Constants.h revision 360784
1//===-- llvm/Constants.h - Constant class subclass definitions --*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9/// @file
10/// This file contains the declarations for the subclasses of Constant,
11/// which represent the different flavors of constant values that live in LLVM.
12/// Note that Constants are immutable (once created they never change) and are
13/// fully shared by structural equivalence.  This means that two structurally
14/// equivalent constants will always have the same address.  Constants are
15/// created on demand as needed and never deleted: thus clients don't have to
16/// worry about the lifetime of the objects.
17//
18//===----------------------------------------------------------------------===//
19
20#ifndef LLVM_IR_CONSTANTS_H
21#define LLVM_IR_CONSTANTS_H
22
23#include "llvm/ADT/APFloat.h"
24#include "llvm/ADT/APInt.h"
25#include "llvm/ADT/ArrayRef.h"
26#include "llvm/ADT/None.h"
27#include "llvm/ADT/Optional.h"
28#include "llvm/ADT/STLExtras.h"
29#include "llvm/ADT/StringRef.h"
30#include "llvm/IR/Constant.h"
31#include "llvm/IR/DerivedTypes.h"
32#include "llvm/IR/OperandTraits.h"
33#include "llvm/IR/User.h"
34#include "llvm/IR/Value.h"
35#include "llvm/Support/Casting.h"
36#include "llvm/Support/Compiler.h"
37#include "llvm/Support/ErrorHandling.h"
38#include <cassert>
39#include <cstddef>
40#include <cstdint>
41
42namespace llvm {
43
44class ArrayType;
45class IntegerType;
46class PointerType;
47class SequentialType;
48class StructType;
49class VectorType;
50template <class ConstantClass> struct ConstantAggrKeyType;
51
52/// Base class for constants with no operands.
53///
54/// These constants have no operands; they represent their data directly.
55/// Since they can be in use by unrelated modules (and are never based on
56/// GlobalValues), it never makes sense to RAUW them.
57class ConstantData : public Constant {
58  friend class Constant;
59
60  Value *handleOperandChangeImpl(Value *From, Value *To) {
61    llvm_unreachable("Constant data does not have operands!");
62  }
63
64protected:
65  explicit ConstantData(Type *Ty, ValueTy VT) : Constant(Ty, VT, nullptr, 0) {}
66
67  void *operator new(size_t s) { return User::operator new(s, 0); }
68
69public:
70  ConstantData(const ConstantData &) = delete;
71
72  /// Methods to support type inquiry through isa, cast, and dyn_cast.
73  static bool classof(const Value *V) {
74    return V->getValueID() >= ConstantDataFirstVal &&
75           V->getValueID() <= ConstantDataLastVal;
76  }
77};
78
79//===----------------------------------------------------------------------===//
80/// This is the shared class of boolean and integer constants. This class
81/// represents both boolean and integral constants.
82/// Class for constant integers.
83class ConstantInt final : public ConstantData {
84  friend class Constant;
85
86  APInt Val;
87
88  ConstantInt(IntegerType *Ty, const APInt& V);
89
90  void destroyConstantImpl();
91
92public:
93  ConstantInt(const ConstantInt &) = delete;
94
95  static ConstantInt *getTrue(LLVMContext &Context);
96  static ConstantInt *getFalse(LLVMContext &Context);
97  static Constant *getTrue(Type *Ty);
98  static Constant *getFalse(Type *Ty);
99
100  /// If Ty is a vector type, return a Constant with a splat of the given
101  /// value. Otherwise return a ConstantInt for the given value.
102  static Constant *get(Type *Ty, uint64_t V, bool isSigned = false);
103
104  /// Return a ConstantInt with the specified integer value for the specified
105  /// type. If the type is wider than 64 bits, the value will be zero-extended
106  /// to fit the type, unless isSigned is true, in which case the value will
107  /// be interpreted as a 64-bit signed integer and sign-extended to fit
108  /// the type.
109  /// Get a ConstantInt for a specific value.
110  static ConstantInt *get(IntegerType *Ty, uint64_t V,
111                          bool isSigned = false);
112
113  /// Return a ConstantInt with the specified value for the specified type. The
114  /// value V will be canonicalized to a an unsigned APInt. Accessing it with
115  /// either getSExtValue() or getZExtValue() will yield a correctly sized and
116  /// signed value for the type Ty.
117  /// Get a ConstantInt for a specific signed value.
118  static ConstantInt *getSigned(IntegerType *Ty, int64_t V);
119  static Constant *getSigned(Type *Ty, int64_t V);
120
121  /// Return a ConstantInt with the specified value and an implied Type. The
122  /// type is the integer type that corresponds to the bit width of the value.
123  static ConstantInt *get(LLVMContext &Context, const APInt &V);
124
125  /// Return a ConstantInt constructed from the string strStart with the given
126  /// radix.
127  static ConstantInt *get(IntegerType *Ty, StringRef Str,
128                          uint8_t radix);
129
130  /// If Ty is a vector type, return a Constant with a splat of the given
131  /// value. Otherwise return a ConstantInt for the given value.
132  static Constant *get(Type* Ty, const APInt& V);
133
134  /// Return the constant as an APInt value reference. This allows clients to
135  /// obtain a full-precision copy of the value.
136  /// Return the constant's value.
137  inline const APInt &getValue() const {
138    return Val;
139  }
140
141  /// getBitWidth - Return the bitwidth of this constant.
142  unsigned getBitWidth() const { return Val.getBitWidth(); }
143
144  /// Return the constant as a 64-bit unsigned integer value after it
145  /// has been zero extended as appropriate for the type of this constant. Note
146  /// that this method can assert if the value does not fit in 64 bits.
147  /// Return the zero extended value.
148  inline uint64_t getZExtValue() const {
149    return Val.getZExtValue();
150  }
151
152  /// Return the constant as a 64-bit integer value after it has been sign
153  /// extended as appropriate for the type of this constant. Note that
154  /// this method can assert if the value does not fit in 64 bits.
155  /// Return the sign extended value.
156  inline int64_t getSExtValue() const {
157    return Val.getSExtValue();
158  }
159
160  /// A helper method that can be used to determine if the constant contained
161  /// within is equal to a constant.  This only works for very small values,
162  /// because this is all that can be represented with all types.
163  /// Determine if this constant's value is same as an unsigned char.
164  bool equalsInt(uint64_t V) const {
165    return Val == V;
166  }
167
168  /// getType - Specialize the getType() method to always return an IntegerType,
169  /// which reduces the amount of casting needed in parts of the compiler.
170  ///
171  inline IntegerType *getType() const {
172    return cast<IntegerType>(Value::getType());
173  }
174
175  /// This static method returns true if the type Ty is big enough to
176  /// represent the value V. This can be used to avoid having the get method
177  /// assert when V is larger than Ty can represent. Note that there are two
178  /// versions of this method, one for unsigned and one for signed integers.
179  /// Although ConstantInt canonicalizes everything to an unsigned integer,
180  /// the signed version avoids callers having to convert a signed quantity
181  /// to the appropriate unsigned type before calling the method.
182  /// @returns true if V is a valid value for type Ty
183  /// Determine if the value is in range for the given type.
184  static bool isValueValidForType(Type *Ty, uint64_t V);
185  static bool isValueValidForType(Type *Ty, int64_t V);
186
187  bool isNegative() const { return Val.isNegative(); }
188
189  /// This is just a convenience method to make client code smaller for a
190  /// common code. It also correctly performs the comparison without the
191  /// potential for an assertion from getZExtValue().
192  bool isZero() const {
193    return Val.isNullValue();
194  }
195
196  /// This is just a convenience method to make client code smaller for a
197  /// common case. It also correctly performs the comparison without the
198  /// potential for an assertion from getZExtValue().
199  /// Determine if the value is one.
200  bool isOne() const {
201    return Val.isOneValue();
202  }
203
204  /// This function will return true iff every bit in this constant is set
205  /// to true.
206  /// @returns true iff this constant's bits are all set to true.
207  /// Determine if the value is all ones.
208  bool isMinusOne() const {
209    return Val.isAllOnesValue();
210  }
211
212  /// This function will return true iff this constant represents the largest
213  /// value that may be represented by the constant's type.
214  /// @returns true iff this is the largest value that may be represented
215  /// by this type.
216  /// Determine if the value is maximal.
217  bool isMaxValue(bool isSigned) const {
218    if (isSigned)
219      return Val.isMaxSignedValue();
220    else
221      return Val.isMaxValue();
222  }
223
224  /// This function will return true iff this constant represents the smallest
225  /// value that may be represented by this constant's type.
226  /// @returns true if this is the smallest value that may be represented by
227  /// this type.
228  /// Determine if the value is minimal.
229  bool isMinValue(bool isSigned) const {
230    if (isSigned)
231      return Val.isMinSignedValue();
232    else
233      return Val.isMinValue();
234  }
235
236  /// This function will return true iff this constant represents a value with
237  /// active bits bigger than 64 bits or a value greater than the given uint64_t
238  /// value.
239  /// @returns true iff this constant is greater or equal to the given number.
240  /// Determine if the value is greater or equal to the given number.
241  bool uge(uint64_t Num) const {
242    return Val.uge(Num);
243  }
244
245  /// getLimitedValue - If the value is smaller than the specified limit,
246  /// return it, otherwise return the limit value.  This causes the value
247  /// to saturate to the limit.
248  /// @returns the min of the value of the constant and the specified value
249  /// Get the constant's value with a saturation limit
250  uint64_t getLimitedValue(uint64_t Limit = ~0ULL) const {
251    return Val.getLimitedValue(Limit);
252  }
253
254  /// Methods to support type inquiry through isa, cast, and dyn_cast.
255  static bool classof(const Value *V) {
256    return V->getValueID() == ConstantIntVal;
257  }
258};
259
260//===----------------------------------------------------------------------===//
261/// ConstantFP - Floating Point Values [float, double]
262///
263class ConstantFP final : public ConstantData {
264  friend class Constant;
265
266  APFloat Val;
267
268  ConstantFP(Type *Ty, const APFloat& V);
269
270  void destroyConstantImpl();
271
272public:
273  ConstantFP(const ConstantFP &) = delete;
274
275  /// Floating point negation must be implemented with f(x) = -0.0 - x. This
276  /// method returns the negative zero constant for floating point or vector
277  /// floating point types; for all other types, it returns the null value.
278  static Constant *getZeroValueForNegation(Type *Ty);
279
280  /// This returns a ConstantFP, or a vector containing a splat of a ConstantFP,
281  /// for the specified value in the specified type. This should only be used
282  /// for simple constant values like 2.0/1.0 etc, that are known-valid both as
283  /// host double and as the target format.
284  static Constant *get(Type* Ty, double V);
285
286  /// If Ty is a vector type, return a Constant with a splat of the given
287  /// value. Otherwise return a ConstantFP for the given value.
288  static Constant *get(Type *Ty, const APFloat &V);
289
290  static Constant *get(Type* Ty, StringRef Str);
291  static ConstantFP *get(LLVMContext &Context, const APFloat &V);
292  static Constant *getNaN(Type *Ty, bool Negative = false, uint64_t Payload = 0);
293  static Constant *getQNaN(Type *Ty, bool Negative = false,
294                           APInt *Payload = nullptr);
295  static Constant *getSNaN(Type *Ty, bool Negative = false,
296                           APInt *Payload = nullptr);
297  static Constant *getNegativeZero(Type *Ty);
298  static Constant *getInfinity(Type *Ty, bool Negative = false);
299
300  /// Return true if Ty is big enough to represent V.
301  static bool isValueValidForType(Type *Ty, const APFloat &V);
302  inline const APFloat &getValueAPF() const { return Val; }
303
304  /// Return true if the value is positive or negative zero.
305  bool isZero() const { return Val.isZero(); }
306
307  /// Return true if the sign bit is set.
308  bool isNegative() const { return Val.isNegative(); }
309
310  /// Return true if the value is infinity
311  bool isInfinity() const { return Val.isInfinity(); }
312
313  /// Return true if the value is a NaN.
314  bool isNaN() const { return Val.isNaN(); }
315
316  /// We don't rely on operator== working on double values, as it returns true
317  /// for things that are clearly not equal, like -0.0 and 0.0.
318  /// As such, this method can be used to do an exact bit-for-bit comparison of
319  /// two floating point values.  The version with a double operand is retained
320  /// because it's so convenient to write isExactlyValue(2.0), but please use
321  /// it only for simple constants.
322  bool isExactlyValue(const APFloat &V) const;
323
324  bool isExactlyValue(double V) const {
325    bool ignored;
326    APFloat FV(V);
327    FV.convert(Val.getSemantics(), APFloat::rmNearestTiesToEven, &ignored);
328    return isExactlyValue(FV);
329  }
330
331  /// Methods for support type inquiry through isa, cast, and dyn_cast:
332  static bool classof(const Value *V) {
333    return V->getValueID() == ConstantFPVal;
334  }
335};
336
337//===----------------------------------------------------------------------===//
338/// All zero aggregate value
339///
340class ConstantAggregateZero final : public ConstantData {
341  friend class Constant;
342
343  explicit ConstantAggregateZero(Type *Ty)
344      : ConstantData(Ty, ConstantAggregateZeroVal) {}
345
346  void destroyConstantImpl();
347
348public:
349  ConstantAggregateZero(const ConstantAggregateZero &) = delete;
350
351  static ConstantAggregateZero *get(Type *Ty);
352
353  /// If this CAZ has array or vector type, return a zero with the right element
354  /// type.
355  Constant *getSequentialElement() const;
356
357  /// If this CAZ has struct type, return a zero with the right element type for
358  /// the specified element.
359  Constant *getStructElement(unsigned Elt) const;
360
361  /// Return a zero of the right value for the specified GEP index if we can,
362  /// otherwise return null (e.g. if C is a ConstantExpr).
363  Constant *getElementValue(Constant *C) const;
364
365  /// Return a zero of the right value for the specified GEP index.
366  Constant *getElementValue(unsigned Idx) const;
367
368  /// Return the number of elements in the array, vector, or struct.
369  unsigned getNumElements() const;
370
371  /// Methods for support type inquiry through isa, cast, and dyn_cast:
372  ///
373  static bool classof(const Value *V) {
374    return V->getValueID() == ConstantAggregateZeroVal;
375  }
376};
377
378/// Base class for aggregate constants (with operands).
379///
380/// These constants are aggregates of other constants, which are stored as
381/// operands.
382///
383/// Subclasses are \a ConstantStruct, \a ConstantArray, and \a
384/// ConstantVector.
385///
386/// \note Some subclasses of \a ConstantData are semantically aggregates --
387/// such as \a ConstantDataArray -- but are not subclasses of this because they
388/// use operands.
389class ConstantAggregate : public Constant {
390protected:
391  ConstantAggregate(CompositeType *T, ValueTy VT, ArrayRef<Constant *> V);
392
393public:
394  /// Transparently provide more efficient getOperand methods.
395  DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Constant);
396
397  /// Methods for support type inquiry through isa, cast, and dyn_cast:
398  static bool classof(const Value *V) {
399    return V->getValueID() >= ConstantAggregateFirstVal &&
400           V->getValueID() <= ConstantAggregateLastVal;
401  }
402};
403
404template <>
405struct OperandTraits<ConstantAggregate>
406    : public VariadicOperandTraits<ConstantAggregate> {};
407
408DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ConstantAggregate, Constant)
409
410//===----------------------------------------------------------------------===//
411/// ConstantArray - Constant Array Declarations
412///
413class ConstantArray final : public ConstantAggregate {
414  friend struct ConstantAggrKeyType<ConstantArray>;
415  friend class Constant;
416
417  ConstantArray(ArrayType *T, ArrayRef<Constant *> Val);
418
419  void destroyConstantImpl();
420  Value *handleOperandChangeImpl(Value *From, Value *To);
421
422public:
423  // ConstantArray accessors
424  static Constant *get(ArrayType *T, ArrayRef<Constant*> V);
425
426private:
427  static Constant *getImpl(ArrayType *T, ArrayRef<Constant *> V);
428
429public:
430  /// Specialize the getType() method to always return an ArrayType,
431  /// which reduces the amount of casting needed in parts of the compiler.
432  inline ArrayType *getType() const {
433    return cast<ArrayType>(Value::getType());
434  }
435
436  /// Methods for support type inquiry through isa, cast, and dyn_cast:
437  static bool classof(const Value *V) {
438    return V->getValueID() == ConstantArrayVal;
439  }
440};
441
442//===----------------------------------------------------------------------===//
443// Constant Struct Declarations
444//
445class ConstantStruct final : public ConstantAggregate {
446  friend struct ConstantAggrKeyType<ConstantStruct>;
447  friend class Constant;
448
449  ConstantStruct(StructType *T, ArrayRef<Constant *> Val);
450
451  void destroyConstantImpl();
452  Value *handleOperandChangeImpl(Value *From, Value *To);
453
454public:
455  // ConstantStruct accessors
456  static Constant *get(StructType *T, ArrayRef<Constant*> V);
457
458  template <typename... Csts>
459  static typename std::enable_if<are_base_of<Constant, Csts...>::value,
460                                 Constant *>::type
461  get(StructType *T, Csts *... Vs) {
462    SmallVector<Constant *, 8> Values({Vs...});
463    return get(T, Values);
464  }
465
466  /// Return an anonymous struct that has the specified elements.
467  /// If the struct is possibly empty, then you must specify a context.
468  static Constant *getAnon(ArrayRef<Constant*> V, bool Packed = false) {
469    return get(getTypeForElements(V, Packed), V);
470  }
471  static Constant *getAnon(LLVMContext &Ctx,
472                           ArrayRef<Constant*> V, bool Packed = false) {
473    return get(getTypeForElements(Ctx, V, Packed), V);
474  }
475
476  /// Return an anonymous struct type to use for a constant with the specified
477  /// set of elements. The list must not be empty.
478  static StructType *getTypeForElements(ArrayRef<Constant*> V,
479                                        bool Packed = false);
480  /// This version of the method allows an empty list.
481  static StructType *getTypeForElements(LLVMContext &Ctx,
482                                        ArrayRef<Constant*> V,
483                                        bool Packed = false);
484
485  /// Specialization - reduce amount of casting.
486  inline StructType *getType() const {
487    return cast<StructType>(Value::getType());
488  }
489
490  /// Methods for support type inquiry through isa, cast, and dyn_cast:
491  static bool classof(const Value *V) {
492    return V->getValueID() == ConstantStructVal;
493  }
494};
495
496//===----------------------------------------------------------------------===//
497/// Constant Vector Declarations
498///
499class ConstantVector final : public ConstantAggregate {
500  friend struct ConstantAggrKeyType<ConstantVector>;
501  friend class Constant;
502
503  ConstantVector(VectorType *T, ArrayRef<Constant *> Val);
504
505  void destroyConstantImpl();
506  Value *handleOperandChangeImpl(Value *From, Value *To);
507
508public:
509  // ConstantVector accessors
510  static Constant *get(ArrayRef<Constant*> V);
511
512private:
513  static Constant *getImpl(ArrayRef<Constant *> V);
514
515public:
516  /// Return a ConstantVector with the specified constant in each element.
517  static Constant *getSplat(unsigned NumElts, Constant *Elt);
518
519  /// Specialize the getType() method to always return a VectorType,
520  /// which reduces the amount of casting needed in parts of the compiler.
521  inline VectorType *getType() const {
522    return cast<VectorType>(Value::getType());
523  }
524
525  /// If all elements of the vector constant have the same value, return that
526  /// value. Otherwise, return nullptr. Ignore undefined elements by setting
527  /// AllowUndefs to true.
528  Constant *getSplatValue(bool AllowUndefs = false) const;
529
530  /// Methods for support type inquiry through isa, cast, and dyn_cast:
531  static bool classof(const Value *V) {
532    return V->getValueID() == ConstantVectorVal;
533  }
534};
535
536//===----------------------------------------------------------------------===//
537/// A constant pointer value that points to null
538///
539class ConstantPointerNull final : public ConstantData {
540  friend class Constant;
541
542  explicit ConstantPointerNull(PointerType *T)
543      : ConstantData(T, Value::ConstantPointerNullVal) {}
544
545  void destroyConstantImpl();
546
547public:
548  ConstantPointerNull(const ConstantPointerNull &) = delete;
549
550  /// Static factory methods - Return objects of the specified value
551  static ConstantPointerNull *get(PointerType *T);
552
553  /// Specialize the getType() method to always return an PointerType,
554  /// which reduces the amount of casting needed in parts of the compiler.
555  inline PointerType *getType() const {
556    return cast<PointerType>(Value::getType());
557  }
558
559  /// Methods for support type inquiry through isa, cast, and dyn_cast:
560  static bool classof(const Value *V) {
561    return V->getValueID() == ConstantPointerNullVal;
562  }
563};
564
565//===----------------------------------------------------------------------===//
566/// ConstantDataSequential - A vector or array constant whose element type is a
567/// simple 1/2/4/8-byte integer or float/double, and whose elements are just
568/// simple data values (i.e. ConstantInt/ConstantFP).  This Constant node has no
569/// operands because it stores all of the elements of the constant as densely
570/// packed data, instead of as Value*'s.
571///
572/// This is the common base class of ConstantDataArray and ConstantDataVector.
573///
574class ConstantDataSequential : public ConstantData {
575  friend class LLVMContextImpl;
576  friend class Constant;
577
578  /// A pointer to the bytes underlying this constant (which is owned by the
579  /// uniquing StringMap).
580  const char *DataElements;
581
582  /// This forms a link list of ConstantDataSequential nodes that have
583  /// the same value but different type.  For example, 0,0,0,1 could be a 4
584  /// element array of i8, or a 1-element array of i32.  They'll both end up in
585  /// the same StringMap bucket, linked up.
586  ConstantDataSequential *Next;
587
588  void destroyConstantImpl();
589
590protected:
591  explicit ConstantDataSequential(Type *ty, ValueTy VT, const char *Data)
592      : ConstantData(ty, VT), DataElements(Data), Next(nullptr) {}
593  ~ConstantDataSequential() { delete Next; }
594
595  static Constant *getImpl(StringRef Bytes, Type *Ty);
596
597public:
598  ConstantDataSequential(const ConstantDataSequential &) = delete;
599
600  /// Return true if a ConstantDataSequential can be formed with a vector or
601  /// array of the specified element type.
602  /// ConstantDataArray only works with normal float and int types that are
603  /// stored densely in memory, not with things like i42 or x86_f80.
604  static bool isElementTypeCompatible(Type *Ty);
605
606  /// If this is a sequential container of integers (of any size), return the
607  /// specified element in the low bits of a uint64_t.
608  uint64_t getElementAsInteger(unsigned i) const;
609
610  /// If this is a sequential container of integers (of any size), return the
611  /// specified element as an APInt.
612  APInt getElementAsAPInt(unsigned i) const;
613
614  /// If this is a sequential container of floating point type, return the
615  /// specified element as an APFloat.
616  APFloat getElementAsAPFloat(unsigned i) const;
617
618  /// If this is an sequential container of floats, return the specified element
619  /// as a float.
620  float getElementAsFloat(unsigned i) const;
621
622  /// If this is an sequential container of doubles, return the specified
623  /// element as a double.
624  double getElementAsDouble(unsigned i) const;
625
626  /// Return a Constant for a specified index's element.
627  /// Note that this has to compute a new constant to return, so it isn't as
628  /// efficient as getElementAsInteger/Float/Double.
629  Constant *getElementAsConstant(unsigned i) const;
630
631  /// Specialize the getType() method to always return a SequentialType, which
632  /// reduces the amount of casting needed in parts of the compiler.
633  inline SequentialType *getType() const {
634    return cast<SequentialType>(Value::getType());
635  }
636
637  /// Return the element type of the array/vector.
638  Type *getElementType() const;
639
640  /// Return the number of elements in the array or vector.
641  unsigned getNumElements() const;
642
643  /// Return the size (in bytes) of each element in the array/vector.
644  /// The size of the elements is known to be a multiple of one byte.
645  uint64_t getElementByteSize() const;
646
647  /// This method returns true if this is an array of \p CharSize integers.
648  bool isString(unsigned CharSize = 8) const;
649
650  /// This method returns true if the array "isString", ends with a null byte,
651  /// and does not contains any other null bytes.
652  bool isCString() const;
653
654  /// If this array is isString(), then this method returns the array as a
655  /// StringRef. Otherwise, it asserts out.
656  StringRef getAsString() const {
657    assert(isString() && "Not a string");
658    return getRawDataValues();
659  }
660
661  /// If this array is isCString(), then this method returns the array (without
662  /// the trailing null byte) as a StringRef. Otherwise, it asserts out.
663  StringRef getAsCString() const {
664    assert(isCString() && "Isn't a C string");
665    StringRef Str = getAsString();
666    return Str.substr(0, Str.size()-1);
667  }
668
669  /// Return the raw, underlying, bytes of this data. Note that this is an
670  /// extremely tricky thing to work with, as it exposes the host endianness of
671  /// the data elements.
672  StringRef getRawDataValues() const;
673
674  /// Methods for support type inquiry through isa, cast, and dyn_cast:
675  static bool classof(const Value *V) {
676    return V->getValueID() == ConstantDataArrayVal ||
677           V->getValueID() == ConstantDataVectorVal;
678  }
679
680private:
681  const char *getElementPointer(unsigned Elt) const;
682};
683
684//===----------------------------------------------------------------------===//
685/// An array constant whose element type is a simple 1/2/4/8-byte integer or
686/// float/double, and whose elements are just simple data values
687/// (i.e. ConstantInt/ConstantFP). This Constant node has no operands because it
688/// stores all of the elements of the constant as densely packed data, instead
689/// of as Value*'s.
690class ConstantDataArray final : public ConstantDataSequential {
691  friend class ConstantDataSequential;
692
693  explicit ConstantDataArray(Type *ty, const char *Data)
694      : ConstantDataSequential(ty, ConstantDataArrayVal, Data) {}
695
696public:
697  ConstantDataArray(const ConstantDataArray &) = delete;
698
699  /// get() constructor - Return a constant with array type with an element
700  /// count and element type matching the ArrayRef passed in.  Note that this
701  /// can return a ConstantAggregateZero object.
702  template <typename ElementTy>
703  static Constant *get(LLVMContext &Context, ArrayRef<ElementTy> Elts) {
704    const char *Data = reinterpret_cast<const char *>(Elts.data());
705    return getRaw(StringRef(Data, Elts.size() * sizeof(ElementTy)), Elts.size(),
706                  Type::getScalarTy<ElementTy>(Context));
707  }
708
709  /// get() constructor - ArrayTy needs to be compatible with
710  /// ArrayRef<ElementTy>. Calls get(LLVMContext, ArrayRef<ElementTy>).
711  template <typename ArrayTy>
712  static Constant *get(LLVMContext &Context, ArrayTy &Elts) {
713    return ConstantDataArray::get(Context, makeArrayRef(Elts));
714  }
715
716  /// get() constructor - Return a constant with array type with an element
717  /// count and element type matching the NumElements and ElementTy parameters
718  /// passed in. Note that this can return a ConstantAggregateZero object.
719  /// ElementTy needs to be one of i8/i16/i32/i64/float/double. Data is the
720  /// buffer containing the elements. Be careful to make sure Data uses the
721  /// right endianness, the buffer will be used as-is.
722  static Constant *getRaw(StringRef Data, uint64_t NumElements, Type *ElementTy) {
723    Type *Ty = ArrayType::get(ElementTy, NumElements);
724    return getImpl(Data, Ty);
725  }
726
727  /// getFP() constructors - Return a constant with array type with an element
728  /// count and element type of float with precision matching the number of
729  /// bits in the ArrayRef passed in. (i.e. half for 16bits, float for 32bits,
730  /// double for 64bits) Note that this can return a ConstantAggregateZero
731  /// object.
732  static Constant *getFP(LLVMContext &Context, ArrayRef<uint16_t> Elts);
733  static Constant *getFP(LLVMContext &Context, ArrayRef<uint32_t> Elts);
734  static Constant *getFP(LLVMContext &Context, ArrayRef<uint64_t> Elts);
735
736  /// This method constructs a CDS and initializes it with a text string.
737  /// The default behavior (AddNull==true) causes a null terminator to
738  /// be placed at the end of the array (increasing the length of the string by
739  /// one more than the StringRef would normally indicate.  Pass AddNull=false
740  /// to disable this behavior.
741  static Constant *getString(LLVMContext &Context, StringRef Initializer,
742                             bool AddNull = true);
743
744  /// Specialize the getType() method to always return an ArrayType,
745  /// which reduces the amount of casting needed in parts of the compiler.
746  inline ArrayType *getType() const {
747    return cast<ArrayType>(Value::getType());
748  }
749
750  /// Methods for support type inquiry through isa, cast, and dyn_cast:
751  static bool classof(const Value *V) {
752    return V->getValueID() == ConstantDataArrayVal;
753  }
754};
755
756//===----------------------------------------------------------------------===//
757/// A vector constant whose element type is a simple 1/2/4/8-byte integer or
758/// float/double, and whose elements are just simple data values
759/// (i.e. ConstantInt/ConstantFP). This Constant node has no operands because it
760/// stores all of the elements of the constant as densely packed data, instead
761/// of as Value*'s.
762class ConstantDataVector final : public ConstantDataSequential {
763  friend class ConstantDataSequential;
764
765  explicit ConstantDataVector(Type *ty, const char *Data)
766      : ConstantDataSequential(ty, ConstantDataVectorVal, Data) {}
767
768public:
769  ConstantDataVector(const ConstantDataVector &) = delete;
770
771  /// get() constructors - Return a constant with vector type with an element
772  /// count and element type matching the ArrayRef passed in.  Note that this
773  /// can return a ConstantAggregateZero object.
774  static Constant *get(LLVMContext &Context, ArrayRef<uint8_t> Elts);
775  static Constant *get(LLVMContext &Context, ArrayRef<uint16_t> Elts);
776  static Constant *get(LLVMContext &Context, ArrayRef<uint32_t> Elts);
777  static Constant *get(LLVMContext &Context, ArrayRef<uint64_t> Elts);
778  static Constant *get(LLVMContext &Context, ArrayRef<float> Elts);
779  static Constant *get(LLVMContext &Context, ArrayRef<double> Elts);
780
781  /// getFP() constructors - Return a constant with vector type with an element
782  /// count and element type of float with the precision matching the number of
783  /// bits in the ArrayRef passed in.  (i.e. half for 16bits, float for 32bits,
784  /// double for 64bits) Note that this can return a ConstantAggregateZero
785  /// object.
786  static Constant *getFP(LLVMContext &Context, ArrayRef<uint16_t> Elts);
787  static Constant *getFP(LLVMContext &Context, ArrayRef<uint32_t> Elts);
788  static Constant *getFP(LLVMContext &Context, ArrayRef<uint64_t> Elts);
789
790  /// Return a ConstantVector with the specified constant in each element.
791  /// The specified constant has to be a of a compatible type (i8/i16/
792  /// i32/i64/float/double) and must be a ConstantFP or ConstantInt.
793  static Constant *getSplat(unsigned NumElts, Constant *Elt);
794
795  /// Returns true if this is a splat constant, meaning that all elements have
796  /// the same value.
797  bool isSplat() const;
798
799  /// If this is a splat constant, meaning that all of the elements have the
800  /// same value, return that value. Otherwise return NULL.
801  Constant *getSplatValue() const;
802
803  /// Specialize the getType() method to always return a VectorType,
804  /// which reduces the amount of casting needed in parts of the compiler.
805  inline VectorType *getType() const {
806    return cast<VectorType>(Value::getType());
807  }
808
809  /// Methods for support type inquiry through isa, cast, and dyn_cast:
810  static bool classof(const Value *V) {
811    return V->getValueID() == ConstantDataVectorVal;
812  }
813};
814
815//===----------------------------------------------------------------------===//
816/// A constant token which is empty
817///
818class ConstantTokenNone final : public ConstantData {
819  friend class Constant;
820
821  explicit ConstantTokenNone(LLVMContext &Context)
822      : ConstantData(Type::getTokenTy(Context), ConstantTokenNoneVal) {}
823
824  void destroyConstantImpl();
825
826public:
827  ConstantTokenNone(const ConstantTokenNone &) = delete;
828
829  /// Return the ConstantTokenNone.
830  static ConstantTokenNone *get(LLVMContext &Context);
831
832  /// Methods to support type inquiry through isa, cast, and dyn_cast.
833  static bool classof(const Value *V) {
834    return V->getValueID() == ConstantTokenNoneVal;
835  }
836};
837
838/// The address of a basic block.
839///
840class BlockAddress final : public Constant {
841  friend class Constant;
842
843  BlockAddress(Function *F, BasicBlock *BB);
844
845  void *operator new(size_t s) { return User::operator new(s, 2); }
846
847  void destroyConstantImpl();
848  Value *handleOperandChangeImpl(Value *From, Value *To);
849
850public:
851  /// Return a BlockAddress for the specified function and basic block.
852  static BlockAddress *get(Function *F, BasicBlock *BB);
853
854  /// Return a BlockAddress for the specified basic block.  The basic
855  /// block must be embedded into a function.
856  static BlockAddress *get(BasicBlock *BB);
857
858  /// Lookup an existing \c BlockAddress constant for the given BasicBlock.
859  ///
860  /// \returns 0 if \c !BB->hasAddressTaken(), otherwise the \c BlockAddress.
861  static BlockAddress *lookup(const BasicBlock *BB);
862
863  /// Transparently provide more efficient getOperand methods.
864  DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
865
866  Function *getFunction() const { return (Function*)Op<0>().get(); }
867  BasicBlock *getBasicBlock() const { return (BasicBlock*)Op<1>().get(); }
868
869  /// Methods for support type inquiry through isa, cast, and dyn_cast:
870  static bool classof(const Value *V) {
871    return V->getValueID() == BlockAddressVal;
872  }
873};
874
875template <>
876struct OperandTraits<BlockAddress> :
877  public FixedNumOperandTraits<BlockAddress, 2> {
878};
879
880DEFINE_TRANSPARENT_OPERAND_ACCESSORS(BlockAddress, Value)
881
882//===----------------------------------------------------------------------===//
883/// A constant value that is initialized with an expression using
884/// other constant values.
885///
886/// This class uses the standard Instruction opcodes to define the various
887/// constant expressions.  The Opcode field for the ConstantExpr class is
888/// maintained in the Value::SubclassData field.
889class ConstantExpr : public Constant {
890  friend struct ConstantExprKeyType;
891  friend class Constant;
892
893  void destroyConstantImpl();
894  Value *handleOperandChangeImpl(Value *From, Value *To);
895
896protected:
897  ConstantExpr(Type *ty, unsigned Opcode, Use *Ops, unsigned NumOps)
898      : Constant(ty, ConstantExprVal, Ops, NumOps) {
899    // Operation type (an Instruction opcode) is stored as the SubclassData.
900    setValueSubclassData(Opcode);
901  }
902
903public:
904  // Static methods to construct a ConstantExpr of different kinds.  Note that
905  // these methods may return a object that is not an instance of the
906  // ConstantExpr class, because they will attempt to fold the constant
907  // expression into something simpler if possible.
908
909  /// getAlignOf constant expr - computes the alignment of a type in a target
910  /// independent way (Note: the return type is an i64).
911  static Constant *getAlignOf(Type *Ty);
912
913  /// getSizeOf constant expr - computes the (alloc) size of a type (in
914  /// address-units, not bits) in a target independent way (Note: the return
915  /// type is an i64).
916  ///
917  static Constant *getSizeOf(Type *Ty);
918
919  /// getOffsetOf constant expr - computes the offset of a struct field in a
920  /// target independent way (Note: the return type is an i64).
921  ///
922  static Constant *getOffsetOf(StructType *STy, unsigned FieldNo);
923
924  /// getOffsetOf constant expr - This is a generalized form of getOffsetOf,
925  /// which supports any aggregate type, and any Constant index.
926  ///
927  static Constant *getOffsetOf(Type *Ty, Constant *FieldNo);
928
929  static Constant *getNeg(Constant *C, bool HasNUW = false, bool HasNSW =false);
930  static Constant *getFNeg(Constant *C);
931  static Constant *getNot(Constant *C);
932  static Constant *getAdd(Constant *C1, Constant *C2,
933                          bool HasNUW = false, bool HasNSW = false);
934  static Constant *getFAdd(Constant *C1, Constant *C2);
935  static Constant *getSub(Constant *C1, Constant *C2,
936                          bool HasNUW = false, bool HasNSW = false);
937  static Constant *getFSub(Constant *C1, Constant *C2);
938  static Constant *getMul(Constant *C1, Constant *C2,
939                          bool HasNUW = false, bool HasNSW = false);
940  static Constant *getFMul(Constant *C1, Constant *C2);
941  static Constant *getUDiv(Constant *C1, Constant *C2, bool isExact = false);
942  static Constant *getSDiv(Constant *C1, Constant *C2, bool isExact = false);
943  static Constant *getFDiv(Constant *C1, Constant *C2);
944  static Constant *getURem(Constant *C1, Constant *C2);
945  static Constant *getSRem(Constant *C1, Constant *C2);
946  static Constant *getFRem(Constant *C1, Constant *C2);
947  static Constant *getAnd(Constant *C1, Constant *C2);
948  static Constant *getOr(Constant *C1, Constant *C2);
949  static Constant *getXor(Constant *C1, Constant *C2);
950  static Constant *getShl(Constant *C1, Constant *C2,
951                          bool HasNUW = false, bool HasNSW = false);
952  static Constant *getLShr(Constant *C1, Constant *C2, bool isExact = false);
953  static Constant *getAShr(Constant *C1, Constant *C2, bool isExact = false);
954  static Constant *getTrunc(Constant *C, Type *Ty, bool OnlyIfReduced = false);
955  static Constant *getSExt(Constant *C, Type *Ty, bool OnlyIfReduced = false);
956  static Constant *getZExt(Constant *C, Type *Ty, bool OnlyIfReduced = false);
957  static Constant *getFPTrunc(Constant *C, Type *Ty,
958                              bool OnlyIfReduced = false);
959  static Constant *getFPExtend(Constant *C, Type *Ty,
960                               bool OnlyIfReduced = false);
961  static Constant *getUIToFP(Constant *C, Type *Ty, bool OnlyIfReduced = false);
962  static Constant *getSIToFP(Constant *C, Type *Ty, bool OnlyIfReduced = false);
963  static Constant *getFPToUI(Constant *C, Type *Ty, bool OnlyIfReduced = false);
964  static Constant *getFPToSI(Constant *C, Type *Ty, bool OnlyIfReduced = false);
965  static Constant *getPtrToInt(Constant *C, Type *Ty,
966                               bool OnlyIfReduced = false);
967  static Constant *getIntToPtr(Constant *C, Type *Ty,
968                               bool OnlyIfReduced = false);
969  static Constant *getBitCast(Constant *C, Type *Ty,
970                              bool OnlyIfReduced = false);
971  static Constant *getAddrSpaceCast(Constant *C, Type *Ty,
972                                    bool OnlyIfReduced = false);
973
974  static Constant *getNSWNeg(Constant *C) { return getNeg(C, false, true); }
975  static Constant *getNUWNeg(Constant *C) { return getNeg(C, true, false); }
976
977  static Constant *getNSWAdd(Constant *C1, Constant *C2) {
978    return getAdd(C1, C2, false, true);
979  }
980
981  static Constant *getNUWAdd(Constant *C1, Constant *C2) {
982    return getAdd(C1, C2, true, false);
983  }
984
985  static Constant *getNSWSub(Constant *C1, Constant *C2) {
986    return getSub(C1, C2, false, true);
987  }
988
989  static Constant *getNUWSub(Constant *C1, Constant *C2) {
990    return getSub(C1, C2, true, false);
991  }
992
993  static Constant *getNSWMul(Constant *C1, Constant *C2) {
994    return getMul(C1, C2, false, true);
995  }
996
997  static Constant *getNUWMul(Constant *C1, Constant *C2) {
998    return getMul(C1, C2, true, false);
999  }
1000
1001  static Constant *getNSWShl(Constant *C1, Constant *C2) {
1002    return getShl(C1, C2, false, true);
1003  }
1004
1005  static Constant *getNUWShl(Constant *C1, Constant *C2) {
1006    return getShl(C1, C2, true, false);
1007  }
1008
1009  static Constant *getExactSDiv(Constant *C1, Constant *C2) {
1010    return getSDiv(C1, C2, true);
1011  }
1012
1013  static Constant *getExactUDiv(Constant *C1, Constant *C2) {
1014    return getUDiv(C1, C2, true);
1015  }
1016
1017  static Constant *getExactAShr(Constant *C1, Constant *C2) {
1018    return getAShr(C1, C2, true);
1019  }
1020
1021  static Constant *getExactLShr(Constant *C1, Constant *C2) {
1022    return getLShr(C1, C2, true);
1023  }
1024
1025  /// Return the identity constant for a binary opcode.
1026  /// The identity constant C is defined as X op C = X and C op X = X for every
1027  /// X when the binary operation is commutative. If the binop is not
1028  /// commutative, callers can acquire the operand 1 identity constant by
1029  /// setting AllowRHSConstant to true. For example, any shift has a zero
1030  /// identity constant for operand 1: X shift 0 = X.
1031  /// Return nullptr if the operator does not have an identity constant.
1032  static Constant *getBinOpIdentity(unsigned Opcode, Type *Ty,
1033                                    bool AllowRHSConstant = false);
1034
1035  /// Return the absorbing element for the given binary
1036  /// operation, i.e. a constant C such that X op C = C and C op X = C for
1037  /// every X.  For example, this returns zero for integer multiplication.
1038  /// It returns null if the operator doesn't have an absorbing element.
1039  static Constant *getBinOpAbsorber(unsigned Opcode, Type *Ty);
1040
1041  /// Transparently provide more efficient getOperand methods.
1042  DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Constant);
1043
1044  /// Convenience function for getting a Cast operation.
1045  ///
1046  /// \param ops The opcode for the conversion
1047  /// \param C  The constant to be converted
1048  /// \param Ty The type to which the constant is converted
1049  /// \param OnlyIfReduced see \a getWithOperands() docs.
1050  static Constant *getCast(unsigned ops, Constant *C, Type *Ty,
1051                           bool OnlyIfReduced = false);
1052
1053  // Create a ZExt or BitCast cast constant expression
1054  static Constant *getZExtOrBitCast(
1055    Constant *C,   ///< The constant to zext or bitcast
1056    Type *Ty ///< The type to zext or bitcast C to
1057  );
1058
1059  // Create a SExt or BitCast cast constant expression
1060  static Constant *getSExtOrBitCast(
1061    Constant *C,   ///< The constant to sext or bitcast
1062    Type *Ty ///< The type to sext or bitcast C to
1063  );
1064
1065  // Create a Trunc or BitCast cast constant expression
1066  static Constant *getTruncOrBitCast(
1067    Constant *C,   ///< The constant to trunc or bitcast
1068    Type *Ty ///< The type to trunc or bitcast C to
1069  );
1070
1071  /// Create a BitCast, AddrSpaceCast, or a PtrToInt cast constant
1072  /// expression.
1073  static Constant *getPointerCast(
1074    Constant *C,   ///< The pointer value to be casted (operand 0)
1075    Type *Ty ///< The type to which cast should be made
1076  );
1077
1078  /// Create a BitCast or AddrSpaceCast for a pointer type depending on
1079  /// the address space.
1080  static Constant *getPointerBitCastOrAddrSpaceCast(
1081    Constant *C,   ///< The constant to addrspacecast or bitcast
1082    Type *Ty ///< The type to bitcast or addrspacecast C to
1083  );
1084
1085  /// Create a ZExt, Bitcast or Trunc for integer -> integer casts
1086  static Constant *getIntegerCast(
1087    Constant *C,    ///< The integer constant to be casted
1088    Type *Ty, ///< The integer type to cast to
1089    bool isSigned   ///< Whether C should be treated as signed or not
1090  );
1091
1092  /// Create a FPExt, Bitcast or FPTrunc for fp -> fp casts
1093  static Constant *getFPCast(
1094    Constant *C,    ///< The integer constant to be casted
1095    Type *Ty ///< The integer type to cast to
1096  );
1097
1098  /// Return true if this is a convert constant expression
1099  bool isCast() const;
1100
1101  /// Return true if this is a compare constant expression
1102  bool isCompare() const;
1103
1104  /// Return true if this is an insertvalue or extractvalue expression,
1105  /// and the getIndices() method may be used.
1106  bool hasIndices() const;
1107
1108  /// Return true if this is a getelementptr expression and all
1109  /// the index operands are compile-time known integers within the
1110  /// corresponding notional static array extents. Note that this is
1111  /// not equivalant to, a subset of, or a superset of the "inbounds"
1112  /// property.
1113  bool isGEPWithNoNotionalOverIndexing() const;
1114
1115  /// Select constant expr
1116  ///
1117  /// \param OnlyIfReducedTy see \a getWithOperands() docs.
1118  static Constant *getSelect(Constant *C, Constant *V1, Constant *V2,
1119                             Type *OnlyIfReducedTy = nullptr);
1120
1121  /// get - Return a unary operator constant expression,
1122  /// folding if possible.
1123  ///
1124  /// \param OnlyIfReducedTy see \a getWithOperands() docs.
1125  static Constant *get(unsigned Opcode, Constant *C1, unsigned Flags = 0,
1126                       Type *OnlyIfReducedTy = nullptr);
1127
1128  /// get - Return a binary or shift operator constant expression,
1129  /// folding if possible.
1130  ///
1131  /// \param OnlyIfReducedTy see \a getWithOperands() docs.
1132  static Constant *get(unsigned Opcode, Constant *C1, Constant *C2,
1133                       unsigned Flags = 0, Type *OnlyIfReducedTy = nullptr);
1134
1135  /// Return an ICmp or FCmp comparison operator constant expression.
1136  ///
1137  /// \param OnlyIfReduced see \a getWithOperands() docs.
1138  static Constant *getCompare(unsigned short pred, Constant *C1, Constant *C2,
1139                              bool OnlyIfReduced = false);
1140
1141  /// get* - Return some common constants without having to
1142  /// specify the full Instruction::OPCODE identifier.
1143  ///
1144  static Constant *getICmp(unsigned short pred, Constant *LHS, Constant *RHS,
1145                           bool OnlyIfReduced = false);
1146  static Constant *getFCmp(unsigned short pred, Constant *LHS, Constant *RHS,
1147                           bool OnlyIfReduced = false);
1148
1149  /// Getelementptr form.  Value* is only accepted for convenience;
1150  /// all elements must be Constants.
1151  ///
1152  /// \param InRangeIndex the inrange index if present or None.
1153  /// \param OnlyIfReducedTy see \a getWithOperands() docs.
1154  static Constant *getGetElementPtr(Type *Ty, Constant *C,
1155                                    ArrayRef<Constant *> IdxList,
1156                                    bool InBounds = false,
1157                                    Optional<unsigned> InRangeIndex = None,
1158                                    Type *OnlyIfReducedTy = nullptr) {
1159    return getGetElementPtr(
1160        Ty, C, makeArrayRef((Value * const *)IdxList.data(), IdxList.size()),
1161        InBounds, InRangeIndex, OnlyIfReducedTy);
1162  }
1163  static Constant *getGetElementPtr(Type *Ty, Constant *C, Constant *Idx,
1164                                    bool InBounds = false,
1165                                    Optional<unsigned> InRangeIndex = None,
1166                                    Type *OnlyIfReducedTy = nullptr) {
1167    // This form of the function only exists to avoid ambiguous overload
1168    // warnings about whether to convert Idx to ArrayRef<Constant *> or
1169    // ArrayRef<Value *>.
1170    return getGetElementPtr(Ty, C, cast<Value>(Idx), InBounds, InRangeIndex,
1171                            OnlyIfReducedTy);
1172  }
1173  static Constant *getGetElementPtr(Type *Ty, Constant *C,
1174                                    ArrayRef<Value *> IdxList,
1175                                    bool InBounds = false,
1176                                    Optional<unsigned> InRangeIndex = None,
1177                                    Type *OnlyIfReducedTy = nullptr);
1178
1179  /// Create an "inbounds" getelementptr. See the documentation for the
1180  /// "inbounds" flag in LangRef.html for details.
1181  static Constant *getInBoundsGetElementPtr(Type *Ty, Constant *C,
1182                                            ArrayRef<Constant *> IdxList) {
1183    return getGetElementPtr(Ty, C, IdxList, true);
1184  }
1185  static Constant *getInBoundsGetElementPtr(Type *Ty, Constant *C,
1186                                            Constant *Idx) {
1187    // This form of the function only exists to avoid ambiguous overload
1188    // warnings about whether to convert Idx to ArrayRef<Constant *> or
1189    // ArrayRef<Value *>.
1190    return getGetElementPtr(Ty, C, Idx, true);
1191  }
1192  static Constant *getInBoundsGetElementPtr(Type *Ty, Constant *C,
1193                                            ArrayRef<Value *> IdxList) {
1194    return getGetElementPtr(Ty, C, IdxList, true);
1195  }
1196
1197  static Constant *getExtractElement(Constant *Vec, Constant *Idx,
1198                                     Type *OnlyIfReducedTy = nullptr);
1199  static Constant *getInsertElement(Constant *Vec, Constant *Elt, Constant *Idx,
1200                                    Type *OnlyIfReducedTy = nullptr);
1201  static Constant *getShuffleVector(Constant *V1, Constant *V2, Constant *Mask,
1202                                    Type *OnlyIfReducedTy = nullptr);
1203  static Constant *getExtractValue(Constant *Agg, ArrayRef<unsigned> Idxs,
1204                                   Type *OnlyIfReducedTy = nullptr);
1205  static Constant *getInsertValue(Constant *Agg, Constant *Val,
1206                                  ArrayRef<unsigned> Idxs,
1207                                  Type *OnlyIfReducedTy = nullptr);
1208
1209  /// Return the opcode at the root of this constant expression
1210  unsigned getOpcode() const { return getSubclassDataFromValue(); }
1211
1212  /// Return the ICMP or FCMP predicate value. Assert if this is not an ICMP or
1213  /// FCMP constant expression.
1214  unsigned getPredicate() const;
1215
1216  /// Assert that this is an insertvalue or exactvalue
1217  /// expression and return the list of indices.
1218  ArrayRef<unsigned> getIndices() const;
1219
1220  /// Return a string representation for an opcode.
1221  const char *getOpcodeName() const;
1222
1223  /// Return a constant expression identical to this one, but with the specified
1224  /// operand set to the specified value.
1225  Constant *getWithOperandReplaced(unsigned OpNo, Constant *Op) const;
1226
1227  /// This returns the current constant expression with the operands replaced
1228  /// with the specified values. The specified array must have the same number
1229  /// of operands as our current one.
1230  Constant *getWithOperands(ArrayRef<Constant*> Ops) const {
1231    return getWithOperands(Ops, getType());
1232  }
1233
1234  /// Get the current expression with the operands replaced.
1235  ///
1236  /// Return the current constant expression with the operands replaced with \c
1237  /// Ops and the type with \c Ty.  The new operands must have the same number
1238  /// as the current ones.
1239  ///
1240  /// If \c OnlyIfReduced is \c true, nullptr will be returned unless something
1241  /// gets constant-folded, the type changes, or the expression is otherwise
1242  /// canonicalized.  This parameter should almost always be \c false.
1243  Constant *getWithOperands(ArrayRef<Constant *> Ops, Type *Ty,
1244                            bool OnlyIfReduced = false,
1245                            Type *SrcTy = nullptr) const;
1246
1247  /// Returns an Instruction which implements the same operation as this
1248  /// ConstantExpr. The instruction is not linked to any basic block.
1249  ///
1250  /// A better approach to this could be to have a constructor for Instruction
1251  /// which would take a ConstantExpr parameter, but that would have spread
1252  /// implementation details of ConstantExpr outside of Constants.cpp, which
1253  /// would make it harder to remove ConstantExprs altogether.
1254  Instruction *getAsInstruction() const;
1255
1256  /// Methods for support type inquiry through isa, cast, and dyn_cast:
1257  static bool classof(const Value *V) {
1258    return V->getValueID() == ConstantExprVal;
1259  }
1260
1261private:
1262  // Shadow Value::setValueSubclassData with a private forwarding method so that
1263  // subclasses cannot accidentally use it.
1264  void setValueSubclassData(unsigned short D) {
1265    Value::setValueSubclassData(D);
1266  }
1267};
1268
1269template <>
1270struct OperandTraits<ConstantExpr> :
1271  public VariadicOperandTraits<ConstantExpr, 1> {
1272};
1273
1274DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ConstantExpr, Constant)
1275
1276//===----------------------------------------------------------------------===//
1277/// 'undef' values are things that do not have specified contents.
1278/// These are used for a variety of purposes, including global variable
1279/// initializers and operands to instructions.  'undef' values can occur with
1280/// any first-class type.
1281///
1282/// Undef values aren't exactly constants; if they have multiple uses, they
1283/// can appear to have different bit patterns at each use. See
1284/// LangRef.html#undefvalues for details.
1285///
1286class UndefValue final : public ConstantData {
1287  friend class Constant;
1288
1289  explicit UndefValue(Type *T) : ConstantData(T, UndefValueVal) {}
1290
1291  void destroyConstantImpl();
1292
1293public:
1294  UndefValue(const UndefValue &) = delete;
1295
1296  /// Static factory methods - Return an 'undef' object of the specified type.
1297  static UndefValue *get(Type *T);
1298
1299  /// If this Undef has array or vector type, return a undef with the right
1300  /// element type.
1301  UndefValue *getSequentialElement() const;
1302
1303  /// If this undef has struct type, return a undef with the right element type
1304  /// for the specified element.
1305  UndefValue *getStructElement(unsigned Elt) const;
1306
1307  /// Return an undef of the right value for the specified GEP index if we can,
1308  /// otherwise return null (e.g. if C is a ConstantExpr).
1309  UndefValue *getElementValue(Constant *C) const;
1310
1311  /// Return an undef of the right value for the specified GEP index.
1312  UndefValue *getElementValue(unsigned Idx) const;
1313
1314  /// Return the number of elements in the array, vector, or struct.
1315  unsigned getNumElements() const;
1316
1317  /// Methods for support type inquiry through isa, cast, and dyn_cast:
1318  static bool classof(const Value *V) {
1319    return V->getValueID() == UndefValueVal;
1320  }
1321};
1322
1323} // end namespace llvm
1324
1325#endif // LLVM_IR_CONSTANTS_H
1326