SCCIterator.h revision 360784
1//===- ADT/SCCIterator.h - Strongly Connected Comp. Iter. -------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8/// \file
9///
10/// This builds on the llvm/ADT/GraphTraits.h file to find the strongly
11/// connected components (SCCs) of a graph in O(N+E) time using Tarjan's DFS
12/// algorithm.
13///
14/// The SCC iterator has the important property that if a node in SCC S1 has an
15/// edge to a node in SCC S2, then it visits S1 *after* S2.
16///
17/// To visit S1 *before* S2, use the scc_iterator on the Inverse graph. (NOTE:
18/// This requires some simple wrappers and is not supported yet.)
19///
20//===----------------------------------------------------------------------===//
21
22#ifndef LLVM_ADT_SCCITERATOR_H
23#define LLVM_ADT_SCCITERATOR_H
24
25#include "llvm/ADT/DenseMap.h"
26#include "llvm/ADT/GraphTraits.h"
27#include "llvm/ADT/iterator.h"
28#include <cassert>
29#include <cstddef>
30#include <iterator>
31#include <vector>
32
33namespace llvm {
34
35/// Enumerate the SCCs of a directed graph in reverse topological order
36/// of the SCC DAG.
37///
38/// This is implemented using Tarjan's DFS algorithm using an internal stack to
39/// build up a vector of nodes in a particular SCC. Note that it is a forward
40/// iterator and thus you cannot backtrack or re-visit nodes.
41template <class GraphT, class GT = GraphTraits<GraphT>>
42class scc_iterator : public iterator_facade_base<
43                         scc_iterator<GraphT, GT>, std::forward_iterator_tag,
44                         const std::vector<typename GT::NodeRef>, ptrdiff_t> {
45  using NodeRef = typename GT::NodeRef;
46  using ChildItTy = typename GT::ChildIteratorType;
47  using SccTy = std::vector<NodeRef>;
48  using reference = typename scc_iterator::reference;
49
50  /// Element of VisitStack during DFS.
51  struct StackElement {
52    NodeRef Node;         ///< The current node pointer.
53    ChildItTy NextChild;  ///< The next child, modified inplace during DFS.
54    unsigned MinVisited;  ///< Minimum uplink value of all children of Node.
55
56    StackElement(NodeRef Node, const ChildItTy &Child, unsigned Min)
57        : Node(Node), NextChild(Child), MinVisited(Min) {}
58
59    bool operator==(const StackElement &Other) const {
60      return Node == Other.Node &&
61             NextChild == Other.NextChild &&
62             MinVisited == Other.MinVisited;
63    }
64  };
65
66  /// The visit counters used to detect when a complete SCC is on the stack.
67  /// visitNum is the global counter.
68  ///
69  /// nodeVisitNumbers are per-node visit numbers, also used as DFS flags.
70  unsigned visitNum;
71  DenseMap<NodeRef, unsigned> nodeVisitNumbers;
72
73  /// Stack holding nodes of the SCC.
74  std::vector<NodeRef> SCCNodeStack;
75
76  /// The current SCC, retrieved using operator*().
77  SccTy CurrentSCC;
78
79  /// DFS stack, Used to maintain the ordering.  The top contains the current
80  /// node, the next child to visit, and the minimum uplink value of all child
81  std::vector<StackElement> VisitStack;
82
83  /// A single "visit" within the non-recursive DFS traversal.
84  void DFSVisitOne(NodeRef N);
85
86  /// The stack-based DFS traversal; defined below.
87  void DFSVisitChildren();
88
89  /// Compute the next SCC using the DFS traversal.
90  void GetNextSCC();
91
92  scc_iterator(NodeRef entryN) : visitNum(0) {
93    DFSVisitOne(entryN);
94    GetNextSCC();
95  }
96
97  /// End is when the DFS stack is empty.
98  scc_iterator() = default;
99
100public:
101  static scc_iterator begin(const GraphT &G) {
102    return scc_iterator(GT::getEntryNode(G));
103  }
104  static scc_iterator end(const GraphT &) { return scc_iterator(); }
105
106  /// Direct loop termination test which is more efficient than
107  /// comparison with \c end().
108  bool isAtEnd() const {
109    assert(!CurrentSCC.empty() || VisitStack.empty());
110    return CurrentSCC.empty();
111  }
112
113  bool operator==(const scc_iterator &x) const {
114    return VisitStack == x.VisitStack && CurrentSCC == x.CurrentSCC;
115  }
116
117  scc_iterator &operator++() {
118    GetNextSCC();
119    return *this;
120  }
121
122  reference operator*() const {
123    assert(!CurrentSCC.empty() && "Dereferencing END SCC iterator!");
124    return CurrentSCC;
125  }
126
127  /// Test if the current SCC has a loop.
128  ///
129  /// If the SCC has more than one node, this is trivially true.  If not, it may
130  /// still contain a loop if the node has an edge back to itself.
131  bool hasLoop() const;
132
133  /// This informs the \c scc_iterator that the specified \c Old node
134  /// has been deleted, and \c New is to be used in its place.
135  void ReplaceNode(NodeRef Old, NodeRef New) {
136    assert(nodeVisitNumbers.count(Old) && "Old not in scc_iterator?");
137    // Do the assignment in two steps, in case 'New' is not yet in the map, and
138    // inserting it causes the map to grow.
139    auto tempVal = nodeVisitNumbers[Old];
140    nodeVisitNumbers[New] = tempVal;
141    nodeVisitNumbers.erase(Old);
142  }
143};
144
145template <class GraphT, class GT>
146void scc_iterator<GraphT, GT>::DFSVisitOne(NodeRef N) {
147  ++visitNum;
148  nodeVisitNumbers[N] = visitNum;
149  SCCNodeStack.push_back(N);
150  VisitStack.push_back(StackElement(N, GT::child_begin(N), visitNum));
151#if 0 // Enable if needed when debugging.
152  dbgs() << "TarjanSCC: Node " << N <<
153        " : visitNum = " << visitNum << "\n";
154#endif
155}
156
157template <class GraphT, class GT>
158void scc_iterator<GraphT, GT>::DFSVisitChildren() {
159  assert(!VisitStack.empty());
160  while (VisitStack.back().NextChild != GT::child_end(VisitStack.back().Node)) {
161    // TOS has at least one more child so continue DFS
162    NodeRef childN = *VisitStack.back().NextChild++;
163    typename DenseMap<NodeRef, unsigned>::iterator Visited =
164        nodeVisitNumbers.find(childN);
165    if (Visited == nodeVisitNumbers.end()) {
166      // this node has never been seen.
167      DFSVisitOne(childN);
168      continue;
169    }
170
171    unsigned childNum = Visited->second;
172    if (VisitStack.back().MinVisited > childNum)
173      VisitStack.back().MinVisited = childNum;
174  }
175}
176
177template <class GraphT, class GT> void scc_iterator<GraphT, GT>::GetNextSCC() {
178  CurrentSCC.clear(); // Prepare to compute the next SCC
179  while (!VisitStack.empty()) {
180    DFSVisitChildren();
181
182    // Pop the leaf on top of the VisitStack.
183    NodeRef visitingN = VisitStack.back().Node;
184    unsigned minVisitNum = VisitStack.back().MinVisited;
185    assert(VisitStack.back().NextChild == GT::child_end(visitingN));
186    VisitStack.pop_back();
187
188    // Propagate MinVisitNum to parent so we can detect the SCC starting node.
189    if (!VisitStack.empty() && VisitStack.back().MinVisited > minVisitNum)
190      VisitStack.back().MinVisited = minVisitNum;
191
192#if 0 // Enable if needed when debugging.
193    dbgs() << "TarjanSCC: Popped node " << visitingN <<
194          " : minVisitNum = " << minVisitNum << "; Node visit num = " <<
195          nodeVisitNumbers[visitingN] << "\n";
196#endif
197
198    if (minVisitNum != nodeVisitNumbers[visitingN])
199      continue;
200
201    // A full SCC is on the SCCNodeStack!  It includes all nodes below
202    // visitingN on the stack.  Copy those nodes to CurrentSCC,
203    // reset their minVisit values, and return (this suspends
204    // the DFS traversal till the next ++).
205    do {
206      CurrentSCC.push_back(SCCNodeStack.back());
207      SCCNodeStack.pop_back();
208      nodeVisitNumbers[CurrentSCC.back()] = ~0U;
209    } while (CurrentSCC.back() != visitingN);
210    return;
211  }
212}
213
214template <class GraphT, class GT>
215bool scc_iterator<GraphT, GT>::hasLoop() const {
216    assert(!CurrentSCC.empty() && "Dereferencing END SCC iterator!");
217    if (CurrentSCC.size() > 1)
218      return true;
219    NodeRef N = CurrentSCC.front();
220    for (ChildItTy CI = GT::child_begin(N), CE = GT::child_end(N); CI != CE;
221         ++CI)
222      if (*CI == N)
223        return true;
224    return false;
225  }
226
227/// Construct the begin iterator for a deduced graph type T.
228template <class T> scc_iterator<T> scc_begin(const T &G) {
229  return scc_iterator<T>::begin(G);
230}
231
232/// Construct the end iterator for a deduced graph type T.
233template <class T> scc_iterator<T> scc_end(const T &G) {
234  return scc_iterator<T>::end(G);
235}
236
237} // end namespace llvm
238
239#endif // LLVM_ADT_SCCITERATOR_H
240