ScalarEvolutionExpander.h revision 360784
1//===---- llvm/Analysis/ScalarEvolutionExpander.h - SCEV Exprs --*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file defines the classes used to generate code from scalar expressions.
10//
11//===----------------------------------------------------------------------===//
12
13#ifndef LLVM_ANALYSIS_SCALAREVOLUTIONEXPANDER_H
14#define LLVM_ANALYSIS_SCALAREVOLUTIONEXPANDER_H
15
16#include "llvm/ADT/DenseMap.h"
17#include "llvm/ADT/DenseSet.h"
18#include "llvm/ADT/Optional.h"
19#include "llvm/Analysis/ScalarEvolutionExpressions.h"
20#include "llvm/Analysis/ScalarEvolutionNormalization.h"
21#include "llvm/Analysis/TargetFolder.h"
22#include "llvm/IR/IRBuilder.h"
23#include "llvm/IR/ValueHandle.h"
24
25namespace llvm {
26  class TargetTransformInfo;
27
28  /// Return true if the given expression is safe to expand in the sense that
29  /// all materialized values are safe to speculate anywhere their operands are
30  /// defined.
31  bool isSafeToExpand(const SCEV *S, ScalarEvolution &SE);
32
33  /// Return true if the given expression is safe to expand in the sense that
34  /// all materialized values are defined and safe to speculate at the specified
35  /// location and their operands are defined at this location.
36  bool isSafeToExpandAt(const SCEV *S, const Instruction *InsertionPoint,
37                        ScalarEvolution &SE);
38
39  /// This class uses information about analyze scalars to rewrite expressions
40  /// in canonical form.
41  ///
42  /// Clients should create an instance of this class when rewriting is needed,
43  /// and destroy it when finished to allow the release of the associated
44  /// memory.
45  class SCEVExpander : public SCEVVisitor<SCEVExpander, Value*> {
46    ScalarEvolution &SE;
47    const DataLayout &DL;
48
49    // New instructions receive a name to identify them with the current pass.
50    const char* IVName;
51
52    // InsertedExpressions caches Values for reuse, so must track RAUW.
53    DenseMap<std::pair<const SCEV *, Instruction *>, TrackingVH<Value>>
54        InsertedExpressions;
55
56    // InsertedValues only flags inserted instructions so needs no RAUW.
57    DenseSet<AssertingVH<Value>> InsertedValues;
58    DenseSet<AssertingVH<Value>> InsertedPostIncValues;
59
60    /// A memoization of the "relevant" loop for a given SCEV.
61    DenseMap<const SCEV *, const Loop *> RelevantLoops;
62
63    /// Addrecs referring to any of the given loops are expanded in post-inc
64    /// mode. For example, expanding {1,+,1}<L> in post-inc mode returns the add
65    /// instruction that adds one to the phi for {0,+,1}<L>, as opposed to a new
66    /// phi starting at 1. This is only supported in non-canonical mode.
67    PostIncLoopSet PostIncLoops;
68
69    /// When this is non-null, addrecs expanded in the loop it indicates should
70    /// be inserted with increments at IVIncInsertPos.
71    const Loop *IVIncInsertLoop;
72
73    /// When expanding addrecs in the IVIncInsertLoop loop, insert the IV
74    /// increment at this position.
75    Instruction *IVIncInsertPos;
76
77    /// Phis that complete an IV chain. Reuse
78    DenseSet<AssertingVH<PHINode>> ChainedPhis;
79
80    /// When true, SCEVExpander tries to expand expressions in "canonical" form.
81    /// When false, expressions are expanded in a more literal form.
82    ///
83    /// In "canonical" form addrecs are expanded as arithmetic based on a
84    /// canonical induction variable. Note that CanonicalMode doesn't guarantee
85    /// that all expressions are expanded in "canonical" form. For some
86    /// expressions literal mode can be preferred.
87    bool CanonicalMode;
88
89    /// When invoked from LSR, the expander is in "strength reduction" mode. The
90    /// only difference is that phi's are only reused if they are already in
91    /// "expanded" form.
92    bool LSRMode;
93
94    typedef IRBuilder<TargetFolder> BuilderType;
95    BuilderType Builder;
96
97    // RAII object that stores the current insertion point and restores it when
98    // the object is destroyed. This includes the debug location.  Duplicated
99    // from InsertPointGuard to add SetInsertPoint() which is used to updated
100    // InsertPointGuards stack when insert points are moved during SCEV
101    // expansion.
102    class SCEVInsertPointGuard {
103      IRBuilderBase &Builder;
104      AssertingVH<BasicBlock> Block;
105      BasicBlock::iterator Point;
106      DebugLoc DbgLoc;
107      SCEVExpander *SE;
108
109      SCEVInsertPointGuard(const SCEVInsertPointGuard &) = delete;
110      SCEVInsertPointGuard &operator=(const SCEVInsertPointGuard &) = delete;
111
112    public:
113      SCEVInsertPointGuard(IRBuilderBase &B, SCEVExpander *SE)
114          : Builder(B), Block(B.GetInsertBlock()), Point(B.GetInsertPoint()),
115            DbgLoc(B.getCurrentDebugLocation()), SE(SE) {
116        SE->InsertPointGuards.push_back(this);
117      }
118
119      ~SCEVInsertPointGuard() {
120        // These guards should always created/destroyed in FIFO order since they
121        // are used to guard lexically scoped blocks of code in
122        // ScalarEvolutionExpander.
123        assert(SE->InsertPointGuards.back() == this);
124        SE->InsertPointGuards.pop_back();
125        Builder.restoreIP(IRBuilderBase::InsertPoint(Block, Point));
126        Builder.SetCurrentDebugLocation(DbgLoc);
127      }
128
129      BasicBlock::iterator GetInsertPoint() const { return Point; }
130      void SetInsertPoint(BasicBlock::iterator I) { Point = I; }
131    };
132
133    /// Stack of pointers to saved insert points, used to keep insert points
134    /// consistent when instructions are moved.
135    SmallVector<SCEVInsertPointGuard *, 8> InsertPointGuards;
136
137#ifndef NDEBUG
138    const char *DebugType;
139#endif
140
141    friend struct SCEVVisitor<SCEVExpander, Value*>;
142
143  public:
144    /// Construct a SCEVExpander in "canonical" mode.
145    explicit SCEVExpander(ScalarEvolution &se, const DataLayout &DL,
146                          const char *name)
147        : SE(se), DL(DL), IVName(name), IVIncInsertLoop(nullptr),
148          IVIncInsertPos(nullptr), CanonicalMode(true), LSRMode(false),
149          Builder(se.getContext(), TargetFolder(DL)) {
150#ifndef NDEBUG
151      DebugType = "";
152#endif
153    }
154
155    ~SCEVExpander() {
156      // Make sure the insert point guard stack is consistent.
157      assert(InsertPointGuards.empty());
158    }
159
160#ifndef NDEBUG
161    void setDebugType(const char* s) { DebugType = s; }
162#endif
163
164    /// Erase the contents of the InsertedExpressions map so that users trying
165    /// to expand the same expression into multiple BasicBlocks or different
166    /// places within the same BasicBlock can do so.
167    void clear() {
168      InsertedExpressions.clear();
169      InsertedValues.clear();
170      InsertedPostIncValues.clear();
171      ChainedPhis.clear();
172    }
173
174    /// Return true for expressions that may incur non-trivial cost to evaluate
175    /// at runtime.
176    ///
177    /// At is an optional parameter which specifies point in code where user is
178    /// going to expand this expression. Sometimes this knowledge can lead to a
179    /// more accurate cost estimation.
180    bool isHighCostExpansion(const SCEV *Expr, Loop *L,
181                             const Instruction *At = nullptr) {
182      SmallPtrSet<const SCEV *, 8> Processed;
183      return isHighCostExpansionHelper(Expr, L, At, Processed);
184    }
185
186    /// This method returns the canonical induction variable of the specified
187    /// type for the specified loop (inserting one if there is none).  A
188    /// canonical induction variable starts at zero and steps by one on each
189    /// iteration.
190    PHINode *getOrInsertCanonicalInductionVariable(const Loop *L, Type *Ty);
191
192    /// Return the induction variable increment's IV operand.
193    Instruction *getIVIncOperand(Instruction *IncV, Instruction *InsertPos,
194                                 bool allowScale);
195
196    /// Utility for hoisting an IV increment.
197    bool hoistIVInc(Instruction *IncV, Instruction *InsertPos);
198
199    /// replace congruent phis with their most canonical representative. Return
200    /// the number of phis eliminated.
201    unsigned replaceCongruentIVs(Loop *L, const DominatorTree *DT,
202                                 SmallVectorImpl<WeakTrackingVH> &DeadInsts,
203                                 const TargetTransformInfo *TTI = nullptr);
204
205    /// Insert code to directly compute the specified SCEV expression into the
206    /// program.  The inserted code is inserted into the specified block.
207    Value *expandCodeFor(const SCEV *SH, Type *Ty, Instruction *I);
208
209    /// Insert code to directly compute the specified SCEV expression into the
210    /// program.  The inserted code is inserted into the SCEVExpander's current
211    /// insertion point. If a type is specified, the result will be expanded to
212    /// have that type, with a cast if necessary.
213    Value *expandCodeFor(const SCEV *SH, Type *Ty = nullptr);
214
215
216    /// Generates a code sequence that evaluates this predicate.  The inserted
217    /// instructions will be at position \p Loc.  The result will be of type i1
218    /// and will have a value of 0 when the predicate is false and 1 otherwise.
219    Value *expandCodeForPredicate(const SCEVPredicate *Pred, Instruction *Loc);
220
221    /// A specialized variant of expandCodeForPredicate, handling the case when
222    /// we are expanding code for a SCEVEqualPredicate.
223    Value *expandEqualPredicate(const SCEVEqualPredicate *Pred,
224                                Instruction *Loc);
225
226    /// Generates code that evaluates if the \p AR expression will overflow.
227    Value *generateOverflowCheck(const SCEVAddRecExpr *AR, Instruction *Loc,
228                                 bool Signed);
229
230    /// A specialized variant of expandCodeForPredicate, handling the case when
231    /// we are expanding code for a SCEVWrapPredicate.
232    Value *expandWrapPredicate(const SCEVWrapPredicate *P, Instruction *Loc);
233
234    /// A specialized variant of expandCodeForPredicate, handling the case when
235    /// we are expanding code for a SCEVUnionPredicate.
236    Value *expandUnionPredicate(const SCEVUnionPredicate *Pred,
237                                Instruction *Loc);
238
239    /// Set the current IV increment loop and position.
240    void setIVIncInsertPos(const Loop *L, Instruction *Pos) {
241      assert(!CanonicalMode &&
242             "IV increment positions are not supported in CanonicalMode");
243      IVIncInsertLoop = L;
244      IVIncInsertPos = Pos;
245    }
246
247    /// Enable post-inc expansion for addrecs referring to the given
248    /// loops. Post-inc expansion is only supported in non-canonical mode.
249    void setPostInc(const PostIncLoopSet &L) {
250      assert(!CanonicalMode &&
251             "Post-inc expansion is not supported in CanonicalMode");
252      PostIncLoops = L;
253    }
254
255    /// Disable all post-inc expansion.
256    void clearPostInc() {
257      PostIncLoops.clear();
258
259      // When we change the post-inc loop set, cached expansions may no
260      // longer be valid.
261      InsertedPostIncValues.clear();
262    }
263
264    /// Disable the behavior of expanding expressions in canonical form rather
265    /// than in a more literal form. Non-canonical mode is useful for late
266    /// optimization passes.
267    void disableCanonicalMode() { CanonicalMode = false; }
268
269    void enableLSRMode() { LSRMode = true; }
270
271    /// Set the current insertion point. This is useful if multiple calls to
272    /// expandCodeFor() are going to be made with the same insert point and the
273    /// insert point may be moved during one of the expansions (e.g. if the
274    /// insert point is not a block terminator).
275    void setInsertPoint(Instruction *IP) {
276      assert(IP);
277      Builder.SetInsertPoint(IP);
278    }
279
280    /// Clear the current insertion point. This is useful if the instruction
281    /// that had been serving as the insertion point may have been deleted.
282    void clearInsertPoint() { Builder.ClearInsertionPoint(); }
283
284    /// Set location information used by debugging information.
285    void SetCurrentDebugLocation(DebugLoc L) {
286      Builder.SetCurrentDebugLocation(std::move(L));
287    }
288
289    /// Get location information used by debugging information.
290    const DebugLoc &getCurrentDebugLocation() const {
291      return Builder.getCurrentDebugLocation();
292    }
293
294    /// Return true if the specified instruction was inserted by the code
295    /// rewriter.  If so, the client should not modify the instruction.
296    bool isInsertedInstruction(Instruction *I) const {
297      return InsertedValues.count(I) || InsertedPostIncValues.count(I);
298    }
299
300    void setChainedPhi(PHINode *PN) { ChainedPhis.insert(PN); }
301
302    /// Try to find existing LLVM IR value for S available at the point At.
303    Value *getExactExistingExpansion(const SCEV *S, const Instruction *At,
304                                     Loop *L);
305
306    /// Try to find the ValueOffsetPair for S. The function is mainly used to
307    /// check whether S can be expanded cheaply.  If this returns a non-None
308    /// value, we know we can codegen the `ValueOffsetPair` into a suitable
309    /// expansion identical with S so that S can be expanded cheaply.
310    ///
311    /// L is a hint which tells in which loop to look for the suitable value.
312    /// On success return value which is equivalent to the expanded S at point
313    /// At. Return nullptr if value was not found.
314    ///
315    /// Note that this function does not perform an exhaustive search. I.e if it
316    /// didn't find any value it does not mean that there is no such value.
317    ///
318    Optional<ScalarEvolution::ValueOffsetPair>
319    getRelatedExistingExpansion(const SCEV *S, const Instruction *At, Loop *L);
320
321  private:
322    LLVMContext &getContext() const { return SE.getContext(); }
323
324    /// Recursive helper function for isHighCostExpansion.
325    bool isHighCostExpansionHelper(const SCEV *S, Loop *L,
326                                   const Instruction *At,
327                                   SmallPtrSetImpl<const SCEV *> &Processed);
328
329    /// Insert the specified binary operator, doing a small amount of work to
330    /// avoid inserting an obviously redundant operation, and hoisting to an
331    /// outer loop when the opportunity is there and it is safe.
332    Value *InsertBinop(Instruction::BinaryOps Opcode, Value *LHS, Value *RHS,
333                       SCEV::NoWrapFlags Flags, bool IsSafeToHoist);
334
335    /// Arrange for there to be a cast of V to Ty at IP, reusing an existing
336    /// cast if a suitable one exists, moving an existing cast if a suitable one
337    /// exists but isn't in the right place, or creating a new one.
338    Value *ReuseOrCreateCast(Value *V, Type *Ty,
339                             Instruction::CastOps Op,
340                             BasicBlock::iterator IP);
341
342    /// Insert a cast of V to the specified type, which must be possible with a
343    /// noop cast, doing what we can to share the casts.
344    Value *InsertNoopCastOfTo(Value *V, Type *Ty);
345
346    /// Expand a SCEVAddExpr with a pointer type into a GEP instead of using
347    /// ptrtoint+arithmetic+inttoptr.
348    Value *expandAddToGEP(const SCEV *const *op_begin,
349                          const SCEV *const *op_end,
350                          PointerType *PTy, Type *Ty, Value *V);
351    Value *expandAddToGEP(const SCEV *Op, PointerType *PTy, Type *Ty, Value *V);
352
353    /// Find a previous Value in ExprValueMap for expand.
354    ScalarEvolution::ValueOffsetPair
355    FindValueInExprValueMap(const SCEV *S, const Instruction *InsertPt);
356
357    Value *expand(const SCEV *S);
358
359    /// Determine the most "relevant" loop for the given SCEV.
360    const Loop *getRelevantLoop(const SCEV *);
361
362    Value *visitConstant(const SCEVConstant *S) {
363      return S->getValue();
364    }
365
366    Value *visitTruncateExpr(const SCEVTruncateExpr *S);
367
368    Value *visitZeroExtendExpr(const SCEVZeroExtendExpr *S);
369
370    Value *visitSignExtendExpr(const SCEVSignExtendExpr *S);
371
372    Value *visitAddExpr(const SCEVAddExpr *S);
373
374    Value *visitMulExpr(const SCEVMulExpr *S);
375
376    Value *visitUDivExpr(const SCEVUDivExpr *S);
377
378    Value *visitAddRecExpr(const SCEVAddRecExpr *S);
379
380    Value *visitSMaxExpr(const SCEVSMaxExpr *S);
381
382    Value *visitUMaxExpr(const SCEVUMaxExpr *S);
383
384    Value *visitSMinExpr(const SCEVSMinExpr *S);
385
386    Value *visitUMinExpr(const SCEVUMinExpr *S);
387
388    Value *visitUnknown(const SCEVUnknown *S) {
389      return S->getValue();
390    }
391
392    void rememberInstruction(Value *I);
393
394    bool isNormalAddRecExprPHI(PHINode *PN, Instruction *IncV, const Loop *L);
395
396    bool isExpandedAddRecExprPHI(PHINode *PN, Instruction *IncV, const Loop *L);
397
398    Value *expandAddRecExprLiterally(const SCEVAddRecExpr *);
399    PHINode *getAddRecExprPHILiterally(const SCEVAddRecExpr *Normalized,
400                                       const Loop *L,
401                                       Type *ExpandTy,
402                                       Type *IntTy,
403                                       Type *&TruncTy,
404                                       bool &InvertStep);
405    Value *expandIVInc(PHINode *PN, Value *StepV, const Loop *L,
406                       Type *ExpandTy, Type *IntTy, bool useSubtract);
407
408    void hoistBeforePos(DominatorTree *DT, Instruction *InstToHoist,
409                        Instruction *Pos, PHINode *LoopPhi);
410
411    void fixupInsertPoints(Instruction *I);
412  };
413}
414
415#endif
416