAlias;
658  }
659
660  /// The tag for type-based alias analysis.
661  MDNode *TBAA = nullptr;
662
663  /// The tag for type-based alias analysis (tbaa struct).
664  MDNode *TBAAStruct = nullptr;
665
666  /// The tag for alias scope specification (used with noalias).
667  MDNode *Scope = nullptr;
668
669  /// The tag specifying the noalias scope.
670  MDNode *NoAlias = nullptr;
671
672  /// Given two sets of AAMDNodes that apply to the same pointer,
673  /// give the best AAMDNodes that are compatible with both (i.e. a set of
674  /// nodes whose allowable aliasing conclusions are a subset of those
675  /// allowable by both of the inputs). However, for efficiency
676  /// reasons, do not create any new MDNodes.
677  AAMDNodes intersect(const AAMDNodes &Other) {
678    AAMDNodes Result;
679    Result.TBAA = Other.TBAA == TBAA ? TBAA : nullptr;
680    Result.TBAAStruct = Other.TBAAStruct == TBAAStruct ? TBAAStruct : nullptr;
681    Result.Scope = Other.Scope == Scope ? Scope : nullptr;
682    Result.NoAlias = Other.NoAlias == NoAlias ? NoAlias : nullptr;
683    return Result;
684  }
685};
686
687// Specialize DenseMapInfo for AAMDNodes.
688template<>
689struct DenseMapInfo<AAMDNodes> {
690  static inline AAMDNodes getEmptyKey() {
691    return AAMDNodes(DenseMapInfo<MDNode *>::getEmptyKey(),
692                     nullptr, nullptr, nullptr);
693  }
694
695  static inline AAMDNodes getTombstoneKey() {
696    return AAMDNodes(DenseMapInfo<MDNode *>::getTombstoneKey(),
697                     nullptr, nullptr, nullptr);
698  }
699
700  static unsigned getHashValue(const AAMDNodes &Val) {
701    return DenseMapInfo<MDNode *>::getHashValue(Val.TBAA) ^
702           DenseMapInfo<MDNode *>::getHashValue(Val.TBAAStruct) ^
703           DenseMapInfo<MDNode *>::getHashValue(Val.Scope) ^
704           DenseMapInfo<MDNode *>::getHashValue(Val.NoAlias);
705  }
706
707  static bool isEqual(const AAMDNodes &LHS, const AAMDNodes &RHS) {
708    return LHS == RHS;
709  }
710};
711
712/// Tracking metadata reference owned by Metadata.
713///
714/// Similar to \a TrackingMDRef, but it's expected to be owned by an instance
715/// of \a Metadata, which has the option of registering itself for callbacks to
716/// re-unique itself.
717///
718/// In particular, this is used by \a MDNode.
719class MDOperand {
720  Metadata *MD = nullptr;
721
722public:
723  MDOperand() = default;
724  MDOperand(MDOperand &&) = delete;
725  MDOperand(const MDOperand &) = delete;
726  MDOperand &operator=(MDOperand &&) = delete;
727  MDOperand &operator=(const MDOperand &) = delete;
728  ~MDOperand() { untrack(); }
729
730  Metadata *get() const { return MD; }
731  operator Metadata *() const { return get(); }
732  Metadata *operator->() const { return get(); }
733  Metadata &operator*() const { return *get(); }
734
735  void reset() {
736    untrack();
737    MD = nullptr;
738  }
739  void reset(Metadata *MD, Metadata *Owner) {
740    untrack();
741    this->MD = MD;
742    track(Owner);
743  }
744
745private:
746  void track(Metadata *Owner) {
747    if (MD) {
748      if (Owner)
749        MetadataTracking::track(this, *MD, *Owner);
750      else
751        MetadataTracking::track(MD);
752    }
753  }
754
755  void untrack() {
756    assert(static_cast<void *>(this) == &MD && "Expected same address");
757    if (MD)
758      MetadataTracking::untrack(MD);
759  }
760};
761
762template <> struct simplify_type<MDOperand> {
763  using SimpleType = Metadata *;
764
765  static SimpleType getSimplifiedValue(MDOperand &MD) { return MD.get(); }
766};
767
768template <> struct simplify_type<const MDOperand> {
769  using SimpleType = Metadata *;
770
771  static SimpleType getSimplifiedValue(const MDOperand &MD) { return MD.get(); }
772};
773
774/// Pointer to the context, with optional RAUW support.
775///
776/// Either a raw (non-null) pointer to the \a LLVMContext, or an owned pointer
777/// to \a ReplaceableMetadataImpl (which has a reference to \a LLVMContext).
778class ContextAndReplaceableUses {
779  PointerUnion<LLVMContext *, ReplaceableMetadataImpl *> Ptr;
780
781public:
782  ContextAndReplaceableUses(LLVMContext &Context) : Ptr(&Context) {}
783  ContextAndReplaceableUses(
784      std::unique_ptr<ReplaceableMetadataImpl> ReplaceableUses)
785      : Ptr(ReplaceableUses.release()) {
786    assert(getReplaceableUses() && "Expected non-null replaceable uses");
787  }
788  ContextAndReplaceableUses() = delete;
789  ContextAndReplaceableUses(ContextAndReplaceableUses &&) = delete;
790  ContextAndReplaceableUses(const ContextAndReplaceableUses &) = delete;
791  ContextAndReplaceableUses &operator=(ContextAndReplaceableUses &&) = delete;
792  ContextAndReplaceableUses &
793  operator=(const ContextAndReplaceableUses &) = delete;
794  ~ContextAndReplaceableUses() { delete getReplaceableUses(); }
795
796  operator LLVMContext &() { return getContext(); }
797
798  /// Whether this contains RAUW support.
799  bool hasReplaceableUses() const {
800    return Ptr.is<ReplaceableMetadataImpl *>();
801  }
802
803  LLVMContext &getContext() const {
804    if (hasReplaceableUses())
805      return getReplaceableUses()->getContext();
806    return *Ptr.get<LLVMContext *>();
807  }
808
809  ReplaceableMetadataImpl *getReplaceableUses() const {
810    if (hasReplaceableUses())
811      return Ptr.get<ReplaceableMetadataImpl *>();
812    return nullptr;
813  }
814
815  /// Ensure that this has RAUW support, and then return it.
816  ReplaceableMetadataImpl *getOrCreateReplaceableUses() {
817    if (!hasReplaceableUses())
818      makeReplaceable(std::make_unique<ReplaceableMetadataImpl>(getContext()));
819    return getReplaceableUses();
820  }
821
822  /// Assign RAUW support to this.
823  ///
824  /// Make this replaceable, taking ownership of \c ReplaceableUses (which must
825  /// not be null).
826  void
827  makeReplaceable(std::unique_ptr<ReplaceableMetadataImpl> ReplaceableUses) {
828    assert(ReplaceableUses && "Expected non-null replaceable uses");
829    assert(&ReplaceableUses->getContext() == &getContext() &&
830           "Expected same context");
831    delete getReplaceableUses();
832    Ptr = ReplaceableUses.release();
833  }
834
835  /// Drop RAUW support.
836  ///
837  /// Cede ownership of RAUW support, returning it.
838  std::unique_ptr<ReplaceableMetadataImpl> takeReplaceableUses() {
839    assert(hasReplaceableUses() && "Expected to own replaceable uses");
840    std::unique_ptr<ReplaceableMetadataImpl> ReplaceableUses(
841        getReplaceableUses());
842    Ptr = &ReplaceableUses->getContext();
843    return ReplaceableUses;
844  }
845};
846
847struct TempMDNodeDeleter {
848  inline void operator()(MDNode *Node) const;
849};
850
851#define HANDLE_MDNODE_LEAF(CLASS)                                              \
852  using Temp##CLASS = std::unique_ptr<CLASS, TempMDNodeDeleter>;
853#define HANDLE_MDNODE_BRANCH(CLASS) HANDLE_MDNODE_LEAF(CLASS)
854#include "llvm/IR/Metadata.def"
855
856/// Metadata node.
857///
858/// Metadata nodes can be uniqued, like constants, or distinct.  Temporary
859/// metadata nodes (with full support for RAUW) can be used to delay uniquing
860/// until forward references are known.  The basic metadata node is an \a
861/// MDTuple.
862///
863/// There is limited support for RAUW at construction time.  At construction
864/// time, if any operand is a temporary node (or an unresolved uniqued node,
865/// which indicates a transitive temporary operand), the node itself will be
866/// unresolved.  As soon as all operands become resolved, it will drop RAUW
867/// support permanently.
868///
869/// If an unresolved node is part of a cycle, \a resolveCycles() needs
870/// to be called on some member of the cycle once all temporary nodes have been
871/// replaced.
872class MDNode : public Metadata {
873  friend class ReplaceableMetadataImpl;
874  friend class LLVMContextImpl;
875
876  unsigned NumOperands;
877  unsigned NumUnresolved;
878
879  ContextAndReplaceableUses Context;
880
881protected:
882  MDNode(LLVMContext &Context, unsigned ID, StorageType Storage,
883         ArrayRef<Metadata *> Ops1, ArrayRef<Metadata *> Ops2 = None);
884  ~MDNode() = default;
885
886  void *operator new(size_t Size, unsigned NumOps);
887  void operator delete(void *Mem);
888
889  /// Required by std, but never called.
890  void operator delete(void *, unsigned) {
891    llvm_unreachable("Constructor throws?");
892  }
893
894  /// Required by std, but never called.
895  void operator delete(void *, unsigned, bool) {
896    llvm_unreachable("Constructor throws?");
897  }
898
899  void dropAllReferences();
900
901  MDOperand *mutable_begin() { return mutable_end() - NumOperands; }
902  MDOperand *mutable_end() { return reinterpret_cast<MDOperand *>(this); }
903
904  using mutable_op_range = iterator_range<MDOperand *>;
905
906  mutable_op_range mutable_operands() {
907    return mutable_op_range(mutable_begin(), mutable_end());
908  }
909
910public:
911  MDNode(const MDNode &) = delete;
912  void operator=(const MDNode &) = delete;
913  void *operator new(size_t) = delete;
914
915  static inline MDTuple *get(LLVMContext &Context, ArrayRef<Metadata *> MDs);
916  static inline MDTuple *getIfExists(LLVMContext &Context,
917                                     ArrayRef<Metadata *> MDs);
918  static inline MDTuple *getDistinct(LLVMContext &Context,
919                                     ArrayRef<Metadata *> MDs);
920  static inline TempMDTuple getTemporary(LLVMContext &Context,
921                                         ArrayRef<Metadata *> MDs);
922
923  /// Create a (temporary) clone of this.
924  TempMDNode clone() const;
925
926  /// Deallocate a node created by getTemporary.
927  ///
928  /// Calls \c replaceAllUsesWith(nullptr) before deleting, so any remaining
929  /// references will be reset.
930  static void deleteTemporary(MDNode *N);
931
932  LLVMContext &getContext() const { return Context.getContext(); }
933
934  /// Replace a specific operand.
935  void replaceOperandWith(unsigned I, Metadata *New);
936
937  /// Check if node is fully resolved.
938  ///
939  /// If \a isTemporary(), this always returns \c false; if \a isDistinct(),
940  /// this always returns \c true.
941  ///
942  /// If \a isUniqued(), returns \c true if this has already dropped RAUW
943  /// support (because all operands are resolved).
944  ///
945  /// As forward declarations are resolved, their containers should get
946  /// resolved automatically.  However, if this (or one of its operands) is
947  /// involved in a cycle, \a resolveCycles() needs to be called explicitly.
948  bool isResolved() const { return !isTemporary() && !NumUnresolved; }
949
950  bool isUniqued() const { return Storage == Uniqued; }
951  bool isDistinct() const { return Storage == Distinct; }
952  bool isTemporary() const { return Storage == Temporary; }
953
954  /// RAUW a temporary.
955  ///
956  /// \pre \a isTemporary() must be \c true.
957  void replaceAllUsesWith(Metadata *MD) {
958    assert(isTemporary() && "Expected temporary node");
959    if (Context.hasReplaceableUses())
960      Context.getReplaceableUses()->replaceAllUsesWith(MD);
961  }
962
963  /// Resolve cycles.
964  ///
965  /// Once all forward declarations have been resolved, force cycles to be
966  /// resolved.
967  ///
968  /// \pre No operands (or operands' operands, etc.) have \a isTemporary().
969  void resolveCycles();
970
971  /// Resolve a unique, unresolved node.
972  void resolve();
973
974  /// Replace a temporary node with a permanent one.
975  ///
976  /// Try to create a uniqued version of \c N -- in place, if possible -- and
977  /// return it.  If \c N cannot be uniqued, return a distinct node instead.
978  template <class T>
979  static typename std::enable_if<std::is_base_of<MDNode, T>::value, T *>::type
980  replaceWithPermanent(std::unique_ptr<T, TempMDNodeDeleter> N) {
981    return cast<T>(N.release()->replaceWithPermanentImpl());
982  }
983
984  /// Replace a temporary node with a uniqued one.
985  ///
986  /// Create a uniqued version of \c N -- in place, if possible -- and return
987  /// it.  Takes ownership of the temporary node.
988  ///
989  /// \pre N does not self-reference.
990  template <class T>
991  static typename std::enable_if<std::is_base_of<MDNode, T>::value, T *>::type
992  replaceWithUniqued(std::unique_ptr<T, TempMDNodeDeleter> N) {
993    return cast<T>(N.release()->replaceWithUniquedImpl());
994  }
995
996  /// Replace a temporary node with a distinct one.
997  ///
998  /// Create a distinct version of \c N -- in place, if possible -- and return
999  /// it.  Takes ownership of the temporary node.
1000  template <class T>
1001  static typename std::enable_if<std::is_base_of<MDNode, T>::value, T *>::type
1002  replaceWithDistinct(std::unique_ptr<T, TempMDNodeDeleter> N) {
1003    return cast<T>(N.release()->replaceWithDistinctImpl());
1004  }
1005
1006private:
1007  MDNode *replaceWithPermanentImpl();
1008  MDNode *replaceWithUniquedImpl();
1009  MDNode *replaceWithDistinctImpl();
1010
1011protected:
1012  /// Set an operand.
1013  ///
1014  /// Sets the operand directly, without worrying about uniquing.
1015  void setOperand(unsigned I, Metadata *New);
1016
1017  void storeDistinctInContext();
1018  template <class T, class StoreT>
1019  static T *storeImpl(T *N, StorageType Storage, StoreT &Store);
1020  template <class T> static T *storeImpl(T *N, StorageType Storage);
1021
1022private:
1023  void handleChangedOperand(void *Ref, Metadata *New);
1024
1025  /// Drop RAUW support, if any.
1026  void dropReplaceableUses();
1027
1028  void resolveAfterOperandChange(Metadata *Old, Metadata *New);
1029  void decrementUnresolvedOperandCount();
1030  void countUnresolvedOperands();
1031
1032  /// Mutate this to be "uniqued".
1033  ///
1034  /// Mutate this so that \a isUniqued().
1035  /// \pre \a isTemporary().
1036  /// \pre already added to uniquing set.
1037  void makeUniqued();
1038
1039  /// Mutate this to be "distinct".
1040  ///
1041  /// Mutate this so that \a isDistinct().
1042  /// \pre \a isTemporary().
1043  void makeDistinct();
1044
1045  void deleteAsSubclass();
1046  MDNode *uniquify();
1047  void eraseFromStore();
1048
1049  template <class NodeTy> struct HasCachedHash;
1050  template <class NodeTy>
1051  static void dispatchRecalculateHash(NodeTy *N, std::true_type) {
1052    N->recalculateHash();
1053  }
1054  template <class NodeTy>
1055  static void dispatchRecalculateHash(NodeTy *, std::false_type) {}
1056  template <class NodeTy>
1057  static void dispatchResetHash(NodeTy *N, std::true_type) {
1058    N->setHash(0);
1059  }
1060  template <class NodeTy>
1061  static void dispatchResetHash(NodeTy *, std::false_type) {}
1062
1063public:
1064  using op_iterator = const MDOperand *;
1065  using op_range = iterator_range<op_iterator>;
1066
1067  op_iterator op_begin() const {
1068    return const_cast<MDNode *>(this)->mutable_begin();
1069  }
1070
1071  op_iterator op_end() const {
1072    return const_cast<MDNode *>(this)->mutable_end();
1073  }
1074
1075  op_range operands() const { return op_range(op_begin(), op_end()); }
1076
1077  const MDOperand &getOperand(unsigned I) const {
1078    assert(I < NumOperands && "Out of range");
1079    return op_begin()[I];
1080  }
1081
1082  /// Return number of MDNode operands.
1083  unsigned getNumOperands() const { return NumOperands; }
1084
1085  /// Methods for support type inquiry through isa, cast, and dyn_cast:
1086  static bool classof(const Metadata *MD) {
1087    switch (MD->getMetadataID()) {
1088    default:
1089      return false;
1090#define HANDLE_MDNODE_LEAF(CLASS)                                              \
1091  case CLASS##Kind:                                                            \
1092    return true;
1093#include "llvm/IR/Metadata.def"
1094    }
1095  }
1096
1097  /// Check whether MDNode is a vtable access.
1098  bool isTBAAVtableAccess() const;
1099
1100  /// Methods for metadata merging.
1101  static MDNode *concatenate(MDNode *A, MDNode *B);
1102  static MDNode *intersect(MDNode *A, MDNode *B);
1103  static MDNode *getMostGenericTBAA(MDNode *A, MDNode *B);
1104  static MDNode *getMostGenericFPMath(MDNode *A, MDNode *B);
1105  static MDNode *getMostGenericRange(MDNode *A, MDNode *B);
1106  static MDNode *getMostGenericAliasScope(MDNode *A, MDNode *B);
1107  static MDNode *getMostGenericAlignmentOrDereferenceable(MDNode *A, MDNode *B);
1108};
1109
1110/// Tuple of metadata.
1111///
1112/// This is the simple \a MDNode arbitrary tuple.  Nodes are uniqued by
1113/// default based on their operands.
1114class MDTuple : public MDNode {
1115  friend class LLVMContextImpl;
1116  friend class MDNode;
1117
1118  MDTuple(LLVMContext &C, StorageType Storage, unsigned Hash,
1119          ArrayRef<Metadata *> Vals)
1120      : MDNode(C, MDTupleKind, Storage, Vals) {
1121    setHash(Hash);
1122  }
1123
1124  ~MDTuple() { dropAllReferences(); }
1125
1126  void setHash(unsigned Hash) { SubclassData32 = Hash; }
1127  void recalculateHash();
1128
1129  static MDTuple *getImpl(LLVMContext &Context, ArrayRef<Metadata *> MDs,
1130                          StorageType Storage, bool ShouldCreate = true);
1131
1132  TempMDTuple cloneImpl() const {
1133    return getTemporary(getContext(),
1134                        SmallVector<Metadata *, 4>(op_begin(), op_end()));
1135  }
1136
1137public:
1138  /// Get the hash, if any.
1139  unsigned getHash() const { return SubclassData32; }
1140
1141  static MDTuple *get(LLVMContext &Context, ArrayRef<Metadata *> MDs) {
1142    return getImpl(Context, MDs, Uniqued);
1143  }
1144
1145  static MDTuple *getIfExists(LLVMContext &Context, ArrayRef<Metadata *> MDs) {
1146    return getImpl(Context, MDs, Uniqued, /* ShouldCreate */ false);
1147  }
1148
1149  /// Return a distinct node.
1150  ///
1151  /// Return a distinct node -- i.e., a node that is not uniqued.
1152  static MDTuple *getDistinct(LLVMContext &Context, ArrayRef<Metadata *> MDs) {
1153    return getImpl(Context, MDs, Distinct);
1154  }
1155
1156  /// Return a temporary node.
1157  ///
1158  /// For use in constructing cyclic MDNode structures. A temporary MDNode is
1159  /// not uniqued, may be RAUW'd, and must be manually deleted with
1160  /// deleteTemporary.
1161  static TempMDTuple getTemporary(LLVMContext &Context,
1162                                  ArrayRef<Metadata *> MDs) {
1163    return TempMDTuple(getImpl(Context, MDs, Temporary));
1164  }
1165
1166  /// Return a (temporary) clone of this.
1167  TempMDTuple clone() const { return cloneImpl(); }
1168
1169  static bool classof(const Metadata *MD) {
1170    return MD->getMetadataID() == MDTupleKind;
1171  }
1172};
1173
1174MDTuple *MDNode::get(LLVMContext &Context, ArrayRef<Metadata *> MDs) {
1175  return MDTuple::get(Context, MDs);
1176}
1177
1178MDTuple *MDNode::getIfExists(LLVMContext &Context, ArrayRef<Metadata *> MDs) {
1179  return MDTuple::getIfExists(Context, MDs);
1180}
1181
1182MDTuple *MDNode::getDistinct(LLVMContext &Context, ArrayRef<Metadata *> MDs) {
1183  return MDTuple::getDistinct(Context, MDs);
1184}
1185
1186TempMDTuple MDNode::getTemporary(LLVMContext &Context,
1187                                 ArrayRef<Metadata *> MDs) {
1188  return MDTuple::getTemporary(Context, MDs);
1189}
1190
1191void TempMDNodeDeleter::operator()(MDNode *Node) const {
1192  MDNode::deleteTemporary(Node);
1193}
1194
1195/// Typed iterator through MDNode operands.
1196///
1197/// An iterator that transforms an \a MDNode::iterator into an iterator over a
1198/// particular Metadata subclass.
1199template <class T>
1200class TypedMDOperandIterator
1201    : public std::iterator<std::input_iterator_tag, T *, std::ptrdiff_t, void,
1202                           T *> {
1203  MDNode::op_iterator I = nullptr;
1204
1205public:
1206  TypedMDOperandIterator() = default;
1207  explicit TypedMDOperandIterator(MDNode::op_iterator I) : I(I) {}
1208
1209  T *operator*() const { return cast_or_null<T>(*I); }
1210
1211  TypedMDOperandIterator &operator++() {
1212    ++I;
1213    return *this;
1214  }
1215
1216  TypedMDOperandIterator operator++(int) {
1217    TypedMDOperandIterator Temp(*this);
1218    ++I;
1219    return Temp;
1220  }
1221
1222  bool operator==(const TypedMDOperandIterator &X) const { return I == X.I; }
1223  bool operator!=(const TypedMDOperandIterator &X) const { return I != X.I; }
1224};
1225
1226/// Typed, array-like tuple of metadata.
1227///
1228/// This is a wrapper for \a MDTuple that makes it act like an array holding a
1229/// particular type of metadata.
1230template <class T> class MDTupleTypedArrayWrapper {
1231  const MDTuple *N = nullptr;
1232
1233public:
1234  MDTupleTypedArrayWrapper() = default;
1235  MDTupleTypedArrayWrapper(const MDTuple *N) : N(N) {}
1236
1237  template <class U>
1238  MDTupleTypedArrayWrapper(
1239      const MDTupleTypedArrayWrapper<U> &Other,
1240      typename std::enable_if<std::is_convertible<U *, T *>::value>::type * =
1241          nullptr)
1242      : N(Other.get()) {}
1243
1244  template <class U>
1245  explicit MDTupleTypedArrayWrapper(
1246      const MDTupleTypedArrayWrapper<U> &Other,
1247      typename std::enable_if<!std::is_convertible<U *, T *>::value>::type * =
1248          nullptr)
1249      : N(Other.get()) {}
1250
1251  explicit operator bool() const { return get(); }
1252  explicit operator MDTuple *() const { return get(); }
1253
1254  MDTuple *get() const { return const_cast<MDTuple *>(N); }
1255  MDTuple *operator->() const { return get(); }
1256  MDTuple &operator*() const { return *get(); }
1257
1258  // FIXME: Fix callers and remove condition on N.
1259  unsigned size() const { return N ? N->getNumOperands() : 0u; }
1260  bool empty() const { return N ? N->getNumOperands() == 0 : true; }
1261  T *operator[](unsigned I) const { return cast_or_null<T>(N->getOperand(I)); }
1262
1263  // FIXME: Fix callers and remove condition on N.
1264  using iterator = TypedMDOperandIterator<T>;
1265
1266  iterator begin() const { return N ? iterator(N->op_begin()) : iterator(); }
1267  iterator end() const { return N ? iterator(N->op_end()) : iterator(); }
1268};
1269
1270#define HANDLE_METADATA(CLASS)                                                 \
1271  using CLASS##Array = MDTupleTypedArrayWrapper<CLASS>;
1272#include "llvm/IR/Metadata.def"
1273
1274/// Placeholder metadata for operands of distinct MDNodes.
1275///
1276/// This is a lightweight placeholder for an operand of a distinct node.  It's
1277/// purpose is to help track forward references when creating a distinct node.
1278/// This allows distinct nodes involved in a cycle to be constructed before
1279/// their operands without requiring a heavyweight temporary node with
1280/// full-blown RAUW support.
1281///
1282/// Each placeholder supports only a single MDNode user.  Clients should pass
1283/// an ID, retrieved via \a getID(), to indicate the "real" operand that this
1284/// should be replaced with.
1285///
1286/// While it would be possible to implement move operators, they would be
1287/// fairly expensive.  Leave them unimplemented to discourage their use
1288/// (clients can use std::deque, std::list, BumpPtrAllocator, etc.).
1289class DistinctMDOperandPlaceholder : public Metadata {
1290  friend class MetadataTracking;
1291
1292  Metadata **Use = nullptr;
1293
1294public:
1295  explicit DistinctMDOperandPlaceholder(unsigned ID)
1296      : Metadata(DistinctMDOperandPlaceholderKind, Distinct) {
1297    SubclassData32 = ID;
1298  }
1299
1300  DistinctMDOperandPlaceholder() = delete;
1301  DistinctMDOperandPlaceholder(DistinctMDOperandPlaceholder &&) = delete;
1302  DistinctMDOperandPlaceholder(const DistinctMDOperandPlaceholder &) = delete;
1303
1304  ~DistinctMDOperandPlaceholder() {
1305    if (Use)
1306      *Use = nullptr;
1307  }
1308
1309  unsigned getID() const { return SubclassData32; }
1310
1311  /// Replace the use of this with MD.
1312  void replaceUseWith(Metadata *MD) {
1313    if (!Use)
1314      return;
1315    *Use = MD;
1316
1317    if (*Use)
1318      MetadataTracking::track(*Use);
1319
1320    Metadata *T = cast<Metadata>(this);
1321    MetadataTracking::untrack(T);
1322    assert(!Use && "Use is still being tracked despite being untracked!");
1323  }
1324};
1325
1326//===----------------------------------------------------------------------===//
1327/// A tuple of MDNodes.
1328///
1329/// Despite its name, a NamedMDNode isn't itself an MDNode.
1330///
1331/// NamedMDNodes are named module-level entities that contain lists of MDNodes.
1332///
1333/// It is illegal for a NamedMDNode to appear as an operand of an MDNode.
1334class NamedMDNode : public ilist_node<NamedMDNode> {
1335  friend class LLVMContextImpl;
1336  friend class Module;
1337
1338  std::string Name;
1339  Module *Parent = nullptr;
1340  void *Operands; // SmallVector<TrackingMDRef, 4>
1341
1342  void setParent(Module *M) { Parent = M; }
1343
1344  explicit NamedMDNode(const Twine &N);
1345
1346  template<class T1, class T2>
1347  class op_iterator_impl :
1348      public std::iterator<std::bidirectional_iterator_tag, T2> {
1349    friend class NamedMDNode;
1350
1351    const NamedMDNode *Node = nullptr;
1352    unsigned Idx = 0;
1353
1354    op_iterator_impl(const NamedMDNode *N, unsigned i) : Node(N), Idx(i) {}
1355
1356  public:
1357    op_iterator_impl() = default;
1358
1359    bool operator==(const op_iterator_impl &o) const { return Idx == o.Idx; }
1360    bool operator!=(const op_iterator_impl &o) const { return Idx != o.Idx; }
1361
1362    op_iterator_impl &operator++() {
1363      ++Idx;
1364      return *this;
1365    }
1366
1367    op_iterator_impl operator++(int) {
1368      op_iterator_impl tmp(*this);
1369      operator++();
1370      return tmp;
1371    }
1372
1373    op_iterator_impl &operator--() {
1374      --Idx;
1375      return *this;
1376    }
1377
1378    op_iterator_impl operator--(int) {
1379      op_iterator_impl tmp(*this);
1380      operator--();
1381      return tmp;
1382    }
1383
1384    T1 operator*() const { return Node->getOperand(Idx); }
1385  };
1386
1387public:
1388  NamedMDNode(const NamedMDNode &) = delete;
1389  ~NamedMDNode();
1390
1391  /// Drop all references and remove the node from parent module.
1392  void eraseFromParent();
1393
1394  /// Remove all uses and clear node vector.
1395  void dropAllReferences() { clearOperands(); }
1396  /// Drop all references to this node's operands.
1397  void clearOperands();
1398
1399  /// Get the module that holds this named metadata collection.
1400  inline Module *getParent() { return Parent; }
1401  inline const Module *getParent() const { return Parent; }
1402
1403  MDNode *getOperand(unsigned i) const;
1404  unsigned getNumOperands() const;
1405  void addOperand(MDNode *M);
1406  void setOperand(unsigned I, MDNode *New);
1407  StringRef getName() const;
1408  void print(raw_ostream &ROS, bool IsForDebug = false) const;
1409  void print(raw_ostream &ROS, ModuleSlotTracker &MST,
1410             bool IsForDebug = false) const;
1411  void dump() const;
1412
1413  // ---------------------------------------------------------------------------
1414  // Operand Iterator interface...
1415  //
1416  using op_iterator = op_iterator_impl<MDNode *, MDNode>;
1417
1418  op_iterator op_begin() { return op_iterator(this, 0); }
1419  op_iterator op_end()   { return op_iterator(this, getNumOperands()); }
1420
1421  using const_op_iterator = op_iterator_impl<const MDNode *, MDNode>;
1422
1423  const_op_iterator op_begin() const { return const_op_iterator(this, 0); }
1424  const_op_iterator op_end()   const { return const_op_iterator(this, getNumOperands()); }
1425
1426  inline iterator_range<op_iterator>  operands() {
1427    return make_range(op_begin(), op_end());
1428  }
1429  inline iterator_range<const_op_iterator> operands() const {
1430    return make_range(op_begin(), op_end());
1431  }
1432};
1433
1434// Create wrappers for C Binding types (see CBindingWrapping.h).
1435DEFINE_ISA_CONVERSION_FUNCTIONS(NamedMDNode, LLVMNamedMDNodeRef)
1436
1437} // end namespace llvm
1438
1439#endif // LLVM_IR_METADATA_H
1440