ScalarEvolution.h revision 360784
1//===- llvm/Analysis/ScalarEvolution.h - Scalar Evolution -------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// The ScalarEvolution class is an LLVM pass which can be used to analyze and
10// categorize scalar expressions in loops.  It specializes in recognizing
11// general induction variables, representing them with the abstract and opaque
12// SCEV class.  Given this analysis, trip counts of loops and other important
13// properties can be obtained.
14//
15// This analysis is primarily useful for induction variable substitution and
16// strength reduction.
17//
18//===----------------------------------------------------------------------===//
19
20#ifndef LLVM_ANALYSIS_SCALAREVOLUTION_H
21#define LLVM_ANALYSIS_SCALAREVOLUTION_H
22
23#include "llvm/ADT/APInt.h"
24#include "llvm/ADT/ArrayRef.h"
25#include "llvm/ADT/DenseMap.h"
26#include "llvm/ADT/DenseMapInfo.h"
27#include "llvm/ADT/FoldingSet.h"
28#include "llvm/ADT/Hashing.h"
29#include "llvm/ADT/Optional.h"
30#include "llvm/ADT/PointerIntPair.h"
31#include "llvm/ADT/SetVector.h"
32#include "llvm/ADT/SmallPtrSet.h"
33#include "llvm/ADT/SmallVector.h"
34#include "llvm/Analysis/LoopInfo.h"
35#include "llvm/IR/ConstantRange.h"
36#include "llvm/IR/Function.h"
37#include "llvm/IR/InstrTypes.h"
38#include "llvm/IR/Instructions.h"
39#include "llvm/IR/Operator.h"
40#include "llvm/IR/PassManager.h"
41#include "llvm/IR/ValueHandle.h"
42#include "llvm/IR/ValueMap.h"
43#include "llvm/Pass.h"
44#include "llvm/Support/Allocator.h"
45#include "llvm/Support/Casting.h"
46#include "llvm/Support/Compiler.h"
47#include <algorithm>
48#include <cassert>
49#include <cstdint>
50#include <memory>
51#include <utility>
52
53namespace llvm {
54
55class AssumptionCache;
56class BasicBlock;
57class Constant;
58class ConstantInt;
59class DataLayout;
60class DominatorTree;
61class GEPOperator;
62class Instruction;
63class LLVMContext;
64class raw_ostream;
65class ScalarEvolution;
66class SCEVAddRecExpr;
67class SCEVUnknown;
68class StructType;
69class TargetLibraryInfo;
70class Type;
71class Value;
72
73/// This class represents an analyzed expression in the program.  These are
74/// opaque objects that the client is not allowed to do much with directly.
75///
76class SCEV : public FoldingSetNode {
77  friend struct FoldingSetTrait<SCEV>;
78
79  /// A reference to an Interned FoldingSetNodeID for this node.  The
80  /// ScalarEvolution's BumpPtrAllocator holds the data.
81  FoldingSetNodeIDRef FastID;
82
83  // The SCEV baseclass this node corresponds to
84  const unsigned short SCEVType;
85
86protected:
87  // Estimated complexity of this node's expression tree size.
88  const unsigned short ExpressionSize;
89
90  /// This field is initialized to zero and may be used in subclasses to store
91  /// miscellaneous information.
92  unsigned short SubclassData = 0;
93
94public:
95  /// NoWrapFlags are bitfield indices into SubclassData.
96  ///
97  /// Add and Mul expressions may have no-unsigned-wrap <NUW> or
98  /// no-signed-wrap <NSW> properties, which are derived from the IR
99  /// operator. NSW is a misnomer that we use to mean no signed overflow or
100  /// underflow.
101  ///
102  /// AddRec expressions may have a no-self-wraparound <NW> property if, in
103  /// the integer domain, abs(step) * max-iteration(loop) <=
104  /// unsigned-max(bitwidth).  This means that the recurrence will never reach
105  /// its start value if the step is non-zero.  Computing the same value on
106  /// each iteration is not considered wrapping, and recurrences with step = 0
107  /// are trivially <NW>.  <NW> is independent of the sign of step and the
108  /// value the add recurrence starts with.
109  ///
110  /// Note that NUW and NSW are also valid properties of a recurrence, and
111  /// either implies NW. For convenience, NW will be set for a recurrence
112  /// whenever either NUW or NSW are set.
113  enum NoWrapFlags {
114    FlagAnyWrap = 0,    // No guarantee.
115    FlagNW = (1 << 0),  // No self-wrap.
116    FlagNUW = (1 << 1), // No unsigned wrap.
117    FlagNSW = (1 << 2), // No signed wrap.
118    NoWrapMask = (1 << 3) - 1
119  };
120
121  explicit SCEV(const FoldingSetNodeIDRef ID, unsigned SCEVTy,
122                unsigned short ExpressionSize)
123      : FastID(ID), SCEVType(SCEVTy), ExpressionSize(ExpressionSize) {}
124  SCEV(const SCEV &) = delete;
125  SCEV &operator=(const SCEV &) = delete;
126
127  unsigned getSCEVType() const { return SCEVType; }
128
129  /// Return the LLVM type of this SCEV expression.
130  Type *getType() const;
131
132  /// Return true if the expression is a constant zero.
133  bool isZero() const;
134
135  /// Return true if the expression is a constant one.
136  bool isOne() const;
137
138  /// Return true if the expression is a constant all-ones value.
139  bool isAllOnesValue() const;
140
141  /// Return true if the specified scev is negated, but not a constant.
142  bool isNonConstantNegative() const;
143
144  // Returns estimated size of the mathematical expression represented by this
145  // SCEV. The rules of its calculation are following:
146  // 1) Size of a SCEV without operands (like constants and SCEVUnknown) is 1;
147  // 2) Size SCEV with operands Op1, Op2, ..., OpN is calculated by formula:
148  //    (1 + Size(Op1) + ... + Size(OpN)).
149  // This value gives us an estimation of time we need to traverse through this
150  // SCEV and all its operands recursively. We may use it to avoid performing
151  // heavy transformations on SCEVs of excessive size for sake of saving the
152  // compilation time.
153  unsigned short getExpressionSize() const {
154    return ExpressionSize;
155  }
156
157  /// Print out the internal representation of this scalar to the specified
158  /// stream.  This should really only be used for debugging purposes.
159  void print(raw_ostream &OS) const;
160
161  /// This method is used for debugging.
162  void dump() const;
163};
164
165// Specialize FoldingSetTrait for SCEV to avoid needing to compute
166// temporary FoldingSetNodeID values.
167template <> struct FoldingSetTrait<SCEV> : DefaultFoldingSetTrait<SCEV> {
168  static void Profile(const SCEV &X, FoldingSetNodeID &ID) { ID = X.FastID; }
169
170  static bool Equals(const SCEV &X, const FoldingSetNodeID &ID, unsigned IDHash,
171                     FoldingSetNodeID &TempID) {
172    return ID == X.FastID;
173  }
174
175  static unsigned ComputeHash(const SCEV &X, FoldingSetNodeID &TempID) {
176    return X.FastID.ComputeHash();
177  }
178};
179
180inline raw_ostream &operator<<(raw_ostream &OS, const SCEV &S) {
181  S.print(OS);
182  return OS;
183}
184
185/// An object of this class is returned by queries that could not be answered.
186/// For example, if you ask for the number of iterations of a linked-list
187/// traversal loop, you will get one of these.  None of the standard SCEV
188/// operations are valid on this class, it is just a marker.
189struct SCEVCouldNotCompute : public SCEV {
190  SCEVCouldNotCompute();
191
192  /// Methods for support type inquiry through isa, cast, and dyn_cast:
193  static bool classof(const SCEV *S);
194};
195
196/// This class represents an assumption made using SCEV expressions which can
197/// be checked at run-time.
198class SCEVPredicate : public FoldingSetNode {
199  friend struct FoldingSetTrait<SCEVPredicate>;
200
201  /// A reference to an Interned FoldingSetNodeID for this node.  The
202  /// ScalarEvolution's BumpPtrAllocator holds the data.
203  FoldingSetNodeIDRef FastID;
204
205public:
206  enum SCEVPredicateKind { P_Union, P_Equal, P_Wrap };
207
208protected:
209  SCEVPredicateKind Kind;
210  ~SCEVPredicate() = default;
211  SCEVPredicate(const SCEVPredicate &) = default;
212  SCEVPredicate &operator=(const SCEVPredicate &) = default;
213
214public:
215  SCEVPredicate(const FoldingSetNodeIDRef ID, SCEVPredicateKind Kind);
216
217  SCEVPredicateKind getKind() const { return Kind; }
218
219  /// Returns the estimated complexity of this predicate.  This is roughly
220  /// measured in the number of run-time checks required.
221  virtual unsigned getComplexity() const { return 1; }
222
223  /// Returns true if the predicate is always true. This means that no
224  /// assumptions were made and nothing needs to be checked at run-time.
225  virtual bool isAlwaysTrue() const = 0;
226
227  /// Returns true if this predicate implies \p N.
228  virtual bool implies(const SCEVPredicate *N) const = 0;
229
230  /// Prints a textual representation of this predicate with an indentation of
231  /// \p Depth.
232  virtual void print(raw_ostream &OS, unsigned Depth = 0) const = 0;
233
234  /// Returns the SCEV to which this predicate applies, or nullptr if this is
235  /// a SCEVUnionPredicate.
236  virtual const SCEV *getExpr() const = 0;
237};
238
239inline raw_ostream &operator<<(raw_ostream &OS, const SCEVPredicate &P) {
240  P.print(OS);
241  return OS;
242}
243
244// Specialize FoldingSetTrait for SCEVPredicate to avoid needing to compute
245// temporary FoldingSetNodeID values.
246template <>
247struct FoldingSetTrait<SCEVPredicate> : DefaultFoldingSetTrait<SCEVPredicate> {
248  static void Profile(const SCEVPredicate &X, FoldingSetNodeID &ID) {
249    ID = X.FastID;
250  }
251
252  static bool Equals(const SCEVPredicate &X, const FoldingSetNodeID &ID,
253                     unsigned IDHash, FoldingSetNodeID &TempID) {
254    return ID == X.FastID;
255  }
256
257  static unsigned ComputeHash(const SCEVPredicate &X,
258                              FoldingSetNodeID &TempID) {
259    return X.FastID.ComputeHash();
260  }
261};
262
263/// This class represents an assumption that two SCEV expressions are equal,
264/// and this can be checked at run-time.
265class SCEVEqualPredicate final : public SCEVPredicate {
266  /// We assume that LHS == RHS.
267  const SCEV *LHS;
268  const SCEV *RHS;
269
270public:
271  SCEVEqualPredicate(const FoldingSetNodeIDRef ID, const SCEV *LHS,
272                     const SCEV *RHS);
273
274  /// Implementation of the SCEVPredicate interface
275  bool implies(const SCEVPredicate *N) const override;
276  void print(raw_ostream &OS, unsigned Depth = 0) const override;
277  bool isAlwaysTrue() const override;
278  const SCEV *getExpr() const override;
279
280  /// Returns the left hand side of the equality.
281  const SCEV *getLHS() const { return LHS; }
282
283  /// Returns the right hand side of the equality.
284  const SCEV *getRHS() const { return RHS; }
285
286  /// Methods for support type inquiry through isa, cast, and dyn_cast:
287  static bool classof(const SCEVPredicate *P) {
288    return P->getKind() == P_Equal;
289  }
290};
291
292/// This class represents an assumption made on an AddRec expression. Given an
293/// affine AddRec expression {a,+,b}, we assume that it has the nssw or nusw
294/// flags (defined below) in the first X iterations of the loop, where X is a
295/// SCEV expression returned by getPredicatedBackedgeTakenCount).
296///
297/// Note that this does not imply that X is equal to the backedge taken
298/// count. This means that if we have a nusw predicate for i32 {0,+,1} with a
299/// predicated backedge taken count of X, we only guarantee that {0,+,1} has
300/// nusw in the first X iterations. {0,+,1} may still wrap in the loop if we
301/// have more than X iterations.
302class SCEVWrapPredicate final : public SCEVPredicate {
303public:
304  /// Similar to SCEV::NoWrapFlags, but with slightly different semantics
305  /// for FlagNUSW. The increment is considered to be signed, and a + b
306  /// (where b is the increment) is considered to wrap if:
307  ///    zext(a + b) != zext(a) + sext(b)
308  ///
309  /// If Signed is a function that takes an n-bit tuple and maps to the
310  /// integer domain as the tuples value interpreted as twos complement,
311  /// and Unsigned a function that takes an n-bit tuple and maps to the
312  /// integer domain as as the base two value of input tuple, then a + b
313  /// has IncrementNUSW iff:
314  ///
315  /// 0 <= Unsigned(a) + Signed(b) < 2^n
316  ///
317  /// The IncrementNSSW flag has identical semantics with SCEV::FlagNSW.
318  ///
319  /// Note that the IncrementNUSW flag is not commutative: if base + inc
320  /// has IncrementNUSW, then inc + base doesn't neccessarily have this
321  /// property. The reason for this is that this is used for sign/zero
322  /// extending affine AddRec SCEV expressions when a SCEVWrapPredicate is
323  /// assumed. A {base,+,inc} expression is already non-commutative with
324  /// regards to base and inc, since it is interpreted as:
325  ///     (((base + inc) + inc) + inc) ...
326  enum IncrementWrapFlags {
327    IncrementAnyWrap = 0,     // No guarantee.
328    IncrementNUSW = (1 << 0), // No unsigned with signed increment wrap.
329    IncrementNSSW = (1 << 1), // No signed with signed increment wrap
330                              // (equivalent with SCEV::NSW)
331    IncrementNoWrapMask = (1 << 2) - 1
332  };
333
334  /// Convenient IncrementWrapFlags manipulation methods.
335  LLVM_NODISCARD static SCEVWrapPredicate::IncrementWrapFlags
336  clearFlags(SCEVWrapPredicate::IncrementWrapFlags Flags,
337             SCEVWrapPredicate::IncrementWrapFlags OffFlags) {
338    assert((Flags & IncrementNoWrapMask) == Flags && "Invalid flags value!");
339    assert((OffFlags & IncrementNoWrapMask) == OffFlags &&
340           "Invalid flags value!");
341    return (SCEVWrapPredicate::IncrementWrapFlags)(Flags & ~OffFlags);
342  }
343
344  LLVM_NODISCARD static SCEVWrapPredicate::IncrementWrapFlags
345  maskFlags(SCEVWrapPredicate::IncrementWrapFlags Flags, int Mask) {
346    assert((Flags & IncrementNoWrapMask) == Flags && "Invalid flags value!");
347    assert((Mask & IncrementNoWrapMask) == Mask && "Invalid mask value!");
348
349    return (SCEVWrapPredicate::IncrementWrapFlags)(Flags & Mask);
350  }
351
352  LLVM_NODISCARD static SCEVWrapPredicate::IncrementWrapFlags
353  setFlags(SCEVWrapPredicate::IncrementWrapFlags Flags,
354           SCEVWrapPredicate::IncrementWrapFlags OnFlags) {
355    assert((Flags & IncrementNoWrapMask) == Flags && "Invalid flags value!");
356    assert((OnFlags & IncrementNoWrapMask) == OnFlags &&
357           "Invalid flags value!");
358
359    return (SCEVWrapPredicate::IncrementWrapFlags)(Flags | OnFlags);
360  }
361
362  /// Returns the set of SCEVWrapPredicate no wrap flags implied by a
363  /// SCEVAddRecExpr.
364  LLVM_NODISCARD static SCEVWrapPredicate::IncrementWrapFlags
365  getImpliedFlags(const SCEVAddRecExpr *AR, ScalarEvolution &SE);
366
367private:
368  const SCEVAddRecExpr *AR;
369  IncrementWrapFlags Flags;
370
371public:
372  explicit SCEVWrapPredicate(const FoldingSetNodeIDRef ID,
373                             const SCEVAddRecExpr *AR,
374                             IncrementWrapFlags Flags);
375
376  /// Returns the set assumed no overflow flags.
377  IncrementWrapFlags getFlags() const { return Flags; }
378
379  /// Implementation of the SCEVPredicate interface
380  const SCEV *getExpr() const override;
381  bool implies(const SCEVPredicate *N) const override;
382  void print(raw_ostream &OS, unsigned Depth = 0) const override;
383  bool isAlwaysTrue() const override;
384
385  /// Methods for support type inquiry through isa, cast, and dyn_cast:
386  static bool classof(const SCEVPredicate *P) {
387    return P->getKind() == P_Wrap;
388  }
389};
390
391/// This class represents a composition of other SCEV predicates, and is the
392/// class that most clients will interact with.  This is equivalent to a
393/// logical "AND" of all the predicates in the union.
394///
395/// NB! Unlike other SCEVPredicate sub-classes this class does not live in the
396/// ScalarEvolution::Preds folding set.  This is why the \c add function is sound.
397class SCEVUnionPredicate final : public SCEVPredicate {
398private:
399  using PredicateMap =
400      DenseMap<const SCEV *, SmallVector<const SCEVPredicate *, 4>>;
401
402  /// Vector with references to all predicates in this union.
403  SmallVector<const SCEVPredicate *, 16> Preds;
404
405  /// Maps SCEVs to predicates for quick look-ups.
406  PredicateMap SCEVToPreds;
407
408public:
409  SCEVUnionPredicate();
410
411  const SmallVectorImpl<const SCEVPredicate *> &getPredicates() const {
412    return Preds;
413  }
414
415  /// Adds a predicate to this union.
416  void add(const SCEVPredicate *N);
417
418  /// Returns a reference to a vector containing all predicates which apply to
419  /// \p Expr.
420  ArrayRef<const SCEVPredicate *> getPredicatesForExpr(const SCEV *Expr);
421
422  /// Implementation of the SCEVPredicate interface
423  bool isAlwaysTrue() const override;
424  bool implies(const SCEVPredicate *N) const override;
425  void print(raw_ostream &OS, unsigned Depth) const override;
426  const SCEV *getExpr() const override;
427
428  /// We estimate the complexity of a union predicate as the size number of
429  /// predicates in the union.
430  unsigned getComplexity() const override { return Preds.size(); }
431
432  /// Methods for support type inquiry through isa, cast, and dyn_cast:
433  static bool classof(const SCEVPredicate *P) {
434    return P->getKind() == P_Union;
435  }
436};
437
438/// The main scalar evolution driver. Because client code (intentionally)
439/// can't do much with the SCEV objects directly, they must ask this class
440/// for services.
441class ScalarEvolution {
442  friend class ScalarEvolutionsTest;
443
444public:
445  /// An enum describing the relationship between a SCEV and a loop.
446  enum LoopDisposition {
447    LoopVariant,   ///< The SCEV is loop-variant (unknown).
448    LoopInvariant, ///< The SCEV is loop-invariant.
449    LoopComputable ///< The SCEV varies predictably with the loop.
450  };
451
452  /// An enum describing the relationship between a SCEV and a basic block.
453  enum BlockDisposition {
454    DoesNotDominateBlock,  ///< The SCEV does not dominate the block.
455    DominatesBlock,        ///< The SCEV dominates the block.
456    ProperlyDominatesBlock ///< The SCEV properly dominates the block.
457  };
458
459  /// Convenient NoWrapFlags manipulation that hides enum casts and is
460  /// visible in the ScalarEvolution name space.
461  LLVM_NODISCARD static SCEV::NoWrapFlags maskFlags(SCEV::NoWrapFlags Flags,
462                                                    int Mask) {
463    return (SCEV::NoWrapFlags)(Flags & Mask);
464  }
465  LLVM_NODISCARD static SCEV::NoWrapFlags setFlags(SCEV::NoWrapFlags Flags,
466                                                   SCEV::NoWrapFlags OnFlags) {
467    return (SCEV::NoWrapFlags)(Flags | OnFlags);
468  }
469  LLVM_NODISCARD static SCEV::NoWrapFlags
470  clearFlags(SCEV::NoWrapFlags Flags, SCEV::NoWrapFlags OffFlags) {
471    return (SCEV::NoWrapFlags)(Flags & ~OffFlags);
472  }
473
474  ScalarEvolution(Function &F, TargetLibraryInfo &TLI, AssumptionCache &AC,
475                  DominatorTree &DT, LoopInfo &LI);
476  ScalarEvolution(ScalarEvolution &&Arg);
477  ~ScalarEvolution();
478
479  LLVMContext &getContext() const { return F.getContext(); }
480
481  /// Test if values of the given type are analyzable within the SCEV
482  /// framework. This primarily includes integer types, and it can optionally
483  /// include pointer types if the ScalarEvolution class has access to
484  /// target-specific information.
485  bool isSCEVable(Type *Ty) const;
486
487  /// Return the size in bits of the specified type, for which isSCEVable must
488  /// return true.
489  uint64_t getTypeSizeInBits(Type *Ty) const;
490
491  /// Return a type with the same bitwidth as the given type and which
492  /// represents how SCEV will treat the given type, for which isSCEVable must
493  /// return true. For pointer types, this is the pointer-sized integer type.
494  Type *getEffectiveSCEVType(Type *Ty) const;
495
496  // Returns a wider type among {Ty1, Ty2}.
497  Type *getWiderType(Type *Ty1, Type *Ty2) const;
498
499  /// Return true if the SCEV is a scAddRecExpr or it contains
500  /// scAddRecExpr. The result will be cached in HasRecMap.
501  bool containsAddRecurrence(const SCEV *S);
502
503  /// Erase Value from ValueExprMap and ExprValueMap.
504  void eraseValueFromMap(Value *V);
505
506  /// Return a SCEV expression for the full generality of the specified
507  /// expression.
508  const SCEV *getSCEV(Value *V);
509
510  const SCEV *getConstant(ConstantInt *V);
511  const SCEV *getConstant(const APInt &Val);
512  const SCEV *getConstant(Type *Ty, uint64_t V, bool isSigned = false);
513  const SCEV *getTruncateExpr(const SCEV *Op, Type *Ty, unsigned Depth = 0);
514  const SCEV *getZeroExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth = 0);
515  const SCEV *getSignExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth = 0);
516  const SCEV *getAnyExtendExpr(const SCEV *Op, Type *Ty);
517  const SCEV *getAddExpr(SmallVectorImpl<const SCEV *> &Ops,
518                         SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap,
519                         unsigned Depth = 0);
520  const SCEV *getAddExpr(const SCEV *LHS, const SCEV *RHS,
521                         SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap,
522                         unsigned Depth = 0) {
523    SmallVector<const SCEV *, 2> Ops = {LHS, RHS};
524    return getAddExpr(Ops, Flags, Depth);
525  }
526  const SCEV *getAddExpr(const SCEV *Op0, const SCEV *Op1, const SCEV *Op2,
527                         SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap,
528                         unsigned Depth = 0) {
529    SmallVector<const SCEV *, 3> Ops = {Op0, Op1, Op2};
530    return getAddExpr(Ops, Flags, Depth);
531  }
532  const SCEV *getMulExpr(SmallVectorImpl<const SCEV *> &Ops,
533                         SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap,
534                         unsigned Depth = 0);
535  const SCEV *getMulExpr(const SCEV *LHS, const SCEV *RHS,
536                         SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap,
537                         unsigned Depth = 0) {
538    SmallVector<const SCEV *, 2> Ops = {LHS, RHS};
539    return getMulExpr(Ops, Flags, Depth);
540  }
541  const SCEV *getMulExpr(const SCEV *Op0, const SCEV *Op1, const SCEV *Op2,
542                         SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap,
543                         unsigned Depth = 0) {
544    SmallVector<const SCEV *, 3> Ops = {Op0, Op1, Op2};
545    return getMulExpr(Ops, Flags, Depth);
546  }
547  const SCEV *getUDivExpr(const SCEV *LHS, const SCEV *RHS);
548  const SCEV *getUDivExactExpr(const SCEV *LHS, const SCEV *RHS);
549  const SCEV *getURemExpr(const SCEV *LHS, const SCEV *RHS);
550  const SCEV *getAddRecExpr(const SCEV *Start, const SCEV *Step, const Loop *L,
551                            SCEV::NoWrapFlags Flags);
552  const SCEV *getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands,
553                            const Loop *L, SCEV::NoWrapFlags Flags);
554  const SCEV *getAddRecExpr(const SmallVectorImpl<const SCEV *> &Operands,
555                            const Loop *L, SCEV::NoWrapFlags Flags) {
556    SmallVector<const SCEV *, 4> NewOp(Operands.begin(), Operands.end());
557    return getAddRecExpr(NewOp, L, Flags);
558  }
559
560  /// Checks if \p SymbolicPHI can be rewritten as an AddRecExpr under some
561  /// Predicates. If successful return these <AddRecExpr, Predicates>;
562  /// The function is intended to be called from PSCEV (the caller will decide
563  /// whether to actually add the predicates and carry out the rewrites).
564  Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
565  createAddRecFromPHIWithCasts(const SCEVUnknown *SymbolicPHI);
566
567  /// Returns an expression for a GEP
568  ///
569  /// \p GEP The GEP. The indices contained in the GEP itself are ignored,
570  /// instead we use IndexExprs.
571  /// \p IndexExprs The expressions for the indices.
572  const SCEV *getGEPExpr(GEPOperator *GEP,
573                         const SmallVectorImpl<const SCEV *> &IndexExprs);
574  const SCEV *getMinMaxExpr(unsigned Kind,
575                            SmallVectorImpl<const SCEV *> &Operands);
576  const SCEV *getSMaxExpr(const SCEV *LHS, const SCEV *RHS);
577  const SCEV *getSMaxExpr(SmallVectorImpl<const SCEV *> &Operands);
578  const SCEV *getUMaxExpr(const SCEV *LHS, const SCEV *RHS);
579  const SCEV *getUMaxExpr(SmallVectorImpl<const SCEV *> &Operands);
580  const SCEV *getSMinExpr(const SCEV *LHS, const SCEV *RHS);
581  const SCEV *getSMinExpr(SmallVectorImpl<const SCEV *> &Operands);
582  const SCEV *getUMinExpr(const SCEV *LHS, const SCEV *RHS);
583  const SCEV *getUMinExpr(SmallVectorImpl<const SCEV *> &Operands);
584  const SCEV *getUnknown(Value *V);
585  const SCEV *getCouldNotCompute();
586
587  /// Return a SCEV for the constant 0 of a specific type.
588  const SCEV *getZero(Type *Ty) { return getConstant(Ty, 0); }
589
590  /// Return a SCEV for the constant 1 of a specific type.
591  const SCEV *getOne(Type *Ty) { return getConstant(Ty, 1); }
592
593  /// Return an expression for sizeof AllocTy that is type IntTy
594  const SCEV *getSizeOfExpr(Type *IntTy, Type *AllocTy);
595
596  /// Return an expression for offsetof on the given field with type IntTy
597  const SCEV *getOffsetOfExpr(Type *IntTy, StructType *STy, unsigned FieldNo);
598
599  /// Return the SCEV object corresponding to -V.
600  const SCEV *getNegativeSCEV(const SCEV *V,
601                              SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap);
602
603  /// Return the SCEV object corresponding to ~V.
604  const SCEV *getNotSCEV(const SCEV *V);
605
606  /// Return LHS-RHS.  Minus is represented in SCEV as A+B*-1.
607  const SCEV *getMinusSCEV(const SCEV *LHS, const SCEV *RHS,
608                           SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap,
609                           unsigned Depth = 0);
610
611  /// Return a SCEV corresponding to a conversion of the input value to the
612  /// specified type.  If the type must be extended, it is zero extended.
613  const SCEV *getTruncateOrZeroExtend(const SCEV *V, Type *Ty,
614                                      unsigned Depth = 0);
615
616  /// Return a SCEV corresponding to a conversion of the input value to the
617  /// specified type.  If the type must be extended, it is sign extended.
618  const SCEV *getTruncateOrSignExtend(const SCEV *V, Type *Ty,
619                                      unsigned Depth = 0);
620
621  /// Return a SCEV corresponding to a conversion of the input value to the
622  /// specified type.  If the type must be extended, it is zero extended.  The
623  /// conversion must not be narrowing.
624  const SCEV *getNoopOrZeroExtend(const SCEV *V, Type *Ty);
625
626  /// Return a SCEV corresponding to a conversion of the input value to the
627  /// specified type.  If the type must be extended, it is sign extended.  The
628  /// conversion must not be narrowing.
629  const SCEV *getNoopOrSignExtend(const SCEV *V, Type *Ty);
630
631  /// Return a SCEV corresponding to a conversion of the input value to the
632  /// specified type. If the type must be extended, it is extended with
633  /// unspecified bits. The conversion must not be narrowing.
634  const SCEV *getNoopOrAnyExtend(const SCEV *V, Type *Ty);
635
636  /// Return a SCEV corresponding to a conversion of the input value to the
637  /// specified type.  The conversion must not be widening.
638  const SCEV *getTruncateOrNoop(const SCEV *V, Type *Ty);
639
640  /// Promote the operands to the wider of the types using zero-extension, and
641  /// then perform a umax operation with them.
642  const SCEV *getUMaxFromMismatchedTypes(const SCEV *LHS, const SCEV *RHS);
643
644  /// Promote the operands to the wider of the types using zero-extension, and
645  /// then perform a umin operation with them.
646  const SCEV *getUMinFromMismatchedTypes(const SCEV *LHS, const SCEV *RHS);
647
648  /// Promote the operands to the wider of the types using zero-extension, and
649  /// then perform a umin operation with them. N-ary function.
650  const SCEV *getUMinFromMismatchedTypes(SmallVectorImpl<const SCEV *> &Ops);
651
652  /// Transitively follow the chain of pointer-type operands until reaching a
653  /// SCEV that does not have a single pointer operand. This returns a
654  /// SCEVUnknown pointer for well-formed pointer-type expressions, but corner
655  /// cases do exist.
656  const SCEV *getPointerBase(const SCEV *V);
657
658  /// Return a SCEV expression for the specified value at the specified scope
659  /// in the program.  The L value specifies a loop nest to evaluate the
660  /// expression at, where null is the top-level or a specified loop is
661  /// immediately inside of the loop.
662  ///
663  /// This method can be used to compute the exit value for a variable defined
664  /// in a loop by querying what the value will hold in the parent loop.
665  ///
666  /// In the case that a relevant loop exit value cannot be computed, the
667  /// original value V is returned.
668  const SCEV *getSCEVAtScope(const SCEV *S, const Loop *L);
669
670  /// This is a convenience function which does getSCEVAtScope(getSCEV(V), L).
671  const SCEV *getSCEVAtScope(Value *V, const Loop *L);
672
673  /// Test whether entry to the loop is protected by a conditional between LHS
674  /// and RHS.  This is used to help avoid max expressions in loop trip
675  /// counts, and to eliminate casts.
676  bool isLoopEntryGuardedByCond(const Loop *L, ICmpInst::Predicate Pred,
677                                const SCEV *LHS, const SCEV *RHS);
678
679  /// Test whether the backedge of the loop is protected by a conditional
680  /// between LHS and RHS.  This is used to eliminate casts.
681  bool isLoopBackedgeGuardedByCond(const Loop *L, ICmpInst::Predicate Pred,
682                                   const SCEV *LHS, const SCEV *RHS);
683
684  /// Returns the maximum trip count of the loop if it is a single-exit
685  /// loop and we can compute a small maximum for that loop.
686  ///
687  /// Implemented in terms of the \c getSmallConstantTripCount overload with
688  /// the single exiting block passed to it. See that routine for details.
689  unsigned getSmallConstantTripCount(const Loop *L);
690
691  /// Returns the maximum trip count of this loop as a normal unsigned
692  /// value. Returns 0 if the trip count is unknown or not constant. This
693  /// "trip count" assumes that control exits via ExitingBlock. More
694  /// precisely, it is the number of times that control may reach ExitingBlock
695  /// before taking the branch. For loops with multiple exits, it may not be
696  /// the number times that the loop header executes if the loop exits
697  /// prematurely via another branch.
698  unsigned getSmallConstantTripCount(const Loop *L, BasicBlock *ExitingBlock);
699
700  /// Returns the upper bound of the loop trip count as a normal unsigned
701  /// value.
702  /// Returns 0 if the trip count is unknown or not constant.
703  unsigned getSmallConstantMaxTripCount(const Loop *L);
704
705  /// Returns the largest constant divisor of the trip count of the
706  /// loop if it is a single-exit loop and we can compute a small maximum for
707  /// that loop.
708  ///
709  /// Implemented in terms of the \c getSmallConstantTripMultiple overload with
710  /// the single exiting block passed to it. See that routine for details.
711  unsigned getSmallConstantTripMultiple(const Loop *L);
712
713  /// Returns the largest constant divisor of the trip count of this loop as a
714  /// normal unsigned value, if possible. This means that the actual trip
715  /// count is always a multiple of the returned value (don't forget the trip
716  /// count could very well be zero as well!). As explained in the comments
717  /// for getSmallConstantTripCount, this assumes that control exits the loop
718  /// via ExitingBlock.
719  unsigned getSmallConstantTripMultiple(const Loop *L,
720                                        BasicBlock *ExitingBlock);
721
722
723  /// The terms "backedge taken count" and "exit count" are used
724  /// interchangeably to refer to the number of times the backedge of a loop
725  /// has executed before the loop is exited.
726  enum ExitCountKind {
727    /// An expression exactly describing the number of times the backedge has
728    /// executed when a loop is exited.
729    Exact,
730    /// A constant which provides an upper bound on the exact trip count.
731    ConstantMaximum,
732  };
733
734  /// Return the number of times the backedge executes before the given exit
735  /// would be taken; if not exactly computable, return SCEVCouldNotCompute.
736  /// For a single exit loop, this value is equivelent to the result of
737  /// getBackedgeTakenCount.  The loop is guaranteed to exit (via *some* exit)
738  /// before the backedge is executed (ExitCount + 1) times.  Note that there
739  /// is no guarantee about *which* exit is taken on the exiting iteration.
740  const SCEV *getExitCount(const Loop *L, BasicBlock *ExitingBlock,
741                           ExitCountKind Kind = Exact);
742
743  /// If the specified loop has a predictable backedge-taken count, return it,
744  /// otherwise return a SCEVCouldNotCompute object. The backedge-taken count is
745  /// the number of times the loop header will be branched to from within the
746  /// loop, assuming there are no abnormal exists like exception throws. This is
747  /// one less than the trip count of the loop, since it doesn't count the first
748  /// iteration, when the header is branched to from outside the loop.
749  ///
750  /// Note that it is not valid to call this method on a loop without a
751  /// loop-invariant backedge-taken count (see
752  /// hasLoopInvariantBackedgeTakenCount).
753  const SCEV *getBackedgeTakenCount(const Loop *L, ExitCountKind Kind = Exact);
754
755  /// Similar to getBackedgeTakenCount, except it will add a set of
756  /// SCEV predicates to Predicates that are required to be true in order for
757  /// the answer to be correct. Predicates can be checked with run-time
758  /// checks and can be used to perform loop versioning.
759  const SCEV *getPredicatedBackedgeTakenCount(const Loop *L,
760                                              SCEVUnionPredicate &Predicates);
761
762  /// When successful, this returns a SCEVConstant that is greater than or equal
763  /// to (i.e. a "conservative over-approximation") of the value returend by
764  /// getBackedgeTakenCount.  If such a value cannot be computed, it returns the
765  /// SCEVCouldNotCompute object.
766  const SCEV *getConstantMaxBackedgeTakenCount(const Loop *L) {
767    return getBackedgeTakenCount(L, ConstantMaximum);
768  }
769
770  /// Return true if the backedge taken count is either the value returned by
771  /// getConstantMaxBackedgeTakenCount or zero.
772  bool isBackedgeTakenCountMaxOrZero(const Loop *L);
773
774  /// Return true if the specified loop has an analyzable loop-invariant
775  /// backedge-taken count.
776  bool hasLoopInvariantBackedgeTakenCount(const Loop *L);
777
778  // This method should be called by the client when it made any change that
779  // would invalidate SCEV's answers, and the client wants to remove all loop
780  // information held internally by ScalarEvolution. This is intended to be used
781  // when the alternative to forget a loop is too expensive (i.e. large loop
782  // bodies).
783  void forgetAllLoops();
784
785  /// This method should be called by the client when it has changed a loop in
786  /// a way that may effect ScalarEvolution's ability to compute a trip count,
787  /// or if the loop is deleted.  This call is potentially expensive for large
788  /// loop bodies.
789  void forgetLoop(const Loop *L);
790
791  // This method invokes forgetLoop for the outermost loop of the given loop
792  // \p L, making ScalarEvolution forget about all this subtree. This needs to
793  // be done whenever we make a transform that may affect the parameters of the
794  // outer loop, such as exit counts for branches.
795  void forgetTopmostLoop(const Loop *L);
796
797  /// This method should be called by the client when it has changed a value
798  /// in a way that may effect its value, or which may disconnect it from a
799  /// def-use chain linking it to a loop.
800  void forgetValue(Value *V);
801
802  /// Called when the client has changed the disposition of values in
803  /// this loop.
804  ///
805  /// We don't have a way to invalidate per-loop dispositions. Clear and
806  /// recompute is simpler.
807  void forgetLoopDispositions(const Loop *L) { LoopDispositions.clear(); }
808
809  /// Determine the minimum number of zero bits that S is guaranteed to end in
810  /// (at every loop iteration).  It is, at the same time, the minimum number
811  /// of times S is divisible by 2.  For example, given {4,+,8} it returns 2.
812  /// If S is guaranteed to be 0, it returns the bitwidth of S.
813  uint32_t GetMinTrailingZeros(const SCEV *S);
814
815  /// Determine the unsigned range for a particular SCEV.
816  /// NOTE: This returns a copy of the reference returned by getRangeRef.
817  ConstantRange getUnsignedRange(const SCEV *S) {
818    return getRangeRef(S, HINT_RANGE_UNSIGNED);
819  }
820
821  /// Determine the min of the unsigned range for a particular SCEV.
822  APInt getUnsignedRangeMin(const SCEV *S) {
823    return getRangeRef(S, HINT_RANGE_UNSIGNED).getUnsignedMin();
824  }
825
826  /// Determine the max of the unsigned range for a particular SCEV.
827  APInt getUnsignedRangeMax(const SCEV *S) {
828    return getRangeRef(S, HINT_RANGE_UNSIGNED).getUnsignedMax();
829  }
830
831  /// Determine the signed range for a particular SCEV.
832  /// NOTE: This returns a copy of the reference returned by getRangeRef.
833  ConstantRange getSignedRange(const SCEV *S) {
834    return getRangeRef(S, HINT_RANGE_SIGNED);
835  }
836
837  /// Determine the min of the signed range for a particular SCEV.
838  APInt getSignedRangeMin(const SCEV *S) {
839    return getRangeRef(S, HINT_RANGE_SIGNED).getSignedMin();
840  }
841
842  /// Determine the max of the signed range for a particular SCEV.
843  APInt getSignedRangeMax(const SCEV *S) {
844    return getRangeRef(S, HINT_RANGE_SIGNED).getSignedMax();
845  }
846
847  /// Test if the given expression is known to be negative.
848  bool isKnownNegative(const SCEV *S);
849
850  /// Test if the given expression is known to be positive.
851  bool isKnownPositive(const SCEV *S);
852
853  /// Test if the given expression is known to be non-negative.
854  bool isKnownNonNegative(const SCEV *S);
855
856  /// Test if the given expression is known to be non-positive.
857  bool isKnownNonPositive(const SCEV *S);
858
859  /// Test if the given expression is known to be non-zero.
860  bool isKnownNonZero(const SCEV *S);
861
862  /// Splits SCEV expression \p S into two SCEVs. One of them is obtained from
863  /// \p S by substitution of all AddRec sub-expression related to loop \p L
864  /// with initial value of that SCEV. The second is obtained from \p S by
865  /// substitution of all AddRec sub-expressions related to loop \p L with post
866  /// increment of this AddRec in the loop \p L. In both cases all other AddRec
867  /// sub-expressions (not related to \p L) remain the same.
868  /// If the \p S contains non-invariant unknown SCEV the function returns
869  /// CouldNotCompute SCEV in both values of std::pair.
870  /// For example, for SCEV S={0, +, 1}<L1> + {0, +, 1}<L2> and loop L=L1
871  /// the function returns pair:
872  /// first = {0, +, 1}<L2>
873  /// second = {1, +, 1}<L1> + {0, +, 1}<L2>
874  /// We can see that for the first AddRec sub-expression it was replaced with
875  /// 0 (initial value) for the first element and to {1, +, 1}<L1> (post
876  /// increment value) for the second one. In both cases AddRec expression
877  /// related to L2 remains the same.
878  std::pair<const SCEV *, const SCEV *> SplitIntoInitAndPostInc(const Loop *L,
879                                                                const SCEV *S);
880
881  /// We'd like to check the predicate on every iteration of the most dominated
882  /// loop between loops used in LHS and RHS.
883  /// To do this we use the following list of steps:
884  /// 1. Collect set S all loops on which either LHS or RHS depend.
885  /// 2. If S is non-empty
886  /// a. Let PD be the element of S which is dominated by all other elements.
887  /// b. Let E(LHS) be value of LHS on entry of PD.
888  ///    To get E(LHS), we should just take LHS and replace all AddRecs that are
889  ///    attached to PD on with their entry values.
890  ///    Define E(RHS) in the same way.
891  /// c. Let B(LHS) be value of L on backedge of PD.
892  ///    To get B(LHS), we should just take LHS and replace all AddRecs that are
893  ///    attached to PD on with their backedge values.
894  ///    Define B(RHS) in the same way.
895  /// d. Note that E(LHS) and E(RHS) are automatically available on entry of PD,
896  ///    so we can assert on that.
897  /// e. Return true if isLoopEntryGuardedByCond(Pred, E(LHS), E(RHS)) &&
898  ///                   isLoopBackedgeGuardedByCond(Pred, B(LHS), B(RHS))
899  bool isKnownViaInduction(ICmpInst::Predicate Pred, const SCEV *LHS,
900                           const SCEV *RHS);
901
902  /// Test if the given expression is known to satisfy the condition described
903  /// by Pred, LHS, and RHS.
904  bool isKnownPredicate(ICmpInst::Predicate Pred, const SCEV *LHS,
905                        const SCEV *RHS);
906
907  /// Test if the condition described by Pred, LHS, RHS is known to be true on
908  /// every iteration of the loop of the recurrency LHS.
909  bool isKnownOnEveryIteration(ICmpInst::Predicate Pred,
910                               const SCEVAddRecExpr *LHS, const SCEV *RHS);
911
912  /// Return true if, for all loop invariant X, the predicate "LHS `Pred` X"
913  /// is monotonically increasing or decreasing.  In the former case set
914  /// `Increasing` to true and in the latter case set `Increasing` to false.
915  ///
916  /// A predicate is said to be monotonically increasing if may go from being
917  /// false to being true as the loop iterates, but never the other way
918  /// around.  A predicate is said to be monotonically decreasing if may go
919  /// from being true to being false as the loop iterates, but never the other
920  /// way around.
921  bool isMonotonicPredicate(const SCEVAddRecExpr *LHS, ICmpInst::Predicate Pred,
922                            bool &Increasing);
923
924  /// Return true if the result of the predicate LHS `Pred` RHS is loop
925  /// invariant with respect to L.  Set InvariantPred, InvariantLHS and
926  /// InvariantLHS so that InvariantLHS `InvariantPred` InvariantRHS is the
927  /// loop invariant form of LHS `Pred` RHS.
928  bool isLoopInvariantPredicate(ICmpInst::Predicate Pred, const SCEV *LHS,
929                                const SCEV *RHS, const Loop *L,
930                                ICmpInst::Predicate &InvariantPred,
931                                const SCEV *&InvariantLHS,
932                                const SCEV *&InvariantRHS);
933
934  /// Simplify LHS and RHS in a comparison with predicate Pred. Return true
935  /// iff any changes were made. If the operands are provably equal or
936  /// unequal, LHS and RHS are set to the same value and Pred is set to either
937  /// ICMP_EQ or ICMP_NE.
938  bool SimplifyICmpOperands(ICmpInst::Predicate &Pred, const SCEV *&LHS,
939                            const SCEV *&RHS, unsigned Depth = 0);
940
941  /// Return the "disposition" of the given SCEV with respect to the given
942  /// loop.
943  LoopDisposition getLoopDisposition(const SCEV *S, const Loop *L);
944
945  /// Return true if the value of the given SCEV is unchanging in the
946  /// specified loop.
947  bool isLoopInvariant(const SCEV *S, const Loop *L);
948
949  /// Determine if the SCEV can be evaluated at loop's entry. It is true if it
950  /// doesn't depend on a SCEVUnknown of an instruction which is dominated by
951  /// the header of loop L.
952  bool isAvailableAtLoopEntry(const SCEV *S, const Loop *L);
953
954  /// Return true if the given SCEV changes value in a known way in the
955  /// specified loop.  This property being true implies that the value is
956  /// variant in the loop AND that we can emit an expression to compute the
957  /// value of the expression at any particular loop iteration.
958  bool hasComputableLoopEvolution(const SCEV *S, const Loop *L);
959
960  /// Return the "disposition" of the given SCEV with respect to the given
961  /// block.
962  BlockDisposition getBlockDisposition(const SCEV *S, const BasicBlock *BB);
963
964  /// Return true if elements that makes up the given SCEV dominate the
965  /// specified basic block.
966  bool dominates(const SCEV *S, const BasicBlock *BB);
967
968  /// Return true if elements that makes up the given SCEV properly dominate
969  /// the specified basic block.
970  bool properlyDominates(const SCEV *S, const BasicBlock *BB);
971
972  /// Test whether the given SCEV has Op as a direct or indirect operand.
973  bool hasOperand(const SCEV *S, const SCEV *Op) const;
974
975  /// Return the size of an element read or written by Inst.
976  const SCEV *getElementSize(Instruction *Inst);
977
978  /// Compute the array dimensions Sizes from the set of Terms extracted from
979  /// the memory access function of this SCEVAddRecExpr (second step of
980  /// delinearization).
981  void findArrayDimensions(SmallVectorImpl<const SCEV *> &Terms,
982                           SmallVectorImpl<const SCEV *> &Sizes,
983                           const SCEV *ElementSize);
984
985  void print(raw_ostream &OS) const;
986  void verify() const;
987  bool invalidate(Function &F, const PreservedAnalyses &PA,
988                  FunctionAnalysisManager::Invalidator &Inv);
989
990  /// Collect parametric terms occurring in step expressions (first step of
991  /// delinearization).
992  void collectParametricTerms(const SCEV *Expr,
993                              SmallVectorImpl<const SCEV *> &Terms);
994
995  /// Return in Subscripts the access functions for each dimension in Sizes
996  /// (third step of delinearization).
997  void computeAccessFunctions(const SCEV *Expr,
998                              SmallVectorImpl<const SCEV *> &Subscripts,
999                              SmallVectorImpl<const SCEV *> &Sizes);
1000
1001  /// Split this SCEVAddRecExpr into two vectors of SCEVs representing the
1002  /// subscripts and sizes of an array access.
1003  ///
1004  /// The delinearization is a 3 step process: the first two steps compute the
1005  /// sizes of each subscript and the third step computes the access functions
1006  /// for the delinearized array:
1007  ///
1008  /// 1. Find the terms in the step functions
1009  /// 2. Compute the array size
1010  /// 3. Compute the access function: divide the SCEV by the array size
1011  ///    starting with the innermost dimensions found in step 2. The Quotient
1012  ///    is the SCEV to be divided in the next step of the recursion. The
1013  ///    Remainder is the subscript of the innermost dimension. Loop over all
1014  ///    array dimensions computed in step 2.
1015  ///
1016  /// To compute a uniform array size for several memory accesses to the same
1017  /// object, one can collect in step 1 all the step terms for all the memory
1018  /// accesses, and compute in step 2 a unique array shape. This guarantees
1019  /// that the array shape will be the same across all memory accesses.
1020  ///
1021  /// FIXME: We could derive the result of steps 1 and 2 from a description of
1022  /// the array shape given in metadata.
1023  ///
1024  /// Example:
1025  ///
1026  /// A[][n][m]
1027  ///
1028  /// for i
1029  ///   for j
1030  ///     for k
1031  ///       A[j+k][2i][5i] =
1032  ///
1033  /// The initial SCEV:
1034  ///
1035  /// A[{{{0,+,2*m+5}_i, +, n*m}_j, +, n*m}_k]
1036  ///
1037  /// 1. Find the different terms in the step functions:
1038  /// -> [2*m, 5, n*m, n*m]
1039  ///
1040  /// 2. Compute the array size: sort and unique them
1041  /// -> [n*m, 2*m, 5]
1042  /// find the GCD of all the terms = 1
1043  /// divide by the GCD and erase constant terms
1044  /// -> [n*m, 2*m]
1045  /// GCD = m
1046  /// divide by GCD -> [n, 2]
1047  /// remove constant terms
1048  /// -> [n]
1049  /// size of the array is A[unknown][n][m]
1050  ///
1051  /// 3. Compute the access function
1052  /// a. Divide {{{0,+,2*m+5}_i, +, n*m}_j, +, n*m}_k by the innermost size m
1053  /// Quotient: {{{0,+,2}_i, +, n}_j, +, n}_k
1054  /// Remainder: {{{0,+,5}_i, +, 0}_j, +, 0}_k
1055  /// The remainder is the subscript of the innermost array dimension: [5i].
1056  ///
1057  /// b. Divide Quotient: {{{0,+,2}_i, +, n}_j, +, n}_k by next outer size n
1058  /// Quotient: {{{0,+,0}_i, +, 1}_j, +, 1}_k
1059  /// Remainder: {{{0,+,2}_i, +, 0}_j, +, 0}_k
1060  /// The Remainder is the subscript of the next array dimension: [2i].
1061  ///
1062  /// The subscript of the outermost dimension is the Quotient: [j+k].
1063  ///
1064  /// Overall, we have: A[][n][m], and the access function: A[j+k][2i][5i].
1065  void delinearize(const SCEV *Expr, SmallVectorImpl<const SCEV *> &Subscripts,
1066                   SmallVectorImpl<const SCEV *> &Sizes,
1067                   const SCEV *ElementSize);
1068
1069  /// Return the DataLayout associated with the module this SCEV instance is
1070  /// operating on.
1071  const DataLayout &getDataLayout() const {
1072    return F.getParent()->getDataLayout();
1073  }
1074
1075  const SCEVPredicate *getEqualPredicate(const SCEV *LHS, const SCEV *RHS);
1076
1077  const SCEVPredicate *
1078  getWrapPredicate(const SCEVAddRecExpr *AR,
1079                   SCEVWrapPredicate::IncrementWrapFlags AddedFlags);
1080
1081  /// Re-writes the SCEV according to the Predicates in \p A.
1082  const SCEV *rewriteUsingPredicate(const SCEV *S, const Loop *L,
1083                                    SCEVUnionPredicate &A);
1084  /// Tries to convert the \p S expression to an AddRec expression,
1085  /// adding additional predicates to \p Preds as required.
1086  const SCEVAddRecExpr *convertSCEVToAddRecWithPredicates(
1087      const SCEV *S, const Loop *L,
1088      SmallPtrSetImpl<const SCEVPredicate *> &Preds);
1089
1090private:
1091  /// A CallbackVH to arrange for ScalarEvolution to be notified whenever a
1092  /// Value is deleted.
1093  class SCEVCallbackVH final : public CallbackVH {
1094    ScalarEvolution *SE;
1095
1096    void deleted() override;
1097    void allUsesReplacedWith(Value *New) override;
1098
1099  public:
1100    SCEVCallbackVH(Value *V, ScalarEvolution *SE = nullptr);
1101  };
1102
1103  friend class SCEVCallbackVH;
1104  friend class SCEVExpander;
1105  friend class SCEVUnknown;
1106
1107  /// The function we are analyzing.
1108  Function &F;
1109
1110  /// Does the module have any calls to the llvm.experimental.guard intrinsic
1111  /// at all?  If this is false, we avoid doing work that will only help if
1112  /// thare are guards present in the IR.
1113  bool HasGuards;
1114
1115  /// The target library information for the target we are targeting.
1116  TargetLibraryInfo &TLI;
1117
1118  /// The tracker for \@llvm.assume intrinsics in this function.
1119  AssumptionCache &AC;
1120
1121  /// The dominator tree.
1122  DominatorTree &DT;
1123
1124  /// The loop information for the function we are currently analyzing.
1125  LoopInfo &LI;
1126
1127  /// This SCEV is used to represent unknown trip counts and things.
1128  std::unique_ptr<SCEVCouldNotCompute> CouldNotCompute;
1129
1130  /// The type for HasRecMap.
1131  using HasRecMapType = DenseMap<const SCEV *, bool>;
1132
1133  /// This is a cache to record whether a SCEV contains any scAddRecExpr.
1134  HasRecMapType HasRecMap;
1135
1136  /// The type for ExprValueMap.
1137  using ValueOffsetPair = std::pair<Value *, ConstantInt *>;
1138  using ExprValueMapType = DenseMap<const SCEV *, SetVector<ValueOffsetPair>>;
1139
1140  /// ExprValueMap -- This map records the original values from which
1141  /// the SCEV expr is generated from.
1142  ///
1143  /// We want to represent the mapping as SCEV -> ValueOffsetPair instead
1144  /// of SCEV -> Value:
1145  /// Suppose we know S1 expands to V1, and
1146  ///  S1 = S2 + C_a
1147  ///  S3 = S2 + C_b
1148  /// where C_a and C_b are different SCEVConstants. Then we'd like to
1149  /// expand S3 as V1 - C_a + C_b instead of expanding S2 literally.
1150  /// It is helpful when S2 is a complex SCEV expr.
1151  ///
1152  /// In order to do that, we represent ExprValueMap as a mapping from
1153  /// SCEV to ValueOffsetPair. We will save both S1->{V1, 0} and
1154  /// S2->{V1, C_a} into the map when we create SCEV for V1. When S3
1155  /// is expanded, it will first expand S2 to V1 - C_a because of
1156  /// S2->{V1, C_a} in the map, then expand S3 to V1 - C_a + C_b.
1157  ///
1158  /// Note: S->{V, Offset} in the ExprValueMap means S can be expanded
1159  /// to V - Offset.
1160  ExprValueMapType ExprValueMap;
1161
1162  /// The type for ValueExprMap.
1163  using ValueExprMapType =
1164      DenseMap<SCEVCallbackVH, const SCEV *, DenseMapInfo<Value *>>;
1165
1166  /// This is a cache of the values we have analyzed so far.
1167  ValueExprMapType ValueExprMap;
1168
1169  /// Mark predicate values currently being processed by isImpliedCond.
1170  SmallPtrSet<Value *, 6> PendingLoopPredicates;
1171
1172  /// Mark SCEVUnknown Phis currently being processed by getRangeRef.
1173  SmallPtrSet<const PHINode *, 6> PendingPhiRanges;
1174
1175  // Mark SCEVUnknown Phis currently being processed by isImpliedViaMerge.
1176  SmallPtrSet<const PHINode *, 6> PendingMerges;
1177
1178  /// Set to true by isLoopBackedgeGuardedByCond when we're walking the set of
1179  /// conditions dominating the backedge of a loop.
1180  bool WalkingBEDominatingConds = false;
1181
1182  /// Set to true by isKnownPredicateViaSplitting when we're trying to prove a
1183  /// predicate by splitting it into a set of independent predicates.
1184  bool ProvingSplitPredicate = false;
1185
1186  /// Memoized values for the GetMinTrailingZeros
1187  DenseMap<const SCEV *, uint32_t> MinTrailingZerosCache;
1188
1189  /// Return the Value set from which the SCEV expr is generated.
1190  SetVector<ValueOffsetPair> *getSCEVValues(const SCEV *S);
1191
1192  /// Private helper method for the GetMinTrailingZeros method
1193  uint32_t GetMinTrailingZerosImpl(const SCEV *S);
1194
1195  /// Information about the number of loop iterations for which a loop exit's
1196  /// branch condition evaluates to the not-taken path.  This is a temporary
1197  /// pair of exact and max expressions that are eventually summarized in
1198  /// ExitNotTakenInfo and BackedgeTakenInfo.
1199  struct ExitLimit {
1200    const SCEV *ExactNotTaken; // The exit is not taken exactly this many times
1201    const SCEV *MaxNotTaken; // The exit is not taken at most this many times
1202
1203    // Not taken either exactly MaxNotTaken or zero times
1204    bool MaxOrZero = false;
1205
1206    /// A set of predicate guards for this ExitLimit. The result is only valid
1207    /// if all of the predicates in \c Predicates evaluate to 'true' at
1208    /// run-time.
1209    SmallPtrSet<const SCEVPredicate *, 4> Predicates;
1210
1211    void addPredicate(const SCEVPredicate *P) {
1212      assert(!isa<SCEVUnionPredicate>(P) && "Only add leaf predicates here!");
1213      Predicates.insert(P);
1214    }
1215
1216    /// Construct either an exact exit limit from a constant, or an unknown
1217    /// one from a SCEVCouldNotCompute.  No other types of SCEVs are allowed
1218    /// as arguments and asserts enforce that internally.
1219    /*implicit*/ ExitLimit(const SCEV *E);
1220
1221    ExitLimit(
1222        const SCEV *E, const SCEV *M, bool MaxOrZero,
1223        ArrayRef<const SmallPtrSetImpl<const SCEVPredicate *> *> PredSetList);
1224
1225    ExitLimit(const SCEV *E, const SCEV *M, bool MaxOrZero,
1226              const SmallPtrSetImpl<const SCEVPredicate *> &PredSet);
1227
1228    ExitLimit(const SCEV *E, const SCEV *M, bool MaxOrZero);
1229
1230    /// Test whether this ExitLimit contains any computed information, or
1231    /// whether it's all SCEVCouldNotCompute values.
1232    bool hasAnyInfo() const {
1233      return !isa<SCEVCouldNotCompute>(ExactNotTaken) ||
1234             !isa<SCEVCouldNotCompute>(MaxNotTaken);
1235    }
1236
1237    bool hasOperand(const SCEV *S) const;
1238
1239    /// Test whether this ExitLimit contains all information.
1240    bool hasFullInfo() const {
1241      return !isa<SCEVCouldNotCompute>(ExactNotTaken);
1242    }
1243  };
1244
1245  /// Information about the number of times a particular loop exit may be
1246  /// reached before exiting the loop.
1247  struct ExitNotTakenInfo {
1248    PoisoningVH<BasicBlock> ExitingBlock;
1249    const SCEV *ExactNotTaken;
1250    const SCEV *MaxNotTaken;
1251    std::unique_ptr<SCEVUnionPredicate> Predicate;
1252
1253    explicit ExitNotTakenInfo(PoisoningVH<BasicBlock> ExitingBlock,
1254                              const SCEV *ExactNotTaken,
1255                              const SCEV *MaxNotTaken,
1256                              std::unique_ptr<SCEVUnionPredicate> Predicate)
1257      : ExitingBlock(ExitingBlock), ExactNotTaken(ExactNotTaken),
1258        MaxNotTaken(ExactNotTaken), Predicate(std::move(Predicate)) {}
1259
1260    bool hasAlwaysTruePredicate() const {
1261      return !Predicate || Predicate->isAlwaysTrue();
1262    }
1263  };
1264
1265  /// Information about the backedge-taken count of a loop. This currently
1266  /// includes an exact count and a maximum count.
1267  ///
1268  class BackedgeTakenInfo {
1269    /// A list of computable exits and their not-taken counts.  Loops almost
1270    /// never have more than one computable exit.
1271    SmallVector<ExitNotTakenInfo, 1> ExitNotTaken;
1272
1273    /// The pointer part of \c MaxAndComplete is an expression indicating the
1274    /// least maximum backedge-taken count of the loop that is known, or a
1275    /// SCEVCouldNotCompute. This expression is only valid if the predicates
1276    /// associated with all loop exits are true.
1277    ///
1278    /// The integer part of \c MaxAndComplete is a boolean indicating if \c
1279    /// ExitNotTaken has an element for every exiting block in the loop.
1280    PointerIntPair<const SCEV *, 1> MaxAndComplete;
1281
1282    /// True iff the backedge is taken either exactly Max or zero times.
1283    bool MaxOrZero = false;
1284
1285    /// \name Helper projection functions on \c MaxAndComplete.
1286    /// @{
1287    bool isComplete() const { return MaxAndComplete.getInt(); }
1288    const SCEV *getMax() const { return MaxAndComplete.getPointer(); }
1289    /// @}
1290
1291  public:
1292    BackedgeTakenInfo() : MaxAndComplete(nullptr, 0) {}
1293    BackedgeTakenInfo(BackedgeTakenInfo &&) = default;
1294    BackedgeTakenInfo &operator=(BackedgeTakenInfo &&) = default;
1295
1296    using EdgeExitInfo = std::pair<BasicBlock *, ExitLimit>;
1297
1298    /// Initialize BackedgeTakenInfo from a list of exact exit counts.
1299    BackedgeTakenInfo(ArrayRef<EdgeExitInfo> ExitCounts, bool Complete,
1300                      const SCEV *MaxCount, bool MaxOrZero);
1301
1302    /// Test whether this BackedgeTakenInfo contains any computed information,
1303    /// or whether it's all SCEVCouldNotCompute values.
1304    bool hasAnyInfo() const {
1305      return !ExitNotTaken.empty() || !isa<SCEVCouldNotCompute>(getMax());
1306    }
1307
1308    /// Test whether this BackedgeTakenInfo contains complete information.
1309    bool hasFullInfo() const { return isComplete(); }
1310
1311    /// Return an expression indicating the exact *backedge-taken*
1312    /// count of the loop if it is known or SCEVCouldNotCompute
1313    /// otherwise.  If execution makes it to the backedge on every
1314    /// iteration (i.e. there are no abnormal exists like exception
1315    /// throws and thread exits) then this is the number of times the
1316    /// loop header will execute minus one.
1317    ///
1318    /// If the SCEV predicate associated with the answer can be different
1319    /// from AlwaysTrue, we must add a (non null) Predicates argument.
1320    /// The SCEV predicate associated with the answer will be added to
1321    /// Predicates. A run-time check needs to be emitted for the SCEV
1322    /// predicate in order for the answer to be valid.
1323    ///
1324    /// Note that we should always know if we need to pass a predicate
1325    /// argument or not from the way the ExitCounts vector was computed.
1326    /// If we allowed SCEV predicates to be generated when populating this
1327    /// vector, this information can contain them and therefore a
1328    /// SCEVPredicate argument should be added to getExact.
1329    const SCEV *getExact(const Loop *L, ScalarEvolution *SE,
1330                         SCEVUnionPredicate *Predicates = nullptr) const;
1331
1332    /// Return the number of times this loop exit may fall through to the back
1333    /// edge, or SCEVCouldNotCompute. The loop is guaranteed not to exit via
1334    /// this block before this number of iterations, but may exit via another
1335    /// block.
1336    const SCEV *getExact(BasicBlock *ExitingBlock, ScalarEvolution *SE) const;
1337
1338    /// Get the max backedge taken count for the loop.
1339    const SCEV *getMax(ScalarEvolution *SE) const;
1340
1341    /// Get the max backedge taken count for the particular loop exit.
1342    const SCEV *getMax(BasicBlock *ExitingBlock, ScalarEvolution *SE) const;
1343
1344    /// Return true if the number of times this backedge is taken is either the
1345    /// value returned by getMax or zero.
1346    bool isMaxOrZero(ScalarEvolution *SE) const;
1347
1348    /// Return true if any backedge taken count expressions refer to the given
1349    /// subexpression.
1350    bool hasOperand(const SCEV *S, ScalarEvolution *SE) const;
1351
1352    /// Invalidate this result and free associated memory.
1353    void clear();
1354  };
1355
1356  /// Cache the backedge-taken count of the loops for this function as they
1357  /// are computed.
1358  DenseMap<const Loop *, BackedgeTakenInfo> BackedgeTakenCounts;
1359
1360  /// Cache the predicated backedge-taken count of the loops for this
1361  /// function as they are computed.
1362  DenseMap<const Loop *, BackedgeTakenInfo> PredicatedBackedgeTakenCounts;
1363
1364  /// This map contains entries for all of the PHI instructions that we
1365  /// attempt to compute constant evolutions for.  This allows us to avoid
1366  /// potentially expensive recomputation of these properties.  An instruction
1367  /// maps to null if we are unable to compute its exit value.
1368  DenseMap<PHINode *, Constant *> ConstantEvolutionLoopExitValue;
1369
1370  /// This map contains entries for all the expressions that we attempt to
1371  /// compute getSCEVAtScope information for, which can be expensive in
1372  /// extreme cases.
1373  DenseMap<const SCEV *, SmallVector<std::pair<const Loop *, const SCEV *>, 2>>
1374      ValuesAtScopes;
1375
1376  /// Memoized computeLoopDisposition results.
1377  DenseMap<const SCEV *,
1378           SmallVector<PointerIntPair<const Loop *, 2, LoopDisposition>, 2>>
1379      LoopDispositions;
1380
1381  struct LoopProperties {
1382    /// Set to true if the loop contains no instruction that can have side
1383    /// effects (i.e. via throwing an exception, volatile or atomic access).
1384    bool HasNoAbnormalExits;
1385
1386    /// Set to true if the loop contains no instruction that can abnormally exit
1387    /// the loop (i.e. via throwing an exception, by terminating the thread
1388    /// cleanly or by infinite looping in a called function).  Strictly
1389    /// speaking, the last one is not leaving the loop, but is identical to
1390    /// leaving the loop for reasoning about undefined behavior.
1391    bool HasNoSideEffects;
1392  };
1393
1394  /// Cache for \c getLoopProperties.
1395  DenseMap<const Loop *, LoopProperties> LoopPropertiesCache;
1396
1397  /// Return a \c LoopProperties instance for \p L, creating one if necessary.
1398  LoopProperties getLoopProperties(const Loop *L);
1399
1400  bool loopHasNoSideEffects(const Loop *L) {
1401    return getLoopProperties(L).HasNoSideEffects;
1402  }
1403
1404  bool loopHasNoAbnormalExits(const Loop *L) {
1405    return getLoopProperties(L).HasNoAbnormalExits;
1406  }
1407
1408  /// Compute a LoopDisposition value.
1409  LoopDisposition computeLoopDisposition(const SCEV *S, const Loop *L);
1410
1411  /// Memoized computeBlockDisposition results.
1412  DenseMap<
1413      const SCEV *,
1414      SmallVector<PointerIntPair<const BasicBlock *, 2, BlockDisposition>, 2>>
1415      BlockDispositions;
1416
1417  /// Compute a BlockDisposition value.
1418  BlockDisposition computeBlockDisposition(const SCEV *S, const BasicBlock *BB);
1419
1420  /// Memoized results from getRange
1421  DenseMap<const SCEV *, ConstantRange> UnsignedRanges;
1422
1423  /// Memoized results from getRange
1424  DenseMap<const SCEV *, ConstantRange> SignedRanges;
1425
1426  /// Used to parameterize getRange
1427  enum RangeSignHint { HINT_RANGE_UNSIGNED, HINT_RANGE_SIGNED };
1428
1429  /// Set the memoized range for the given SCEV.
1430  const ConstantRange &setRange(const SCEV *S, RangeSignHint Hint,
1431                                ConstantRange CR) {
1432    DenseMap<const SCEV *, ConstantRange> &Cache =
1433        Hint == HINT_RANGE_UNSIGNED ? UnsignedRanges : SignedRanges;
1434
1435    auto Pair = Cache.try_emplace(S, std::move(CR));
1436    if (!Pair.second)
1437      Pair.first->second = std::move(CR);
1438    return Pair.first->second;
1439  }
1440
1441  /// Determine the range for a particular SCEV.
1442  /// NOTE: This returns a reference to an entry in a cache. It must be
1443  /// copied if its needed for longer.
1444  const ConstantRange &getRangeRef(const SCEV *S, RangeSignHint Hint);
1445
1446  /// Determines the range for the affine SCEVAddRecExpr {\p Start,+,\p Stop}.
1447  /// Helper for \c getRange.
1448  ConstantRange getRangeForAffineAR(const SCEV *Start, const SCEV *Stop,
1449                                    const SCEV *MaxBECount, unsigned BitWidth);
1450
1451  /// Try to compute a range for the affine SCEVAddRecExpr {\p Start,+,\p
1452  /// Stop} by "factoring out" a ternary expression from the add recurrence.
1453  /// Helper called by \c getRange.
1454  ConstantRange getRangeViaFactoring(const SCEV *Start, const SCEV *Stop,
1455                                     const SCEV *MaxBECount, unsigned BitWidth);
1456
1457  /// We know that there is no SCEV for the specified value.  Analyze the
1458  /// expression.
1459  const SCEV *createSCEV(Value *V);
1460
1461  /// Provide the special handling we need to analyze PHI SCEVs.
1462  const SCEV *createNodeForPHI(PHINode *PN);
1463
1464  /// Helper function called from createNodeForPHI.
1465  const SCEV *createAddRecFromPHI(PHINode *PN);
1466
1467  /// A helper function for createAddRecFromPHI to handle simple cases.
1468  const SCEV *createSimpleAffineAddRec(PHINode *PN, Value *BEValueV,
1469                                            Value *StartValueV);
1470
1471  /// Helper function called from createNodeForPHI.
1472  const SCEV *createNodeFromSelectLikePHI(PHINode *PN);
1473
1474  /// Provide special handling for a select-like instruction (currently this
1475  /// is either a select instruction or a phi node).  \p I is the instruction
1476  /// being processed, and it is assumed equivalent to "Cond ? TrueVal :
1477  /// FalseVal".
1478  const SCEV *createNodeForSelectOrPHI(Instruction *I, Value *Cond,
1479                                       Value *TrueVal, Value *FalseVal);
1480
1481  /// Provide the special handling we need to analyze GEP SCEVs.
1482  const SCEV *createNodeForGEP(GEPOperator *GEP);
1483
1484  /// Implementation code for getSCEVAtScope; called at most once for each
1485  /// SCEV+Loop pair.
1486  const SCEV *computeSCEVAtScope(const SCEV *S, const Loop *L);
1487
1488  /// This looks up computed SCEV values for all instructions that depend on
1489  /// the given instruction and removes them from the ValueExprMap map if they
1490  /// reference SymName. This is used during PHI resolution.
1491  void forgetSymbolicName(Instruction *I, const SCEV *SymName);
1492
1493  /// Return the BackedgeTakenInfo for the given loop, lazily computing new
1494  /// values if the loop hasn't been analyzed yet. The returned result is
1495  /// guaranteed not to be predicated.
1496  const BackedgeTakenInfo &getBackedgeTakenInfo(const Loop *L);
1497
1498  /// Similar to getBackedgeTakenInfo, but will add predicates as required
1499  /// with the purpose of returning complete information.
1500  const BackedgeTakenInfo &getPredicatedBackedgeTakenInfo(const Loop *L);
1501
1502  /// Compute the number of times the specified loop will iterate.
1503  /// If AllowPredicates is set, we will create new SCEV predicates as
1504  /// necessary in order to return an exact answer.
1505  BackedgeTakenInfo computeBackedgeTakenCount(const Loop *L,
1506                                              bool AllowPredicates = false);
1507
1508  /// Compute the number of times the backedge of the specified loop will
1509  /// execute if it exits via the specified block. If AllowPredicates is set,
1510  /// this call will try to use a minimal set of SCEV predicates in order to
1511  /// return an exact answer.
1512  ExitLimit computeExitLimit(const Loop *L, BasicBlock *ExitingBlock,
1513                             bool AllowPredicates = false);
1514
1515  /// Compute the number of times the backedge of the specified loop will
1516  /// execute if its exit condition were a conditional branch of ExitCond.
1517  ///
1518  /// \p ControlsExit is true if ExitCond directly controls the exit
1519  /// branch. In this case, we can assume that the loop exits only if the
1520  /// condition is true and can infer that failing to meet the condition prior
1521  /// to integer wraparound results in undefined behavior.
1522  ///
1523  /// If \p AllowPredicates is set, this call will try to use a minimal set of
1524  /// SCEV predicates in order to return an exact answer.
1525  ExitLimit computeExitLimitFromCond(const Loop *L, Value *ExitCond,
1526                                     bool ExitIfTrue, bool ControlsExit,
1527                                     bool AllowPredicates = false);
1528
1529  // Helper functions for computeExitLimitFromCond to avoid exponential time
1530  // complexity.
1531
1532  class ExitLimitCache {
1533    // It may look like we need key on the whole (L, ExitIfTrue, ControlsExit,
1534    // AllowPredicates) tuple, but recursive calls to
1535    // computeExitLimitFromCondCached from computeExitLimitFromCondImpl only
1536    // vary the in \c ExitCond and \c ControlsExit parameters.  We remember the
1537    // initial values of the other values to assert our assumption.
1538    SmallDenseMap<PointerIntPair<Value *, 1>, ExitLimit> TripCountMap;
1539
1540    const Loop *L;
1541    bool ExitIfTrue;
1542    bool AllowPredicates;
1543
1544  public:
1545    ExitLimitCache(const Loop *L, bool ExitIfTrue, bool AllowPredicates)
1546        : L(L), ExitIfTrue(ExitIfTrue), AllowPredicates(AllowPredicates) {}
1547
1548    Optional<ExitLimit> find(const Loop *L, Value *ExitCond, bool ExitIfTrue,
1549                             bool ControlsExit, bool AllowPredicates);
1550
1551    void insert(const Loop *L, Value *ExitCond, bool ExitIfTrue,
1552                bool ControlsExit, bool AllowPredicates, const ExitLimit &EL);
1553  };
1554
1555  using ExitLimitCacheTy = ExitLimitCache;
1556
1557  ExitLimit computeExitLimitFromCondCached(ExitLimitCacheTy &Cache,
1558                                           const Loop *L, Value *ExitCond,
1559                                           bool ExitIfTrue,
1560                                           bool ControlsExit,
1561                                           bool AllowPredicates);
1562  ExitLimit computeExitLimitFromCondImpl(ExitLimitCacheTy &Cache, const Loop *L,
1563                                         Value *ExitCond, bool ExitIfTrue,
1564                                         bool ControlsExit,
1565                                         bool AllowPredicates);
1566
1567  /// Compute the number of times the backedge of the specified loop will
1568  /// execute if its exit condition were a conditional branch of the ICmpInst
1569  /// ExitCond and ExitIfTrue. If AllowPredicates is set, this call will try
1570  /// to use a minimal set of SCEV predicates in order to return an exact
1571  /// answer.
1572  ExitLimit computeExitLimitFromICmp(const Loop *L, ICmpInst *ExitCond,
1573                                     bool ExitIfTrue,
1574                                     bool IsSubExpr,
1575                                     bool AllowPredicates = false);
1576
1577  /// Compute the number of times the backedge of the specified loop will
1578  /// execute if its exit condition were a switch with a single exiting case
1579  /// to ExitingBB.
1580  ExitLimit computeExitLimitFromSingleExitSwitch(const Loop *L,
1581                                                 SwitchInst *Switch,
1582                                                 BasicBlock *ExitingBB,
1583                                                 bool IsSubExpr);
1584
1585  /// Given an exit condition of 'icmp op load X, cst', try to see if we can
1586  /// compute the backedge-taken count.
1587  ExitLimit computeLoadConstantCompareExitLimit(LoadInst *LI, Constant *RHS,
1588                                                const Loop *L,
1589                                                ICmpInst::Predicate p);
1590
1591  /// Compute the exit limit of a loop that is controlled by a
1592  /// "(IV >> 1) != 0" type comparison.  We cannot compute the exact trip
1593  /// count in these cases (since SCEV has no way of expressing them), but we
1594  /// can still sometimes compute an upper bound.
1595  ///
1596  /// Return an ExitLimit for a loop whose backedge is guarded by `LHS Pred
1597  /// RHS`.
1598  ExitLimit computeShiftCompareExitLimit(Value *LHS, Value *RHS, const Loop *L,
1599                                         ICmpInst::Predicate Pred);
1600
1601  /// If the loop is known to execute a constant number of times (the
1602  /// condition evolves only from constants), try to evaluate a few iterations
1603  /// of the loop until we get the exit condition gets a value of ExitWhen
1604  /// (true or false).  If we cannot evaluate the exit count of the loop,
1605  /// return CouldNotCompute.
1606  const SCEV *computeExitCountExhaustively(const Loop *L, Value *Cond,
1607                                           bool ExitWhen);
1608
1609  /// Return the number of times an exit condition comparing the specified
1610  /// value to zero will execute.  If not computable, return CouldNotCompute.
1611  /// If AllowPredicates is set, this call will try to use a minimal set of
1612  /// SCEV predicates in order to return an exact answer.
1613  ExitLimit howFarToZero(const SCEV *V, const Loop *L, bool IsSubExpr,
1614                         bool AllowPredicates = false);
1615
1616  /// Return the number of times an exit condition checking the specified
1617  /// value for nonzero will execute.  If not computable, return
1618  /// CouldNotCompute.
1619  ExitLimit howFarToNonZero(const SCEV *V, const Loop *L);
1620
1621  /// Return the number of times an exit condition containing the specified
1622  /// less-than comparison will execute.  If not computable, return
1623  /// CouldNotCompute.
1624  ///
1625  /// \p isSigned specifies whether the less-than is signed.
1626  ///
1627  /// \p ControlsExit is true when the LHS < RHS condition directly controls
1628  /// the branch (loops exits only if condition is true). In this case, we can
1629  /// use NoWrapFlags to skip overflow checks.
1630  ///
1631  /// If \p AllowPredicates is set, this call will try to use a minimal set of
1632  /// SCEV predicates in order to return an exact answer.
1633  ExitLimit howManyLessThans(const SCEV *LHS, const SCEV *RHS, const Loop *L,
1634                             bool isSigned, bool ControlsExit,
1635                             bool AllowPredicates = false);
1636
1637  ExitLimit howManyGreaterThans(const SCEV *LHS, const SCEV *RHS, const Loop *L,
1638                                bool isSigned, bool IsSubExpr,
1639                                bool AllowPredicates = false);
1640
1641  /// Return a predecessor of BB (which may not be an immediate predecessor)
1642  /// which has exactly one successor from which BB is reachable, or null if
1643  /// no such block is found.
1644  std::pair<BasicBlock *, BasicBlock *>
1645  getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB);
1646
1647  /// Test whether the condition described by Pred, LHS, and RHS is true
1648  /// whenever the given FoundCondValue value evaluates to true.
1649  bool isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS,
1650                     Value *FoundCondValue, bool Inverse);
1651
1652  /// Test whether the condition described by Pred, LHS, and RHS is true
1653  /// whenever the condition described by FoundPred, FoundLHS, FoundRHS is
1654  /// true.
1655  bool isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS,
1656                     ICmpInst::Predicate FoundPred, const SCEV *FoundLHS,
1657                     const SCEV *FoundRHS);
1658
1659  /// Test whether the condition described by Pred, LHS, and RHS is true
1660  /// whenever the condition described by Pred, FoundLHS, and FoundRHS is
1661  /// true.
1662  bool isImpliedCondOperands(ICmpInst::Predicate Pred, const SCEV *LHS,
1663                             const SCEV *RHS, const SCEV *FoundLHS,
1664                             const SCEV *FoundRHS);
1665
1666  /// Test whether the condition described by Pred, LHS, and RHS is true
1667  /// whenever the condition described by Pred, FoundLHS, and FoundRHS is
1668  /// true. Here LHS is an operation that includes FoundLHS as one of its
1669  /// arguments.
1670  bool isImpliedViaOperations(ICmpInst::Predicate Pred,
1671                              const SCEV *LHS, const SCEV *RHS,
1672                              const SCEV *FoundLHS, const SCEV *FoundRHS,
1673                              unsigned Depth = 0);
1674
1675  /// Test whether the condition described by Pred, LHS, and RHS is true.
1676  /// Use only simple non-recursive types of checks, such as range analysis etc.
1677  bool isKnownViaNonRecursiveReasoning(ICmpInst::Predicate Pred,
1678                                       const SCEV *LHS, const SCEV *RHS);
1679
1680  /// Test whether the condition described by Pred, LHS, and RHS is true
1681  /// whenever the condition described by Pred, FoundLHS, and FoundRHS is
1682  /// true.
1683  bool isImpliedCondOperandsHelper(ICmpInst::Predicate Pred, const SCEV *LHS,
1684                                   const SCEV *RHS, const SCEV *FoundLHS,
1685                                   const SCEV *FoundRHS);
1686
1687  /// Test whether the condition described by Pred, LHS, and RHS is true
1688  /// whenever the condition described by Pred, FoundLHS, and FoundRHS is
1689  /// true.  Utility function used by isImpliedCondOperands.  Tries to get
1690  /// cases like "X `sgt` 0 => X - 1 `sgt` -1".
1691  bool isImpliedCondOperandsViaRanges(ICmpInst::Predicate Pred, const SCEV *LHS,
1692                                      const SCEV *RHS, const SCEV *FoundLHS,
1693                                      const SCEV *FoundRHS);
1694
1695  /// Return true if the condition denoted by \p LHS \p Pred \p RHS is implied
1696  /// by a call to \c @llvm.experimental.guard in \p BB.
1697  bool isImpliedViaGuard(BasicBlock *BB, ICmpInst::Predicate Pred,
1698                         const SCEV *LHS, const SCEV *RHS);
1699
1700  /// Test whether the condition described by Pred, LHS, and RHS is true
1701  /// whenever the condition described by Pred, FoundLHS, and FoundRHS is
1702  /// true.
1703  ///
1704  /// This routine tries to rule out certain kinds of integer overflow, and
1705  /// then tries to reason about arithmetic properties of the predicates.
1706  bool isImpliedCondOperandsViaNoOverflow(ICmpInst::Predicate Pred,
1707                                          const SCEV *LHS, const SCEV *RHS,
1708                                          const SCEV *FoundLHS,
1709                                          const SCEV *FoundRHS);
1710
1711  /// Test whether the condition described by Pred, LHS, and RHS is true
1712  /// whenever the condition described by Pred, FoundLHS, and FoundRHS is
1713  /// true.
1714  ///
1715  /// This routine tries to figure out predicate for Phis which are SCEVUnknown
1716  /// if it is true for every possible incoming value from their respective
1717  /// basic blocks.
1718  bool isImpliedViaMerge(ICmpInst::Predicate Pred,
1719                         const SCEV *LHS, const SCEV *RHS,
1720                         const SCEV *FoundLHS, const SCEV *FoundRHS,
1721                         unsigned Depth);
1722
1723  /// If we know that the specified Phi is in the header of its containing
1724  /// loop, we know the loop executes a constant number of times, and the PHI
1725  /// node is just a recurrence involving constants, fold it.
1726  Constant *getConstantEvolutionLoopExitValue(PHINode *PN, const APInt &BEs,
1727                                              const Loop *L);
1728
1729  /// Test if the given expression is known to satisfy the condition described
1730  /// by Pred and the known constant ranges of LHS and RHS.
1731  bool isKnownPredicateViaConstantRanges(ICmpInst::Predicate Pred,
1732                                         const SCEV *LHS, const SCEV *RHS);
1733
1734  /// Try to prove the condition described by "LHS Pred RHS" by ruling out
1735  /// integer overflow.
1736  ///
1737  /// For instance, this will return true for "A s< (A + C)<nsw>" if C is
1738  /// positive.
1739  bool isKnownPredicateViaNoOverflow(ICmpInst::Predicate Pred, const SCEV *LHS,
1740                                     const SCEV *RHS);
1741
1742  /// Try to split Pred LHS RHS into logical conjunctions (and's) and try to
1743  /// prove them individually.
1744  bool isKnownPredicateViaSplitting(ICmpInst::Predicate Pred, const SCEV *LHS,
1745                                    const SCEV *RHS);
1746
1747  /// Try to match the Expr as "(L + R)<Flags>".
1748  bool splitBinaryAdd(const SCEV *Expr, const SCEV *&L, const SCEV *&R,
1749                      SCEV::NoWrapFlags &Flags);
1750
1751  /// Compute \p LHS - \p RHS and returns the result as an APInt if it is a
1752  /// constant, and None if it isn't.
1753  ///
1754  /// This is intended to be a cheaper version of getMinusSCEV.  We can be
1755  /// frugal here since we just bail out of actually constructing and
1756  /// canonicalizing an expression in the cases where the result isn't going
1757  /// to be a constant.
1758  Optional<APInt> computeConstantDifference(const SCEV *LHS, const SCEV *RHS);
1759
1760  /// Drop memoized information computed for S.
1761  void forgetMemoizedResults(const SCEV *S);
1762
1763  /// Return an existing SCEV for V if there is one, otherwise return nullptr.
1764  const SCEV *getExistingSCEV(Value *V);
1765
1766  /// Return false iff given SCEV contains a SCEVUnknown with NULL value-
1767  /// pointer.
1768  bool checkValidity(const SCEV *S) const;
1769
1770  /// Return true if `ExtendOpTy`({`Start`,+,`Step`}) can be proved to be
1771  /// equal to {`ExtendOpTy`(`Start`),+,`ExtendOpTy`(`Step`)}.  This is
1772  /// equivalent to proving no signed (resp. unsigned) wrap in
1773  /// {`Start`,+,`Step`} if `ExtendOpTy` is `SCEVSignExtendExpr`
1774  /// (resp. `SCEVZeroExtendExpr`).
1775  template <typename ExtendOpTy>
1776  bool proveNoWrapByVaryingStart(const SCEV *Start, const SCEV *Step,
1777                                 const Loop *L);
1778
1779  /// Try to prove NSW or NUW on \p AR relying on ConstantRange manipulation.
1780  SCEV::NoWrapFlags proveNoWrapViaConstantRanges(const SCEVAddRecExpr *AR);
1781
1782  bool isMonotonicPredicateImpl(const SCEVAddRecExpr *LHS,
1783                                ICmpInst::Predicate Pred, bool &Increasing);
1784
1785  /// Return SCEV no-wrap flags that can be proven based on reasoning about
1786  /// how poison produced from no-wrap flags on this value (e.g. a nuw add)
1787  /// would trigger undefined behavior on overflow.
1788  SCEV::NoWrapFlags getNoWrapFlagsFromUB(const Value *V);
1789
1790  /// Return true if the SCEV corresponding to \p I is never poison.  Proving
1791  /// this is more complex than proving that just \p I is never poison, since
1792  /// SCEV commons expressions across control flow, and you can have cases
1793  /// like:
1794  ///
1795  ///   idx0 = a + b;
1796  ///   ptr[idx0] = 100;
1797  ///   if (<condition>) {
1798  ///     idx1 = a +nsw b;
1799  ///     ptr[idx1] = 200;
1800  ///   }
1801  ///
1802  /// where the SCEV expression (+ a b) is guaranteed to not be poison (and
1803  /// hence not sign-overflow) only if "<condition>" is true.  Since both
1804  /// `idx0` and `idx1` will be mapped to the same SCEV expression, (+ a b),
1805  /// it is not okay to annotate (+ a b) with <nsw> in the above example.
1806  bool isSCEVExprNeverPoison(const Instruction *I);
1807
1808  /// This is like \c isSCEVExprNeverPoison but it specifically works for
1809  /// instructions that will get mapped to SCEV add recurrences.  Return true
1810  /// if \p I will never generate poison under the assumption that \p I is an
1811  /// add recurrence on the loop \p L.
1812  bool isAddRecNeverPoison(const Instruction *I, const Loop *L);
1813
1814  /// Similar to createAddRecFromPHI, but with the additional flexibility of
1815  /// suggesting runtime overflow checks in case casts are encountered.
1816  /// If successful, the analysis records that for this loop, \p SymbolicPHI,
1817  /// which is the UnknownSCEV currently representing the PHI, can be rewritten
1818  /// into an AddRec, assuming some predicates; The function then returns the
1819  /// AddRec and the predicates as a pair, and caches this pair in
1820  /// PredicatedSCEVRewrites.
1821  /// If the analysis is not successful, a mapping from the \p SymbolicPHI to
1822  /// itself (with no predicates) is recorded, and a nullptr with an empty
1823  /// predicates vector is returned as a pair.
1824  Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
1825  createAddRecFromPHIWithCastsImpl(const SCEVUnknown *SymbolicPHI);
1826
1827  /// Compute the backedge taken count knowing the interval difference, the
1828  /// stride and presence of the equality in the comparison.
1829  const SCEV *computeBECount(const SCEV *Delta, const SCEV *Stride,
1830                             bool Equality);
1831
1832  /// Compute the maximum backedge count based on the range of values
1833  /// permitted by Start, End, and Stride. This is for loops of the form
1834  /// {Start, +, Stride} LT End.
1835  ///
1836  /// Precondition: the induction variable is known to be positive.  We *don't*
1837  /// assert these preconditions so please be careful.
1838  const SCEV *computeMaxBECountForLT(const SCEV *Start, const SCEV *Stride,
1839                                     const SCEV *End, unsigned BitWidth,
1840                                     bool IsSigned);
1841
1842  /// Verify if an linear IV with positive stride can overflow when in a
1843  /// less-than comparison, knowing the invariant term of the comparison,
1844  /// the stride and the knowledge of NSW/NUW flags on the recurrence.
1845  bool doesIVOverflowOnLT(const SCEV *RHS, const SCEV *Stride, bool IsSigned,
1846                          bool NoWrap);
1847
1848  /// Verify if an linear IV with negative stride can overflow when in a
1849  /// greater-than comparison, knowing the invariant term of the comparison,
1850  /// the stride and the knowledge of NSW/NUW flags on the recurrence.
1851  bool doesIVOverflowOnGT(const SCEV *RHS, const SCEV *Stride, bool IsSigned,
1852                          bool NoWrap);
1853
1854  /// Get add expr already created or create a new one.
1855  const SCEV *getOrCreateAddExpr(ArrayRef<const SCEV *> Ops,
1856                                 SCEV::NoWrapFlags Flags);
1857
1858  /// Get mul expr already created or create a new one.
1859  const SCEV *getOrCreateMulExpr(ArrayRef<const SCEV *> Ops,
1860                                 SCEV::NoWrapFlags Flags);
1861
1862  // Get addrec expr already created or create a new one.
1863  const SCEV *getOrCreateAddRecExpr(ArrayRef<const SCEV *> Ops,
1864                                    const Loop *L, SCEV::NoWrapFlags Flags);
1865
1866  /// Return x if \p Val is f(x) where f is a 1-1 function.
1867  const SCEV *stripInjectiveFunctions(const SCEV *Val) const;
1868
1869  /// Find all of the loops transitively used in \p S, and fill \p LoopsUsed.
1870  /// A loop is considered "used" by an expression if it contains
1871  /// an add rec on said loop.
1872  void getUsedLoops(const SCEV *S, SmallPtrSetImpl<const Loop *> &LoopsUsed);
1873
1874  /// Find all of the loops transitively used in \p S, and update \c LoopUsers
1875  /// accordingly.
1876  void addToLoopUseLists(const SCEV *S);
1877
1878  /// Try to match the pattern generated by getURemExpr(A, B). If successful,
1879  /// Assign A and B to LHS and RHS, respectively.
1880  bool matchURem(const SCEV *Expr, const SCEV *&LHS, const SCEV *&RHS);
1881
1882  /// Look for a SCEV expression with type `SCEVType` and operands `Ops` in
1883  /// `UniqueSCEVs`.
1884  ///
1885  /// The first component of the returned tuple is the SCEV if found and null
1886  /// otherwise.  The second component is the `FoldingSetNodeID` that was
1887  /// constructed to look up the SCEV and the third component is the insertion
1888  /// point.
1889  std::tuple<const SCEV *, FoldingSetNodeID, void *>
1890  findExistingSCEVInCache(int SCEVType, ArrayRef<const SCEV *> Ops);
1891
1892  FoldingSet<SCEV> UniqueSCEVs;
1893  FoldingSet<SCEVPredicate> UniquePreds;
1894  BumpPtrAllocator SCEVAllocator;
1895
1896  /// This maps loops to a list of SCEV expressions that (transitively) use said
1897  /// loop.
1898  DenseMap<const Loop *, SmallVector<const SCEV *, 4>> LoopUsers;
1899
1900  /// Cache tentative mappings from UnknownSCEVs in a Loop, to a SCEV expression
1901  /// they can be rewritten into under certain predicates.
1902  DenseMap<std::pair<const SCEVUnknown *, const Loop *>,
1903           std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
1904      PredicatedSCEVRewrites;
1905
1906  /// The head of a linked list of all SCEVUnknown values that have been
1907  /// allocated. This is used by releaseMemory to locate them all and call
1908  /// their destructors.
1909  SCEVUnknown *FirstUnknown = nullptr;
1910};
1911
1912/// Analysis pass that exposes the \c ScalarEvolution for a function.
1913class ScalarEvolutionAnalysis
1914    : public AnalysisInfoMixin<ScalarEvolutionAnalysis> {
1915  friend AnalysisInfoMixin<ScalarEvolutionAnalysis>;
1916
1917  static AnalysisKey Key;
1918
1919public:
1920  using Result = ScalarEvolution;
1921
1922  ScalarEvolution run(Function &F, FunctionAnalysisManager &AM);
1923};
1924
1925/// Verifier pass for the \c ScalarEvolutionAnalysis results.
1926class ScalarEvolutionVerifierPass
1927    : public PassInfoMixin<ScalarEvolutionVerifierPass> {
1928public:
1929  PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM);
1930};
1931
1932/// Printer pass for the \c ScalarEvolutionAnalysis results.
1933class ScalarEvolutionPrinterPass
1934    : public PassInfoMixin<ScalarEvolutionPrinterPass> {
1935  raw_ostream &OS;
1936
1937public:
1938  explicit ScalarEvolutionPrinterPass(raw_ostream &OS) : OS(OS) {}
1939
1940  PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM);
1941};
1942
1943class ScalarEvolutionWrapperPass : public FunctionPass {
1944  std::unique_ptr<ScalarEvolution> SE;
1945
1946public:
1947  static char ID;
1948
1949  ScalarEvolutionWrapperPass();
1950
1951  ScalarEvolution &getSE() { return *SE; }
1952  const ScalarEvolution &getSE() const { return *SE; }
1953
1954  bool runOnFunction(Function &F) override;
1955  void releaseMemory() override;
1956  void getAnalysisUsage(AnalysisUsage &AU) const override;
1957  void print(raw_ostream &OS, const Module * = nullptr) const override;
1958  void verifyAnalysis() const override;
1959};
1960
1961/// An interface layer with SCEV used to manage how we see SCEV expressions
1962/// for values in the context of existing predicates. We can add new
1963/// predicates, but we cannot remove them.
1964///
1965/// This layer has multiple purposes:
1966///   - provides a simple interface for SCEV versioning.
1967///   - guarantees that the order of transformations applied on a SCEV
1968///     expression for a single Value is consistent across two different
1969///     getSCEV calls. This means that, for example, once we've obtained
1970///     an AddRec expression for a certain value through expression
1971///     rewriting, we will continue to get an AddRec expression for that
1972///     Value.
1973///   - lowers the number of expression rewrites.
1974class PredicatedScalarEvolution {
1975public:
1976  PredicatedScalarEvolution(ScalarEvolution &SE, Loop &L);
1977
1978  const SCEVUnionPredicate &getUnionPredicate() const;
1979
1980  /// Returns the SCEV expression of V, in the context of the current SCEV
1981  /// predicate.  The order of transformations applied on the expression of V
1982  /// returned by ScalarEvolution is guaranteed to be preserved, even when
1983  /// adding new predicates.
1984  const SCEV *getSCEV(Value *V);
1985
1986  /// Get the (predicated) backedge count for the analyzed loop.
1987  const SCEV *getBackedgeTakenCount();
1988
1989  /// Adds a new predicate.
1990  void addPredicate(const SCEVPredicate &Pred);
1991
1992  /// Attempts to produce an AddRecExpr for V by adding additional SCEV
1993  /// predicates. If we can't transform the expression into an AddRecExpr we
1994  /// return nullptr and not add additional SCEV predicates to the current
1995  /// context.
1996  const SCEVAddRecExpr *getAsAddRec(Value *V);
1997
1998  /// Proves that V doesn't overflow by adding SCEV predicate.
1999  void setNoOverflow(Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags);
2000
2001  /// Returns true if we've proved that V doesn't wrap by means of a SCEV
2002  /// predicate.
2003  bool hasNoOverflow(Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags);
2004
2005  /// Returns the ScalarEvolution analysis used.
2006  ScalarEvolution *getSE() const { return &SE; }
2007
2008  /// We need to explicitly define the copy constructor because of FlagsMap.
2009  PredicatedScalarEvolution(const PredicatedScalarEvolution &);
2010
2011  /// Print the SCEV mappings done by the Predicated Scalar Evolution.
2012  /// The printed text is indented by \p Depth.
2013  void print(raw_ostream &OS, unsigned Depth) const;
2014
2015  /// Check if \p AR1 and \p AR2 are equal, while taking into account
2016  /// Equal predicates in Preds.
2017  bool areAddRecsEqualWithPreds(const SCEVAddRecExpr *AR1,
2018                                const SCEVAddRecExpr *AR2) const;
2019
2020private:
2021  /// Increments the version number of the predicate.  This needs to be called
2022  /// every time the SCEV predicate changes.
2023  void updateGeneration();
2024
2025  /// Holds a SCEV and the version number of the SCEV predicate used to
2026  /// perform the rewrite of the expression.
2027  using RewriteEntry = std::pair<unsigned, const SCEV *>;
2028
2029  /// Maps a SCEV to the rewrite result of that SCEV at a certain version
2030  /// number. If this number doesn't match the current Generation, we will
2031  /// need to do a rewrite. To preserve the transformation order of previous
2032  /// rewrites, we will rewrite the previous result instead of the original
2033  /// SCEV.
2034  DenseMap<const SCEV *, RewriteEntry> RewriteMap;
2035
2036  /// Records what NoWrap flags we've added to a Value *.
2037  ValueMap<Value *, SCEVWrapPredicate::IncrementWrapFlags> FlagsMap;
2038
2039  /// The ScalarEvolution analysis.
2040  ScalarEvolution &SE;
2041
2042  /// The analyzed Loop.
2043  const Loop &L;
2044
2045  /// The SCEVPredicate that forms our context. We will rewrite all
2046  /// expressions assuming that this predicate true.
2047  SCEVUnionPredicate Preds;
2048
2049  /// Marks the version of the SCEV predicate used. When rewriting a SCEV
2050  /// expression we mark it with the version of the predicate. We use this to
2051  /// figure out if the predicate has changed from the last rewrite of the
2052  /// SCEV. If so, we need to perform a new rewrite.
2053  unsigned Generation = 0;
2054
2055  /// The backedge taken count.
2056  const SCEV *BackedgeCount = nullptr;
2057};
2058
2059} // end namespace llvm
2060
2061#endif // LLVM_ANALYSIS_SCALAREVOLUTION_H
2062