LiveVariables.h revision 360784
1//===-- llvm/CodeGen/LiveVariables.h - Live Variable Analysis ---*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements the LiveVariables analysis pass.  For each machine
10// instruction in the function, this pass calculates the set of registers that
11// are immediately dead after the instruction (i.e., the instruction calculates
12// the value, but it is never used) and the set of registers that are used by
13// the instruction, but are never used after the instruction (i.e., they are
14// killed).
15//
16// This class computes live variables using a sparse implementation based on
17// the machine code SSA form.  This class computes live variable information for
18// each virtual and _register allocatable_ physical register in a function.  It
19// uses the dominance properties of SSA form to efficiently compute live
20// variables for virtual registers, and assumes that physical registers are only
21// live within a single basic block (allowing it to do a single local analysis
22// to resolve physical register lifetimes in each basic block).  If a physical
23// register is not register allocatable, it is not tracked.  This is useful for
24// things like the stack pointer and condition codes.
25//
26//===----------------------------------------------------------------------===//
27
28#ifndef LLVM_CODEGEN_LIVEVARIABLES_H
29#define LLVM_CODEGEN_LIVEVARIABLES_H
30
31#include "llvm/ADT/DenseMap.h"
32#include "llvm/ADT/IndexedMap.h"
33#include "llvm/ADT/SmallSet.h"
34#include "llvm/ADT/SmallVector.h"
35#include "llvm/ADT/SparseBitVector.h"
36#include "llvm/CodeGen/MachineFunctionPass.h"
37#include "llvm/CodeGen/MachineInstr.h"
38#include "llvm/CodeGen/TargetRegisterInfo.h"
39#include "llvm/InitializePasses.h"
40
41namespace llvm {
42
43class MachineBasicBlock;
44class MachineRegisterInfo;
45
46class LiveVariables : public MachineFunctionPass {
47public:
48  static char ID; // Pass identification, replacement for typeid
49  LiveVariables() : MachineFunctionPass(ID) {
50    initializeLiveVariablesPass(*PassRegistry::getPassRegistry());
51  }
52
53  /// VarInfo - This represents the regions where a virtual register is live in
54  /// the program.  We represent this with three different pieces of
55  /// information: the set of blocks in which the instruction is live
56  /// throughout, the set of blocks in which the instruction is actually used,
57  /// and the set of non-phi instructions that are the last users of the value.
58  ///
59  /// In the common case where a value is defined and killed in the same block,
60  /// There is one killing instruction, and AliveBlocks is empty.
61  ///
62  /// Otherwise, the value is live out of the block.  If the value is live
63  /// throughout any blocks, these blocks are listed in AliveBlocks.  Blocks
64  /// where the liveness range ends are not included in AliveBlocks, instead
65  /// being captured by the Kills set.  In these blocks, the value is live into
66  /// the block (unless the value is defined and killed in the same block) and
67  /// lives until the specified instruction.  Note that there cannot ever be a
68  /// value whose Kills set contains two instructions from the same basic block.
69  ///
70  /// PHI nodes complicate things a bit.  If a PHI node is the last user of a
71  /// value in one of its predecessor blocks, it is not listed in the kills set,
72  /// but does include the predecessor block in the AliveBlocks set (unless that
73  /// block also defines the value).  This leads to the (perfectly sensical)
74  /// situation where a value is defined in a block, and the last use is a phi
75  /// node in the successor.  In this case, AliveBlocks is empty (the value is
76  /// not live across any  blocks) and Kills is empty (phi nodes are not
77  /// included). This is sensical because the value must be live to the end of
78  /// the block, but is not live in any successor blocks.
79  struct VarInfo {
80    /// AliveBlocks - Set of blocks in which this value is alive completely
81    /// through.  This is a bit set which uses the basic block number as an
82    /// index.
83    ///
84    SparseBitVector<> AliveBlocks;
85
86    /// Kills - List of MachineInstruction's which are the last use of this
87    /// virtual register (kill it) in their basic block.
88    ///
89    std::vector<MachineInstr*> Kills;
90
91    /// removeKill - Delete a kill corresponding to the specified
92    /// machine instruction. Returns true if there was a kill
93    /// corresponding to this instruction, false otherwise.
94    bool removeKill(MachineInstr &MI) {
95      std::vector<MachineInstr *>::iterator I = find(Kills, &MI);
96      if (I == Kills.end())
97        return false;
98      Kills.erase(I);
99      return true;
100    }
101
102    /// findKill - Find a kill instruction in MBB. Return NULL if none is found.
103    MachineInstr *findKill(const MachineBasicBlock *MBB) const;
104
105    /// isLiveIn - Is Reg live in to MBB? This means that Reg is live through
106    /// MBB, or it is killed in MBB. If Reg is only used by PHI instructions in
107    /// MBB, it is not considered live in.
108    bool isLiveIn(const MachineBasicBlock &MBB,
109                  unsigned Reg,
110                  MachineRegisterInfo &MRI);
111
112    void dump() const;
113  };
114
115private:
116  /// VirtRegInfo - This list is a mapping from virtual register number to
117  /// variable information.
118  ///
119  IndexedMap<VarInfo, VirtReg2IndexFunctor> VirtRegInfo;
120
121  /// PHIJoins - list of virtual registers that are PHI joins. These registers
122  /// may have multiple definitions, and they require special handling when
123  /// building live intervals.
124  SparseBitVector<> PHIJoins;
125
126private:   // Intermediate data structures
127  MachineFunction *MF;
128
129  MachineRegisterInfo* MRI;
130
131  const TargetRegisterInfo *TRI;
132
133  // PhysRegInfo - Keep track of which instruction was the last def of a
134  // physical register. This is a purely local property, because all physical
135  // register references are presumed dead across basic blocks.
136  std::vector<MachineInstr *> PhysRegDef;
137
138  // PhysRegInfo - Keep track of which instruction was the last use of a
139  // physical register. This is a purely local property, because all physical
140  // register references are presumed dead across basic blocks.
141  std::vector<MachineInstr *> PhysRegUse;
142
143  std::vector<SmallVector<unsigned, 4>> PHIVarInfo;
144
145  // DistanceMap - Keep track the distance of a MI from the start of the
146  // current basic block.
147  DenseMap<MachineInstr*, unsigned> DistanceMap;
148
149  /// HandlePhysRegKill - Add kills of Reg and its sub-registers to the
150  /// uses. Pay special attention to the sub-register uses which may come below
151  /// the last use of the whole register.
152  bool HandlePhysRegKill(unsigned Reg, MachineInstr *MI);
153
154  /// HandleRegMask - Call HandlePhysRegKill for all registers clobbered by Mask.
155  void HandleRegMask(const MachineOperand&);
156
157  void HandlePhysRegUse(unsigned Reg, MachineInstr &MI);
158  void HandlePhysRegDef(unsigned Reg, MachineInstr *MI,
159                        SmallVectorImpl<unsigned> &Defs);
160  void UpdatePhysRegDefs(MachineInstr &MI, SmallVectorImpl<unsigned> &Defs);
161
162  /// FindLastRefOrPartRef - Return the last reference or partial reference of
163  /// the specified register.
164  MachineInstr *FindLastRefOrPartRef(unsigned Reg);
165
166  /// FindLastPartialDef - Return the last partial def of the specified
167  /// register. Also returns the sub-registers that're defined by the
168  /// instruction.
169  MachineInstr *FindLastPartialDef(unsigned Reg,
170                                   SmallSet<unsigned,4> &PartDefRegs);
171
172  /// analyzePHINodes - Gather information about the PHI nodes in here. In
173  /// particular, we want to map the variable information of a virtual
174  /// register which is used in a PHI node. We map that to the BB the vreg
175  /// is coming from.
176  void analyzePHINodes(const MachineFunction& Fn);
177
178  void runOnInstr(MachineInstr &MI, SmallVectorImpl<unsigned> &Defs);
179
180  void runOnBlock(MachineBasicBlock *MBB, unsigned NumRegs);
181public:
182
183  bool runOnMachineFunction(MachineFunction &MF) override;
184
185  /// RegisterDefIsDead - Return true if the specified instruction defines the
186  /// specified register, but that definition is dead.
187  bool RegisterDefIsDead(MachineInstr &MI, unsigned Reg) const;
188
189  //===--------------------------------------------------------------------===//
190  //  API to update live variable information
191
192  /// replaceKillInstruction - Update register kill info by replacing a kill
193  /// instruction with a new one.
194  void replaceKillInstruction(unsigned Reg, MachineInstr &OldMI,
195                              MachineInstr &NewMI);
196
197  /// addVirtualRegisterKilled - Add information about the fact that the
198  /// specified register is killed after being used by the specified
199  /// instruction. If AddIfNotFound is true, add a implicit operand if it's
200  /// not found.
201  void addVirtualRegisterKilled(unsigned IncomingReg, MachineInstr &MI,
202                                bool AddIfNotFound = false) {
203    if (MI.addRegisterKilled(IncomingReg, TRI, AddIfNotFound))
204      getVarInfo(IncomingReg).Kills.push_back(&MI);
205  }
206
207  /// removeVirtualRegisterKilled - Remove the specified kill of the virtual
208  /// register from the live variable information. Returns true if the
209  /// variable was marked as killed by the specified instruction,
210  /// false otherwise.
211  bool removeVirtualRegisterKilled(unsigned reg, MachineInstr &MI) {
212    if (!getVarInfo(reg).removeKill(MI))
213      return false;
214
215    bool Removed = false;
216    for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
217      MachineOperand &MO = MI.getOperand(i);
218      if (MO.isReg() && MO.isKill() && MO.getReg() == reg) {
219        MO.setIsKill(false);
220        Removed = true;
221        break;
222      }
223    }
224
225    assert(Removed && "Register is not used by this instruction!");
226    (void)Removed;
227    return true;
228  }
229
230  /// removeVirtualRegistersKilled - Remove all killed info for the specified
231  /// instruction.
232  void removeVirtualRegistersKilled(MachineInstr &MI);
233
234  /// addVirtualRegisterDead - Add information about the fact that the specified
235  /// register is dead after being used by the specified instruction. If
236  /// AddIfNotFound is true, add a implicit operand if it's not found.
237  void addVirtualRegisterDead(unsigned IncomingReg, MachineInstr &MI,
238                              bool AddIfNotFound = false) {
239    if (MI.addRegisterDead(IncomingReg, TRI, AddIfNotFound))
240      getVarInfo(IncomingReg).Kills.push_back(&MI);
241  }
242
243  /// removeVirtualRegisterDead - Remove the specified kill of the virtual
244  /// register from the live variable information. Returns true if the
245  /// variable was marked dead at the specified instruction, false
246  /// otherwise.
247  bool removeVirtualRegisterDead(unsigned reg, MachineInstr &MI) {
248    if (!getVarInfo(reg).removeKill(MI))
249      return false;
250
251    bool Removed = false;
252    for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
253      MachineOperand &MO = MI.getOperand(i);
254      if (MO.isReg() && MO.isDef() && MO.getReg() == reg) {
255        MO.setIsDead(false);
256        Removed = true;
257        break;
258      }
259    }
260    assert(Removed && "Register is not defined by this instruction!");
261    (void)Removed;
262    return true;
263  }
264
265  void getAnalysisUsage(AnalysisUsage &AU) const override;
266
267  void releaseMemory() override {
268    VirtRegInfo.clear();
269  }
270
271  /// getVarInfo - Return the VarInfo structure for the specified VIRTUAL
272  /// register.
273  VarInfo &getVarInfo(unsigned RegIdx);
274
275  void MarkVirtRegAliveInBlock(VarInfo& VRInfo, MachineBasicBlock* DefBlock,
276                               MachineBasicBlock *BB);
277  void MarkVirtRegAliveInBlock(VarInfo& VRInfo, MachineBasicBlock* DefBlock,
278                               MachineBasicBlock *BB,
279                               std::vector<MachineBasicBlock*> &WorkList);
280  void HandleVirtRegDef(unsigned reg, MachineInstr &MI);
281  void HandleVirtRegUse(unsigned reg, MachineBasicBlock *MBB, MachineInstr &MI);
282
283  bool isLiveIn(unsigned Reg, const MachineBasicBlock &MBB) {
284    return getVarInfo(Reg).isLiveIn(MBB, Reg, *MRI);
285  }
286
287  /// isLiveOut - Determine if Reg is live out from MBB, when not considering
288  /// PHI nodes. This means that Reg is either killed by a successor block or
289  /// passed through one.
290  bool isLiveOut(unsigned Reg, const MachineBasicBlock &MBB);
291
292  /// addNewBlock - Add a new basic block BB between DomBB and SuccBB. All
293  /// variables that are live out of DomBB and live into SuccBB will be marked
294  /// as passing live through BB. This method assumes that the machine code is
295  /// still in SSA form.
296  void addNewBlock(MachineBasicBlock *BB,
297                   MachineBasicBlock *DomBB,
298                   MachineBasicBlock *SuccBB);
299
300  /// isPHIJoin - Return true if Reg is a phi join register.
301  bool isPHIJoin(unsigned Reg) { return PHIJoins.test(Reg); }
302
303  /// setPHIJoin - Mark Reg as a phi join register.
304  void setPHIJoin(unsigned Reg) { PHIJoins.set(Reg); }
305};
306
307} // End llvm namespace
308
309#endif
310