TargetSchedule.h revision 360784
11592Srgrimes//===- llvm/CodeGen/TargetSchedule.h - Sched Machine Model ------*- C++ -*-===//
250476Speter//
31592Srgrimes// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
41592Srgrimes// See https://llvm.org/LICENSE.txt for license information.
574814Sru// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
61592Srgrimes//
71592Srgrimes//===----------------------------------------------------------------------===//
8//
9// This file defines a wrapper around MCSchedModel that allows the interface to
10// benefit from information currently only available in TargetInstrInfo.
11// Ideally, the scheduling interface would be fully defined in the MC layer.
12//
13//===----------------------------------------------------------------------===//
14
15#ifndef LLVM_CODEGEN_TARGETSCHEDULE_H
16#define LLVM_CODEGEN_TARGETSCHEDULE_H
17
18#include "llvm/ADT/Optional.h"
19#include "llvm/ADT/SmallVector.h"
20#include "llvm/CodeGen/TargetSubtargetInfo.h"
21#include "llvm/Config/llvm-config.h"
22#include "llvm/MC/MCInstrItineraries.h"
23#include "llvm/MC/MCSchedule.h"
24
25namespace llvm {
26
27class MachineInstr;
28class TargetInstrInfo;
29
30/// Provide an instruction scheduling machine model to CodeGen passes.
31class TargetSchedModel {
32  // For efficiency, hold a copy of the statically defined MCSchedModel for this
33  // processor.
34  MCSchedModel SchedModel;
35  InstrItineraryData InstrItins;
36  const TargetSubtargetInfo *STI = nullptr;
37  const TargetInstrInfo *TII = nullptr;
38
39  SmallVector<unsigned, 16> ResourceFactors;
40
41  // Multiply to normalize microops to resource units.
42  unsigned MicroOpFactor = 0;
43
44  // Resource units per cycle. Latency normalization factor.
45  unsigned ResourceLCM = 0;
46
47  unsigned computeInstrLatency(const MCSchedClassDesc &SCDesc) const;
48
49public:
50  TargetSchedModel() : SchedModel(MCSchedModel::GetDefaultSchedModel()) {}
51
52  /// Initialize the machine model for instruction scheduling.
53  ///
54  /// The machine model API keeps a copy of the top-level MCSchedModel table
55  /// indices and may query TargetSubtargetInfo and TargetInstrInfo to resolve
56  /// dynamic properties.
57  void init(const TargetSubtargetInfo *TSInfo);
58
59  /// Return the MCSchedClassDesc for this instruction.
60  const MCSchedClassDesc *resolveSchedClass(const MachineInstr *MI) const;
61
62  /// TargetSubtargetInfo getter.
63  const TargetSubtargetInfo *getSubtargetInfo() const { return STI; }
64
65  /// TargetInstrInfo getter.
66  const TargetInstrInfo *getInstrInfo() const { return TII; }
67
68  /// Return true if this machine model includes an instruction-level
69  /// scheduling model.
70  ///
71  /// This is more detailed than the course grain IssueWidth and default
72  /// latency properties, but separate from the per-cycle itinerary data.
73  bool hasInstrSchedModel() const;
74
75  const MCSchedModel *getMCSchedModel() const { return &SchedModel; }
76
77  /// Return true if this machine model includes cycle-to-cycle itinerary
78  /// data.
79  ///
80  /// This models scheduling at each stage in the processor pipeline.
81  bool hasInstrItineraries() const;
82
83  const InstrItineraryData *getInstrItineraries() const {
84    if (hasInstrItineraries())
85      return &InstrItins;
86    return nullptr;
87  }
88
89  /// Return true if this machine model includes an instruction-level
90  /// scheduling model or cycle-to-cycle itinerary data.
91  bool hasInstrSchedModelOrItineraries() const {
92    return hasInstrSchedModel() || hasInstrItineraries();
93  }
94
95  /// Identify the processor corresponding to the current subtarget.
96  unsigned getProcessorID() const { return SchedModel.getProcessorID(); }
97
98  /// Maximum number of micro-ops that may be scheduled per cycle.
99  unsigned getIssueWidth() const { return SchedModel.IssueWidth; }
100
101  /// Return true if new group must begin.
102  bool mustBeginGroup(const MachineInstr *MI,
103                          const MCSchedClassDesc *SC = nullptr) const;
104  /// Return true if current group must end.
105  bool mustEndGroup(const MachineInstr *MI,
106                          const MCSchedClassDesc *SC = nullptr) const;
107
108  /// Return the number of issue slots required for this MI.
109  unsigned getNumMicroOps(const MachineInstr *MI,
110                          const MCSchedClassDesc *SC = nullptr) const;
111
112  /// Get the number of kinds of resources for this target.
113  unsigned getNumProcResourceKinds() const {
114    return SchedModel.getNumProcResourceKinds();
115  }
116
117  /// Get a processor resource by ID for convenience.
118  const MCProcResourceDesc *getProcResource(unsigned PIdx) const {
119    return SchedModel.getProcResource(PIdx);
120  }
121
122#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
123  const char *getResourceName(unsigned PIdx) const {
124    if (!PIdx)
125      return "MOps";
126    return SchedModel.getProcResource(PIdx)->Name;
127  }
128#endif
129
130  using ProcResIter = const MCWriteProcResEntry *;
131
132  // Get an iterator into the processor resources consumed by this
133  // scheduling class.
134  ProcResIter getWriteProcResBegin(const MCSchedClassDesc *SC) const {
135    // The subtarget holds a single resource table for all processors.
136    return STI->getWriteProcResBegin(SC);
137  }
138  ProcResIter getWriteProcResEnd(const MCSchedClassDesc *SC) const {
139    return STI->getWriteProcResEnd(SC);
140  }
141
142  /// Multiply the number of units consumed for a resource by this factor
143  /// to normalize it relative to other resources.
144  unsigned getResourceFactor(unsigned ResIdx) const {
145    return ResourceFactors[ResIdx];
146  }
147
148  /// Multiply number of micro-ops by this factor to normalize it
149  /// relative to other resources.
150  unsigned getMicroOpFactor() const {
151    return MicroOpFactor;
152  }
153
154  /// Multiply cycle count by this factor to normalize it relative to
155  /// other resources. This is the number of resource units per cycle.
156  unsigned getLatencyFactor() const {
157    return ResourceLCM;
158  }
159
160  /// Number of micro-ops that may be buffered for OOO execution.
161  unsigned getMicroOpBufferSize() const { return SchedModel.MicroOpBufferSize; }
162
163  /// Number of resource units that may be buffered for OOO execution.
164  /// \return The buffer size in resource units or -1 for unlimited.
165  int getResourceBufferSize(unsigned PIdx) const {
166    return SchedModel.getProcResource(PIdx)->BufferSize;
167  }
168
169  /// Compute operand latency based on the available machine model.
170  ///
171  /// Compute and return the latency of the given data dependent def and use
172  /// when the operand indices are already known. UseMI may be NULL for an
173  /// unknown user.
174  unsigned computeOperandLatency(const MachineInstr *DefMI, unsigned DefOperIdx,
175                                 const MachineInstr *UseMI, unsigned UseOperIdx)
176    const;
177
178  /// Compute the instruction latency based on the available machine
179  /// model.
180  ///
181  /// Compute and return the expected latency of this instruction independent of
182  /// a particular use. computeOperandLatency is the preferred API, but this is
183  /// occasionally useful to help estimate instruction cost.
184  ///
185  /// If UseDefaultDefLatency is false and no new machine sched model is
186  /// present this method falls back to TII->getInstrLatency with an empty
187  /// instruction itinerary (this is so we preserve the previous behavior of the
188  /// if converter after moving it to TargetSchedModel).
189  unsigned computeInstrLatency(const MachineInstr *MI,
190                               bool UseDefaultDefLatency = true) const;
191  unsigned computeInstrLatency(const MCInst &Inst) const;
192  unsigned computeInstrLatency(unsigned Opcode) const;
193
194
195  /// Output dependency latency of a pair of defs of the same register.
196  ///
197  /// This is typically one cycle.
198  unsigned computeOutputLatency(const MachineInstr *DefMI, unsigned DefOperIdx,
199                                const MachineInstr *DepMI) const;
200
201  /// Compute the reciprocal throughput of the given instruction.
202  double computeReciprocalThroughput(const MachineInstr *MI) const;
203  double computeReciprocalThroughput(const MCInst &MI) const;
204  double computeReciprocalThroughput(unsigned Opcode) const;
205};
206
207} // end namespace llvm
208
209#endif // LLVM_CODEGEN_TARGETSCHEDULE_H
210