DependenceAnalysis.h revision 360784
1//===-- llvm/Analysis/DependenceAnalysis.h -------------------- -*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// DependenceAnalysis is an LLVM pass that analyses dependences between memory
10// accesses. Currently, it is an implementation of the approach described in
11//
12//            Practical Dependence Testing
13//            Goff, Kennedy, Tseng
14//            PLDI 1991
15//
16// There's a single entry point that analyzes the dependence between a pair
17// of memory references in a function, returning either NULL, for no dependence,
18// or a more-or-less detailed description of the dependence between them.
19//
20// This pass exists to support the DependenceGraph pass. There are two separate
21// passes because there's a useful separation of concerns. A dependence exists
22// if two conditions are met:
23//
24//    1) Two instructions reference the same memory location, and
25//    2) There is a flow of control leading from one instruction to the other.
26//
27// DependenceAnalysis attacks the first condition; DependenceGraph will attack
28// the second (it's not yet ready).
29//
30// Please note that this is work in progress and the interface is subject to
31// change.
32//
33// Plausible changes:
34//    Return a set of more precise dependences instead of just one dependence
35//    summarizing all.
36//
37//===----------------------------------------------------------------------===//
38
39#ifndef LLVM_ANALYSIS_DEPENDENCEANALYSIS_H
40#define LLVM_ANALYSIS_DEPENDENCEANALYSIS_H
41
42#include "llvm/ADT/SmallBitVector.h"
43#include "llvm/Analysis/AliasAnalysis.h"
44#include "llvm/IR/Instructions.h"
45#include "llvm/Pass.h"
46
47namespace llvm {
48template <typename T> class ArrayRef;
49  class Loop;
50  class LoopInfo;
51  class ScalarEvolution;
52  class SCEV;
53  class SCEVConstant;
54  class raw_ostream;
55
56  /// Dependence - This class represents a dependence between two memory
57  /// memory references in a function. It contains minimal information and
58  /// is used in the very common situation where the compiler is unable to
59  /// determine anything beyond the existence of a dependence; that is, it
60  /// represents a confused dependence (see also FullDependence). In most
61  /// cases (for output, flow, and anti dependences), the dependence implies
62  /// an ordering, where the source must precede the destination; in contrast,
63  /// input dependences are unordered.
64  ///
65  /// When a dependence graph is built, each Dependence will be a member of
66  /// the set of predecessor edges for its destination instruction and a set
67  /// if successor edges for its source instruction. These sets are represented
68  /// as singly-linked lists, with the "next" fields stored in the dependence
69  /// itelf.
70  class Dependence {
71  protected:
72    Dependence(Dependence &&) = default;
73    Dependence &operator=(Dependence &&) = default;
74
75  public:
76    Dependence(Instruction *Source,
77               Instruction *Destination) :
78      Src(Source),
79      Dst(Destination),
80      NextPredecessor(nullptr),
81      NextSuccessor(nullptr) {}
82    virtual ~Dependence() {}
83
84    /// Dependence::DVEntry - Each level in the distance/direction vector
85    /// has a direction (or perhaps a union of several directions), and
86    /// perhaps a distance.
87    struct DVEntry {
88      enum { NONE = 0,
89             LT = 1,
90             EQ = 2,
91             LE = 3,
92             GT = 4,
93             NE = 5,
94             GE = 6,
95             ALL = 7 };
96      unsigned char Direction : 3; // Init to ALL, then refine.
97      bool Scalar    : 1; // Init to true.
98      bool PeelFirst : 1; // Peeling the first iteration will break dependence.
99      bool PeelLast  : 1; // Peeling the last iteration will break the dependence.
100      bool Splitable : 1; // Splitting the loop will break dependence.
101      const SCEV *Distance; // NULL implies no distance available.
102      DVEntry() : Direction(ALL), Scalar(true), PeelFirst(false),
103                  PeelLast(false), Splitable(false), Distance(nullptr) { }
104    };
105
106    /// getSrc - Returns the source instruction for this dependence.
107    ///
108    Instruction *getSrc() const { return Src; }
109
110    /// getDst - Returns the destination instruction for this dependence.
111    ///
112    Instruction *getDst() const { return Dst; }
113
114    /// isInput - Returns true if this is an input dependence.
115    ///
116    bool isInput() const;
117
118    /// isOutput - Returns true if this is an output dependence.
119    ///
120    bool isOutput() const;
121
122    /// isFlow - Returns true if this is a flow (aka true) dependence.
123    ///
124    bool isFlow() const;
125
126    /// isAnti - Returns true if this is an anti dependence.
127    ///
128    bool isAnti() const;
129
130    /// isOrdered - Returns true if dependence is Output, Flow, or Anti
131    ///
132    bool isOrdered() const { return isOutput() || isFlow() || isAnti(); }
133
134    /// isUnordered - Returns true if dependence is Input
135    ///
136    bool isUnordered() const { return isInput(); }
137
138    /// isLoopIndependent - Returns true if this is a loop-independent
139    /// dependence.
140    virtual bool isLoopIndependent() const { return true; }
141
142    /// isConfused - Returns true if this dependence is confused
143    /// (the compiler understands nothing and makes worst-case
144    /// assumptions).
145    virtual bool isConfused() const { return true; }
146
147    /// isConsistent - Returns true if this dependence is consistent
148    /// (occurs every time the source and destination are executed).
149    virtual bool isConsistent() const { return false; }
150
151    /// getLevels - Returns the number of common loops surrounding the
152    /// source and destination of the dependence.
153    virtual unsigned getLevels() const { return 0; }
154
155    /// getDirection - Returns the direction associated with a particular
156    /// level.
157    virtual unsigned getDirection(unsigned Level) const { return DVEntry::ALL; }
158
159    /// getDistance - Returns the distance (or NULL) associated with a
160    /// particular level.
161    virtual const SCEV *getDistance(unsigned Level) const { return nullptr; }
162
163    /// isPeelFirst - Returns true if peeling the first iteration from
164    /// this loop will break this dependence.
165    virtual bool isPeelFirst(unsigned Level) const { return false; }
166
167    /// isPeelLast - Returns true if peeling the last iteration from
168    /// this loop will break this dependence.
169    virtual bool isPeelLast(unsigned Level) const { return false; }
170
171    /// isSplitable - Returns true if splitting this loop will break
172    /// the dependence.
173    virtual bool isSplitable(unsigned Level) const { return false; }
174
175    /// isScalar - Returns true if a particular level is scalar; that is,
176    /// if no subscript in the source or destination mention the induction
177    /// variable associated with the loop at this level.
178    virtual bool isScalar(unsigned Level) const;
179
180    /// getNextPredecessor - Returns the value of the NextPredecessor
181    /// field.
182    const Dependence *getNextPredecessor() const { return NextPredecessor; }
183
184    /// getNextSuccessor - Returns the value of the NextSuccessor
185    /// field.
186    const Dependence *getNextSuccessor() const { return NextSuccessor; }
187
188    /// setNextPredecessor - Sets the value of the NextPredecessor
189    /// field.
190    void setNextPredecessor(const Dependence *pred) { NextPredecessor = pred; }
191
192    /// setNextSuccessor - Sets the value of the NextSuccessor
193    /// field.
194    void setNextSuccessor(const Dependence *succ) { NextSuccessor = succ; }
195
196    /// dump - For debugging purposes, dumps a dependence to OS.
197    ///
198    void dump(raw_ostream &OS) const;
199
200  private:
201    Instruction *Src, *Dst;
202    const Dependence *NextPredecessor, *NextSuccessor;
203    friend class DependenceInfo;
204  };
205
206  /// FullDependence - This class represents a dependence between two memory
207  /// references in a function. It contains detailed information about the
208  /// dependence (direction vectors, etc.) and is used when the compiler is
209  /// able to accurately analyze the interaction of the references; that is,
210  /// it is not a confused dependence (see Dependence). In most cases
211  /// (for output, flow, and anti dependences), the dependence implies an
212  /// ordering, where the source must precede the destination; in contrast,
213  /// input dependences are unordered.
214  class FullDependence final : public Dependence {
215  public:
216    FullDependence(Instruction *Src, Instruction *Dst, bool LoopIndependent,
217                   unsigned Levels);
218
219    /// isLoopIndependent - Returns true if this is a loop-independent
220    /// dependence.
221    bool isLoopIndependent() const override { return LoopIndependent; }
222
223    /// isConfused - Returns true if this dependence is confused
224    /// (the compiler understands nothing and makes worst-case
225    /// assumptions).
226    bool isConfused() const override { return false; }
227
228    /// isConsistent - Returns true if this dependence is consistent
229    /// (occurs every time the source and destination are executed).
230    bool isConsistent() const override { return Consistent; }
231
232    /// getLevels - Returns the number of common loops surrounding the
233    /// source and destination of the dependence.
234    unsigned getLevels() const override { return Levels; }
235
236    /// getDirection - Returns the direction associated with a particular
237    /// level.
238    unsigned getDirection(unsigned Level) const override;
239
240    /// getDistance - Returns the distance (or NULL) associated with a
241    /// particular level.
242    const SCEV *getDistance(unsigned Level) const override;
243
244    /// isPeelFirst - Returns true if peeling the first iteration from
245    /// this loop will break this dependence.
246    bool isPeelFirst(unsigned Level) const override;
247
248    /// isPeelLast - Returns true if peeling the last iteration from
249    /// this loop will break this dependence.
250    bool isPeelLast(unsigned Level) const override;
251
252    /// isSplitable - Returns true if splitting the loop will break
253    /// the dependence.
254    bool isSplitable(unsigned Level) const override;
255
256    /// isScalar - Returns true if a particular level is scalar; that is,
257    /// if no subscript in the source or destination mention the induction
258    /// variable associated with the loop at this level.
259    bool isScalar(unsigned Level) const override;
260
261  private:
262    unsigned short Levels;
263    bool LoopIndependent;
264    bool Consistent; // Init to true, then refine.
265    std::unique_ptr<DVEntry[]> DV;
266    friend class DependenceInfo;
267  };
268
269  /// DependenceInfo - This class is the main dependence-analysis driver.
270  ///
271  class DependenceInfo {
272  public:
273    DependenceInfo(Function *F, AliasAnalysis *AA, ScalarEvolution *SE,
274                   LoopInfo *LI)
275        : AA(AA), SE(SE), LI(LI), F(F) {}
276
277    /// Handle transitive invalidation when the cached analysis results go away.
278    bool invalidate(Function &F, const PreservedAnalyses &PA,
279                    FunctionAnalysisManager::Invalidator &Inv);
280
281    /// depends - Tests for a dependence between the Src and Dst instructions.
282    /// Returns NULL if no dependence; otherwise, returns a Dependence (or a
283    /// FullDependence) with as much information as can be gleaned.
284    /// The flag PossiblyLoopIndependent should be set by the caller
285    /// if it appears that control flow can reach from Src to Dst
286    /// without traversing a loop back edge.
287    std::unique_ptr<Dependence> depends(Instruction *Src,
288                                        Instruction *Dst,
289                                        bool PossiblyLoopIndependent);
290
291    /// getSplitIteration - Give a dependence that's splittable at some
292    /// particular level, return the iteration that should be used to split
293    /// the loop.
294    ///
295    /// Generally, the dependence analyzer will be used to build
296    /// a dependence graph for a function (basically a map from instructions
297    /// to dependences). Looking for cycles in the graph shows us loops
298    /// that cannot be trivially vectorized/parallelized.
299    ///
300    /// We can try to improve the situation by examining all the dependences
301    /// that make up the cycle, looking for ones we can break.
302    /// Sometimes, peeling the first or last iteration of a loop will break
303    /// dependences, and there are flags for those possibilities.
304    /// Sometimes, splitting a loop at some other iteration will do the trick,
305    /// and we've got a flag for that case. Rather than waste the space to
306    /// record the exact iteration (since we rarely know), we provide
307    /// a method that calculates the iteration. It's a drag that it must work
308    /// from scratch, but wonderful in that it's possible.
309    ///
310    /// Here's an example:
311    ///
312    ///    for (i = 0; i < 10; i++)
313    ///        A[i] = ...
314    ///        ... = A[11 - i]
315    ///
316    /// There's a loop-carried flow dependence from the store to the load,
317    /// found by the weak-crossing SIV test. The dependence will have a flag,
318    /// indicating that the dependence can be broken by splitting the loop.
319    /// Calling getSplitIteration will return 5.
320    /// Splitting the loop breaks the dependence, like so:
321    ///
322    ///    for (i = 0; i <= 5; i++)
323    ///        A[i] = ...
324    ///        ... = A[11 - i]
325    ///    for (i = 6; i < 10; i++)
326    ///        A[i] = ...
327    ///        ... = A[11 - i]
328    ///
329    /// breaks the dependence and allows us to vectorize/parallelize
330    /// both loops.
331    const SCEV *getSplitIteration(const Dependence &Dep, unsigned Level);
332
333    Function *getFunction() const { return F; }
334
335  private:
336    AliasAnalysis *AA;
337    ScalarEvolution *SE;
338    LoopInfo *LI;
339    Function *F;
340
341    /// Subscript - This private struct represents a pair of subscripts from
342    /// a pair of potentially multi-dimensional array references. We use a
343    /// vector of them to guide subscript partitioning.
344    struct Subscript {
345      const SCEV *Src;
346      const SCEV *Dst;
347      enum ClassificationKind { ZIV, SIV, RDIV, MIV, NonLinear } Classification;
348      SmallBitVector Loops;
349      SmallBitVector GroupLoops;
350      SmallBitVector Group;
351    };
352
353    struct CoefficientInfo {
354      const SCEV *Coeff;
355      const SCEV *PosPart;
356      const SCEV *NegPart;
357      const SCEV *Iterations;
358    };
359
360    struct BoundInfo {
361      const SCEV *Iterations;
362      const SCEV *Upper[8];
363      const SCEV *Lower[8];
364      unsigned char Direction;
365      unsigned char DirSet;
366    };
367
368    /// Constraint - This private class represents a constraint, as defined
369    /// in the paper
370    ///
371    ///           Practical Dependence Testing
372    ///           Goff, Kennedy, Tseng
373    ///           PLDI 1991
374    ///
375    /// There are 5 kinds of constraint, in a hierarchy.
376    ///   1) Any - indicates no constraint, any dependence is possible.
377    ///   2) Line - A line ax + by = c, where a, b, and c are parameters,
378    ///             representing the dependence equation.
379    ///   3) Distance - The value d of the dependence distance;
380    ///   4) Point - A point <x, y> representing the dependence from
381    ///              iteration x to iteration y.
382    ///   5) Empty - No dependence is possible.
383    class Constraint {
384    private:
385      enum ConstraintKind { Empty, Point, Distance, Line, Any } Kind;
386      ScalarEvolution *SE;
387      const SCEV *A;
388      const SCEV *B;
389      const SCEV *C;
390      const Loop *AssociatedLoop;
391
392    public:
393      /// isEmpty - Return true if the constraint is of kind Empty.
394      bool isEmpty() const { return Kind == Empty; }
395
396      /// isPoint - Return true if the constraint is of kind Point.
397      bool isPoint() const { return Kind == Point; }
398
399      /// isDistance - Return true if the constraint is of kind Distance.
400      bool isDistance() const { return Kind == Distance; }
401
402      /// isLine - Return true if the constraint is of kind Line.
403      /// Since Distance's can also be represented as Lines, we also return
404      /// true if the constraint is of kind Distance.
405      bool isLine() const { return Kind == Line || Kind == Distance; }
406
407      /// isAny - Return true if the constraint is of kind Any;
408      bool isAny() const { return Kind == Any; }
409
410      /// getX - If constraint is a point <X, Y>, returns X.
411      /// Otherwise assert.
412      const SCEV *getX() const;
413
414      /// getY - If constraint is a point <X, Y>, returns Y.
415      /// Otherwise assert.
416      const SCEV *getY() const;
417
418      /// getA - If constraint is a line AX + BY = C, returns A.
419      /// Otherwise assert.
420      const SCEV *getA() const;
421
422      /// getB - If constraint is a line AX + BY = C, returns B.
423      /// Otherwise assert.
424      const SCEV *getB() const;
425
426      /// getC - If constraint is a line AX + BY = C, returns C.
427      /// Otherwise assert.
428      const SCEV *getC() const;
429
430      /// getD - If constraint is a distance, returns D.
431      /// Otherwise assert.
432      const SCEV *getD() const;
433
434      /// getAssociatedLoop - Returns the loop associated with this constraint.
435      const Loop *getAssociatedLoop() const;
436
437      /// setPoint - Change a constraint to Point.
438      void setPoint(const SCEV *X, const SCEV *Y, const Loop *CurrentLoop);
439
440      /// setLine - Change a constraint to Line.
441      void setLine(const SCEV *A, const SCEV *B,
442                   const SCEV *C, const Loop *CurrentLoop);
443
444      /// setDistance - Change a constraint to Distance.
445      void setDistance(const SCEV *D, const Loop *CurrentLoop);
446
447      /// setEmpty - Change a constraint to Empty.
448      void setEmpty();
449
450      /// setAny - Change a constraint to Any.
451      void setAny(ScalarEvolution *SE);
452
453      /// dump - For debugging purposes. Dumps the constraint
454      /// out to OS.
455      void dump(raw_ostream &OS) const;
456    };
457
458    /// establishNestingLevels - Examines the loop nesting of the Src and Dst
459    /// instructions and establishes their shared loops. Sets the variables
460    /// CommonLevels, SrcLevels, and MaxLevels.
461    /// The source and destination instructions needn't be contained in the same
462    /// loop. The routine establishNestingLevels finds the level of most deeply
463    /// nested loop that contains them both, CommonLevels. An instruction that's
464    /// not contained in a loop is at level = 0. MaxLevels is equal to the level
465    /// of the source plus the level of the destination, minus CommonLevels.
466    /// This lets us allocate vectors MaxLevels in length, with room for every
467    /// distinct loop referenced in both the source and destination subscripts.
468    /// The variable SrcLevels is the nesting depth of the source instruction.
469    /// It's used to help calculate distinct loops referenced by the destination.
470    /// Here's the map from loops to levels:
471    ///            0 - unused
472    ///            1 - outermost common loop
473    ///          ... - other common loops
474    /// CommonLevels - innermost common loop
475    ///          ... - loops containing Src but not Dst
476    ///    SrcLevels - innermost loop containing Src but not Dst
477    ///          ... - loops containing Dst but not Src
478    ///    MaxLevels - innermost loop containing Dst but not Src
479    /// Consider the follow code fragment:
480    ///    for (a = ...) {
481    ///      for (b = ...) {
482    ///        for (c = ...) {
483    ///          for (d = ...) {
484    ///            A[] = ...;
485    ///          }
486    ///        }
487    ///        for (e = ...) {
488    ///          for (f = ...) {
489    ///            for (g = ...) {
490    ///              ... = A[];
491    ///            }
492    ///          }
493    ///        }
494    ///      }
495    ///    }
496    /// If we're looking at the possibility of a dependence between the store
497    /// to A (the Src) and the load from A (the Dst), we'll note that they
498    /// have 2 loops in common, so CommonLevels will equal 2 and the direction
499    /// vector for Result will have 2 entries. SrcLevels = 4 and MaxLevels = 7.
500    /// A map from loop names to level indices would look like
501    ///     a - 1
502    ///     b - 2 = CommonLevels
503    ///     c - 3
504    ///     d - 4 = SrcLevels
505    ///     e - 5
506    ///     f - 6
507    ///     g - 7 = MaxLevels
508    void establishNestingLevels(const Instruction *Src,
509                                const Instruction *Dst);
510
511    unsigned CommonLevels, SrcLevels, MaxLevels;
512
513    /// mapSrcLoop - Given one of the loops containing the source, return
514    /// its level index in our numbering scheme.
515    unsigned mapSrcLoop(const Loop *SrcLoop) const;
516
517    /// mapDstLoop - Given one of the loops containing the destination,
518    /// return its level index in our numbering scheme.
519    unsigned mapDstLoop(const Loop *DstLoop) const;
520
521    /// isLoopInvariant - Returns true if Expression is loop invariant
522    /// in LoopNest.
523    bool isLoopInvariant(const SCEV *Expression, const Loop *LoopNest) const;
524
525    /// Makes sure all subscript pairs share the same integer type by
526    /// sign-extending as necessary.
527    /// Sign-extending a subscript is safe because getelementptr assumes the
528    /// array subscripts are signed.
529    void unifySubscriptType(ArrayRef<Subscript *> Pairs);
530
531    /// removeMatchingExtensions - Examines a subscript pair.
532    /// If the source and destination are identically sign (or zero)
533    /// extended, it strips off the extension in an effort to
534    /// simplify the actual analysis.
535    void removeMatchingExtensions(Subscript *Pair);
536
537    /// collectCommonLoops - Finds the set of loops from the LoopNest that
538    /// have a level <= CommonLevels and are referred to by the SCEV Expression.
539    void collectCommonLoops(const SCEV *Expression,
540                            const Loop *LoopNest,
541                            SmallBitVector &Loops) const;
542
543    /// checkSrcSubscript - Examines the SCEV Src, returning true iff it's
544    /// linear. Collect the set of loops mentioned by Src.
545    bool checkSrcSubscript(const SCEV *Src,
546                           const Loop *LoopNest,
547                           SmallBitVector &Loops);
548
549    /// checkDstSubscript - Examines the SCEV Dst, returning true iff it's
550    /// linear. Collect the set of loops mentioned by Dst.
551    bool checkDstSubscript(const SCEV *Dst,
552                           const Loop *LoopNest,
553                           SmallBitVector &Loops);
554
555    /// isKnownPredicate - Compare X and Y using the predicate Pred.
556    /// Basically a wrapper for SCEV::isKnownPredicate,
557    /// but tries harder, especially in the presence of sign and zero
558    /// extensions and symbolics.
559    bool isKnownPredicate(ICmpInst::Predicate Pred,
560                          const SCEV *X,
561                          const SCEV *Y) const;
562
563    /// isKnownLessThan - Compare to see if S is less than Size
564    /// Another wrapper for isKnownNegative(S - max(Size, 1)) with some extra
565    /// checking if S is an AddRec and we can prove lessthan using the loop
566    /// bounds.
567    bool isKnownLessThan(const SCEV *S, const SCEV *Size) const;
568
569    /// isKnownNonNegative - Compare to see if S is known not to be negative
570    /// Uses the fact that S comes from Ptr, which may be an inbound GEP,
571    /// Proving there is no wrapping going on.
572    bool isKnownNonNegative(const SCEV *S, const Value *Ptr) const;
573
574    /// collectUpperBound - All subscripts are the same type (on my machine,
575    /// an i64). The loop bound may be a smaller type. collectUpperBound
576    /// find the bound, if available, and zero extends it to the Type T.
577    /// (I zero extend since the bound should always be >= 0.)
578    /// If no upper bound is available, return NULL.
579    const SCEV *collectUpperBound(const Loop *l, Type *T) const;
580
581    /// collectConstantUpperBound - Calls collectUpperBound(), then
582    /// attempts to cast it to SCEVConstant. If the cast fails,
583    /// returns NULL.
584    const SCEVConstant *collectConstantUpperBound(const Loop *l, Type *T) const;
585
586    /// classifyPair - Examines the subscript pair (the Src and Dst SCEVs)
587    /// and classifies it as either ZIV, SIV, RDIV, MIV, or Nonlinear.
588    /// Collects the associated loops in a set.
589    Subscript::ClassificationKind classifyPair(const SCEV *Src,
590                                           const Loop *SrcLoopNest,
591                                           const SCEV *Dst,
592                                           const Loop *DstLoopNest,
593                                           SmallBitVector &Loops);
594
595    /// testZIV - Tests the ZIV subscript pair (Src and Dst) for dependence.
596    /// Returns true if any possible dependence is disproved.
597    /// If there might be a dependence, returns false.
598    /// If the dependence isn't proven to exist,
599    /// marks the Result as inconsistent.
600    bool testZIV(const SCEV *Src,
601                 const SCEV *Dst,
602                 FullDependence &Result) const;
603
604    /// testSIV - Tests the SIV subscript pair (Src and Dst) for dependence.
605    /// Things of the form [c1 + a1*i] and [c2 + a2*j], where
606    /// i and j are induction variables, c1 and c2 are loop invariant,
607    /// and a1 and a2 are constant.
608    /// Returns true if any possible dependence is disproved.
609    /// If there might be a dependence, returns false.
610    /// Sets appropriate direction vector entry and, when possible,
611    /// the distance vector entry.
612    /// If the dependence isn't proven to exist,
613    /// marks the Result as inconsistent.
614    bool testSIV(const SCEV *Src,
615                 const SCEV *Dst,
616                 unsigned &Level,
617                 FullDependence &Result,
618                 Constraint &NewConstraint,
619                 const SCEV *&SplitIter) const;
620
621    /// testRDIV - Tests the RDIV subscript pair (Src and Dst) for dependence.
622    /// Things of the form [c1 + a1*i] and [c2 + a2*j]
623    /// where i and j are induction variables, c1 and c2 are loop invariant,
624    /// and a1 and a2 are constant.
625    /// With minor algebra, this test can also be used for things like
626    /// [c1 + a1*i + a2*j][c2].
627    /// Returns true if any possible dependence is disproved.
628    /// If there might be a dependence, returns false.
629    /// Marks the Result as inconsistent.
630    bool testRDIV(const SCEV *Src,
631                  const SCEV *Dst,
632                  FullDependence &Result) const;
633
634    /// testMIV - Tests the MIV subscript pair (Src and Dst) for dependence.
635    /// Returns true if dependence disproved.
636    /// Can sometimes refine direction vectors.
637    bool testMIV(const SCEV *Src,
638                 const SCEV *Dst,
639                 const SmallBitVector &Loops,
640                 FullDependence &Result) const;
641
642    /// strongSIVtest - Tests the strong SIV subscript pair (Src and Dst)
643    /// for dependence.
644    /// Things of the form [c1 + a*i] and [c2 + a*i],
645    /// where i is an induction variable, c1 and c2 are loop invariant,
646    /// and a is a constant
647    /// Returns true if any possible dependence is disproved.
648    /// If there might be a dependence, returns false.
649    /// Sets appropriate direction and distance.
650    bool strongSIVtest(const SCEV *Coeff,
651                       const SCEV *SrcConst,
652                       const SCEV *DstConst,
653                       const Loop *CurrentLoop,
654                       unsigned Level,
655                       FullDependence &Result,
656                       Constraint &NewConstraint) const;
657
658    /// weakCrossingSIVtest - Tests the weak-crossing SIV subscript pair
659    /// (Src and Dst) for dependence.
660    /// Things of the form [c1 + a*i] and [c2 - a*i],
661    /// where i is an induction variable, c1 and c2 are loop invariant,
662    /// and a is a constant.
663    /// Returns true if any possible dependence is disproved.
664    /// If there might be a dependence, returns false.
665    /// Sets appropriate direction entry.
666    /// Set consistent to false.
667    /// Marks the dependence as splitable.
668    bool weakCrossingSIVtest(const SCEV *SrcCoeff,
669                             const SCEV *SrcConst,
670                             const SCEV *DstConst,
671                             const Loop *CurrentLoop,
672                             unsigned Level,
673                             FullDependence &Result,
674                             Constraint &NewConstraint,
675                             const SCEV *&SplitIter) const;
676
677    /// ExactSIVtest - Tests the SIV subscript pair
678    /// (Src and Dst) for dependence.
679    /// Things of the form [c1 + a1*i] and [c2 + a2*i],
680    /// where i is an induction variable, c1 and c2 are loop invariant,
681    /// and a1 and a2 are constant.
682    /// Returns true if any possible dependence is disproved.
683    /// If there might be a dependence, returns false.
684    /// Sets appropriate direction entry.
685    /// Set consistent to false.
686    bool exactSIVtest(const SCEV *SrcCoeff,
687                      const SCEV *DstCoeff,
688                      const SCEV *SrcConst,
689                      const SCEV *DstConst,
690                      const Loop *CurrentLoop,
691                      unsigned Level,
692                      FullDependence &Result,
693                      Constraint &NewConstraint) const;
694
695    /// weakZeroSrcSIVtest - Tests the weak-zero SIV subscript pair
696    /// (Src and Dst) for dependence.
697    /// Things of the form [c1] and [c2 + a*i],
698    /// where i is an induction variable, c1 and c2 are loop invariant,
699    /// and a is a constant. See also weakZeroDstSIVtest.
700    /// Returns true if any possible dependence is disproved.
701    /// If there might be a dependence, returns false.
702    /// Sets appropriate direction entry.
703    /// Set consistent to false.
704    /// If loop peeling will break the dependence, mark appropriately.
705    bool weakZeroSrcSIVtest(const SCEV *DstCoeff,
706                            const SCEV *SrcConst,
707                            const SCEV *DstConst,
708                            const Loop *CurrentLoop,
709                            unsigned Level,
710                            FullDependence &Result,
711                            Constraint &NewConstraint) const;
712
713    /// weakZeroDstSIVtest - Tests the weak-zero SIV subscript pair
714    /// (Src and Dst) for dependence.
715    /// Things of the form [c1 + a*i] and [c2],
716    /// where i is an induction variable, c1 and c2 are loop invariant,
717    /// and a is a constant. See also weakZeroSrcSIVtest.
718    /// Returns true if any possible dependence is disproved.
719    /// If there might be a dependence, returns false.
720    /// Sets appropriate direction entry.
721    /// Set consistent to false.
722    /// If loop peeling will break the dependence, mark appropriately.
723    bool weakZeroDstSIVtest(const SCEV *SrcCoeff,
724                            const SCEV *SrcConst,
725                            const SCEV *DstConst,
726                            const Loop *CurrentLoop,
727                            unsigned Level,
728                            FullDependence &Result,
729                            Constraint &NewConstraint) const;
730
731    /// exactRDIVtest - Tests the RDIV subscript pair for dependence.
732    /// Things of the form [c1 + a*i] and [c2 + b*j],
733    /// where i and j are induction variable, c1 and c2 are loop invariant,
734    /// and a and b are constants.
735    /// Returns true if any possible dependence is disproved.
736    /// Marks the result as inconsistent.
737    /// Works in some cases that symbolicRDIVtest doesn't,
738    /// and vice versa.
739    bool exactRDIVtest(const SCEV *SrcCoeff,
740                       const SCEV *DstCoeff,
741                       const SCEV *SrcConst,
742                       const SCEV *DstConst,
743                       const Loop *SrcLoop,
744                       const Loop *DstLoop,
745                       FullDependence &Result) const;
746
747    /// symbolicRDIVtest - Tests the RDIV subscript pair for dependence.
748    /// Things of the form [c1 + a*i] and [c2 + b*j],
749    /// where i and j are induction variable, c1 and c2 are loop invariant,
750    /// and a and b are constants.
751    /// Returns true if any possible dependence is disproved.
752    /// Marks the result as inconsistent.
753    /// Works in some cases that exactRDIVtest doesn't,
754    /// and vice versa. Can also be used as a backup for
755    /// ordinary SIV tests.
756    bool symbolicRDIVtest(const SCEV *SrcCoeff,
757                          const SCEV *DstCoeff,
758                          const SCEV *SrcConst,
759                          const SCEV *DstConst,
760                          const Loop *SrcLoop,
761                          const Loop *DstLoop) const;
762
763    /// gcdMIVtest - Tests an MIV subscript pair for dependence.
764    /// Returns true if any possible dependence is disproved.
765    /// Marks the result as inconsistent.
766    /// Can sometimes disprove the equal direction for 1 or more loops.
767    //  Can handle some symbolics that even the SIV tests don't get,
768    /// so we use it as a backup for everything.
769    bool gcdMIVtest(const SCEV *Src,
770                    const SCEV *Dst,
771                    FullDependence &Result) const;
772
773    /// banerjeeMIVtest - Tests an MIV subscript pair for dependence.
774    /// Returns true if any possible dependence is disproved.
775    /// Marks the result as inconsistent.
776    /// Computes directions.
777    bool banerjeeMIVtest(const SCEV *Src,
778                         const SCEV *Dst,
779                         const SmallBitVector &Loops,
780                         FullDependence &Result) const;
781
782    /// collectCoefficientInfo - Walks through the subscript,
783    /// collecting each coefficient, the associated loop bounds,
784    /// and recording its positive and negative parts for later use.
785    CoefficientInfo *collectCoeffInfo(const SCEV *Subscript,
786                                      bool SrcFlag,
787                                      const SCEV *&Constant) const;
788
789    /// getPositivePart - X^+ = max(X, 0).
790    ///
791    const SCEV *getPositivePart(const SCEV *X) const;
792
793    /// getNegativePart - X^- = min(X, 0).
794    ///
795    const SCEV *getNegativePart(const SCEV *X) const;
796
797    /// getLowerBound - Looks through all the bounds info and
798    /// computes the lower bound given the current direction settings
799    /// at each level.
800    const SCEV *getLowerBound(BoundInfo *Bound) const;
801
802    /// getUpperBound - Looks through all the bounds info and
803    /// computes the upper bound given the current direction settings
804    /// at each level.
805    const SCEV *getUpperBound(BoundInfo *Bound) const;
806
807    /// exploreDirections - Hierarchically expands the direction vector
808    /// search space, combining the directions of discovered dependences
809    /// in the DirSet field of Bound. Returns the number of distinct
810    /// dependences discovered. If the dependence is disproved,
811    /// it will return 0.
812    unsigned exploreDirections(unsigned Level,
813                               CoefficientInfo *A,
814                               CoefficientInfo *B,
815                               BoundInfo *Bound,
816                               const SmallBitVector &Loops,
817                               unsigned &DepthExpanded,
818                               const SCEV *Delta) const;
819
820    /// testBounds - Returns true iff the current bounds are plausible.
821    bool testBounds(unsigned char DirKind,
822                    unsigned Level,
823                    BoundInfo *Bound,
824                    const SCEV *Delta) const;
825
826    /// findBoundsALL - Computes the upper and lower bounds for level K
827    /// using the * direction. Records them in Bound.
828    void findBoundsALL(CoefficientInfo *A,
829                       CoefficientInfo *B,
830                       BoundInfo *Bound,
831                       unsigned K) const;
832
833    /// findBoundsLT - Computes the upper and lower bounds for level K
834    /// using the < direction. Records them in Bound.
835    void findBoundsLT(CoefficientInfo *A,
836                      CoefficientInfo *B,
837                      BoundInfo *Bound,
838                      unsigned K) const;
839
840    /// findBoundsGT - Computes the upper and lower bounds for level K
841    /// using the > direction. Records them in Bound.
842    void findBoundsGT(CoefficientInfo *A,
843                      CoefficientInfo *B,
844                      BoundInfo *Bound,
845                      unsigned K) const;
846
847    /// findBoundsEQ - Computes the upper and lower bounds for level K
848    /// using the = direction. Records them in Bound.
849    void findBoundsEQ(CoefficientInfo *A,
850                      CoefficientInfo *B,
851                      BoundInfo *Bound,
852                      unsigned K) const;
853
854    /// intersectConstraints - Updates X with the intersection
855    /// of the Constraints X and Y. Returns true if X has changed.
856    bool intersectConstraints(Constraint *X,
857                              const Constraint *Y);
858
859    /// propagate - Review the constraints, looking for opportunities
860    /// to simplify a subscript pair (Src and Dst).
861    /// Return true if some simplification occurs.
862    /// If the simplification isn't exact (that is, if it is conservative
863    /// in terms of dependence), set consistent to false.
864    bool propagate(const SCEV *&Src,
865                   const SCEV *&Dst,
866                   SmallBitVector &Loops,
867                   SmallVectorImpl<Constraint> &Constraints,
868                   bool &Consistent);
869
870    /// propagateDistance - Attempt to propagate a distance
871    /// constraint into a subscript pair (Src and Dst).
872    /// Return true if some simplification occurs.
873    /// If the simplification isn't exact (that is, if it is conservative
874    /// in terms of dependence), set consistent to false.
875    bool propagateDistance(const SCEV *&Src,
876                           const SCEV *&Dst,
877                           Constraint &CurConstraint,
878                           bool &Consistent);
879
880    /// propagatePoint - Attempt to propagate a point
881    /// constraint into a subscript pair (Src and Dst).
882    /// Return true if some simplification occurs.
883    bool propagatePoint(const SCEV *&Src,
884                        const SCEV *&Dst,
885                        Constraint &CurConstraint);
886
887    /// propagateLine - Attempt to propagate a line
888    /// constraint into a subscript pair (Src and Dst).
889    /// Return true if some simplification occurs.
890    /// If the simplification isn't exact (that is, if it is conservative
891    /// in terms of dependence), set consistent to false.
892    bool propagateLine(const SCEV *&Src,
893                       const SCEV *&Dst,
894                       Constraint &CurConstraint,
895                       bool &Consistent);
896
897    /// findCoefficient - Given a linear SCEV,
898    /// return the coefficient corresponding to specified loop.
899    /// If there isn't one, return the SCEV constant 0.
900    /// For example, given a*i + b*j + c*k, returning the coefficient
901    /// corresponding to the j loop would yield b.
902    const SCEV *findCoefficient(const SCEV *Expr,
903                                const Loop *TargetLoop) const;
904
905    /// zeroCoefficient - Given a linear SCEV,
906    /// return the SCEV given by zeroing out the coefficient
907    /// corresponding to the specified loop.
908    /// For example, given a*i + b*j + c*k, zeroing the coefficient
909    /// corresponding to the j loop would yield a*i + c*k.
910    const SCEV *zeroCoefficient(const SCEV *Expr,
911                                const Loop *TargetLoop) const;
912
913    /// addToCoefficient - Given a linear SCEV Expr,
914    /// return the SCEV given by adding some Value to the
915    /// coefficient corresponding to the specified TargetLoop.
916    /// For example, given a*i + b*j + c*k, adding 1 to the coefficient
917    /// corresponding to the j loop would yield a*i + (b+1)*j + c*k.
918    const SCEV *addToCoefficient(const SCEV *Expr,
919                                 const Loop *TargetLoop,
920                                 const SCEV *Value)  const;
921
922    /// updateDirection - Update direction vector entry
923    /// based on the current constraint.
924    void updateDirection(Dependence::DVEntry &Level,
925                         const Constraint &CurConstraint) const;
926
927    bool tryDelinearize(Instruction *Src, Instruction *Dst,
928                        SmallVectorImpl<Subscript> &Pair);
929
930  private:
931    /// checkSubscript - Helper function for checkSrcSubscript and
932    /// checkDstSubscript to avoid duplicate code
933    bool checkSubscript(const SCEV *Expr, const Loop *LoopNest,
934                        SmallBitVector &Loops, bool IsSrc);
935  }; // class DependenceInfo
936
937  /// AnalysisPass to compute dependence information in a function
938  class DependenceAnalysis : public AnalysisInfoMixin<DependenceAnalysis> {
939  public:
940    typedef DependenceInfo Result;
941    Result run(Function &F, FunctionAnalysisManager &FAM);
942
943  private:
944    static AnalysisKey Key;
945    friend struct AnalysisInfoMixin<DependenceAnalysis>;
946  }; // class DependenceAnalysis
947
948  /// Printer pass to dump DA results.
949  struct DependenceAnalysisPrinterPass
950      : public PassInfoMixin<DependenceAnalysisPrinterPass> {
951    DependenceAnalysisPrinterPass(raw_ostream &OS) : OS(OS) {}
952
953    PreservedAnalyses run(Function &F, FunctionAnalysisManager &FAM);
954
955  private:
956    raw_ostream &OS;
957  }; // class DependenceAnalysisPrinterPass
958
959  /// Legacy pass manager pass to access dependence information
960  class DependenceAnalysisWrapperPass : public FunctionPass {
961  public:
962    static char ID; // Class identification, replacement for typeinfo
963    DependenceAnalysisWrapperPass();
964
965    bool runOnFunction(Function &F) override;
966    void releaseMemory() override;
967    void getAnalysisUsage(AnalysisUsage &) const override;
968    void print(raw_ostream &, const Module * = nullptr) const override;
969    DependenceInfo &getDI() const;
970
971  private:
972    std::unique_ptr<DependenceInfo> info;
973  }; // class DependenceAnalysisWrapperPass
974
975  /// createDependenceAnalysisPass - This creates an instance of the
976  /// DependenceAnalysis wrapper pass.
977  FunctionPass *createDependenceAnalysisWrapperPass();
978
979} // namespace llvm
980
981#endif
982