LiveInterval.h revision 360784
1//===- llvm/CodeGen/LiveInterval.h - Interval representation ----*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements the LiveRange and LiveInterval classes.  Given some
10// numbering of each the machine instructions an interval [i, j) is said to be a
11// live range for register v if there is no instruction with number j' >= j
12// such that v is live at j' and there is no instruction with number i' < i such
13// that v is live at i'. In this implementation ranges can have holes,
14// i.e. a range might look like [1,20), [50,65), [1000,1001).  Each
15// individual segment is represented as an instance of LiveRange::Segment,
16// and the whole range is represented as an instance of LiveRange.
17//
18//===----------------------------------------------------------------------===//
19
20#ifndef LLVM_CODEGEN_LIVEINTERVAL_H
21#define LLVM_CODEGEN_LIVEINTERVAL_H
22
23#include "llvm/ADT/ArrayRef.h"
24#include "llvm/ADT/IntEqClasses.h"
25#include "llvm/ADT/STLExtras.h"
26#include "llvm/ADT/SmallVector.h"
27#include "llvm/ADT/iterator_range.h"
28#include "llvm/CodeGen/SlotIndexes.h"
29#include "llvm/MC/LaneBitmask.h"
30#include "llvm/Support/Allocator.h"
31#include "llvm/Support/MathExtras.h"
32#include <algorithm>
33#include <cassert>
34#include <cstddef>
35#include <functional>
36#include <memory>
37#include <set>
38#include <tuple>
39#include <utility>
40
41namespace llvm {
42
43  class CoalescerPair;
44  class LiveIntervals;
45  class MachineRegisterInfo;
46  class raw_ostream;
47
48  /// VNInfo - Value Number Information.
49  /// This class holds information about a machine level values, including
50  /// definition and use points.
51  ///
52  class VNInfo {
53  public:
54    using Allocator = BumpPtrAllocator;
55
56    /// The ID number of this value.
57    unsigned id;
58
59    /// The index of the defining instruction.
60    SlotIndex def;
61
62    /// VNInfo constructor.
63    VNInfo(unsigned i, SlotIndex d) : id(i), def(d) {}
64
65    /// VNInfo constructor, copies values from orig, except for the value number.
66    VNInfo(unsigned i, const VNInfo &orig) : id(i), def(orig.def) {}
67
68    /// Copy from the parameter into this VNInfo.
69    void copyFrom(VNInfo &src) {
70      def = src.def;
71    }
72
73    /// Returns true if this value is defined by a PHI instruction (or was,
74    /// PHI instructions may have been eliminated).
75    /// PHI-defs begin at a block boundary, all other defs begin at register or
76    /// EC slots.
77    bool isPHIDef() const { return def.isBlock(); }
78
79    /// Returns true if this value is unused.
80    bool isUnused() const { return !def.isValid(); }
81
82    /// Mark this value as unused.
83    void markUnused() { def = SlotIndex(); }
84  };
85
86  /// Result of a LiveRange query. This class hides the implementation details
87  /// of live ranges, and it should be used as the primary interface for
88  /// examining live ranges around instructions.
89  class LiveQueryResult {
90    VNInfo *const EarlyVal;
91    VNInfo *const LateVal;
92    const SlotIndex EndPoint;
93    const bool Kill;
94
95  public:
96    LiveQueryResult(VNInfo *EarlyVal, VNInfo *LateVal, SlotIndex EndPoint,
97                    bool Kill)
98      : EarlyVal(EarlyVal), LateVal(LateVal), EndPoint(EndPoint), Kill(Kill)
99    {}
100
101    /// Return the value that is live-in to the instruction. This is the value
102    /// that will be read by the instruction's use operands. Return NULL if no
103    /// value is live-in.
104    VNInfo *valueIn() const {
105      return EarlyVal;
106    }
107
108    /// Return true if the live-in value is killed by this instruction. This
109    /// means that either the live range ends at the instruction, or it changes
110    /// value.
111    bool isKill() const {
112      return Kill;
113    }
114
115    /// Return true if this instruction has a dead def.
116    bool isDeadDef() const {
117      return EndPoint.isDead();
118    }
119
120    /// Return the value leaving the instruction, if any. This can be a
121    /// live-through value, or a live def. A dead def returns NULL.
122    VNInfo *valueOut() const {
123      return isDeadDef() ? nullptr : LateVal;
124    }
125
126    /// Returns the value alive at the end of the instruction, if any. This can
127    /// be a live-through value, a live def or a dead def.
128    VNInfo *valueOutOrDead() const {
129      return LateVal;
130    }
131
132    /// Return the value defined by this instruction, if any. This includes
133    /// dead defs, it is the value created by the instruction's def operands.
134    VNInfo *valueDefined() const {
135      return EarlyVal == LateVal ? nullptr : LateVal;
136    }
137
138    /// Return the end point of the last live range segment to interact with
139    /// the instruction, if any.
140    ///
141    /// The end point is an invalid SlotIndex only if the live range doesn't
142    /// intersect the instruction at all.
143    ///
144    /// The end point may be at or past the end of the instruction's basic
145    /// block. That means the value was live out of the block.
146    SlotIndex endPoint() const {
147      return EndPoint;
148    }
149  };
150
151  /// This class represents the liveness of a register, stack slot, etc.
152  /// It manages an ordered list of Segment objects.
153  /// The Segments are organized in a static single assignment form: At places
154  /// where a new value is defined or different values reach a CFG join a new
155  /// segment with a new value number is used.
156  class LiveRange {
157  public:
158    /// This represents a simple continuous liveness interval for a value.
159    /// The start point is inclusive, the end point exclusive. These intervals
160    /// are rendered as [start,end).
161    struct Segment {
162      SlotIndex start;  // Start point of the interval (inclusive)
163      SlotIndex end;    // End point of the interval (exclusive)
164      VNInfo *valno = nullptr; // identifier for the value contained in this
165                               // segment.
166
167      Segment() = default;
168
169      Segment(SlotIndex S, SlotIndex E, VNInfo *V)
170        : start(S), end(E), valno(V) {
171        assert(S < E && "Cannot create empty or backwards segment");
172      }
173
174      /// Return true if the index is covered by this segment.
175      bool contains(SlotIndex I) const {
176        return start <= I && I < end;
177      }
178
179      /// Return true if the given interval, [S, E), is covered by this segment.
180      bool containsInterval(SlotIndex S, SlotIndex E) const {
181        assert((S < E) && "Backwards interval?");
182        return (start <= S && S < end) && (start < E && E <= end);
183      }
184
185      bool operator<(const Segment &Other) const {
186        return std::tie(start, end) < std::tie(Other.start, Other.end);
187      }
188      bool operator==(const Segment &Other) const {
189        return start == Other.start && end == Other.end;
190      }
191
192      bool operator!=(const Segment &Other) const {
193        return !(*this == Other);
194      }
195
196      void dump() const;
197    };
198
199    using Segments = SmallVector<Segment, 2>;
200    using VNInfoList = SmallVector<VNInfo *, 2>;
201
202    Segments segments;   // the liveness segments
203    VNInfoList valnos;   // value#'s
204
205    // The segment set is used temporarily to accelerate initial computation
206    // of live ranges of physical registers in computeRegUnitRange.
207    // After that the set is flushed to the segment vector and deleted.
208    using SegmentSet = std::set<Segment>;
209    std::unique_ptr<SegmentSet> segmentSet;
210
211    using iterator = Segments::iterator;
212    using const_iterator = Segments::const_iterator;
213
214    iterator begin() { return segments.begin(); }
215    iterator end()   { return segments.end(); }
216
217    const_iterator begin() const { return segments.begin(); }
218    const_iterator end() const  { return segments.end(); }
219
220    using vni_iterator = VNInfoList::iterator;
221    using const_vni_iterator = VNInfoList::const_iterator;
222
223    vni_iterator vni_begin() { return valnos.begin(); }
224    vni_iterator vni_end()   { return valnos.end(); }
225
226    const_vni_iterator vni_begin() const { return valnos.begin(); }
227    const_vni_iterator vni_end() const   { return valnos.end(); }
228
229    /// Constructs a new LiveRange object.
230    LiveRange(bool UseSegmentSet = false)
231        : segmentSet(UseSegmentSet ? std::make_unique<SegmentSet>()
232                                   : nullptr) {}
233
234    /// Constructs a new LiveRange object by copying segments and valnos from
235    /// another LiveRange.
236    LiveRange(const LiveRange &Other, BumpPtrAllocator &Allocator) {
237      assert(Other.segmentSet == nullptr &&
238             "Copying of LiveRanges with active SegmentSets is not supported");
239      assign(Other, Allocator);
240    }
241
242    /// Copies values numbers and live segments from \p Other into this range.
243    void assign(const LiveRange &Other, BumpPtrAllocator &Allocator) {
244      if (this == &Other)
245        return;
246
247      assert(Other.segmentSet == nullptr &&
248             "Copying of LiveRanges with active SegmentSets is not supported");
249      // Duplicate valnos.
250      for (const VNInfo *VNI : Other.valnos)
251        createValueCopy(VNI, Allocator);
252      // Now we can copy segments and remap their valnos.
253      for (const Segment &S : Other.segments)
254        segments.push_back(Segment(S.start, S.end, valnos[S.valno->id]));
255    }
256
257    /// advanceTo - Advance the specified iterator to point to the Segment
258    /// containing the specified position, or end() if the position is past the
259    /// end of the range.  If no Segment contains this position, but the
260    /// position is in a hole, this method returns an iterator pointing to the
261    /// Segment immediately after the hole.
262    iterator advanceTo(iterator I, SlotIndex Pos) {
263      assert(I != end());
264      if (Pos >= endIndex())
265        return end();
266      while (I->end <= Pos) ++I;
267      return I;
268    }
269
270    const_iterator advanceTo(const_iterator I, SlotIndex Pos) const {
271      assert(I != end());
272      if (Pos >= endIndex())
273        return end();
274      while (I->end <= Pos) ++I;
275      return I;
276    }
277
278    /// find - Return an iterator pointing to the first segment that ends after
279    /// Pos, or end(). This is the same as advanceTo(begin(), Pos), but faster
280    /// when searching large ranges.
281    ///
282    /// If Pos is contained in a Segment, that segment is returned.
283    /// If Pos is in a hole, the following Segment is returned.
284    /// If Pos is beyond endIndex, end() is returned.
285    iterator find(SlotIndex Pos);
286
287    const_iterator find(SlotIndex Pos) const {
288      return const_cast<LiveRange*>(this)->find(Pos);
289    }
290
291    void clear() {
292      valnos.clear();
293      segments.clear();
294    }
295
296    size_t size() const {
297      return segments.size();
298    }
299
300    bool hasAtLeastOneValue() const { return !valnos.empty(); }
301
302    bool containsOneValue() const { return valnos.size() == 1; }
303
304    unsigned getNumValNums() const { return (unsigned)valnos.size(); }
305
306    /// getValNumInfo - Returns pointer to the specified val#.
307    ///
308    inline VNInfo *getValNumInfo(unsigned ValNo) {
309      return valnos[ValNo];
310    }
311    inline const VNInfo *getValNumInfo(unsigned ValNo) const {
312      return valnos[ValNo];
313    }
314
315    /// containsValue - Returns true if VNI belongs to this range.
316    bool containsValue(const VNInfo *VNI) const {
317      return VNI && VNI->id < getNumValNums() && VNI == getValNumInfo(VNI->id);
318    }
319
320    /// getNextValue - Create a new value number and return it.  MIIdx specifies
321    /// the instruction that defines the value number.
322    VNInfo *getNextValue(SlotIndex def, VNInfo::Allocator &VNInfoAllocator) {
323      VNInfo *VNI =
324        new (VNInfoAllocator) VNInfo((unsigned)valnos.size(), def);
325      valnos.push_back(VNI);
326      return VNI;
327    }
328
329    /// createDeadDef - Make sure the range has a value defined at Def.
330    /// If one already exists, return it. Otherwise allocate a new value and
331    /// add liveness for a dead def.
332    VNInfo *createDeadDef(SlotIndex Def, VNInfo::Allocator &VNIAlloc);
333
334    /// Create a def of value @p VNI. Return @p VNI. If there already exists
335    /// a definition at VNI->def, the value defined there must be @p VNI.
336    VNInfo *createDeadDef(VNInfo *VNI);
337
338    /// Create a copy of the given value. The new value will be identical except
339    /// for the Value number.
340    VNInfo *createValueCopy(const VNInfo *orig,
341                            VNInfo::Allocator &VNInfoAllocator) {
342      VNInfo *VNI =
343        new (VNInfoAllocator) VNInfo((unsigned)valnos.size(), *orig);
344      valnos.push_back(VNI);
345      return VNI;
346    }
347
348    /// RenumberValues - Renumber all values in order of appearance and remove
349    /// unused values.
350    void RenumberValues();
351
352    /// MergeValueNumberInto - This method is called when two value numbers
353    /// are found to be equivalent.  This eliminates V1, replacing all
354    /// segments with the V1 value number with the V2 value number.  This can
355    /// cause merging of V1/V2 values numbers and compaction of the value space.
356    VNInfo* MergeValueNumberInto(VNInfo *V1, VNInfo *V2);
357
358    /// Merge all of the live segments of a specific val# in RHS into this live
359    /// range as the specified value number. The segments in RHS are allowed
360    /// to overlap with segments in the current range, it will replace the
361    /// value numbers of the overlaped live segments with the specified value
362    /// number.
363    void MergeSegmentsInAsValue(const LiveRange &RHS, VNInfo *LHSValNo);
364
365    /// MergeValueInAsValue - Merge all of the segments of a specific val#
366    /// in RHS into this live range as the specified value number.
367    /// The segments in RHS are allowed to overlap with segments in the
368    /// current range, but only if the overlapping segments have the
369    /// specified value number.
370    void MergeValueInAsValue(const LiveRange &RHS,
371                             const VNInfo *RHSValNo, VNInfo *LHSValNo);
372
373    bool empty() const { return segments.empty(); }
374
375    /// beginIndex - Return the lowest numbered slot covered.
376    SlotIndex beginIndex() const {
377      assert(!empty() && "Call to beginIndex() on empty range.");
378      return segments.front().start;
379    }
380
381    /// endNumber - return the maximum point of the range of the whole,
382    /// exclusive.
383    SlotIndex endIndex() const {
384      assert(!empty() && "Call to endIndex() on empty range.");
385      return segments.back().end;
386    }
387
388    bool expiredAt(SlotIndex index) const {
389      return index >= endIndex();
390    }
391
392    bool liveAt(SlotIndex index) const {
393      const_iterator r = find(index);
394      return r != end() && r->start <= index;
395    }
396
397    /// Return the segment that contains the specified index, or null if there
398    /// is none.
399    const Segment *getSegmentContaining(SlotIndex Idx) const {
400      const_iterator I = FindSegmentContaining(Idx);
401      return I == end() ? nullptr : &*I;
402    }
403
404    /// Return the live segment that contains the specified index, or null if
405    /// there is none.
406    Segment *getSegmentContaining(SlotIndex Idx) {
407      iterator I = FindSegmentContaining(Idx);
408      return I == end() ? nullptr : &*I;
409    }
410
411    /// getVNInfoAt - Return the VNInfo that is live at Idx, or NULL.
412    VNInfo *getVNInfoAt(SlotIndex Idx) const {
413      const_iterator I = FindSegmentContaining(Idx);
414      return I == end() ? nullptr : I->valno;
415    }
416
417    /// getVNInfoBefore - Return the VNInfo that is live up to but not
418    /// necessarilly including Idx, or NULL. Use this to find the reaching def
419    /// used by an instruction at this SlotIndex position.
420    VNInfo *getVNInfoBefore(SlotIndex Idx) const {
421      const_iterator I = FindSegmentContaining(Idx.getPrevSlot());
422      return I == end() ? nullptr : I->valno;
423    }
424
425    /// Return an iterator to the segment that contains the specified index, or
426    /// end() if there is none.
427    iterator FindSegmentContaining(SlotIndex Idx) {
428      iterator I = find(Idx);
429      return I != end() && I->start <= Idx ? I : end();
430    }
431
432    const_iterator FindSegmentContaining(SlotIndex Idx) const {
433      const_iterator I = find(Idx);
434      return I != end() && I->start <= Idx ? I : end();
435    }
436
437    /// overlaps - Return true if the intersection of the two live ranges is
438    /// not empty.
439    bool overlaps(const LiveRange &other) const {
440      if (other.empty())
441        return false;
442      return overlapsFrom(other, other.begin());
443    }
444
445    /// overlaps - Return true if the two ranges have overlapping segments
446    /// that are not coalescable according to CP.
447    ///
448    /// Overlapping segments where one range is defined by a coalescable
449    /// copy are allowed.
450    bool overlaps(const LiveRange &Other, const CoalescerPair &CP,
451                  const SlotIndexes&) const;
452
453    /// overlaps - Return true if the live range overlaps an interval specified
454    /// by [Start, End).
455    bool overlaps(SlotIndex Start, SlotIndex End) const;
456
457    /// overlapsFrom - Return true if the intersection of the two live ranges
458    /// is not empty.  The specified iterator is a hint that we can begin
459    /// scanning the Other range starting at I.
460    bool overlapsFrom(const LiveRange &Other, const_iterator StartPos) const;
461
462    /// Returns true if all segments of the @p Other live range are completely
463    /// covered by this live range.
464    /// Adjacent live ranges do not affect the covering:the liverange
465    /// [1,5](5,10] covers (3,7].
466    bool covers(const LiveRange &Other) const;
467
468    /// Add the specified Segment to this range, merging segments as
469    /// appropriate.  This returns an iterator to the inserted segment (which
470    /// may have grown since it was inserted).
471    iterator addSegment(Segment S);
472
473    /// Attempt to extend a value defined after @p StartIdx to include @p Use.
474    /// Both @p StartIdx and @p Use should be in the same basic block. In case
475    /// of subranges, an extension could be prevented by an explicit "undef"
476    /// caused by a <def,read-undef> on a non-overlapping lane. The list of
477    /// location of such "undefs" should be provided in @p Undefs.
478    /// The return value is a pair: the first element is VNInfo of the value
479    /// that was extended (possibly nullptr), the second is a boolean value
480    /// indicating whether an "undef" was encountered.
481    /// If this range is live before @p Use in the basic block that starts at
482    /// @p StartIdx, and there is no intervening "undef", extend it to be live
483    /// up to @p Use, and return the pair {value, false}. If there is no
484    /// segment before @p Use and there is no "undef" between @p StartIdx and
485    /// @p Use, return {nullptr, false}. If there is an "undef" before @p Use,
486    /// return {nullptr, true}.
487    std::pair<VNInfo*,bool> extendInBlock(ArrayRef<SlotIndex> Undefs,
488        SlotIndex StartIdx, SlotIndex Kill);
489
490    /// Simplified version of the above "extendInBlock", which assumes that
491    /// no register lanes are undefined by <def,read-undef> operands.
492    /// If this range is live before @p Use in the basic block that starts
493    /// at @p StartIdx, extend it to be live up to @p Use, and return the
494    /// value. If there is no segment before @p Use, return nullptr.
495    VNInfo *extendInBlock(SlotIndex StartIdx, SlotIndex Kill);
496
497    /// join - Join two live ranges (this, and other) together.  This applies
498    /// mappings to the value numbers in the LHS/RHS ranges as specified.  If
499    /// the ranges are not joinable, this aborts.
500    void join(LiveRange &Other,
501              const int *ValNoAssignments,
502              const int *RHSValNoAssignments,
503              SmallVectorImpl<VNInfo *> &NewVNInfo);
504
505    /// True iff this segment is a single segment that lies between the
506    /// specified boundaries, exclusively. Vregs live across a backedge are not
507    /// considered local. The boundaries are expected to lie within an extended
508    /// basic block, so vregs that are not live out should contain no holes.
509    bool isLocal(SlotIndex Start, SlotIndex End) const {
510      return beginIndex() > Start.getBaseIndex() &&
511        endIndex() < End.getBoundaryIndex();
512    }
513
514    /// Remove the specified segment from this range.  Note that the segment
515    /// must be a single Segment in its entirety.
516    void removeSegment(SlotIndex Start, SlotIndex End,
517                       bool RemoveDeadValNo = false);
518
519    void removeSegment(Segment S, bool RemoveDeadValNo = false) {
520      removeSegment(S.start, S.end, RemoveDeadValNo);
521    }
522
523    /// Remove segment pointed to by iterator @p I from this range.  This does
524    /// not remove dead value numbers.
525    iterator removeSegment(iterator I) {
526      return segments.erase(I);
527    }
528
529    /// Query Liveness at Idx.
530    /// The sub-instruction slot of Idx doesn't matter, only the instruction
531    /// it refers to is considered.
532    LiveQueryResult Query(SlotIndex Idx) const {
533      // Find the segment that enters the instruction.
534      const_iterator I = find(Idx.getBaseIndex());
535      const_iterator E = end();
536      if (I == E)
537        return LiveQueryResult(nullptr, nullptr, SlotIndex(), false);
538
539      // Is this an instruction live-in segment?
540      // If Idx is the start index of a basic block, include live-in segments
541      // that start at Idx.getBaseIndex().
542      VNInfo *EarlyVal = nullptr;
543      VNInfo *LateVal  = nullptr;
544      SlotIndex EndPoint;
545      bool Kill = false;
546      if (I->start <= Idx.getBaseIndex()) {
547        EarlyVal = I->valno;
548        EndPoint = I->end;
549        // Move to the potentially live-out segment.
550        if (SlotIndex::isSameInstr(Idx, I->end)) {
551          Kill = true;
552          if (++I == E)
553            return LiveQueryResult(EarlyVal, LateVal, EndPoint, Kill);
554        }
555        // Special case: A PHIDef value can have its def in the middle of a
556        // segment if the value happens to be live out of the layout
557        // predecessor.
558        // Such a value is not live-in.
559        if (EarlyVal->def == Idx.getBaseIndex())
560          EarlyVal = nullptr;
561      }
562      // I now points to the segment that may be live-through, or defined by
563      // this instr. Ignore segments starting after the current instr.
564      if (!SlotIndex::isEarlierInstr(Idx, I->start)) {
565        LateVal = I->valno;
566        EndPoint = I->end;
567      }
568      return LiveQueryResult(EarlyVal, LateVal, EndPoint, Kill);
569    }
570
571    /// removeValNo - Remove all the segments defined by the specified value#.
572    /// Also remove the value# from value# list.
573    void removeValNo(VNInfo *ValNo);
574
575    /// Returns true if the live range is zero length, i.e. no live segments
576    /// span instructions. It doesn't pay to spill such a range.
577    bool isZeroLength(SlotIndexes *Indexes) const {
578      for (const Segment &S : segments)
579        if (Indexes->getNextNonNullIndex(S.start).getBaseIndex() <
580            S.end.getBaseIndex())
581          return false;
582      return true;
583    }
584
585    // Returns true if any segment in the live range contains any of the
586    // provided slot indexes.  Slots which occur in holes between
587    // segments will not cause the function to return true.
588    bool isLiveAtIndexes(ArrayRef<SlotIndex> Slots) const;
589
590    bool operator<(const LiveRange& other) const {
591      const SlotIndex &thisIndex = beginIndex();
592      const SlotIndex &otherIndex = other.beginIndex();
593      return thisIndex < otherIndex;
594    }
595
596    /// Returns true if there is an explicit "undef" between @p Begin
597    /// @p End.
598    bool isUndefIn(ArrayRef<SlotIndex> Undefs, SlotIndex Begin,
599                   SlotIndex End) const {
600      return std::any_of(Undefs.begin(), Undefs.end(),
601                [Begin,End] (SlotIndex Idx) -> bool {
602                  return Begin <= Idx && Idx < End;
603                });
604    }
605
606    /// Flush segment set into the regular segment vector.
607    /// The method is to be called after the live range
608    /// has been created, if use of the segment set was
609    /// activated in the constructor of the live range.
610    void flushSegmentSet();
611
612    /// Stores indexes from the input index sequence R at which this LiveRange
613    /// is live to the output O iterator.
614    /// R is a range of _ascending sorted_ _random_ access iterators
615    /// to the input indexes. Indexes stored at O are ascending sorted so it
616    /// can be used directly in the subsequent search (for example for
617    /// subranges). Returns true if found at least one index.
618    template <typename Range, typename OutputIt>
619    bool findIndexesLiveAt(Range &&R, OutputIt O) const {
620      assert(std::is_sorted(R.begin(), R.end()));
621      auto Idx = R.begin(), EndIdx = R.end();
622      auto Seg = segments.begin(), EndSeg = segments.end();
623      bool Found = false;
624      while (Idx != EndIdx && Seg != EndSeg) {
625        // if the Seg is lower find first segment that is above Idx using binary
626        // search
627        if (Seg->end <= *Idx) {
628          Seg = std::upper_bound(++Seg, EndSeg, *Idx,
629            [=](typename std::remove_reference<decltype(*Idx)>::type V,
630                const typename std::remove_reference<decltype(*Seg)>::type &S) {
631              return V < S.end;
632            });
633          if (Seg == EndSeg)
634            break;
635        }
636        auto NotLessStart = std::lower_bound(Idx, EndIdx, Seg->start);
637        if (NotLessStart == EndIdx)
638          break;
639        auto NotLessEnd = std::lower_bound(NotLessStart, EndIdx, Seg->end);
640        if (NotLessEnd != NotLessStart) {
641          Found = true;
642          O = std::copy(NotLessStart, NotLessEnd, O);
643        }
644        Idx = NotLessEnd;
645        ++Seg;
646      }
647      return Found;
648    }
649
650    void print(raw_ostream &OS) const;
651    void dump() const;
652
653    /// Walk the range and assert if any invariants fail to hold.
654    ///
655    /// Note that this is a no-op when asserts are disabled.
656#ifdef NDEBUG
657    void verify() const {}
658#else
659    void verify() const;
660#endif
661
662  protected:
663    /// Append a segment to the list of segments.
664    void append(const LiveRange::Segment S);
665
666  private:
667    friend class LiveRangeUpdater;
668    void addSegmentToSet(Segment S);
669    void markValNoForDeletion(VNInfo *V);
670  };
671
672  inline raw_ostream &operator<<(raw_ostream &OS, const LiveRange &LR) {
673    LR.print(OS);
674    return OS;
675  }
676
677  /// LiveInterval - This class represents the liveness of a register,
678  /// or stack slot.
679  class LiveInterval : public LiveRange {
680  public:
681    using super = LiveRange;
682
683    /// A live range for subregisters. The LaneMask specifies which parts of the
684    /// super register are covered by the interval.
685    /// (@sa TargetRegisterInfo::getSubRegIndexLaneMask()).
686    class SubRange : public LiveRange {
687    public:
688      SubRange *Next = nullptr;
689      LaneBitmask LaneMask;
690
691      /// Constructs a new SubRange object.
692      SubRange(LaneBitmask LaneMask) : LaneMask(LaneMask) {}
693
694      /// Constructs a new SubRange object by copying liveness from @p Other.
695      SubRange(LaneBitmask LaneMask, const LiveRange &Other,
696               BumpPtrAllocator &Allocator)
697        : LiveRange(Other, Allocator), LaneMask(LaneMask) {}
698
699      void print(raw_ostream &OS) const;
700      void dump() const;
701    };
702
703  private:
704    SubRange *SubRanges = nullptr; ///< Single linked list of subregister live
705                                   /// ranges.
706
707  public:
708    const unsigned reg;  // the register or stack slot of this interval.
709    float weight;        // weight of this interval
710
711    LiveInterval(unsigned Reg, float Weight) : reg(Reg), weight(Weight) {}
712
713    ~LiveInterval() {
714      clearSubRanges();
715    }
716
717    template<typename T>
718    class SingleLinkedListIterator {
719      T *P;
720
721    public:
722      SingleLinkedListIterator<T>(T *P) : P(P) {}
723
724      SingleLinkedListIterator<T> &operator++() {
725        P = P->Next;
726        return *this;
727      }
728      SingleLinkedListIterator<T> operator++(int) {
729        SingleLinkedListIterator res = *this;
730        ++*this;
731        return res;
732      }
733      bool operator!=(const SingleLinkedListIterator<T> &Other) {
734        return P != Other.operator->();
735      }
736      bool operator==(const SingleLinkedListIterator<T> &Other) {
737        return P == Other.operator->();
738      }
739      T &operator*() const {
740        return *P;
741      }
742      T *operator->() const {
743        return P;
744      }
745    };
746
747    using subrange_iterator = SingleLinkedListIterator<SubRange>;
748    using const_subrange_iterator = SingleLinkedListIterator<const SubRange>;
749
750    subrange_iterator subrange_begin() {
751      return subrange_iterator(SubRanges);
752    }
753    subrange_iterator subrange_end() {
754      return subrange_iterator(nullptr);
755    }
756
757    const_subrange_iterator subrange_begin() const {
758      return const_subrange_iterator(SubRanges);
759    }
760    const_subrange_iterator subrange_end() const {
761      return const_subrange_iterator(nullptr);
762    }
763
764    iterator_range<subrange_iterator> subranges() {
765      return make_range(subrange_begin(), subrange_end());
766    }
767
768    iterator_range<const_subrange_iterator> subranges() const {
769      return make_range(subrange_begin(), subrange_end());
770    }
771
772    /// Creates a new empty subregister live range. The range is added at the
773    /// beginning of the subrange list; subrange iterators stay valid.
774    SubRange *createSubRange(BumpPtrAllocator &Allocator,
775                             LaneBitmask LaneMask) {
776      SubRange *Range = new (Allocator) SubRange(LaneMask);
777      appendSubRange(Range);
778      return Range;
779    }
780
781    /// Like createSubRange() but the new range is filled with a copy of the
782    /// liveness information in @p CopyFrom.
783    SubRange *createSubRangeFrom(BumpPtrAllocator &Allocator,
784                                 LaneBitmask LaneMask,
785                                 const LiveRange &CopyFrom) {
786      SubRange *Range = new (Allocator) SubRange(LaneMask, CopyFrom, Allocator);
787      appendSubRange(Range);
788      return Range;
789    }
790
791    /// Returns true if subregister liveness information is available.
792    bool hasSubRanges() const {
793      return SubRanges != nullptr;
794    }
795
796    /// Removes all subregister liveness information.
797    void clearSubRanges();
798
799    /// Removes all subranges without any segments (subranges without segments
800    /// are not considered valid and should only exist temporarily).
801    void removeEmptySubRanges();
802
803    /// getSize - Returns the sum of sizes of all the LiveRange's.
804    ///
805    unsigned getSize() const;
806
807    /// isSpillable - Can this interval be spilled?
808    bool isSpillable() const {
809      return weight != huge_valf;
810    }
811
812    /// markNotSpillable - Mark interval as not spillable
813    void markNotSpillable() {
814      weight = huge_valf;
815    }
816
817    /// For a given lane mask @p LaneMask, compute indexes at which the
818    /// lane is marked undefined by subregister <def,read-undef> definitions.
819    void computeSubRangeUndefs(SmallVectorImpl<SlotIndex> &Undefs,
820                               LaneBitmask LaneMask,
821                               const MachineRegisterInfo &MRI,
822                               const SlotIndexes &Indexes) const;
823
824    /// Refines the subranges to support \p LaneMask. This may only be called
825    /// for LI.hasSubrange()==true. Subregister ranges are split or created
826    /// until \p LaneMask can be matched exactly. \p Mod is executed on the
827    /// matching subranges.
828    ///
829    /// Example:
830    ///    Given an interval with subranges with lanemasks L0F00, L00F0 and
831    ///    L000F, refining for mask L0018. Will split the L00F0 lane into
832    ///    L00E0 and L0010 and the L000F lane into L0007 and L0008. The Mod
833    ///    function will be applied to the L0010 and L0008 subranges.
834    ///
835    /// \p Indexes and \p TRI are required to clean up the VNIs that
836    /// don't defne the related lane masks after they get shrunk. E.g.,
837    /// when L000F gets split into L0007 and L0008 maybe only a subset
838    /// of the VNIs that defined L000F defines L0007.
839    ///
840    /// The clean up of the VNIs need to look at the actual instructions
841    /// to decide what is or is not live at a definition point. If the
842    /// update of the subranges occurs while the IR does not reflect these
843    /// changes, \p ComposeSubRegIdx can be used to specify how the
844    /// definition are going to be rewritten.
845    /// E.g., let say we want to merge:
846    ///     V1.sub1:<2 x s32> = COPY V2.sub3:<4 x s32>
847    /// We do that by choosing a class where sub1:<2 x s32> and sub3:<4 x s32>
848    /// overlap, i.e., by choosing a class where we can find "offset + 1 == 3".
849    /// Put differently we align V2's sub3 with V1's sub1:
850    /// V2: sub0 sub1 sub2 sub3
851    /// V1: <offset>  sub0 sub1
852    ///
853    /// This offset will look like a composed subregidx in the the class:
854    ///     V1.(composed sub2 with sub1):<4 x s32> = COPY V2.sub3:<4 x s32>
855    /// =>  V1.(composed sub2 with sub1):<4 x s32> = COPY V2.sub3:<4 x s32>
856    ///
857    /// Now if we didn't rewrite the uses and def of V1, all the checks for V1
858    /// need to account for this offset.
859    /// This happens during coalescing where we update the live-ranges while
860    /// still having the old IR around because updating the IR on-the-fly
861    /// would actually clobber some information on how the live-ranges that
862    /// are being updated look like.
863    void refineSubRanges(BumpPtrAllocator &Allocator, LaneBitmask LaneMask,
864                         std::function<void(LiveInterval::SubRange &)> Apply,
865                         const SlotIndexes &Indexes,
866                         const TargetRegisterInfo &TRI,
867                         unsigned ComposeSubRegIdx = 0);
868
869    bool operator<(const LiveInterval& other) const {
870      const SlotIndex &thisIndex = beginIndex();
871      const SlotIndex &otherIndex = other.beginIndex();
872      return std::tie(thisIndex, reg) < std::tie(otherIndex, other.reg);
873    }
874
875    void print(raw_ostream &OS) const;
876    void dump() const;
877
878    /// Walks the interval and assert if any invariants fail to hold.
879    ///
880    /// Note that this is a no-op when asserts are disabled.
881#ifdef NDEBUG
882    void verify(const MachineRegisterInfo *MRI = nullptr) const {}
883#else
884    void verify(const MachineRegisterInfo *MRI = nullptr) const;
885#endif
886
887  private:
888    /// Appends @p Range to SubRanges list.
889    void appendSubRange(SubRange *Range) {
890      Range->Next = SubRanges;
891      SubRanges = Range;
892    }
893
894    /// Free memory held by SubRange.
895    void freeSubRange(SubRange *S);
896  };
897
898  inline raw_ostream &operator<<(raw_ostream &OS,
899                                 const LiveInterval::SubRange &SR) {
900    SR.print(OS);
901    return OS;
902  }
903
904  inline raw_ostream &operator<<(raw_ostream &OS, const LiveInterval &LI) {
905    LI.print(OS);
906    return OS;
907  }
908
909  raw_ostream &operator<<(raw_ostream &OS, const LiveRange::Segment &S);
910
911  inline bool operator<(SlotIndex V, const LiveRange::Segment &S) {
912    return V < S.start;
913  }
914
915  inline bool operator<(const LiveRange::Segment &S, SlotIndex V) {
916    return S.start < V;
917  }
918
919  /// Helper class for performant LiveRange bulk updates.
920  ///
921  /// Calling LiveRange::addSegment() repeatedly can be expensive on large
922  /// live ranges because segments after the insertion point may need to be
923  /// shifted. The LiveRangeUpdater class can defer the shifting when adding
924  /// many segments in order.
925  ///
926  /// The LiveRange will be in an invalid state until flush() is called.
927  class LiveRangeUpdater {
928    LiveRange *LR;
929    SlotIndex LastStart;
930    LiveRange::iterator WriteI;
931    LiveRange::iterator ReadI;
932    SmallVector<LiveRange::Segment, 16> Spills;
933    void mergeSpills();
934
935  public:
936    /// Create a LiveRangeUpdater for adding segments to LR.
937    /// LR will temporarily be in an invalid state until flush() is called.
938    LiveRangeUpdater(LiveRange *lr = nullptr) : LR(lr) {}
939
940    ~LiveRangeUpdater() { flush(); }
941
942    /// Add a segment to LR and coalesce when possible, just like
943    /// LR.addSegment(). Segments should be added in increasing start order for
944    /// best performance.
945    void add(LiveRange::Segment);
946
947    void add(SlotIndex Start, SlotIndex End, VNInfo *VNI) {
948      add(LiveRange::Segment(Start, End, VNI));
949    }
950
951    /// Return true if the LR is currently in an invalid state, and flush()
952    /// needs to be called.
953    bool isDirty() const { return LastStart.isValid(); }
954
955    /// Flush the updater state to LR so it is valid and contains all added
956    /// segments.
957    void flush();
958
959    /// Select a different destination live range.
960    void setDest(LiveRange *lr) {
961      if (LR != lr && isDirty())
962        flush();
963      LR = lr;
964    }
965
966    /// Get the current destination live range.
967    LiveRange *getDest() const { return LR; }
968
969    void dump() const;
970    void print(raw_ostream&) const;
971  };
972
973  inline raw_ostream &operator<<(raw_ostream &OS, const LiveRangeUpdater &X) {
974    X.print(OS);
975    return OS;
976  }
977
978  /// ConnectedVNInfoEqClasses - Helper class that can divide VNInfos in a
979  /// LiveInterval into equivalence clases of connected components. A
980  /// LiveInterval that has multiple connected components can be broken into
981  /// multiple LiveIntervals.
982  ///
983  /// Given a LiveInterval that may have multiple connected components, run:
984  ///
985  ///   unsigned numComps = ConEQ.Classify(LI);
986  ///   if (numComps > 1) {
987  ///     // allocate numComps-1 new LiveIntervals into LIS[1..]
988  ///     ConEQ.Distribute(LIS);
989  /// }
990
991  class ConnectedVNInfoEqClasses {
992    LiveIntervals &LIS;
993    IntEqClasses EqClass;
994
995  public:
996    explicit ConnectedVNInfoEqClasses(LiveIntervals &lis) : LIS(lis) {}
997
998    /// Classify the values in \p LR into connected components.
999    /// Returns the number of connected components.
1000    unsigned Classify(const LiveRange &LR);
1001
1002    /// getEqClass - Classify creates equivalence classes numbered 0..N. Return
1003    /// the equivalence class assigned the VNI.
1004    unsigned getEqClass(const VNInfo *VNI) const { return EqClass[VNI->id]; }
1005
1006    /// Distribute values in \p LI into a separate LiveIntervals
1007    /// for each connected component. LIV must have an empty LiveInterval for
1008    /// each additional connected component. The first connected component is
1009    /// left in \p LI.
1010    void Distribute(LiveInterval &LI, LiveInterval *LIV[],
1011                    MachineRegisterInfo &MRI);
1012  };
1013
1014} // end namespace llvm
1015
1016#endif // LLVM_CODEGEN_LIVEINTERVAL_H
1017