AliasAnalysis.h revision 360784
1//===- llvm/Analysis/AliasAnalysis.h - Alias Analysis Interface -*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file defines the generic AliasAnalysis interface, which is used as the
10// common interface used by all clients of alias analysis information, and
11// implemented by all alias analysis implementations.  Mod/Ref information is
12// also captured by this interface.
13//
14// Implementations of this interface must implement the various virtual methods,
15// which automatically provides functionality for the entire suite of client
16// APIs.
17//
18// This API identifies memory regions with the MemoryLocation class. The pointer
19// component specifies the base memory address of the region. The Size specifies
20// the maximum size (in address units) of the memory region, or
21// MemoryLocation::UnknownSize if the size is not known. The TBAA tag
22// identifies the "type" of the memory reference; see the
23// TypeBasedAliasAnalysis class for details.
24//
25// Some non-obvious details include:
26//  - Pointers that point to two completely different objects in memory never
27//    alias, regardless of the value of the Size component.
28//  - NoAlias doesn't imply inequal pointers. The most obvious example of this
29//    is two pointers to constant memory. Even if they are equal, constant
30//    memory is never stored to, so there will never be any dependencies.
31//    In this and other situations, the pointers may be both NoAlias and
32//    MustAlias at the same time. The current API can only return one result,
33//    though this is rarely a problem in practice.
34//
35//===----------------------------------------------------------------------===//
36
37#ifndef LLVM_ANALYSIS_ALIASANALYSIS_H
38#define LLVM_ANALYSIS_ALIASANALYSIS_H
39
40#include "llvm/ADT/DenseMap.h"
41#include "llvm/ADT/None.h"
42#include "llvm/ADT/Optional.h"
43#include "llvm/ADT/SmallVector.h"
44#include "llvm/Analysis/MemoryLocation.h"
45#include "llvm/Analysis/TargetLibraryInfo.h"
46#include "llvm/IR/Function.h"
47#include "llvm/IR/Instruction.h"
48#include "llvm/IR/Instructions.h"
49#include "llvm/IR/PassManager.h"
50#include "llvm/Pass.h"
51#include <cstdint>
52#include <functional>
53#include <memory>
54#include <vector>
55
56namespace llvm {
57
58class AnalysisUsage;
59class BasicAAResult;
60class BasicBlock;
61class DominatorTree;
62class OrderedBasicBlock;
63class Value;
64
65/// The possible results of an alias query.
66///
67/// These results are always computed between two MemoryLocation objects as
68/// a query to some alias analysis.
69///
70/// Note that these are unscoped enumerations because we would like to support
71/// implicitly testing a result for the existence of any possible aliasing with
72/// a conversion to bool, but an "enum class" doesn't support this. The
73/// canonical names from the literature are suffixed and unique anyways, and so
74/// they serve as global constants in LLVM for these results.
75///
76/// See docs/AliasAnalysis.html for more information on the specific meanings
77/// of these values.
78enum AliasResult : uint8_t {
79  /// The two locations do not alias at all.
80  ///
81  /// This value is arranged to convert to false, while all other values
82  /// convert to true. This allows a boolean context to convert the result to
83  /// a binary flag indicating whether there is the possibility of aliasing.
84  NoAlias = 0,
85  /// The two locations may or may not alias. This is the least precise result.
86  MayAlias,
87  /// The two locations alias, but only due to a partial overlap.
88  PartialAlias,
89  /// The two locations precisely alias each other.
90  MustAlias,
91};
92
93/// << operator for AliasResult.
94raw_ostream &operator<<(raw_ostream &OS, AliasResult AR);
95
96/// Flags indicating whether a memory access modifies or references memory.
97///
98/// This is no access at all, a modification, a reference, or both
99/// a modification and a reference. These are specifically structured such that
100/// they form a three bit matrix and bit-tests for 'mod' or 'ref' or 'must'
101/// work with any of the possible values.
102enum class ModRefInfo : uint8_t {
103  /// Must is provided for completeness, but no routines will return only
104  /// Must today. See definition of Must below.
105  Must = 0,
106  /// The access may reference the value stored in memory,
107  /// a mustAlias relation was found, and no mayAlias or partialAlias found.
108  MustRef = 1,
109  /// The access may modify the value stored in memory,
110  /// a mustAlias relation was found, and no mayAlias or partialAlias found.
111  MustMod = 2,
112  /// The access may reference, modify or both the value stored in memory,
113  /// a mustAlias relation was found, and no mayAlias or partialAlias found.
114  MustModRef = MustRef | MustMod,
115  /// The access neither references nor modifies the value stored in memory.
116  NoModRef = 4,
117  /// The access may reference the value stored in memory.
118  Ref = NoModRef | MustRef,
119  /// The access may modify the value stored in memory.
120  Mod = NoModRef | MustMod,
121  /// The access may reference and may modify the value stored in memory.
122  ModRef = Ref | Mod,
123
124  /// About Must:
125  /// Must is set in a best effort manner.
126  /// We usually do not try our best to infer Must, instead it is merely
127  /// another piece of "free" information that is presented when available.
128  /// Must set means there was certainly a MustAlias found. For calls,
129  /// where multiple arguments are checked (argmemonly), this translates to
130  /// only MustAlias or NoAlias was found.
131  /// Must is not set for RAR accesses, even if the two locations must
132  /// alias. The reason is that two read accesses translate to an early return
133  /// of NoModRef. An additional alias check to set Must may be
134  /// expensive. Other cases may also not set Must(e.g. callCapturesBefore).
135  /// We refer to Must being *set* when the most significant bit is *cleared*.
136  /// Conversely we *clear* Must information by *setting* the Must bit to 1.
137};
138
139LLVM_NODISCARD inline bool isNoModRef(const ModRefInfo MRI) {
140  return (static_cast<int>(MRI) & static_cast<int>(ModRefInfo::MustModRef)) ==
141         static_cast<int>(ModRefInfo::Must);
142}
143LLVM_NODISCARD inline bool isModOrRefSet(const ModRefInfo MRI) {
144  return static_cast<int>(MRI) & static_cast<int>(ModRefInfo::MustModRef);
145}
146LLVM_NODISCARD inline bool isModAndRefSet(const ModRefInfo MRI) {
147  return (static_cast<int>(MRI) & static_cast<int>(ModRefInfo::MustModRef)) ==
148         static_cast<int>(ModRefInfo::MustModRef);
149}
150LLVM_NODISCARD inline bool isModSet(const ModRefInfo MRI) {
151  return static_cast<int>(MRI) & static_cast<int>(ModRefInfo::MustMod);
152}
153LLVM_NODISCARD inline bool isRefSet(const ModRefInfo MRI) {
154  return static_cast<int>(MRI) & static_cast<int>(ModRefInfo::MustRef);
155}
156LLVM_NODISCARD inline bool isMustSet(const ModRefInfo MRI) {
157  return !(static_cast<int>(MRI) & static_cast<int>(ModRefInfo::NoModRef));
158}
159
160LLVM_NODISCARD inline ModRefInfo setMod(const ModRefInfo MRI) {
161  return ModRefInfo(static_cast<int>(MRI) |
162                    static_cast<int>(ModRefInfo::MustMod));
163}
164LLVM_NODISCARD inline ModRefInfo setRef(const ModRefInfo MRI) {
165  return ModRefInfo(static_cast<int>(MRI) |
166                    static_cast<int>(ModRefInfo::MustRef));
167}
168LLVM_NODISCARD inline ModRefInfo setMust(const ModRefInfo MRI) {
169  return ModRefInfo(static_cast<int>(MRI) &
170                    static_cast<int>(ModRefInfo::MustModRef));
171}
172LLVM_NODISCARD inline ModRefInfo setModAndRef(const ModRefInfo MRI) {
173  return ModRefInfo(static_cast<int>(MRI) |
174                    static_cast<int>(ModRefInfo::MustModRef));
175}
176LLVM_NODISCARD inline ModRefInfo clearMod(const ModRefInfo MRI) {
177  return ModRefInfo(static_cast<int>(MRI) & static_cast<int>(ModRefInfo::Ref));
178}
179LLVM_NODISCARD inline ModRefInfo clearRef(const ModRefInfo MRI) {
180  return ModRefInfo(static_cast<int>(MRI) & static_cast<int>(ModRefInfo::Mod));
181}
182LLVM_NODISCARD inline ModRefInfo clearMust(const ModRefInfo MRI) {
183  return ModRefInfo(static_cast<int>(MRI) |
184                    static_cast<int>(ModRefInfo::NoModRef));
185}
186LLVM_NODISCARD inline ModRefInfo unionModRef(const ModRefInfo MRI1,
187                                             const ModRefInfo MRI2) {
188  return ModRefInfo(static_cast<int>(MRI1) | static_cast<int>(MRI2));
189}
190LLVM_NODISCARD inline ModRefInfo intersectModRef(const ModRefInfo MRI1,
191                                                 const ModRefInfo MRI2) {
192  return ModRefInfo(static_cast<int>(MRI1) & static_cast<int>(MRI2));
193}
194
195/// The locations at which a function might access memory.
196///
197/// These are primarily used in conjunction with the \c AccessKind bits to
198/// describe both the nature of access and the locations of access for a
199/// function call.
200enum FunctionModRefLocation {
201  /// Base case is no access to memory.
202  FMRL_Nowhere = 0,
203  /// Access to memory via argument pointers.
204  FMRL_ArgumentPointees = 8,
205  /// Memory that is inaccessible via LLVM IR.
206  FMRL_InaccessibleMem = 16,
207  /// Access to any memory.
208  FMRL_Anywhere = 32 | FMRL_InaccessibleMem | FMRL_ArgumentPointees
209};
210
211/// Summary of how a function affects memory in the program.
212///
213/// Loads from constant globals are not considered memory accesses for this
214/// interface. Also, functions may freely modify stack space local to their
215/// invocation without having to report it through these interfaces.
216enum FunctionModRefBehavior {
217  /// This function does not perform any non-local loads or stores to memory.
218  ///
219  /// This property corresponds to the GCC 'const' attribute.
220  /// This property corresponds to the LLVM IR 'readnone' attribute.
221  /// This property corresponds to the IntrNoMem LLVM intrinsic flag.
222  FMRB_DoesNotAccessMemory =
223      FMRL_Nowhere | static_cast<int>(ModRefInfo::NoModRef),
224
225  /// The only memory references in this function (if it has any) are
226  /// non-volatile loads from objects pointed to by its pointer-typed
227  /// arguments, with arbitrary offsets.
228  ///
229  /// This property corresponds to the IntrReadArgMem LLVM intrinsic flag.
230  FMRB_OnlyReadsArgumentPointees =
231      FMRL_ArgumentPointees | static_cast<int>(ModRefInfo::Ref),
232
233  /// The only memory references in this function (if it has any) are
234  /// non-volatile loads and stores from objects pointed to by its
235  /// pointer-typed arguments, with arbitrary offsets.
236  ///
237  /// This property corresponds to the IntrArgMemOnly LLVM intrinsic flag.
238  FMRB_OnlyAccessesArgumentPointees =
239      FMRL_ArgumentPointees | static_cast<int>(ModRefInfo::ModRef),
240
241  /// The only memory references in this function (if it has any) are
242  /// references of memory that is otherwise inaccessible via LLVM IR.
243  ///
244  /// This property corresponds to the LLVM IR inaccessiblememonly attribute.
245  FMRB_OnlyAccessesInaccessibleMem =
246      FMRL_InaccessibleMem | static_cast<int>(ModRefInfo::ModRef),
247
248  /// The function may perform non-volatile loads and stores of objects
249  /// pointed to by its pointer-typed arguments, with arbitrary offsets, and
250  /// it may also perform loads and stores of memory that is otherwise
251  /// inaccessible via LLVM IR.
252  ///
253  /// This property corresponds to the LLVM IR
254  /// inaccessiblemem_or_argmemonly attribute.
255  FMRB_OnlyAccessesInaccessibleOrArgMem = FMRL_InaccessibleMem |
256                                          FMRL_ArgumentPointees |
257                                          static_cast<int>(ModRefInfo::ModRef),
258
259  /// This function does not perform any non-local stores or volatile loads,
260  /// but may read from any memory location.
261  ///
262  /// This property corresponds to the GCC 'pure' attribute.
263  /// This property corresponds to the LLVM IR 'readonly' attribute.
264  /// This property corresponds to the IntrReadMem LLVM intrinsic flag.
265  FMRB_OnlyReadsMemory = FMRL_Anywhere | static_cast<int>(ModRefInfo::Ref),
266
267  // This function does not read from memory anywhere, but may write to any
268  // memory location.
269  //
270  // This property corresponds to the LLVM IR 'writeonly' attribute.
271  // This property corresponds to the IntrWriteMem LLVM intrinsic flag.
272  FMRB_DoesNotReadMemory = FMRL_Anywhere | static_cast<int>(ModRefInfo::Mod),
273
274  /// This indicates that the function could not be classified into one of the
275  /// behaviors above.
276  FMRB_UnknownModRefBehavior =
277      FMRL_Anywhere | static_cast<int>(ModRefInfo::ModRef)
278};
279
280// Wrapper method strips bits significant only in FunctionModRefBehavior,
281// to obtain a valid ModRefInfo. The benefit of using the wrapper is that if
282// ModRefInfo enum changes, the wrapper can be updated to & with the new enum
283// entry with all bits set to 1.
284LLVM_NODISCARD inline ModRefInfo
285createModRefInfo(const FunctionModRefBehavior FMRB) {
286  return ModRefInfo(FMRB & static_cast<int>(ModRefInfo::ModRef));
287}
288
289/// This class stores info we want to provide to or retain within an alias
290/// query. By default, the root query is stateless and starts with a freshly
291/// constructed info object. Specific alias analyses can use this query info to
292/// store per-query state that is important for recursive or nested queries to
293/// avoid recomputing. To enable preserving this state across multiple queries
294/// where safe (due to the IR not changing), use a `BatchAAResults` wrapper.
295/// The information stored in an `AAQueryInfo` is currently limitted to the
296/// caches used by BasicAA, but can further be extended to fit other AA needs.
297class AAQueryInfo {
298public:
299  using LocPair = std::pair<MemoryLocation, MemoryLocation>;
300  using AliasCacheT = SmallDenseMap<LocPair, AliasResult, 8>;
301  AliasCacheT AliasCache;
302
303  using IsCapturedCacheT = SmallDenseMap<const Value *, bool, 8>;
304  IsCapturedCacheT IsCapturedCache;
305
306  AAQueryInfo() : AliasCache(), IsCapturedCache() {}
307};
308
309class BatchAAResults;
310
311class AAResults {
312public:
313  // Make these results default constructable and movable. We have to spell
314  // these out because MSVC won't synthesize them.
315  AAResults(const TargetLibraryInfo &TLI) : TLI(TLI) {}
316  AAResults(AAResults &&Arg);
317  ~AAResults();
318
319  /// Register a specific AA result.
320  template <typename AAResultT> void addAAResult(AAResultT &AAResult) {
321    // FIXME: We should use a much lighter weight system than the usual
322    // polymorphic pattern because we don't own AAResult. It should
323    // ideally involve two pointers and no separate allocation.
324    AAs.emplace_back(new Model<AAResultT>(AAResult, *this));
325  }
326
327  /// Register a function analysis ID that the results aggregation depends on.
328  ///
329  /// This is used in the new pass manager to implement the invalidation logic
330  /// where we must invalidate the results aggregation if any of our component
331  /// analyses become invalid.
332  void addAADependencyID(AnalysisKey *ID) { AADeps.push_back(ID); }
333
334  /// Handle invalidation events in the new pass manager.
335  ///
336  /// The aggregation is invalidated if any of the underlying analyses is
337  /// invalidated.
338  bool invalidate(Function &F, const PreservedAnalyses &PA,
339                  FunctionAnalysisManager::Invalidator &Inv);
340
341  //===--------------------------------------------------------------------===//
342  /// \name Alias Queries
343  /// @{
344
345  /// The main low level interface to the alias analysis implementation.
346  /// Returns an AliasResult indicating whether the two pointers are aliased to
347  /// each other. This is the interface that must be implemented by specific
348  /// alias analysis implementations.
349  AliasResult alias(const MemoryLocation &LocA, const MemoryLocation &LocB);
350
351  /// A convenience wrapper around the primary \c alias interface.
352  AliasResult alias(const Value *V1, LocationSize V1Size, const Value *V2,
353                    LocationSize V2Size) {
354    return alias(MemoryLocation(V1, V1Size), MemoryLocation(V2, V2Size));
355  }
356
357  /// A convenience wrapper around the primary \c alias interface.
358  AliasResult alias(const Value *V1, const Value *V2) {
359    return alias(V1, LocationSize::unknown(), V2, LocationSize::unknown());
360  }
361
362  /// A trivial helper function to check to see if the specified pointers are
363  /// no-alias.
364  bool isNoAlias(const MemoryLocation &LocA, const MemoryLocation &LocB) {
365    return alias(LocA, LocB) == NoAlias;
366  }
367
368  /// A convenience wrapper around the \c isNoAlias helper interface.
369  bool isNoAlias(const Value *V1, LocationSize V1Size, const Value *V2,
370                 LocationSize V2Size) {
371    return isNoAlias(MemoryLocation(V1, V1Size), MemoryLocation(V2, V2Size));
372  }
373
374  /// A convenience wrapper around the \c isNoAlias helper interface.
375  bool isNoAlias(const Value *V1, const Value *V2) {
376    return isNoAlias(MemoryLocation(V1), MemoryLocation(V2));
377  }
378
379  /// A trivial helper function to check to see if the specified pointers are
380  /// must-alias.
381  bool isMustAlias(const MemoryLocation &LocA, const MemoryLocation &LocB) {
382    return alias(LocA, LocB) == MustAlias;
383  }
384
385  /// A convenience wrapper around the \c isMustAlias helper interface.
386  bool isMustAlias(const Value *V1, const Value *V2) {
387    return alias(V1, LocationSize::precise(1), V2, LocationSize::precise(1)) ==
388           MustAlias;
389  }
390
391  /// Checks whether the given location points to constant memory, or if
392  /// \p OrLocal is true whether it points to a local alloca.
393  bool pointsToConstantMemory(const MemoryLocation &Loc, bool OrLocal = false);
394
395  /// A convenience wrapper around the primary \c pointsToConstantMemory
396  /// interface.
397  bool pointsToConstantMemory(const Value *P, bool OrLocal = false) {
398    return pointsToConstantMemory(MemoryLocation(P), OrLocal);
399  }
400
401  /// @}
402  //===--------------------------------------------------------------------===//
403  /// \name Simple mod/ref information
404  /// @{
405
406  /// Get the ModRef info associated with a pointer argument of a call. The
407  /// result's bits are set to indicate the allowed aliasing ModRef kinds. Note
408  /// that these bits do not necessarily account for the overall behavior of
409  /// the function, but rather only provide additional per-argument
410  /// information. This never sets ModRefInfo::Must.
411  ModRefInfo getArgModRefInfo(const CallBase *Call, unsigned ArgIdx);
412
413  /// Return the behavior of the given call site.
414  FunctionModRefBehavior getModRefBehavior(const CallBase *Call);
415
416  /// Return the behavior when calling the given function.
417  FunctionModRefBehavior getModRefBehavior(const Function *F);
418
419  /// Checks if the specified call is known to never read or write memory.
420  ///
421  /// Note that if the call only reads from known-constant memory, it is also
422  /// legal to return true. Also, calls that unwind the stack are legal for
423  /// this predicate.
424  ///
425  /// Many optimizations (such as CSE and LICM) can be performed on such calls
426  /// without worrying about aliasing properties, and many calls have this
427  /// property (e.g. calls to 'sin' and 'cos').
428  ///
429  /// This property corresponds to the GCC 'const' attribute.
430  bool doesNotAccessMemory(const CallBase *Call) {
431    return getModRefBehavior(Call) == FMRB_DoesNotAccessMemory;
432  }
433
434  /// Checks if the specified function is known to never read or write memory.
435  ///
436  /// Note that if the function only reads from known-constant memory, it is
437  /// also legal to return true. Also, function that unwind the stack are legal
438  /// for this predicate.
439  ///
440  /// Many optimizations (such as CSE and LICM) can be performed on such calls
441  /// to such functions without worrying about aliasing properties, and many
442  /// functions have this property (e.g. 'sin' and 'cos').
443  ///
444  /// This property corresponds to the GCC 'const' attribute.
445  bool doesNotAccessMemory(const Function *F) {
446    return getModRefBehavior(F) == FMRB_DoesNotAccessMemory;
447  }
448
449  /// Checks if the specified call is known to only read from non-volatile
450  /// memory (or not access memory at all).
451  ///
452  /// Calls that unwind the stack are legal for this predicate.
453  ///
454  /// This property allows many common optimizations to be performed in the
455  /// absence of interfering store instructions, such as CSE of strlen calls.
456  ///
457  /// This property corresponds to the GCC 'pure' attribute.
458  bool onlyReadsMemory(const CallBase *Call) {
459    return onlyReadsMemory(getModRefBehavior(Call));
460  }
461
462  /// Checks if the specified function is known to only read from non-volatile
463  /// memory (or not access memory at all).
464  ///
465  /// Functions that unwind the stack are legal for this predicate.
466  ///
467  /// This property allows many common optimizations to be performed in the
468  /// absence of interfering store instructions, such as CSE of strlen calls.
469  ///
470  /// This property corresponds to the GCC 'pure' attribute.
471  bool onlyReadsMemory(const Function *F) {
472    return onlyReadsMemory(getModRefBehavior(F));
473  }
474
475  /// Checks if functions with the specified behavior are known to only read
476  /// from non-volatile memory (or not access memory at all).
477  static bool onlyReadsMemory(FunctionModRefBehavior MRB) {
478    return !isModSet(createModRefInfo(MRB));
479  }
480
481  /// Checks if functions with the specified behavior are known to only write
482  /// memory (or not access memory at all).
483  static bool doesNotReadMemory(FunctionModRefBehavior MRB) {
484    return !isRefSet(createModRefInfo(MRB));
485  }
486
487  /// Checks if functions with the specified behavior are known to read and
488  /// write at most from objects pointed to by their pointer-typed arguments
489  /// (with arbitrary offsets).
490  static bool onlyAccessesArgPointees(FunctionModRefBehavior MRB) {
491    return !(MRB & FMRL_Anywhere & ~FMRL_ArgumentPointees);
492  }
493
494  /// Checks if functions with the specified behavior are known to potentially
495  /// read or write from objects pointed to be their pointer-typed arguments
496  /// (with arbitrary offsets).
497  static bool doesAccessArgPointees(FunctionModRefBehavior MRB) {
498    return isModOrRefSet(createModRefInfo(MRB)) &&
499           (MRB & FMRL_ArgumentPointees);
500  }
501
502  /// Checks if functions with the specified behavior are known to read and
503  /// write at most from memory that is inaccessible from LLVM IR.
504  static bool onlyAccessesInaccessibleMem(FunctionModRefBehavior MRB) {
505    return !(MRB & FMRL_Anywhere & ~FMRL_InaccessibleMem);
506  }
507
508  /// Checks if functions with the specified behavior are known to potentially
509  /// read or write from memory that is inaccessible from LLVM IR.
510  static bool doesAccessInaccessibleMem(FunctionModRefBehavior MRB) {
511    return isModOrRefSet(createModRefInfo(MRB)) && (MRB & FMRL_InaccessibleMem);
512  }
513
514  /// Checks if functions with the specified behavior are known to read and
515  /// write at most from memory that is inaccessible from LLVM IR or objects
516  /// pointed to by their pointer-typed arguments (with arbitrary offsets).
517  static bool onlyAccessesInaccessibleOrArgMem(FunctionModRefBehavior MRB) {
518    return !(MRB & FMRL_Anywhere &
519             ~(FMRL_InaccessibleMem | FMRL_ArgumentPointees));
520  }
521
522  /// getModRefInfo (for call sites) - Return information about whether
523  /// a particular call site modifies or reads the specified memory location.
524  ModRefInfo getModRefInfo(const CallBase *Call, const MemoryLocation &Loc);
525
526  /// getModRefInfo (for call sites) - A convenience wrapper.
527  ModRefInfo getModRefInfo(const CallBase *Call, const Value *P,
528                           LocationSize Size) {
529    return getModRefInfo(Call, MemoryLocation(P, Size));
530  }
531
532  /// getModRefInfo (for loads) - Return information about whether
533  /// a particular load modifies or reads the specified memory location.
534  ModRefInfo getModRefInfo(const LoadInst *L, const MemoryLocation &Loc);
535
536  /// getModRefInfo (for loads) - A convenience wrapper.
537  ModRefInfo getModRefInfo(const LoadInst *L, const Value *P,
538                           LocationSize Size) {
539    return getModRefInfo(L, MemoryLocation(P, Size));
540  }
541
542  /// getModRefInfo (for stores) - Return information about whether
543  /// a particular store modifies or reads the specified memory location.
544  ModRefInfo getModRefInfo(const StoreInst *S, const MemoryLocation &Loc);
545
546  /// getModRefInfo (for stores) - A convenience wrapper.
547  ModRefInfo getModRefInfo(const StoreInst *S, const Value *P,
548                           LocationSize Size) {
549    return getModRefInfo(S, MemoryLocation(P, Size));
550  }
551
552  /// getModRefInfo (for fences) - Return information about whether
553  /// a particular store modifies or reads the specified memory location.
554  ModRefInfo getModRefInfo(const FenceInst *S, const MemoryLocation &Loc);
555
556  /// getModRefInfo (for fences) - A convenience wrapper.
557  ModRefInfo getModRefInfo(const FenceInst *S, const Value *P,
558                           LocationSize Size) {
559    return getModRefInfo(S, MemoryLocation(P, Size));
560  }
561
562  /// getModRefInfo (for cmpxchges) - Return information about whether
563  /// a particular cmpxchg modifies or reads the specified memory location.
564  ModRefInfo getModRefInfo(const AtomicCmpXchgInst *CX,
565                           const MemoryLocation &Loc);
566
567  /// getModRefInfo (for cmpxchges) - A convenience wrapper.
568  ModRefInfo getModRefInfo(const AtomicCmpXchgInst *CX, const Value *P,
569                           LocationSize Size) {
570    return getModRefInfo(CX, MemoryLocation(P, Size));
571  }
572
573  /// getModRefInfo (for atomicrmws) - Return information about whether
574  /// a particular atomicrmw modifies or reads the specified memory location.
575  ModRefInfo getModRefInfo(const AtomicRMWInst *RMW, const MemoryLocation &Loc);
576
577  /// getModRefInfo (for atomicrmws) - A convenience wrapper.
578  ModRefInfo getModRefInfo(const AtomicRMWInst *RMW, const Value *P,
579                           LocationSize Size) {
580    return getModRefInfo(RMW, MemoryLocation(P, Size));
581  }
582
583  /// getModRefInfo (for va_args) - Return information about whether
584  /// a particular va_arg modifies or reads the specified memory location.
585  ModRefInfo getModRefInfo(const VAArgInst *I, const MemoryLocation &Loc);
586
587  /// getModRefInfo (for va_args) - A convenience wrapper.
588  ModRefInfo getModRefInfo(const VAArgInst *I, const Value *P,
589                           LocationSize Size) {
590    return getModRefInfo(I, MemoryLocation(P, Size));
591  }
592
593  /// getModRefInfo (for catchpads) - Return information about whether
594  /// a particular catchpad modifies or reads the specified memory location.
595  ModRefInfo getModRefInfo(const CatchPadInst *I, const MemoryLocation &Loc);
596
597  /// getModRefInfo (for catchpads) - A convenience wrapper.
598  ModRefInfo getModRefInfo(const CatchPadInst *I, const Value *P,
599                           LocationSize Size) {
600    return getModRefInfo(I, MemoryLocation(P, Size));
601  }
602
603  /// getModRefInfo (for catchrets) - Return information about whether
604  /// a particular catchret modifies or reads the specified memory location.
605  ModRefInfo getModRefInfo(const CatchReturnInst *I, const MemoryLocation &Loc);
606
607  /// getModRefInfo (for catchrets) - A convenience wrapper.
608  ModRefInfo getModRefInfo(const CatchReturnInst *I, const Value *P,
609                           LocationSize Size) {
610    return getModRefInfo(I, MemoryLocation(P, Size));
611  }
612
613  /// Check whether or not an instruction may read or write the optionally
614  /// specified memory location.
615  ///
616  ///
617  /// An instruction that doesn't read or write memory may be trivially LICM'd
618  /// for example.
619  ///
620  /// For function calls, this delegates to the alias-analysis specific
621  /// call-site mod-ref behavior queries. Otherwise it delegates to the specific
622  /// helpers above.
623  ModRefInfo getModRefInfo(const Instruction *I,
624                           const Optional<MemoryLocation> &OptLoc) {
625    AAQueryInfo AAQIP;
626    return getModRefInfo(I, OptLoc, AAQIP);
627  }
628
629  /// A convenience wrapper for constructing the memory location.
630  ModRefInfo getModRefInfo(const Instruction *I, const Value *P,
631                           LocationSize Size) {
632    return getModRefInfo(I, MemoryLocation(P, Size));
633  }
634
635  /// Return information about whether a call and an instruction may refer to
636  /// the same memory locations.
637  ModRefInfo getModRefInfo(Instruction *I, const CallBase *Call);
638
639  /// Return information about whether two call sites may refer to the same set
640  /// of memory locations. See the AA documentation for details:
641  ///   http://llvm.org/docs/AliasAnalysis.html#ModRefInfo
642  ModRefInfo getModRefInfo(const CallBase *Call1, const CallBase *Call2);
643
644  /// Return information about whether a particular call site modifies
645  /// or reads the specified memory location \p MemLoc before instruction \p I
646  /// in a BasicBlock. An ordered basic block \p OBB can be used to speed up
647  /// instruction ordering queries inside the BasicBlock containing \p I.
648  /// Early exits in callCapturesBefore may lead to ModRefInfo::Must not being
649  /// set.
650  ModRefInfo callCapturesBefore(const Instruction *I,
651                                const MemoryLocation &MemLoc, DominatorTree *DT,
652                                OrderedBasicBlock *OBB = nullptr);
653
654  /// A convenience wrapper to synthesize a memory location.
655  ModRefInfo callCapturesBefore(const Instruction *I, const Value *P,
656                                LocationSize Size, DominatorTree *DT,
657                                OrderedBasicBlock *OBB = nullptr) {
658    return callCapturesBefore(I, MemoryLocation(P, Size), DT, OBB);
659  }
660
661  /// @}
662  //===--------------------------------------------------------------------===//
663  /// \name Higher level methods for querying mod/ref information.
664  /// @{
665
666  /// Check if it is possible for execution of the specified basic block to
667  /// modify the location Loc.
668  bool canBasicBlockModify(const BasicBlock &BB, const MemoryLocation &Loc);
669
670  /// A convenience wrapper synthesizing a memory location.
671  bool canBasicBlockModify(const BasicBlock &BB, const Value *P,
672                           LocationSize Size) {
673    return canBasicBlockModify(BB, MemoryLocation(P, Size));
674  }
675
676  /// Check if it is possible for the execution of the specified instructions
677  /// to mod\ref (according to the mode) the location Loc.
678  ///
679  /// The instructions to consider are all of the instructions in the range of
680  /// [I1,I2] INCLUSIVE. I1 and I2 must be in the same basic block.
681  bool canInstructionRangeModRef(const Instruction &I1, const Instruction &I2,
682                                 const MemoryLocation &Loc,
683                                 const ModRefInfo Mode);
684
685  /// A convenience wrapper synthesizing a memory location.
686  bool canInstructionRangeModRef(const Instruction &I1, const Instruction &I2,
687                                 const Value *Ptr, LocationSize Size,
688                                 const ModRefInfo Mode) {
689    return canInstructionRangeModRef(I1, I2, MemoryLocation(Ptr, Size), Mode);
690  }
691
692private:
693  AliasResult alias(const MemoryLocation &LocA, const MemoryLocation &LocB,
694                    AAQueryInfo &AAQI);
695  bool pointsToConstantMemory(const MemoryLocation &Loc, AAQueryInfo &AAQI,
696                              bool OrLocal = false);
697  ModRefInfo getModRefInfo(Instruction *I, const CallBase *Call2,
698                           AAQueryInfo &AAQIP);
699  ModRefInfo getModRefInfo(const CallBase *Call, const MemoryLocation &Loc,
700                           AAQueryInfo &AAQI);
701  ModRefInfo getModRefInfo(const CallBase *Call1, const CallBase *Call2,
702                           AAQueryInfo &AAQI);
703  ModRefInfo getModRefInfo(const VAArgInst *V, const MemoryLocation &Loc,
704                           AAQueryInfo &AAQI);
705  ModRefInfo getModRefInfo(const LoadInst *L, const MemoryLocation &Loc,
706                           AAQueryInfo &AAQI);
707  ModRefInfo getModRefInfo(const StoreInst *S, const MemoryLocation &Loc,
708                           AAQueryInfo &AAQI);
709  ModRefInfo getModRefInfo(const FenceInst *S, const MemoryLocation &Loc,
710                           AAQueryInfo &AAQI);
711  ModRefInfo getModRefInfo(const AtomicCmpXchgInst *CX,
712                           const MemoryLocation &Loc, AAQueryInfo &AAQI);
713  ModRefInfo getModRefInfo(const AtomicRMWInst *RMW, const MemoryLocation &Loc,
714                           AAQueryInfo &AAQI);
715  ModRefInfo getModRefInfo(const CatchPadInst *I, const MemoryLocation &Loc,
716                           AAQueryInfo &AAQI);
717  ModRefInfo getModRefInfo(const CatchReturnInst *I, const MemoryLocation &Loc,
718                           AAQueryInfo &AAQI);
719  ModRefInfo getModRefInfo(const Instruction *I,
720                           const Optional<MemoryLocation> &OptLoc,
721                           AAQueryInfo &AAQIP) {
722    if (OptLoc == None) {
723      if (const auto *Call = dyn_cast<CallBase>(I)) {
724        return createModRefInfo(getModRefBehavior(Call));
725      }
726    }
727
728    const MemoryLocation &Loc = OptLoc.getValueOr(MemoryLocation());
729
730    switch (I->getOpcode()) {
731    case Instruction::VAArg:
732      return getModRefInfo((const VAArgInst *)I, Loc, AAQIP);
733    case Instruction::Load:
734      return getModRefInfo((const LoadInst *)I, Loc, AAQIP);
735    case Instruction::Store:
736      return getModRefInfo((const StoreInst *)I, Loc, AAQIP);
737    case Instruction::Fence:
738      return getModRefInfo((const FenceInst *)I, Loc, AAQIP);
739    case Instruction::AtomicCmpXchg:
740      return getModRefInfo((const AtomicCmpXchgInst *)I, Loc, AAQIP);
741    case Instruction::AtomicRMW:
742      return getModRefInfo((const AtomicRMWInst *)I, Loc, AAQIP);
743    case Instruction::Call:
744      return getModRefInfo((const CallInst *)I, Loc, AAQIP);
745    case Instruction::Invoke:
746      return getModRefInfo((const InvokeInst *)I, Loc, AAQIP);
747    case Instruction::CatchPad:
748      return getModRefInfo((const CatchPadInst *)I, Loc, AAQIP);
749    case Instruction::CatchRet:
750      return getModRefInfo((const CatchReturnInst *)I, Loc, AAQIP);
751    default:
752      return ModRefInfo::NoModRef;
753    }
754  }
755
756  class Concept;
757
758  template <typename T> class Model;
759
760  template <typename T> friend class AAResultBase;
761
762  const TargetLibraryInfo &TLI;
763
764  std::vector<std::unique_ptr<Concept>> AAs;
765
766  std::vector<AnalysisKey *> AADeps;
767
768  friend class BatchAAResults;
769};
770
771/// This class is a wrapper over an AAResults, and it is intended to be used
772/// only when there are no IR changes inbetween queries. BatchAAResults is
773/// reusing the same `AAQueryInfo` to preserve the state across queries,
774/// esentially making AA work in "batch mode". The internal state cannot be
775/// cleared, so to go "out-of-batch-mode", the user must either use AAResults,
776/// or create a new BatchAAResults.
777class BatchAAResults {
778  AAResults &AA;
779  AAQueryInfo AAQI;
780
781public:
782  BatchAAResults(AAResults &AAR) : AA(AAR), AAQI() {}
783  AliasResult alias(const MemoryLocation &LocA, const MemoryLocation &LocB) {
784    return AA.alias(LocA, LocB, AAQI);
785  }
786  bool pointsToConstantMemory(const MemoryLocation &Loc, bool OrLocal = false) {
787    return AA.pointsToConstantMemory(Loc, AAQI, OrLocal);
788  }
789  ModRefInfo getModRefInfo(const CallBase *Call, const MemoryLocation &Loc) {
790    return AA.getModRefInfo(Call, Loc, AAQI);
791  }
792  ModRefInfo getModRefInfo(const CallBase *Call1, const CallBase *Call2) {
793    return AA.getModRefInfo(Call1, Call2, AAQI);
794  }
795  ModRefInfo getModRefInfo(const Instruction *I,
796                           const Optional<MemoryLocation> &OptLoc) {
797    return AA.getModRefInfo(I, OptLoc, AAQI);
798  }
799  ModRefInfo getModRefInfo(Instruction *I, const CallBase *Call2) {
800    return AA.getModRefInfo(I, Call2, AAQI);
801  }
802  ModRefInfo getArgModRefInfo(const CallBase *Call, unsigned ArgIdx) {
803    return AA.getArgModRefInfo(Call, ArgIdx);
804  }
805  FunctionModRefBehavior getModRefBehavior(const CallBase *Call) {
806    return AA.getModRefBehavior(Call);
807  }
808};
809
810/// Temporary typedef for legacy code that uses a generic \c AliasAnalysis
811/// pointer or reference.
812using AliasAnalysis = AAResults;
813
814/// A private abstract base class describing the concept of an individual alias
815/// analysis implementation.
816///
817/// This interface is implemented by any \c Model instantiation. It is also the
818/// interface which a type used to instantiate the model must provide.
819///
820/// All of these methods model methods by the same name in the \c
821/// AAResults class. Only differences and specifics to how the
822/// implementations are called are documented here.
823class AAResults::Concept {
824public:
825  virtual ~Concept() = 0;
826
827  /// An update API used internally by the AAResults to provide
828  /// a handle back to the top level aggregation.
829  virtual void setAAResults(AAResults *NewAAR) = 0;
830
831  //===--------------------------------------------------------------------===//
832  /// \name Alias Queries
833  /// @{
834
835  /// The main low level interface to the alias analysis implementation.
836  /// Returns an AliasResult indicating whether the two pointers are aliased to
837  /// each other. This is the interface that must be implemented by specific
838  /// alias analysis implementations.
839  virtual AliasResult alias(const MemoryLocation &LocA,
840                            const MemoryLocation &LocB, AAQueryInfo &AAQI) = 0;
841
842  /// Checks whether the given location points to constant memory, or if
843  /// \p OrLocal is true whether it points to a local alloca.
844  virtual bool pointsToConstantMemory(const MemoryLocation &Loc,
845                                      AAQueryInfo &AAQI, bool OrLocal) = 0;
846
847  /// @}
848  //===--------------------------------------------------------------------===//
849  /// \name Simple mod/ref information
850  /// @{
851
852  /// Get the ModRef info associated with a pointer argument of a callsite. The
853  /// result's bits are set to indicate the allowed aliasing ModRef kinds. Note
854  /// that these bits do not necessarily account for the overall behavior of
855  /// the function, but rather only provide additional per-argument
856  /// information.
857  virtual ModRefInfo getArgModRefInfo(const CallBase *Call,
858                                      unsigned ArgIdx) = 0;
859
860  /// Return the behavior of the given call site.
861  virtual FunctionModRefBehavior getModRefBehavior(const CallBase *Call) = 0;
862
863  /// Return the behavior when calling the given function.
864  virtual FunctionModRefBehavior getModRefBehavior(const Function *F) = 0;
865
866  /// getModRefInfo (for call sites) - Return information about whether
867  /// a particular call site modifies or reads the specified memory location.
868  virtual ModRefInfo getModRefInfo(const CallBase *Call,
869                                   const MemoryLocation &Loc,
870                                   AAQueryInfo &AAQI) = 0;
871
872  /// Return information about whether two call sites may refer to the same set
873  /// of memory locations. See the AA documentation for details:
874  ///   http://llvm.org/docs/AliasAnalysis.html#ModRefInfo
875  virtual ModRefInfo getModRefInfo(const CallBase *Call1, const CallBase *Call2,
876                                   AAQueryInfo &AAQI) = 0;
877
878  /// @}
879};
880
881/// A private class template which derives from \c Concept and wraps some other
882/// type.
883///
884/// This models the concept by directly forwarding each interface point to the
885/// wrapped type which must implement a compatible interface. This provides
886/// a type erased binding.
887template <typename AAResultT> class AAResults::Model final : public Concept {
888  AAResultT &Result;
889
890public:
891  explicit Model(AAResultT &Result, AAResults &AAR) : Result(Result) {
892    Result.setAAResults(&AAR);
893  }
894  ~Model() override = default;
895
896  void setAAResults(AAResults *NewAAR) override { Result.setAAResults(NewAAR); }
897
898  AliasResult alias(const MemoryLocation &LocA, const MemoryLocation &LocB,
899                    AAQueryInfo &AAQI) override {
900    return Result.alias(LocA, LocB, AAQI);
901  }
902
903  bool pointsToConstantMemory(const MemoryLocation &Loc, AAQueryInfo &AAQI,
904                              bool OrLocal) override {
905    return Result.pointsToConstantMemory(Loc, AAQI, OrLocal);
906  }
907
908  ModRefInfo getArgModRefInfo(const CallBase *Call, unsigned ArgIdx) override {
909    return Result.getArgModRefInfo(Call, ArgIdx);
910  }
911
912  FunctionModRefBehavior getModRefBehavior(const CallBase *Call) override {
913    return Result.getModRefBehavior(Call);
914  }
915
916  FunctionModRefBehavior getModRefBehavior(const Function *F) override {
917    return Result.getModRefBehavior(F);
918  }
919
920  ModRefInfo getModRefInfo(const CallBase *Call, const MemoryLocation &Loc,
921                           AAQueryInfo &AAQI) override {
922    return Result.getModRefInfo(Call, Loc, AAQI);
923  }
924
925  ModRefInfo getModRefInfo(const CallBase *Call1, const CallBase *Call2,
926                           AAQueryInfo &AAQI) override {
927    return Result.getModRefInfo(Call1, Call2, AAQI);
928  }
929};
930
931/// A CRTP-driven "mixin" base class to help implement the function alias
932/// analysis results concept.
933///
934/// Because of the nature of many alias analysis implementations, they often
935/// only implement a subset of the interface. This base class will attempt to
936/// implement the remaining portions of the interface in terms of simpler forms
937/// of the interface where possible, and otherwise provide conservatively
938/// correct fallback implementations.
939///
940/// Implementors of an alias analysis should derive from this CRTP, and then
941/// override specific methods that they wish to customize. There is no need to
942/// use virtual anywhere, the CRTP base class does static dispatch to the
943/// derived type passed into it.
944template <typename DerivedT> class AAResultBase {
945  // Expose some parts of the interface only to the AAResults::Model
946  // for wrapping. Specifically, this allows the model to call our
947  // setAAResults method without exposing it as a fully public API.
948  friend class AAResults::Model<DerivedT>;
949
950  /// A pointer to the AAResults object that this AAResult is
951  /// aggregated within. May be null if not aggregated.
952  AAResults *AAR = nullptr;
953
954  /// Helper to dispatch calls back through the derived type.
955  DerivedT &derived() { return static_cast<DerivedT &>(*this); }
956
957  /// A setter for the AAResults pointer, which is used to satisfy the
958  /// AAResults::Model contract.
959  void setAAResults(AAResults *NewAAR) { AAR = NewAAR; }
960
961protected:
962  /// This proxy class models a common pattern where we delegate to either the
963  /// top-level \c AAResults aggregation if one is registered, or to the
964  /// current result if none are registered.
965  class AAResultsProxy {
966    AAResults *AAR;
967    DerivedT &CurrentResult;
968
969  public:
970    AAResultsProxy(AAResults *AAR, DerivedT &CurrentResult)
971        : AAR(AAR), CurrentResult(CurrentResult) {}
972
973    AliasResult alias(const MemoryLocation &LocA, const MemoryLocation &LocB,
974                      AAQueryInfo &AAQI) {
975      return AAR ? AAR->alias(LocA, LocB, AAQI)
976                 : CurrentResult.alias(LocA, LocB, AAQI);
977    }
978
979    bool pointsToConstantMemory(const MemoryLocation &Loc, AAQueryInfo &AAQI,
980                                bool OrLocal) {
981      return AAR ? AAR->pointsToConstantMemory(Loc, AAQI, OrLocal)
982                 : CurrentResult.pointsToConstantMemory(Loc, AAQI, OrLocal);
983    }
984
985    ModRefInfo getArgModRefInfo(const CallBase *Call, unsigned ArgIdx) {
986      return AAR ? AAR->getArgModRefInfo(Call, ArgIdx)
987                 : CurrentResult.getArgModRefInfo(Call, ArgIdx);
988    }
989
990    FunctionModRefBehavior getModRefBehavior(const CallBase *Call) {
991      return AAR ? AAR->getModRefBehavior(Call)
992                 : CurrentResult.getModRefBehavior(Call);
993    }
994
995    FunctionModRefBehavior getModRefBehavior(const Function *F) {
996      return AAR ? AAR->getModRefBehavior(F) : CurrentResult.getModRefBehavior(F);
997    }
998
999    ModRefInfo getModRefInfo(const CallBase *Call, const MemoryLocation &Loc,
1000                             AAQueryInfo &AAQI) {
1001      return AAR ? AAR->getModRefInfo(Call, Loc, AAQI)
1002                 : CurrentResult.getModRefInfo(Call, Loc, AAQI);
1003    }
1004
1005    ModRefInfo getModRefInfo(const CallBase *Call1, const CallBase *Call2,
1006                             AAQueryInfo &AAQI) {
1007      return AAR ? AAR->getModRefInfo(Call1, Call2, AAQI)
1008                 : CurrentResult.getModRefInfo(Call1, Call2, AAQI);
1009    }
1010  };
1011
1012  explicit AAResultBase() = default;
1013
1014  // Provide all the copy and move constructors so that derived types aren't
1015  // constrained.
1016  AAResultBase(const AAResultBase &Arg) {}
1017  AAResultBase(AAResultBase &&Arg) {}
1018
1019  /// Get a proxy for the best AA result set to query at this time.
1020  ///
1021  /// When this result is part of a larger aggregation, this will proxy to that
1022  /// aggregation. When this result is used in isolation, it will just delegate
1023  /// back to the derived class's implementation.
1024  ///
1025  /// Note that callers of this need to take considerable care to not cause
1026  /// performance problems when they use this routine, in the case of a large
1027  /// number of alias analyses being aggregated, it can be expensive to walk
1028  /// back across the chain.
1029  AAResultsProxy getBestAAResults() { return AAResultsProxy(AAR, derived()); }
1030
1031public:
1032  AliasResult alias(const MemoryLocation &LocA, const MemoryLocation &LocB,
1033                    AAQueryInfo &AAQI) {
1034    return MayAlias;
1035  }
1036
1037  bool pointsToConstantMemory(const MemoryLocation &Loc, AAQueryInfo &AAQI,
1038                              bool OrLocal) {
1039    return false;
1040  }
1041
1042  ModRefInfo getArgModRefInfo(const CallBase *Call, unsigned ArgIdx) {
1043    return ModRefInfo::ModRef;
1044  }
1045
1046  FunctionModRefBehavior getModRefBehavior(const CallBase *Call) {
1047    return FMRB_UnknownModRefBehavior;
1048  }
1049
1050  FunctionModRefBehavior getModRefBehavior(const Function *F) {
1051    return FMRB_UnknownModRefBehavior;
1052  }
1053
1054  ModRefInfo getModRefInfo(const CallBase *Call, const MemoryLocation &Loc,
1055                           AAQueryInfo &AAQI) {
1056    return ModRefInfo::ModRef;
1057  }
1058
1059  ModRefInfo getModRefInfo(const CallBase *Call1, const CallBase *Call2,
1060                           AAQueryInfo &AAQI) {
1061    return ModRefInfo::ModRef;
1062  }
1063};
1064
1065/// Return true if this pointer is returned by a noalias function.
1066bool isNoAliasCall(const Value *V);
1067
1068/// Return true if this is an argument with the noalias attribute.
1069bool isNoAliasArgument(const Value *V);
1070
1071/// Return true if this pointer refers to a distinct and identifiable object.
1072/// This returns true for:
1073///    Global Variables and Functions (but not Global Aliases)
1074///    Allocas
1075///    ByVal and NoAlias Arguments
1076///    NoAlias returns (e.g. calls to malloc)
1077///
1078bool isIdentifiedObject(const Value *V);
1079
1080/// Return true if V is umabigously identified at the function-level.
1081/// Different IdentifiedFunctionLocals can't alias.
1082/// Further, an IdentifiedFunctionLocal can not alias with any function
1083/// arguments other than itself, which is not necessarily true for
1084/// IdentifiedObjects.
1085bool isIdentifiedFunctionLocal(const Value *V);
1086
1087/// A manager for alias analyses.
1088///
1089/// This class can have analyses registered with it and when run, it will run
1090/// all of them and aggregate their results into single AA results interface
1091/// that dispatches across all of the alias analysis results available.
1092///
1093/// Note that the order in which analyses are registered is very significant.
1094/// That is the order in which the results will be aggregated and queried.
1095///
1096/// This manager effectively wraps the AnalysisManager for registering alias
1097/// analyses. When you register your alias analysis with this manager, it will
1098/// ensure the analysis itself is registered with its AnalysisManager.
1099///
1100/// The result of this analysis is only invalidated if one of the particular
1101/// aggregated AA results end up being invalidated. This removes the need to
1102/// explicitly preserve the results of `AAManager`. Note that analyses should no
1103/// longer be registered once the `AAManager` is run.
1104class AAManager : public AnalysisInfoMixin<AAManager> {
1105public:
1106  using Result = AAResults;
1107
1108  /// Register a specific AA result.
1109  template <typename AnalysisT> void registerFunctionAnalysis() {
1110    ResultGetters.push_back(&getFunctionAAResultImpl<AnalysisT>);
1111  }
1112
1113  /// Register a specific AA result.
1114  template <typename AnalysisT> void registerModuleAnalysis() {
1115    ResultGetters.push_back(&getModuleAAResultImpl<AnalysisT>);
1116  }
1117
1118  Result run(Function &F, FunctionAnalysisManager &AM) {
1119    Result R(AM.getResult<TargetLibraryAnalysis>(F));
1120    for (auto &Getter : ResultGetters)
1121      (*Getter)(F, AM, R);
1122    return R;
1123  }
1124
1125private:
1126  friend AnalysisInfoMixin<AAManager>;
1127
1128  static AnalysisKey Key;
1129
1130  SmallVector<void (*)(Function &F, FunctionAnalysisManager &AM,
1131                       AAResults &AAResults),
1132              4> ResultGetters;
1133
1134  template <typename AnalysisT>
1135  static void getFunctionAAResultImpl(Function &F,
1136                                      FunctionAnalysisManager &AM,
1137                                      AAResults &AAResults) {
1138    AAResults.addAAResult(AM.template getResult<AnalysisT>(F));
1139    AAResults.addAADependencyID(AnalysisT::ID());
1140  }
1141
1142  template <typename AnalysisT>
1143  static void getModuleAAResultImpl(Function &F, FunctionAnalysisManager &AM,
1144                                    AAResults &AAResults) {
1145    auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F);
1146    auto &MAM = MAMProxy.getManager();
1147    if (auto *R = MAM.template getCachedResult<AnalysisT>(*F.getParent())) {
1148      AAResults.addAAResult(*R);
1149      MAMProxy
1150          .template registerOuterAnalysisInvalidation<AnalysisT, AAManager>();
1151    }
1152  }
1153};
1154
1155/// A wrapper pass to provide the legacy pass manager access to a suitably
1156/// prepared AAResults object.
1157class AAResultsWrapperPass : public FunctionPass {
1158  std::unique_ptr<AAResults> AAR;
1159
1160public:
1161  static char ID;
1162
1163  AAResultsWrapperPass();
1164
1165  AAResults &getAAResults() { return *AAR; }
1166  const AAResults &getAAResults() const { return *AAR; }
1167
1168  bool runOnFunction(Function &F) override;
1169
1170  void getAnalysisUsage(AnalysisUsage &AU) const override;
1171};
1172
1173/// A wrapper pass for external alias analyses. This just squirrels away the
1174/// callback used to run any analyses and register their results.
1175struct ExternalAAWrapperPass : ImmutablePass {
1176  using CallbackT = std::function<void(Pass &, Function &, AAResults &)>;
1177
1178  CallbackT CB;
1179
1180  static char ID;
1181
1182  ExternalAAWrapperPass();
1183
1184  explicit ExternalAAWrapperPass(CallbackT CB);
1185
1186  void getAnalysisUsage(AnalysisUsage &AU) const override {
1187    AU.setPreservesAll();
1188  }
1189};
1190
1191FunctionPass *createAAResultsWrapperPass();
1192
1193/// A wrapper pass around a callback which can be used to populate the
1194/// AAResults in the AAResultsWrapperPass from an external AA.
1195///
1196/// The callback provided here will be used each time we prepare an AAResults
1197/// object, and will receive a reference to the function wrapper pass, the
1198/// function, and the AAResults object to populate. This should be used when
1199/// setting up a custom pass pipeline to inject a hook into the AA results.
1200ImmutablePass *createExternalAAWrapperPass(
1201    std::function<void(Pass &, Function &, AAResults &)> Callback);
1202
1203/// A helper for the legacy pass manager to create a \c AAResults
1204/// object populated to the best of our ability for a particular function when
1205/// inside of a \c ModulePass or a \c CallGraphSCCPass.
1206///
1207/// If a \c ModulePass or a \c CallGraphSCCPass calls \p
1208/// createLegacyPMAAResults, it also needs to call \p addUsedAAAnalyses in \p
1209/// getAnalysisUsage.
1210AAResults createLegacyPMAAResults(Pass &P, Function &F, BasicAAResult &BAR);
1211
1212/// A helper for the legacy pass manager to populate \p AU to add uses to make
1213/// sure the analyses required by \p createLegacyPMAAResults are available.
1214void getAAResultsAnalysisUsage(AnalysisUsage &AU);
1215
1216} // end namespace llvm
1217
1218#endif // LLVM_ANALYSIS_ALIASANALYSIS_H
1219