DWARFCallFrameInfo.cpp revision 360784
1//===-- DWARFCallFrameInfo.cpp ----------------------------------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8
9#include "lldb/Symbol/DWARFCallFrameInfo.h"
10#include "lldb/Core/Module.h"
11#include "lldb/Core/Section.h"
12#include "lldb/Core/dwarf.h"
13#include "lldb/Host/Host.h"
14#include "lldb/Symbol/ObjectFile.h"
15#include "lldb/Symbol/UnwindPlan.h"
16#include "lldb/Target/RegisterContext.h"
17#include "lldb/Target/Thread.h"
18#include "lldb/Utility/ArchSpec.h"
19#include "lldb/Utility/Log.h"
20#include "lldb/Utility/Timer.h"
21#include <list>
22#include <cstring>
23
24using namespace lldb;
25using namespace lldb_private;
26
27// GetDwarfEHPtr
28//
29// Used for calls when the value type is specified by a DWARF EH Frame pointer
30// encoding.
31static uint64_t
32GetGNUEHPointer(const DataExtractor &DE, offset_t *offset_ptr,
33                uint32_t eh_ptr_enc, addr_t pc_rel_addr, addr_t text_addr,
34                addr_t data_addr) //, BSDRelocs *data_relocs) const
35{
36  if (eh_ptr_enc == DW_EH_PE_omit)
37    return ULLONG_MAX; // Value isn't in the buffer...
38
39  uint64_t baseAddress = 0;
40  uint64_t addressValue = 0;
41  const uint32_t addr_size = DE.GetAddressByteSize();
42  assert(addr_size == 4 || addr_size == 8);
43
44  bool signExtendValue = false;
45  // Decode the base part or adjust our offset
46  switch (eh_ptr_enc & 0x70) {
47  case DW_EH_PE_pcrel:
48    signExtendValue = true;
49    baseAddress = *offset_ptr;
50    if (pc_rel_addr != LLDB_INVALID_ADDRESS)
51      baseAddress += pc_rel_addr;
52    //      else
53    //          Log::GlobalWarning ("PC relative pointer encoding found with
54    //          invalid pc relative address.");
55    break;
56
57  case DW_EH_PE_textrel:
58    signExtendValue = true;
59    if (text_addr != LLDB_INVALID_ADDRESS)
60      baseAddress = text_addr;
61    //      else
62    //          Log::GlobalWarning ("text relative pointer encoding being
63    //          decoded with invalid text section address, setting base address
64    //          to zero.");
65    break;
66
67  case DW_EH_PE_datarel:
68    signExtendValue = true;
69    if (data_addr != LLDB_INVALID_ADDRESS)
70      baseAddress = data_addr;
71    //      else
72    //          Log::GlobalWarning ("data relative pointer encoding being
73    //          decoded with invalid data section address, setting base address
74    //          to zero.");
75    break;
76
77  case DW_EH_PE_funcrel:
78    signExtendValue = true;
79    break;
80
81  case DW_EH_PE_aligned: {
82    // SetPointerSize should be called prior to extracting these so the pointer
83    // size is cached
84    assert(addr_size != 0);
85    if (addr_size) {
86      // Align to a address size boundary first
87      uint32_t alignOffset = *offset_ptr % addr_size;
88      if (alignOffset)
89        offset_ptr += addr_size - alignOffset;
90    }
91  } break;
92
93  default:
94    break;
95  }
96
97  // Decode the value part
98  switch (eh_ptr_enc & DW_EH_PE_MASK_ENCODING) {
99  case DW_EH_PE_absptr: {
100    addressValue = DE.GetAddress(offset_ptr);
101    //          if (data_relocs)
102    //              addressValue = data_relocs->Relocate(*offset_ptr -
103    //              addr_size, *this, addressValue);
104  } break;
105  case DW_EH_PE_uleb128:
106    addressValue = DE.GetULEB128(offset_ptr);
107    break;
108  case DW_EH_PE_udata2:
109    addressValue = DE.GetU16(offset_ptr);
110    break;
111  case DW_EH_PE_udata4:
112    addressValue = DE.GetU32(offset_ptr);
113    break;
114  case DW_EH_PE_udata8:
115    addressValue = DE.GetU64(offset_ptr);
116    break;
117  case DW_EH_PE_sleb128:
118    addressValue = DE.GetSLEB128(offset_ptr);
119    break;
120  case DW_EH_PE_sdata2:
121    addressValue = (int16_t)DE.GetU16(offset_ptr);
122    break;
123  case DW_EH_PE_sdata4:
124    addressValue = (int32_t)DE.GetU32(offset_ptr);
125    break;
126  case DW_EH_PE_sdata8:
127    addressValue = (int64_t)DE.GetU64(offset_ptr);
128    break;
129  default:
130    // Unhandled encoding type
131    assert(eh_ptr_enc);
132    break;
133  }
134
135  // Since we promote everything to 64 bit, we may need to sign extend
136  if (signExtendValue && addr_size < sizeof(baseAddress)) {
137    uint64_t sign_bit = 1ull << ((addr_size * 8ull) - 1ull);
138    if (sign_bit & addressValue) {
139      uint64_t mask = ~sign_bit + 1;
140      addressValue |= mask;
141    }
142  }
143  return baseAddress + addressValue;
144}
145
146DWARFCallFrameInfo::DWARFCallFrameInfo(ObjectFile &objfile,
147                                       SectionSP &section_sp, Type type)
148    : m_objfile(objfile), m_section_sp(section_sp), m_type(type) {}
149
150bool DWARFCallFrameInfo::GetUnwindPlan(const Address &addr,
151                                       UnwindPlan &unwind_plan) {
152  return GetUnwindPlan(AddressRange(addr, 1), unwind_plan);
153}
154
155bool DWARFCallFrameInfo::GetUnwindPlan(const AddressRange &range,
156                                       UnwindPlan &unwind_plan) {
157  FDEEntryMap::Entry fde_entry;
158  Address addr = range.GetBaseAddress();
159
160  // Make sure that the Address we're searching for is the same object file as
161  // this DWARFCallFrameInfo, we only store File offsets in m_fde_index.
162  ModuleSP module_sp = addr.GetModule();
163  if (module_sp.get() == nullptr || module_sp->GetObjectFile() == nullptr ||
164      module_sp->GetObjectFile() != &m_objfile)
165    return false;
166
167  if (llvm::Optional<FDEEntryMap::Entry> entry = GetFirstFDEEntryInRange(range))
168    return FDEToUnwindPlan(entry->data, addr, unwind_plan);
169  return false;
170}
171
172bool DWARFCallFrameInfo::GetAddressRange(Address addr, AddressRange &range) {
173
174  // Make sure that the Address we're searching for is the same object file as
175  // this DWARFCallFrameInfo, we only store File offsets in m_fde_index.
176  ModuleSP module_sp = addr.GetModule();
177  if (module_sp.get() == nullptr || module_sp->GetObjectFile() == nullptr ||
178      module_sp->GetObjectFile() != &m_objfile)
179    return false;
180
181  if (m_section_sp.get() == nullptr || m_section_sp->IsEncrypted())
182    return false;
183  GetFDEIndex();
184  FDEEntryMap::Entry *fde_entry =
185      m_fde_index.FindEntryThatContains(addr.GetFileAddress());
186  if (!fde_entry)
187    return false;
188
189  range = AddressRange(fde_entry->base, fde_entry->size,
190                       m_objfile.GetSectionList());
191  return true;
192}
193
194llvm::Optional<DWARFCallFrameInfo::FDEEntryMap::Entry>
195DWARFCallFrameInfo::GetFirstFDEEntryInRange(const AddressRange &range) {
196  if (!m_section_sp || m_section_sp->IsEncrypted())
197    return llvm::None;
198
199  GetFDEIndex();
200
201  addr_t start_file_addr = range.GetBaseAddress().GetFileAddress();
202  const FDEEntryMap::Entry *fde =
203      m_fde_index.FindEntryThatContainsOrFollows(start_file_addr);
204  if (fde && fde->DoesIntersect(
205                 FDEEntryMap::Range(start_file_addr, range.GetByteSize())))
206    return *fde;
207
208  return llvm::None;
209}
210
211void DWARFCallFrameInfo::GetFunctionAddressAndSizeVector(
212    FunctionAddressAndSizeVector &function_info) {
213  GetFDEIndex();
214  const size_t count = m_fde_index.GetSize();
215  function_info.Clear();
216  if (count > 0)
217    function_info.Reserve(count);
218  for (size_t i = 0; i < count; ++i) {
219    const FDEEntryMap::Entry *func_offset_data_entry =
220        m_fde_index.GetEntryAtIndex(i);
221    if (func_offset_data_entry) {
222      FunctionAddressAndSizeVector::Entry function_offset_entry(
223          func_offset_data_entry->base, func_offset_data_entry->size);
224      function_info.Append(function_offset_entry);
225    }
226  }
227}
228
229const DWARFCallFrameInfo::CIE *
230DWARFCallFrameInfo::GetCIE(dw_offset_t cie_offset) {
231  cie_map_t::iterator pos = m_cie_map.find(cie_offset);
232
233  if (pos != m_cie_map.end()) {
234    // Parse and cache the CIE
235    if (pos->second == nullptr)
236      pos->second = ParseCIE(cie_offset);
237
238    return pos->second.get();
239  }
240  return nullptr;
241}
242
243DWARFCallFrameInfo::CIESP
244DWARFCallFrameInfo::ParseCIE(const dw_offset_t cie_offset) {
245  CIESP cie_sp(new CIE(cie_offset));
246  lldb::offset_t offset = cie_offset;
247  if (!m_cfi_data_initialized)
248    GetCFIData();
249  uint32_t length = m_cfi_data.GetU32(&offset);
250  dw_offset_t cie_id, end_offset;
251  bool is_64bit = (length == UINT32_MAX);
252  if (is_64bit) {
253    length = m_cfi_data.GetU64(&offset);
254    cie_id = m_cfi_data.GetU64(&offset);
255    end_offset = cie_offset + length + 12;
256  } else {
257    cie_id = m_cfi_data.GetU32(&offset);
258    end_offset = cie_offset + length + 4;
259  }
260  if (length > 0 && ((m_type == DWARF && cie_id == UINT32_MAX) ||
261                     (m_type == EH && cie_id == 0ul))) {
262    size_t i;
263    //    cie.offset = cie_offset;
264    //    cie.length = length;
265    //    cie.cieID = cieID;
266    cie_sp->ptr_encoding = DW_EH_PE_absptr; // default
267    cie_sp->version = m_cfi_data.GetU8(&offset);
268    if (cie_sp->version > CFI_VERSION4) {
269      Host::SystemLog(Host::eSystemLogError,
270                      "CIE parse error: CFI version %d is not supported\n",
271                      cie_sp->version);
272      return nullptr;
273    }
274
275    for (i = 0; i < CFI_AUG_MAX_SIZE; ++i) {
276      cie_sp->augmentation[i] = m_cfi_data.GetU8(&offset);
277      if (cie_sp->augmentation[i] == '\0') {
278        // Zero out remaining bytes in augmentation string
279        for (size_t j = i + 1; j < CFI_AUG_MAX_SIZE; ++j)
280          cie_sp->augmentation[j] = '\0';
281
282        break;
283      }
284    }
285
286    if (i == CFI_AUG_MAX_SIZE &&
287        cie_sp->augmentation[CFI_AUG_MAX_SIZE - 1] != '\0') {
288      Host::SystemLog(Host::eSystemLogError,
289                      "CIE parse error: CIE augmentation string was too large "
290                      "for the fixed sized buffer of %d bytes.\n",
291                      CFI_AUG_MAX_SIZE);
292      return nullptr;
293    }
294
295    // m_cfi_data uses address size from target architecture of the process may
296    // ignore these fields?
297    if (m_type == DWARF && cie_sp->version >= CFI_VERSION4) {
298      cie_sp->address_size = m_cfi_data.GetU8(&offset);
299      cie_sp->segment_size = m_cfi_data.GetU8(&offset);
300    }
301
302    cie_sp->code_align = (uint32_t)m_cfi_data.GetULEB128(&offset);
303    cie_sp->data_align = (int32_t)m_cfi_data.GetSLEB128(&offset);
304
305    cie_sp->return_addr_reg_num =
306        m_type == DWARF && cie_sp->version >= CFI_VERSION3
307            ? static_cast<uint32_t>(m_cfi_data.GetULEB128(&offset))
308            : m_cfi_data.GetU8(&offset);
309
310    if (cie_sp->augmentation[0]) {
311      // Get the length of the eh_frame augmentation data which starts with a
312      // ULEB128 length in bytes
313      const size_t aug_data_len = (size_t)m_cfi_data.GetULEB128(&offset);
314      const size_t aug_data_end = offset + aug_data_len;
315      const size_t aug_str_len = strlen(cie_sp->augmentation);
316      // A 'z' may be present as the first character of the string.
317      // If present, the Augmentation Data field shall be present. The contents
318      // of the Augmentation Data shall be interpreted according to other
319      // characters in the Augmentation String.
320      if (cie_sp->augmentation[0] == 'z') {
321        // Extract the Augmentation Data
322        size_t aug_str_idx = 0;
323        for (aug_str_idx = 1; aug_str_idx < aug_str_len; aug_str_idx++) {
324          char aug = cie_sp->augmentation[aug_str_idx];
325          switch (aug) {
326          case 'L':
327            // Indicates the presence of one argument in the Augmentation Data
328            // of the CIE, and a corresponding argument in the Augmentation
329            // Data of the FDE. The argument in the Augmentation Data of the
330            // CIE is 1-byte and represents the pointer encoding used for the
331            // argument in the Augmentation Data of the FDE, which is the
332            // address of a language-specific data area (LSDA). The size of the
333            // LSDA pointer is specified by the pointer encoding used.
334            cie_sp->lsda_addr_encoding = m_cfi_data.GetU8(&offset);
335            break;
336
337          case 'P':
338            // Indicates the presence of two arguments in the Augmentation Data
339            // of the CIE. The first argument is 1-byte and represents the
340            // pointer encoding used for the second argument, which is the
341            // address of a personality routine handler. The size of the
342            // personality routine pointer is specified by the pointer encoding
343            // used.
344            //
345            // The address of the personality function will be stored at this
346            // location.  Pre-execution, it will be all zero's so don't read it
347            // until we're trying to do an unwind & the reloc has been
348            // resolved.
349            {
350              uint8_t arg_ptr_encoding = m_cfi_data.GetU8(&offset);
351              const lldb::addr_t pc_rel_addr = m_section_sp->GetFileAddress();
352              cie_sp->personality_loc = GetGNUEHPointer(
353                  m_cfi_data, &offset, arg_ptr_encoding, pc_rel_addr,
354                  LLDB_INVALID_ADDRESS, LLDB_INVALID_ADDRESS);
355            }
356            break;
357
358          case 'R':
359            // A 'R' may be present at any position after the
360            // first character of the string. The Augmentation Data shall
361            // include a 1 byte argument that represents the pointer encoding
362            // for the address pointers used in the FDE. Example: 0x1B ==
363            // DW_EH_PE_pcrel | DW_EH_PE_sdata4
364            cie_sp->ptr_encoding = m_cfi_data.GetU8(&offset);
365            break;
366          }
367        }
368      } else if (strcmp(cie_sp->augmentation, "eh") == 0) {
369        // If the Augmentation string has the value "eh", then the EH Data
370        // field shall be present
371      }
372
373      // Set the offset to be the end of the augmentation data just in case we
374      // didn't understand any of the data.
375      offset = (uint32_t)aug_data_end;
376    }
377
378    if (end_offset > offset) {
379      cie_sp->inst_offset = offset;
380      cie_sp->inst_length = end_offset - offset;
381    }
382    while (offset < end_offset) {
383      uint8_t inst = m_cfi_data.GetU8(&offset);
384      uint8_t primary_opcode = inst & 0xC0;
385      uint8_t extended_opcode = inst & 0x3F;
386
387      if (!HandleCommonDwarfOpcode(primary_opcode, extended_opcode,
388                                   cie_sp->data_align, offset,
389                                   cie_sp->initial_row))
390        break; // Stop if we hit an unrecognized opcode
391    }
392  }
393
394  return cie_sp;
395}
396
397void DWARFCallFrameInfo::GetCFIData() {
398  if (!m_cfi_data_initialized) {
399    Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_UNWIND));
400    if (log)
401      m_objfile.GetModule()->LogMessage(log, "Reading EH frame info");
402    m_objfile.ReadSectionData(m_section_sp.get(), m_cfi_data);
403    m_cfi_data_initialized = true;
404  }
405}
406// Scan through the eh_frame or debug_frame section looking for FDEs and noting
407// the start/end addresses of the functions and a pointer back to the
408// function's FDE for later expansion. Internalize CIEs as we come across them.
409
410void DWARFCallFrameInfo::GetFDEIndex() {
411  if (m_section_sp.get() == nullptr || m_section_sp->IsEncrypted())
412    return;
413
414  if (m_fde_index_initialized)
415    return;
416
417  std::lock_guard<std::mutex> guard(m_fde_index_mutex);
418
419  if (m_fde_index_initialized) // if two threads hit the locker
420    return;
421
422  static Timer::Category func_cat(LLVM_PRETTY_FUNCTION);
423  Timer scoped_timer(func_cat, "%s - %s", LLVM_PRETTY_FUNCTION,
424                     m_objfile.GetFileSpec().GetFilename().AsCString(""));
425
426  bool clear_address_zeroth_bit = false;
427  if (ArchSpec arch = m_objfile.GetArchitecture()) {
428    if (arch.GetTriple().getArch() == llvm::Triple::arm ||
429        arch.GetTriple().getArch() == llvm::Triple::thumb)
430      clear_address_zeroth_bit = true;
431  }
432
433  lldb::offset_t offset = 0;
434  if (!m_cfi_data_initialized)
435    GetCFIData();
436  while (m_cfi_data.ValidOffsetForDataOfSize(offset, 8)) {
437    const dw_offset_t current_entry = offset;
438    dw_offset_t cie_id, next_entry, cie_offset;
439    uint32_t len = m_cfi_data.GetU32(&offset);
440    bool is_64bit = (len == UINT32_MAX);
441    if (is_64bit) {
442      len = m_cfi_data.GetU64(&offset);
443      cie_id = m_cfi_data.GetU64(&offset);
444      next_entry = current_entry + len + 12;
445      cie_offset = current_entry + 12 - cie_id;
446    } else {
447      cie_id = m_cfi_data.GetU32(&offset);
448      next_entry = current_entry + len + 4;
449      cie_offset = current_entry + 4 - cie_id;
450    }
451
452    if (next_entry > m_cfi_data.GetByteSize() + 1) {
453      Host::SystemLog(Host::eSystemLogError, "error: Invalid fde/cie next "
454                                             "entry offset of 0x%x found in "
455                                             "cie/fde at 0x%x\n",
456                      next_entry, current_entry);
457      // Don't trust anything in this eh_frame section if we find blatantly
458      // invalid data.
459      m_fde_index.Clear();
460      m_fde_index_initialized = true;
461      return;
462    }
463
464    // An FDE entry contains CIE_pointer in debug_frame in same place as cie_id
465    // in eh_frame. CIE_pointer is an offset into the .debug_frame section. So,
466    // variable cie_offset should be equal to cie_id for debug_frame.
467    // FDE entries with cie_id == 0 shouldn't be ignored for it.
468    if ((cie_id == 0 && m_type == EH) || cie_id == UINT32_MAX || len == 0) {
469      auto cie_sp = ParseCIE(current_entry);
470      if (!cie_sp) {
471        // Cannot parse, the reason is already logged
472        m_fde_index.Clear();
473        m_fde_index_initialized = true;
474        return;
475      }
476
477      m_cie_map[current_entry] = std::move(cie_sp);
478      offset = next_entry;
479      continue;
480    }
481
482    if (m_type == DWARF)
483      cie_offset = cie_id;
484
485    if (cie_offset > m_cfi_data.GetByteSize()) {
486      Host::SystemLog(Host::eSystemLogError,
487                      "error: Invalid cie offset of 0x%x "
488                      "found in cie/fde at 0x%x\n",
489                      cie_offset, current_entry);
490      // Don't trust anything in this eh_frame section if we find blatantly
491      // invalid data.
492      m_fde_index.Clear();
493      m_fde_index_initialized = true;
494      return;
495    }
496
497    const CIE *cie = GetCIE(cie_offset);
498    if (cie) {
499      const lldb::addr_t pc_rel_addr = m_section_sp->GetFileAddress();
500      const lldb::addr_t text_addr = LLDB_INVALID_ADDRESS;
501      const lldb::addr_t data_addr = LLDB_INVALID_ADDRESS;
502
503      lldb::addr_t addr =
504          GetGNUEHPointer(m_cfi_data, &offset, cie->ptr_encoding, pc_rel_addr,
505                          text_addr, data_addr);
506      if (clear_address_zeroth_bit)
507        addr &= ~1ull;
508
509      lldb::addr_t length = GetGNUEHPointer(
510          m_cfi_data, &offset, cie->ptr_encoding & DW_EH_PE_MASK_ENCODING,
511          pc_rel_addr, text_addr, data_addr);
512      FDEEntryMap::Entry fde(addr, length, current_entry);
513      m_fde_index.Append(fde);
514    } else {
515      Host::SystemLog(Host::eSystemLogError, "error: unable to find CIE at "
516                                             "0x%8.8x for cie_id = 0x%8.8x for "
517                                             "entry at 0x%8.8x.\n",
518                      cie_offset, cie_id, current_entry);
519    }
520    offset = next_entry;
521  }
522  m_fde_index.Sort();
523  m_fde_index_initialized = true;
524}
525
526bool DWARFCallFrameInfo::FDEToUnwindPlan(dw_offset_t dwarf_offset,
527                                         Address startaddr,
528                                         UnwindPlan &unwind_plan) {
529  Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_UNWIND);
530  lldb::offset_t offset = dwarf_offset;
531  lldb::offset_t current_entry = offset;
532
533  if (m_section_sp.get() == nullptr || m_section_sp->IsEncrypted())
534    return false;
535
536  if (!m_cfi_data_initialized)
537    GetCFIData();
538
539  uint32_t length = m_cfi_data.GetU32(&offset);
540  dw_offset_t cie_offset;
541  bool is_64bit = (length == UINT32_MAX);
542  if (is_64bit) {
543    length = m_cfi_data.GetU64(&offset);
544    cie_offset = m_cfi_data.GetU64(&offset);
545  } else {
546    cie_offset = m_cfi_data.GetU32(&offset);
547  }
548
549  // FDE entries with zeroth cie_offset may occur for debug_frame.
550  assert(!(m_type == EH && 0 == cie_offset) && cie_offset != UINT32_MAX);
551
552  // Translate the CIE_id from the eh_frame format, which is relative to the
553  // FDE offset, into a __eh_frame section offset
554  if (m_type == EH) {
555    unwind_plan.SetSourceName("eh_frame CFI");
556    cie_offset = current_entry + (is_64bit ? 12 : 4) - cie_offset;
557    unwind_plan.SetUnwindPlanValidAtAllInstructions(eLazyBoolNo);
558  } else {
559    unwind_plan.SetSourceName("DWARF CFI");
560    // In theory the debug_frame info should be valid at all call sites
561    // ("asynchronous unwind info" as it is sometimes called) but in practice
562    // gcc et al all emit call frame info for the prologue and call sites, but
563    // not for the epilogue or all the other locations during the function
564    // reliably.
565    unwind_plan.SetUnwindPlanValidAtAllInstructions(eLazyBoolNo);
566  }
567  unwind_plan.SetSourcedFromCompiler(eLazyBoolYes);
568
569  const CIE *cie = GetCIE(cie_offset);
570  assert(cie != nullptr);
571
572  const dw_offset_t end_offset = current_entry + length + (is_64bit ? 12 : 4);
573
574  const lldb::addr_t pc_rel_addr = m_section_sp->GetFileAddress();
575  const lldb::addr_t text_addr = LLDB_INVALID_ADDRESS;
576  const lldb::addr_t data_addr = LLDB_INVALID_ADDRESS;
577  lldb::addr_t range_base =
578      GetGNUEHPointer(m_cfi_data, &offset, cie->ptr_encoding, pc_rel_addr,
579                      text_addr, data_addr);
580  lldb::addr_t range_len = GetGNUEHPointer(
581      m_cfi_data, &offset, cie->ptr_encoding & DW_EH_PE_MASK_ENCODING,
582      pc_rel_addr, text_addr, data_addr);
583  AddressRange range(range_base, m_objfile.GetAddressByteSize(),
584                     m_objfile.GetSectionList());
585  range.SetByteSize(range_len);
586
587  addr_t lsda_data_file_address = LLDB_INVALID_ADDRESS;
588
589  if (cie->augmentation[0] == 'z') {
590    uint32_t aug_data_len = (uint32_t)m_cfi_data.GetULEB128(&offset);
591    if (aug_data_len != 0 && cie->lsda_addr_encoding != DW_EH_PE_omit) {
592      offset_t saved_offset = offset;
593      lsda_data_file_address =
594          GetGNUEHPointer(m_cfi_data, &offset, cie->lsda_addr_encoding,
595                          pc_rel_addr, text_addr, data_addr);
596      if (offset - saved_offset != aug_data_len) {
597        // There is more in the augmentation region than we know how to process;
598        // don't read anything.
599        lsda_data_file_address = LLDB_INVALID_ADDRESS;
600      }
601      offset = saved_offset;
602    }
603    offset += aug_data_len;
604  }
605  unwind_plan.SetUnwindPlanForSignalTrap(
606    strchr(cie->augmentation, 'S') ? eLazyBoolYes : eLazyBoolNo);
607
608  Address lsda_data;
609  Address personality_function_ptr;
610
611  if (lsda_data_file_address != LLDB_INVALID_ADDRESS &&
612      cie->personality_loc != LLDB_INVALID_ADDRESS) {
613    m_objfile.GetModule()->ResolveFileAddress(lsda_data_file_address,
614                                              lsda_data);
615    m_objfile.GetModule()->ResolveFileAddress(cie->personality_loc,
616                                              personality_function_ptr);
617  }
618
619  if (lsda_data.IsValid() && personality_function_ptr.IsValid()) {
620    unwind_plan.SetLSDAAddress(lsda_data);
621    unwind_plan.SetPersonalityFunctionPtr(personality_function_ptr);
622  }
623
624  uint32_t code_align = cie->code_align;
625  int32_t data_align = cie->data_align;
626
627  unwind_plan.SetPlanValidAddressRange(range);
628  UnwindPlan::Row *cie_initial_row = new UnwindPlan::Row;
629  *cie_initial_row = cie->initial_row;
630  UnwindPlan::RowSP row(cie_initial_row);
631
632  unwind_plan.SetRegisterKind(GetRegisterKind());
633  unwind_plan.SetReturnAddressRegister(cie->return_addr_reg_num);
634
635  std::vector<UnwindPlan::RowSP> stack;
636
637  UnwindPlan::Row::RegisterLocation reg_location;
638  while (m_cfi_data.ValidOffset(offset) && offset < end_offset) {
639    uint8_t inst = m_cfi_data.GetU8(&offset);
640    uint8_t primary_opcode = inst & 0xC0;
641    uint8_t extended_opcode = inst & 0x3F;
642
643    if (!HandleCommonDwarfOpcode(primary_opcode, extended_opcode, data_align,
644                                 offset, *row)) {
645      if (primary_opcode) {
646        switch (primary_opcode) {
647        case DW_CFA_advance_loc: // (Row Creation Instruction)
648        { // 0x40 - high 2 bits are 0x1, lower 6 bits are delta
649          // takes a single argument that represents a constant delta. The
650          // required action is to create a new table row with a location value
651          // that is computed by taking the current entry's location value and
652          // adding (delta * code_align). All other values in the new row are
653          // initially identical to the current row.
654          unwind_plan.AppendRow(row);
655          UnwindPlan::Row *newrow = new UnwindPlan::Row;
656          *newrow = *row.get();
657          row.reset(newrow);
658          row->SlideOffset(extended_opcode * code_align);
659          break;
660        }
661
662        case DW_CFA_restore: { // 0xC0 - high 2 bits are 0x3, lower 6 bits are
663                               // register
664          // takes a single argument that represents a register number. The
665          // required action is to change the rule for the indicated register
666          // to the rule assigned it by the initial_instructions in the CIE.
667          uint32_t reg_num = extended_opcode;
668          // We only keep enough register locations around to unwind what is in
669          // our thread, and these are organized by the register index in that
670          // state, so we need to convert our eh_frame register number from the
671          // EH frame info, to a register index
672
673          if (unwind_plan.IsValidRowIndex(0) &&
674              unwind_plan.GetRowAtIndex(0)->GetRegisterInfo(reg_num,
675                                                            reg_location))
676            row->SetRegisterInfo(reg_num, reg_location);
677          break;
678        }
679        }
680      } else {
681        switch (extended_opcode) {
682        case DW_CFA_set_loc: // 0x1 (Row Creation Instruction)
683        {
684          // DW_CFA_set_loc takes a single argument that represents an address.
685          // The required action is to create a new table row using the
686          // specified address as the location. All other values in the new row
687          // are initially identical to the current row. The new location value
688          // should always be greater than the current one.
689          unwind_plan.AppendRow(row);
690          UnwindPlan::Row *newrow = new UnwindPlan::Row;
691          *newrow = *row.get();
692          row.reset(newrow);
693          row->SetOffset(m_cfi_data.GetPointer(&offset) -
694                         startaddr.GetFileAddress());
695          break;
696        }
697
698        case DW_CFA_advance_loc1: // 0x2 (Row Creation Instruction)
699        {
700          // takes a single uword argument that represents a constant delta.
701          // This instruction is identical to DW_CFA_advance_loc except for the
702          // encoding and size of the delta argument.
703          unwind_plan.AppendRow(row);
704          UnwindPlan::Row *newrow = new UnwindPlan::Row;
705          *newrow = *row.get();
706          row.reset(newrow);
707          row->SlideOffset(m_cfi_data.GetU8(&offset) * code_align);
708          break;
709        }
710
711        case DW_CFA_advance_loc2: // 0x3 (Row Creation Instruction)
712        {
713          // takes a single uword argument that represents a constant delta.
714          // This instruction is identical to DW_CFA_advance_loc except for the
715          // encoding and size of the delta argument.
716          unwind_plan.AppendRow(row);
717          UnwindPlan::Row *newrow = new UnwindPlan::Row;
718          *newrow = *row.get();
719          row.reset(newrow);
720          row->SlideOffset(m_cfi_data.GetU16(&offset) * code_align);
721          break;
722        }
723
724        case DW_CFA_advance_loc4: // 0x4 (Row Creation Instruction)
725        {
726          // takes a single uword argument that represents a constant delta.
727          // This instruction is identical to DW_CFA_advance_loc except for the
728          // encoding and size of the delta argument.
729          unwind_plan.AppendRow(row);
730          UnwindPlan::Row *newrow = new UnwindPlan::Row;
731          *newrow = *row.get();
732          row.reset(newrow);
733          row->SlideOffset(m_cfi_data.GetU32(&offset) * code_align);
734          break;
735        }
736
737        case DW_CFA_restore_extended: // 0x6
738        {
739          // takes a single unsigned LEB128 argument that represents a register
740          // number. This instruction is identical to DW_CFA_restore except for
741          // the encoding and size of the register argument.
742          uint32_t reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
743          if (unwind_plan.IsValidRowIndex(0) &&
744              unwind_plan.GetRowAtIndex(0)->GetRegisterInfo(reg_num,
745                                                            reg_location))
746            row->SetRegisterInfo(reg_num, reg_location);
747          break;
748        }
749
750        case DW_CFA_remember_state: // 0xA
751        {
752          // These instructions define a stack of information. Encountering the
753          // DW_CFA_remember_state instruction means to save the rules for
754          // every register on the current row on the stack. Encountering the
755          // DW_CFA_restore_state instruction means to pop the set of rules off
756          // the stack and place them in the current row. (This operation is
757          // useful for compilers that move epilogue code into the body of a
758          // function.)
759          stack.push_back(row);
760          UnwindPlan::Row *newrow = new UnwindPlan::Row;
761          *newrow = *row.get();
762          row.reset(newrow);
763          break;
764        }
765
766        case DW_CFA_restore_state: // 0xB
767        {
768          // These instructions define a stack of information. Encountering the
769          // DW_CFA_remember_state instruction means to save the rules for
770          // every register on the current row on the stack. Encountering the
771          // DW_CFA_restore_state instruction means to pop the set of rules off
772          // the stack and place them in the current row. (This operation is
773          // useful for compilers that move epilogue code into the body of a
774          // function.)
775          if (stack.empty()) {
776            LLDB_LOGF(log,
777                      "DWARFCallFrameInfo::%s(dwarf_offset: %" PRIx32
778                      ", startaddr: %" PRIx64
779                      " encountered DW_CFA_restore_state but state stack "
780                      "is empty. Corrupt unwind info?",
781                      __FUNCTION__, dwarf_offset, startaddr.GetFileAddress());
782            break;
783          }
784          lldb::addr_t offset = row->GetOffset();
785          row = stack.back();
786          stack.pop_back();
787          row->SetOffset(offset);
788          break;
789        }
790
791        case DW_CFA_GNU_args_size: // 0x2e
792        {
793          // The DW_CFA_GNU_args_size instruction takes an unsigned LEB128
794          // operand representing an argument size. This instruction specifies
795          // the total of the size of the arguments which have been pushed onto
796          // the stack.
797
798          // TODO: Figure out how we should handle this.
799          m_cfi_data.GetULEB128(&offset);
800          break;
801        }
802
803        case DW_CFA_val_offset:    // 0x14
804        case DW_CFA_val_offset_sf: // 0x15
805        default:
806          break;
807        }
808      }
809    }
810  }
811  unwind_plan.AppendRow(row);
812
813  return true;
814}
815
816bool DWARFCallFrameInfo::HandleCommonDwarfOpcode(uint8_t primary_opcode,
817                                                 uint8_t extended_opcode,
818                                                 int32_t data_align,
819                                                 lldb::offset_t &offset,
820                                                 UnwindPlan::Row &row) {
821  UnwindPlan::Row::RegisterLocation reg_location;
822
823  if (primary_opcode) {
824    switch (primary_opcode) {
825    case DW_CFA_offset: { // 0x80 - high 2 bits are 0x2, lower 6 bits are
826                          // register
827      // takes two arguments: an unsigned LEB128 constant representing a
828      // factored offset and a register number. The required action is to
829      // change the rule for the register indicated by the register number to
830      // be an offset(N) rule with a value of (N = factored offset *
831      // data_align).
832      uint8_t reg_num = extended_opcode;
833      int32_t op_offset = (int32_t)m_cfi_data.GetULEB128(&offset) * data_align;
834      reg_location.SetAtCFAPlusOffset(op_offset);
835      row.SetRegisterInfo(reg_num, reg_location);
836      return true;
837    }
838    }
839  } else {
840    switch (extended_opcode) {
841    case DW_CFA_nop: // 0x0
842      return true;
843
844    case DW_CFA_offset_extended: // 0x5
845    {
846      // takes two unsigned LEB128 arguments representing a register number and
847      // a factored offset. This instruction is identical to DW_CFA_offset
848      // except for the encoding and size of the register argument.
849      uint32_t reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
850      int32_t op_offset = (int32_t)m_cfi_data.GetULEB128(&offset) * data_align;
851      UnwindPlan::Row::RegisterLocation reg_location;
852      reg_location.SetAtCFAPlusOffset(op_offset);
853      row.SetRegisterInfo(reg_num, reg_location);
854      return true;
855    }
856
857    case DW_CFA_undefined: // 0x7
858    {
859      // takes a single unsigned LEB128 argument that represents a register
860      // number. The required action is to set the rule for the specified
861      // register to undefined.
862      uint32_t reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
863      UnwindPlan::Row::RegisterLocation reg_location;
864      reg_location.SetUndefined();
865      row.SetRegisterInfo(reg_num, reg_location);
866      return true;
867    }
868
869    case DW_CFA_same_value: // 0x8
870    {
871      // takes a single unsigned LEB128 argument that represents a register
872      // number. The required action is to set the rule for the specified
873      // register to same value.
874      uint32_t reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
875      UnwindPlan::Row::RegisterLocation reg_location;
876      reg_location.SetSame();
877      row.SetRegisterInfo(reg_num, reg_location);
878      return true;
879    }
880
881    case DW_CFA_register: // 0x9
882    {
883      // takes two unsigned LEB128 arguments representing register numbers. The
884      // required action is to set the rule for the first register to be the
885      // second register.
886      uint32_t reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
887      uint32_t other_reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
888      UnwindPlan::Row::RegisterLocation reg_location;
889      reg_location.SetInRegister(other_reg_num);
890      row.SetRegisterInfo(reg_num, reg_location);
891      return true;
892    }
893
894    case DW_CFA_def_cfa: // 0xC    (CFA Definition Instruction)
895    {
896      // Takes two unsigned LEB128 operands representing a register number and
897      // a (non-factored) offset. The required action is to define the current
898      // CFA rule to use the provided register and offset.
899      uint32_t reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
900      int32_t op_offset = (int32_t)m_cfi_data.GetULEB128(&offset);
901      row.GetCFAValue().SetIsRegisterPlusOffset(reg_num, op_offset);
902      return true;
903    }
904
905    case DW_CFA_def_cfa_register: // 0xD    (CFA Definition Instruction)
906    {
907      // takes a single unsigned LEB128 argument representing a register
908      // number. The required action is to define the current CFA rule to use
909      // the provided register (but to keep the old offset).
910      uint32_t reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
911      row.GetCFAValue().SetIsRegisterPlusOffset(reg_num,
912                                                row.GetCFAValue().GetOffset());
913      return true;
914    }
915
916    case DW_CFA_def_cfa_offset: // 0xE    (CFA Definition Instruction)
917    {
918      // Takes a single unsigned LEB128 operand representing a (non-factored)
919      // offset. The required action is to define the current CFA rule to use
920      // the provided offset (but to keep the old register).
921      int32_t op_offset = (int32_t)m_cfi_data.GetULEB128(&offset);
922      row.GetCFAValue().SetIsRegisterPlusOffset(
923          row.GetCFAValue().GetRegisterNumber(), op_offset);
924      return true;
925    }
926
927    case DW_CFA_def_cfa_expression: // 0xF    (CFA Definition Instruction)
928    {
929      size_t block_len = (size_t)m_cfi_data.GetULEB128(&offset);
930      const uint8_t *block_data =
931          static_cast<const uint8_t *>(m_cfi_data.GetData(&offset, block_len));
932      row.GetCFAValue().SetIsDWARFExpression(block_data, block_len);
933      return true;
934    }
935
936    case DW_CFA_expression: // 0x10
937    {
938      // Takes two operands: an unsigned LEB128 value representing a register
939      // number, and a DW_FORM_block value representing a DWARF expression. The
940      // required action is to change the rule for the register indicated by
941      // the register number to be an expression(E) rule where E is the DWARF
942      // expression. That is, the DWARF expression computes the address. The
943      // value of the CFA is pushed on the DWARF evaluation stack prior to
944      // execution of the DWARF expression.
945      uint32_t reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
946      uint32_t block_len = (uint32_t)m_cfi_data.GetULEB128(&offset);
947      const uint8_t *block_data =
948          static_cast<const uint8_t *>(m_cfi_data.GetData(&offset, block_len));
949      UnwindPlan::Row::RegisterLocation reg_location;
950      reg_location.SetAtDWARFExpression(block_data, block_len);
951      row.SetRegisterInfo(reg_num, reg_location);
952      return true;
953    }
954
955    case DW_CFA_offset_extended_sf: // 0x11
956    {
957      // takes two operands: an unsigned LEB128 value representing a register
958      // number and a signed LEB128 factored offset. This instruction is
959      // identical to DW_CFA_offset_extended except that the second operand is
960      // signed and factored.
961      uint32_t reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
962      int32_t op_offset = (int32_t)m_cfi_data.GetSLEB128(&offset) * data_align;
963      UnwindPlan::Row::RegisterLocation reg_location;
964      reg_location.SetAtCFAPlusOffset(op_offset);
965      row.SetRegisterInfo(reg_num, reg_location);
966      return true;
967    }
968
969    case DW_CFA_def_cfa_sf: // 0x12   (CFA Definition Instruction)
970    {
971      // Takes two operands: an unsigned LEB128 value representing a register
972      // number and a signed LEB128 factored offset. This instruction is
973      // identical to DW_CFA_def_cfa except that the second operand is signed
974      // and factored.
975      uint32_t reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
976      int32_t op_offset = (int32_t)m_cfi_data.GetSLEB128(&offset) * data_align;
977      row.GetCFAValue().SetIsRegisterPlusOffset(reg_num, op_offset);
978      return true;
979    }
980
981    case DW_CFA_def_cfa_offset_sf: // 0x13   (CFA Definition Instruction)
982    {
983      // takes a signed LEB128 operand representing a factored offset. This
984      // instruction is identical to  DW_CFA_def_cfa_offset except that the
985      // operand is signed and factored.
986      int32_t op_offset = (int32_t)m_cfi_data.GetSLEB128(&offset) * data_align;
987      uint32_t cfa_regnum = row.GetCFAValue().GetRegisterNumber();
988      row.GetCFAValue().SetIsRegisterPlusOffset(cfa_regnum, op_offset);
989      return true;
990    }
991
992    case DW_CFA_val_expression: // 0x16
993    {
994      // takes two operands: an unsigned LEB128 value representing a register
995      // number, and a DW_FORM_block value representing a DWARF expression. The
996      // required action is to change the rule for the register indicated by
997      // the register number to be a val_expression(E) rule where E is the
998      // DWARF expression. That is, the DWARF expression computes the value of
999      // the given register. The value of the CFA is pushed on the DWARF
1000      // evaluation stack prior to execution of the DWARF expression.
1001      uint32_t reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
1002      uint32_t block_len = (uint32_t)m_cfi_data.GetULEB128(&offset);
1003      const uint8_t *block_data =
1004          (const uint8_t *)m_cfi_data.GetData(&offset, block_len);
1005      reg_location.SetIsDWARFExpression(block_data, block_len);
1006      row.SetRegisterInfo(reg_num, reg_location);
1007      return true;
1008    }
1009    }
1010  }
1011  return false;
1012}
1013
1014void DWARFCallFrameInfo::ForEachFDEEntries(
1015    const std::function<bool(lldb::addr_t, uint32_t, dw_offset_t)> &callback) {
1016  GetFDEIndex();
1017
1018  for (size_t i = 0, c = m_fde_index.GetSize(); i < c; ++i) {
1019    const FDEEntryMap::Entry &entry = m_fde_index.GetEntryRef(i);
1020    if (!callback(entry.base, entry.size, entry.data))
1021      break;
1022  }
1023}
1024