MemorySSAUpdater.h revision 360784
1//===- MemorySSAUpdater.h - Memory SSA Updater-------------------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// \file
10// An automatic updater for MemorySSA that handles arbitrary insertion,
11// deletion, and moves.  It performs phi insertion where necessary, and
12// automatically updates the MemorySSA IR to be correct.
13// While updating loads or removing instructions is often easy enough to not
14// need this, updating stores should generally not be attemped outside this
15// API.
16//
17// Basic API usage:
18// Create the memory access you want for the instruction (this is mainly so
19// we know where it is, without having to duplicate the entire set of create
20// functions MemorySSA supports).
21// Call insertDef or insertUse depending on whether it's a MemoryUse or a
22// MemoryDef.
23// That's it.
24//
25// For moving, first, move the instruction itself using the normal SSA
26// instruction moving API, then just call moveBefore, moveAfter,or moveTo with
27// the right arguments.
28//
29//===----------------------------------------------------------------------===//
30
31#ifndef LLVM_ANALYSIS_MEMORYSSAUPDATER_H
32#define LLVM_ANALYSIS_MEMORYSSAUPDATER_H
33
34#include "llvm/ADT/SetVector.h"
35#include "llvm/ADT/SmallPtrSet.h"
36#include "llvm/ADT/SmallSet.h"
37#include "llvm/ADT/SmallVector.h"
38#include "llvm/Analysis/LoopInfo.h"
39#include "llvm/Analysis/LoopIterator.h"
40#include "llvm/Analysis/MemorySSA.h"
41#include "llvm/IR/BasicBlock.h"
42#include "llvm/IR/CFGDiff.h"
43#include "llvm/IR/Dominators.h"
44#include "llvm/IR/Module.h"
45#include "llvm/IR/OperandTraits.h"
46#include "llvm/IR/Type.h"
47#include "llvm/IR/Use.h"
48#include "llvm/IR/User.h"
49#include "llvm/IR/Value.h"
50#include "llvm/IR/ValueHandle.h"
51#include "llvm/IR/ValueMap.h"
52#include "llvm/Pass.h"
53#include "llvm/Support/Casting.h"
54#include "llvm/Support/ErrorHandling.h"
55
56namespace llvm {
57
58class Function;
59class Instruction;
60class MemoryAccess;
61class LLVMContext;
62class raw_ostream;
63
64using ValueToValueMapTy = ValueMap<const Value *, WeakTrackingVH>;
65using PhiToDefMap = SmallDenseMap<MemoryPhi *, MemoryAccess *>;
66using CFGUpdate = cfg::Update<BasicBlock *>;
67using GraphDiffInvBBPair =
68    std::pair<const GraphDiff<BasicBlock *> *, Inverse<BasicBlock *>>;
69
70class MemorySSAUpdater {
71private:
72  MemorySSA *MSSA;
73
74  /// We use WeakVH rather than a costly deletion to deal with dangling pointers.
75  /// MemoryPhis are created eagerly and sometimes get zapped shortly afterwards.
76  SmallVector<WeakVH, 16> InsertedPHIs;
77
78  SmallPtrSet<BasicBlock *, 8> VisitedBlocks;
79  SmallSet<AssertingVH<MemoryPhi>, 8> NonOptPhis;
80
81public:
82  MemorySSAUpdater(MemorySSA *MSSA) : MSSA(MSSA) {}
83
84  /// Insert a definition into the MemorySSA IR.  RenameUses will rename any use
85  /// below the new def block (and any inserted phis).  RenameUses should be set
86  /// to true if the definition may cause new aliases for loads below it.  This
87  /// is not the case for hoisting or sinking or other forms of code *movement*.
88  /// It *is* the case for straight code insertion.
89  /// For example:
90  /// store a
91  /// if (foo) { }
92  /// load a
93  ///
94  /// Moving the store into the if block, and calling insertDef, does not
95  /// require RenameUses.
96  /// However, changing it to:
97  /// store a
98  /// if (foo) { store b }
99  /// load a
100  /// Where a mayalias b, *does* require RenameUses be set to true.
101  void insertDef(MemoryDef *Def, bool RenameUses = false);
102  void insertUse(MemoryUse *Use, bool RenameUses = false);
103  /// Update the MemoryPhi in `To` following an edge deletion between `From` and
104  /// `To`. If `To` becomes unreachable, a call to removeBlocks should be made.
105  void removeEdge(BasicBlock *From, BasicBlock *To);
106  /// Update the MemoryPhi in `To` to have a single incoming edge from `From`,
107  /// following a CFG change that replaced multiple edges (switch) with a direct
108  /// branch.
109  void removeDuplicatePhiEdgesBetween(const BasicBlock *From,
110                                      const BasicBlock *To);
111  /// Update MemorySSA when inserting a unique backedge block for a loop.
112  void updatePhisWhenInsertingUniqueBackedgeBlock(BasicBlock *LoopHeader,
113                                                  BasicBlock *LoopPreheader,
114                                                  BasicBlock *BackedgeBlock);
115  /// Update MemorySSA after a loop was cloned, given the blocks in RPO order,
116  /// the exit blocks and a 1:1 mapping of all blocks and instructions
117  /// cloned. This involves duplicating all defs and uses in the cloned blocks
118  /// Updating phi nodes in exit block successors is done separately.
119  void updateForClonedLoop(const LoopBlocksRPO &LoopBlocks,
120                           ArrayRef<BasicBlock *> ExitBlocks,
121                           const ValueToValueMapTy &VM,
122                           bool IgnoreIncomingWithNoClones = false);
123  // Block BB was fully or partially cloned into its predecessor P1. Map
124  // contains the 1:1 mapping of instructions cloned and VM[BB]=P1.
125  void updateForClonedBlockIntoPred(BasicBlock *BB, BasicBlock *P1,
126                                    const ValueToValueMapTy &VM);
127  /// Update phi nodes in exit block successors following cloning. Exit blocks
128  /// that were not cloned don't have additional predecessors added.
129  void updateExitBlocksForClonedLoop(ArrayRef<BasicBlock *> ExitBlocks,
130                                     const ValueToValueMapTy &VMap,
131                                     DominatorTree &DT);
132  void updateExitBlocksForClonedLoop(
133      ArrayRef<BasicBlock *> ExitBlocks,
134      ArrayRef<std::unique_ptr<ValueToValueMapTy>> VMaps, DominatorTree &DT);
135
136  /// Apply CFG updates, analogous with the DT edge updates.
137  void applyUpdates(ArrayRef<CFGUpdate> Updates, DominatorTree &DT);
138  /// Apply CFG insert updates, analogous with the DT edge updates.
139  void applyInsertUpdates(ArrayRef<CFGUpdate> Updates, DominatorTree &DT);
140
141  void moveBefore(MemoryUseOrDef *What, MemoryUseOrDef *Where);
142  void moveAfter(MemoryUseOrDef *What, MemoryUseOrDef *Where);
143  void moveToPlace(MemoryUseOrDef *What, BasicBlock *BB,
144                   MemorySSA::InsertionPlace Where);
145  /// `From` block was spliced into `From` and `To`. There is a CFG edge from
146  /// `From` to `To`. Move all accesses from `From` to `To` starting at
147  /// instruction `Start`. `To` is newly created BB, so empty of
148  /// MemorySSA::MemoryAccesses. Edges are already updated, so successors of
149  /// `To` with MPhi nodes need to update incoming block.
150  /// |------|        |------|
151  /// | From |        | From |
152  /// |      |        |------|
153  /// |      |           ||
154  /// |      |   =>      \/
155  /// |      |        |------|  <- Start
156  /// |      |        |  To  |
157  /// |------|        |------|
158  void moveAllAfterSpliceBlocks(BasicBlock *From, BasicBlock *To,
159                                Instruction *Start);
160  /// `From` block was merged into `To`. There is a CFG edge from `To` to
161  /// `From`.`To` still branches to `From`, but all instructions were moved and
162  /// `From` is now an empty block; `From` is about to be deleted. Move all
163  /// accesses from `From` to `To` starting at instruction `Start`. `To` may
164  /// have multiple successors, `From` has a single predecessor. `From` may have
165  /// successors with MPhi nodes, replace their incoming block with `To`.
166  /// |------|        |------|
167  /// |  To  |        |  To  |
168  /// |------|        |      |
169  ///    ||      =>   |      |
170  ///    \/           |      |
171  /// |------|        |      |  <- Start
172  /// | From |        |      |
173  /// |------|        |------|
174  void moveAllAfterMergeBlocks(BasicBlock *From, BasicBlock *To,
175                               Instruction *Start);
176  /// A new empty BasicBlock (New) now branches directly to Old. Some of
177  /// Old's predecessors (Preds) are now branching to New instead of Old.
178  /// If New is the only predecessor, move Old's Phi, if present, to New.
179  /// Otherwise, add a new Phi in New with appropriate incoming values, and
180  /// update the incoming values in Old's Phi node too, if present.
181  void wireOldPredecessorsToNewImmediatePredecessor(
182      BasicBlock *Old, BasicBlock *New, ArrayRef<BasicBlock *> Preds,
183      bool IdenticalEdgesWereMerged = true);
184  // The below are utility functions. Other than creation of accesses to pass
185  // to insertDef, and removeAccess to remove accesses, you should generally
186  // not attempt to update memoryssa yourself. It is very non-trivial to get
187  // the edge cases right, and the above calls already operate in near-optimal
188  // time bounds.
189
190  /// Create a MemoryAccess in MemorySSA at a specified point in a block,
191  /// with a specified clobbering definition.
192  ///
193  /// Returns the new MemoryAccess.
194  /// This should be called when a memory instruction is created that is being
195  /// used to replace an existing memory instruction. It will *not* create PHI
196  /// nodes, or verify the clobbering definition. The insertion place is used
197  /// solely to determine where in the memoryssa access lists the instruction
198  /// will be placed. The caller is expected to keep ordering the same as
199  /// instructions.
200  /// It will return the new MemoryAccess.
201  /// Note: If a MemoryAccess already exists for I, this function will make it
202  /// inaccessible and it *must* have removeMemoryAccess called on it.
203  MemoryAccess *createMemoryAccessInBB(Instruction *I, MemoryAccess *Definition,
204                                       const BasicBlock *BB,
205                                       MemorySSA::InsertionPlace Point);
206
207  /// Create a MemoryAccess in MemorySSA before or after an existing
208  /// MemoryAccess.
209  ///
210  /// Returns the new MemoryAccess.
211  /// This should be called when a memory instruction is created that is being
212  /// used to replace an existing memory instruction. It will *not* create PHI
213  /// nodes, or verify the clobbering definition.
214  ///
215  /// Note: If a MemoryAccess already exists for I, this function will make it
216  /// inaccessible and it *must* have removeMemoryAccess called on it.
217  MemoryUseOrDef *createMemoryAccessBefore(Instruction *I,
218                                           MemoryAccess *Definition,
219                                           MemoryUseOrDef *InsertPt);
220  MemoryUseOrDef *createMemoryAccessAfter(Instruction *I,
221                                          MemoryAccess *Definition,
222                                          MemoryAccess *InsertPt);
223
224  /// Remove a MemoryAccess from MemorySSA, including updating all
225  /// definitions and uses.
226  /// This should be called when a memory instruction that has a MemoryAccess
227  /// associated with it is erased from the program.  For example, if a store or
228  /// load is simply erased (not replaced), removeMemoryAccess should be called
229  /// on the MemoryAccess for that store/load.
230  void removeMemoryAccess(MemoryAccess *, bool OptimizePhis = false);
231
232  /// Remove MemoryAccess for a given instruction, if a MemoryAccess exists.
233  /// This should be called when an instruction (load/store) is deleted from
234  /// the program.
235  void removeMemoryAccess(const Instruction *I, bool OptimizePhis = false) {
236    if (MemoryAccess *MA = MSSA->getMemoryAccess(I))
237      removeMemoryAccess(MA, OptimizePhis);
238  }
239
240  /// Remove all MemoryAcceses in a set of BasicBlocks about to be deleted.
241  /// Assumption we make here: all uses of deleted defs and phi must either
242  /// occur in blocks about to be deleted (thus will be deleted as well), or
243  /// they occur in phis that will simply lose an incoming value.
244  /// Deleted blocks still have successor info, but their predecessor edges and
245  /// Phi nodes may already be updated. Instructions in DeadBlocks should be
246  /// deleted after this call.
247  void removeBlocks(const SmallSetVector<BasicBlock *, 8> &DeadBlocks);
248
249  /// Instruction I will be changed to an unreachable. Remove all accesses in
250  /// I's block that follow I (inclusive), and update the Phis in the blocks'
251  /// successors.
252  void changeToUnreachable(const Instruction *I);
253
254  /// Conditional branch BI is changed or replaced with an unconditional branch
255  /// to `To`. Update Phis in BI's successors to remove BI's BB.
256  void changeCondBranchToUnconditionalTo(const BranchInst *BI,
257                                         const BasicBlock *To);
258
259  /// Get handle on MemorySSA.
260  MemorySSA* getMemorySSA() const { return MSSA; }
261
262private:
263  // Move What before Where in the MemorySSA IR.
264  template <class WhereType>
265  void moveTo(MemoryUseOrDef *What, BasicBlock *BB, WhereType Where);
266  // Move all memory accesses from `From` to `To` starting at `Start`.
267  // Restrictions apply, see public wrappers of this method.
268  void moveAllAccesses(BasicBlock *From, BasicBlock *To, Instruction *Start);
269  MemoryAccess *getPreviousDef(MemoryAccess *);
270  MemoryAccess *getPreviousDefInBlock(MemoryAccess *);
271  MemoryAccess *
272  getPreviousDefFromEnd(BasicBlock *,
273                        DenseMap<BasicBlock *, TrackingVH<MemoryAccess>> &);
274  MemoryAccess *
275  getPreviousDefRecursive(BasicBlock *,
276                          DenseMap<BasicBlock *, TrackingVH<MemoryAccess>> &);
277  MemoryAccess *recursePhi(MemoryAccess *Phi);
278  MemoryAccess *tryRemoveTrivialPhi(MemoryPhi *Phi);
279  template <class RangeType>
280  MemoryAccess *tryRemoveTrivialPhi(MemoryPhi *Phi, RangeType &Operands);
281  void tryRemoveTrivialPhis(ArrayRef<WeakVH> UpdatedPHIs);
282  void fixupDefs(const SmallVectorImpl<WeakVH> &);
283  // Clone all uses and defs from BB to NewBB given a 1:1 map of all
284  // instructions and blocks cloned, and a map of MemoryPhi : Definition
285  // (MemoryAccess Phi or Def). VMap maps old instructions to cloned
286  // instructions and old blocks to cloned blocks. MPhiMap, is created in the
287  // caller of this private method, and maps existing MemoryPhis to new
288  // definitions that new MemoryAccesses must point to. These definitions may
289  // not necessarily be MemoryPhis themselves, they may be MemoryDefs. As such,
290  // the map is between MemoryPhis and MemoryAccesses, where the MemoryAccesses
291  // may be MemoryPhis or MemoryDefs and not MemoryUses.
292  // If CloneWasSimplified = true, the clone was exact. Otherwise, assume that
293  // the clone involved simplifications that may have: (1) turned a MemoryUse
294  // into an instruction that MemorySSA has no representation for, or (2) turned
295  // a MemoryDef into a MemoryUse or an instruction that MemorySSA has no
296  // representation for. No other cases are supported.
297  void cloneUsesAndDefs(BasicBlock *BB, BasicBlock *NewBB,
298                        const ValueToValueMapTy &VMap, PhiToDefMap &MPhiMap,
299                        bool CloneWasSimplified = false);
300  template <typename Iter>
301  void privateUpdateExitBlocksForClonedLoop(ArrayRef<BasicBlock *> ExitBlocks,
302                                            Iter ValuesBegin, Iter ValuesEnd,
303                                            DominatorTree &DT);
304  void applyInsertUpdates(ArrayRef<CFGUpdate>, DominatorTree &DT,
305                          const GraphDiff<BasicBlock *> *GD);
306};
307} // end namespace llvm
308
309#endif // LLVM_ANALYSIS_MEMORYSSAUPDATER_H
310