x86AssemblyInspectionEngine.cpp revision 360784
1//===-- x86AssemblyInspectionEngine.cpp -------------------------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8
9#include "x86AssemblyInspectionEngine.h"
10
11#include <memory>
12
13#include "llvm-c/Disassembler.h"
14
15#include "lldb/Core/Address.h"
16#include "lldb/Symbol/UnwindPlan.h"
17#include "lldb/Target/RegisterContext.h"
18#include "lldb/Target/UnwindAssembly.h"
19
20using namespace lldb_private;
21using namespace lldb;
22
23x86AssemblyInspectionEngine::x86AssemblyInspectionEngine(const ArchSpec &arch)
24    : m_cur_insn(nullptr), m_machine_ip_regnum(LLDB_INVALID_REGNUM),
25      m_machine_sp_regnum(LLDB_INVALID_REGNUM),
26      m_machine_fp_regnum(LLDB_INVALID_REGNUM),
27      m_lldb_ip_regnum(LLDB_INVALID_REGNUM),
28      m_lldb_sp_regnum(LLDB_INVALID_REGNUM),
29      m_lldb_fp_regnum(LLDB_INVALID_REGNUM),
30
31      m_reg_map(), m_arch(arch), m_cpu(k_cpu_unspecified), m_wordsize(-1),
32      m_register_map_initialized(false), m_disasm_context() {
33  m_disasm_context =
34      ::LLVMCreateDisasm(arch.GetTriple().getTriple().c_str(), nullptr,
35                         /*TagType=*/1, nullptr, nullptr);
36}
37
38x86AssemblyInspectionEngine::~x86AssemblyInspectionEngine() {
39  ::LLVMDisasmDispose(m_disasm_context);
40}
41
42void x86AssemblyInspectionEngine::Initialize(RegisterContextSP &reg_ctx) {
43  m_cpu = k_cpu_unspecified;
44  m_wordsize = -1;
45  m_register_map_initialized = false;
46
47  const llvm::Triple::ArchType cpu = m_arch.GetMachine();
48  if (cpu == llvm::Triple::x86)
49    m_cpu = k_i386;
50  else if (cpu == llvm::Triple::x86_64)
51    m_cpu = k_x86_64;
52
53  if (m_cpu == k_cpu_unspecified)
54    return;
55
56  if (reg_ctx.get() == nullptr)
57    return;
58
59  if (m_cpu == k_i386) {
60    m_machine_ip_regnum = k_machine_eip;
61    m_machine_sp_regnum = k_machine_esp;
62    m_machine_fp_regnum = k_machine_ebp;
63    m_machine_alt_fp_regnum = k_machine_ebx;
64    m_wordsize = 4;
65
66    struct lldb_reg_info reginfo;
67    reginfo.name = "eax";
68    m_reg_map[k_machine_eax] = reginfo;
69    reginfo.name = "edx";
70    m_reg_map[k_machine_edx] = reginfo;
71    reginfo.name = "esp";
72    m_reg_map[k_machine_esp] = reginfo;
73    reginfo.name = "esi";
74    m_reg_map[k_machine_esi] = reginfo;
75    reginfo.name = "eip";
76    m_reg_map[k_machine_eip] = reginfo;
77    reginfo.name = "ecx";
78    m_reg_map[k_machine_ecx] = reginfo;
79    reginfo.name = "ebx";
80    m_reg_map[k_machine_ebx] = reginfo;
81    reginfo.name = "ebp";
82    m_reg_map[k_machine_ebp] = reginfo;
83    reginfo.name = "edi";
84    m_reg_map[k_machine_edi] = reginfo;
85  } else {
86    m_machine_ip_regnum = k_machine_rip;
87    m_machine_sp_regnum = k_machine_rsp;
88    m_machine_fp_regnum = k_machine_rbp;
89    m_machine_alt_fp_regnum = k_machine_rbx;
90    m_wordsize = 8;
91
92    struct lldb_reg_info reginfo;
93    reginfo.name = "rax";
94    m_reg_map[k_machine_rax] = reginfo;
95    reginfo.name = "rdx";
96    m_reg_map[k_machine_rdx] = reginfo;
97    reginfo.name = "rsp";
98    m_reg_map[k_machine_rsp] = reginfo;
99    reginfo.name = "rsi";
100    m_reg_map[k_machine_rsi] = reginfo;
101    reginfo.name = "r8";
102    m_reg_map[k_machine_r8] = reginfo;
103    reginfo.name = "r10";
104    m_reg_map[k_machine_r10] = reginfo;
105    reginfo.name = "r12";
106    m_reg_map[k_machine_r12] = reginfo;
107    reginfo.name = "r14";
108    m_reg_map[k_machine_r14] = reginfo;
109    reginfo.name = "rip";
110    m_reg_map[k_machine_rip] = reginfo;
111    reginfo.name = "rcx";
112    m_reg_map[k_machine_rcx] = reginfo;
113    reginfo.name = "rbx";
114    m_reg_map[k_machine_rbx] = reginfo;
115    reginfo.name = "rbp";
116    m_reg_map[k_machine_rbp] = reginfo;
117    reginfo.name = "rdi";
118    m_reg_map[k_machine_rdi] = reginfo;
119    reginfo.name = "r9";
120    m_reg_map[k_machine_r9] = reginfo;
121    reginfo.name = "r11";
122    m_reg_map[k_machine_r11] = reginfo;
123    reginfo.name = "r13";
124    m_reg_map[k_machine_r13] = reginfo;
125    reginfo.name = "r15";
126    m_reg_map[k_machine_r15] = reginfo;
127  }
128
129  for (MachineRegnumToNameAndLLDBRegnum::iterator it = m_reg_map.begin();
130       it != m_reg_map.end(); ++it) {
131    const RegisterInfo *ri = reg_ctx->GetRegisterInfoByName(it->second.name);
132    if (ri)
133      it->second.lldb_regnum = ri->kinds[eRegisterKindLLDB];
134  }
135
136  uint32_t lldb_regno;
137  if (machine_regno_to_lldb_regno(m_machine_sp_regnum, lldb_regno))
138    m_lldb_sp_regnum = lldb_regno;
139  if (machine_regno_to_lldb_regno(m_machine_fp_regnum, lldb_regno))
140    m_lldb_fp_regnum = lldb_regno;
141  if (machine_regno_to_lldb_regno(m_machine_alt_fp_regnum, lldb_regno))
142    m_lldb_alt_fp_regnum = lldb_regno;
143  if (machine_regno_to_lldb_regno(m_machine_ip_regnum, lldb_regno))
144    m_lldb_ip_regnum = lldb_regno;
145
146  m_register_map_initialized = true;
147}
148
149void x86AssemblyInspectionEngine::Initialize(
150    std::vector<lldb_reg_info> &reg_info) {
151  m_cpu = k_cpu_unspecified;
152  m_wordsize = -1;
153  m_register_map_initialized = false;
154
155  const llvm::Triple::ArchType cpu = m_arch.GetMachine();
156  if (cpu == llvm::Triple::x86)
157    m_cpu = k_i386;
158  else if (cpu == llvm::Triple::x86_64)
159    m_cpu = k_x86_64;
160
161  if (m_cpu == k_cpu_unspecified)
162    return;
163
164  if (m_cpu == k_i386) {
165    m_machine_ip_regnum = k_machine_eip;
166    m_machine_sp_regnum = k_machine_esp;
167    m_machine_fp_regnum = k_machine_ebp;
168    m_machine_alt_fp_regnum = k_machine_ebx;
169    m_wordsize = 4;
170
171    struct lldb_reg_info reginfo;
172    reginfo.name = "eax";
173    m_reg_map[k_machine_eax] = reginfo;
174    reginfo.name = "edx";
175    m_reg_map[k_machine_edx] = reginfo;
176    reginfo.name = "esp";
177    m_reg_map[k_machine_esp] = reginfo;
178    reginfo.name = "esi";
179    m_reg_map[k_machine_esi] = reginfo;
180    reginfo.name = "eip";
181    m_reg_map[k_machine_eip] = reginfo;
182    reginfo.name = "ecx";
183    m_reg_map[k_machine_ecx] = reginfo;
184    reginfo.name = "ebx";
185    m_reg_map[k_machine_ebx] = reginfo;
186    reginfo.name = "ebp";
187    m_reg_map[k_machine_ebp] = reginfo;
188    reginfo.name = "edi";
189    m_reg_map[k_machine_edi] = reginfo;
190  } else {
191    m_machine_ip_regnum = k_machine_rip;
192    m_machine_sp_regnum = k_machine_rsp;
193    m_machine_fp_regnum = k_machine_rbp;
194    m_machine_alt_fp_regnum = k_machine_rbx;
195    m_wordsize = 8;
196
197    struct lldb_reg_info reginfo;
198    reginfo.name = "rax";
199    m_reg_map[k_machine_rax] = reginfo;
200    reginfo.name = "rdx";
201    m_reg_map[k_machine_rdx] = reginfo;
202    reginfo.name = "rsp";
203    m_reg_map[k_machine_rsp] = reginfo;
204    reginfo.name = "rsi";
205    m_reg_map[k_machine_rsi] = reginfo;
206    reginfo.name = "r8";
207    m_reg_map[k_machine_r8] = reginfo;
208    reginfo.name = "r10";
209    m_reg_map[k_machine_r10] = reginfo;
210    reginfo.name = "r12";
211    m_reg_map[k_machine_r12] = reginfo;
212    reginfo.name = "r14";
213    m_reg_map[k_machine_r14] = reginfo;
214    reginfo.name = "rip";
215    m_reg_map[k_machine_rip] = reginfo;
216    reginfo.name = "rcx";
217    m_reg_map[k_machine_rcx] = reginfo;
218    reginfo.name = "rbx";
219    m_reg_map[k_machine_rbx] = reginfo;
220    reginfo.name = "rbp";
221    m_reg_map[k_machine_rbp] = reginfo;
222    reginfo.name = "rdi";
223    m_reg_map[k_machine_rdi] = reginfo;
224    reginfo.name = "r9";
225    m_reg_map[k_machine_r9] = reginfo;
226    reginfo.name = "r11";
227    m_reg_map[k_machine_r11] = reginfo;
228    reginfo.name = "r13";
229    m_reg_map[k_machine_r13] = reginfo;
230    reginfo.name = "r15";
231    m_reg_map[k_machine_r15] = reginfo;
232  }
233
234  for (MachineRegnumToNameAndLLDBRegnum::iterator it = m_reg_map.begin();
235       it != m_reg_map.end(); ++it) {
236    for (size_t i = 0; i < reg_info.size(); ++i) {
237      if (::strcmp(reg_info[i].name, it->second.name) == 0) {
238        it->second.lldb_regnum = reg_info[i].lldb_regnum;
239        break;
240      }
241    }
242  }
243
244  uint32_t lldb_regno;
245  if (machine_regno_to_lldb_regno(m_machine_sp_regnum, lldb_regno))
246    m_lldb_sp_regnum = lldb_regno;
247  if (machine_regno_to_lldb_regno(m_machine_fp_regnum, lldb_regno))
248    m_lldb_fp_regnum = lldb_regno;
249  if (machine_regno_to_lldb_regno(m_machine_alt_fp_regnum, lldb_regno))
250    m_lldb_alt_fp_regnum = lldb_regno;
251  if (machine_regno_to_lldb_regno(m_machine_ip_regnum, lldb_regno))
252    m_lldb_ip_regnum = lldb_regno;
253
254  m_register_map_initialized = true;
255}
256
257// This function expects an x86 native register number (i.e. the bits stripped
258// out of the actual instruction), not an lldb register number.
259//
260// FIXME: This is ABI dependent, it shouldn't be hardcoded here.
261
262bool x86AssemblyInspectionEngine::nonvolatile_reg_p(int machine_regno) {
263  if (m_cpu == k_i386) {
264    switch (machine_regno) {
265    case k_machine_ebx:
266    case k_machine_ebp: // not actually a nonvolatile but often treated as such
267                        // by convention
268    case k_machine_esi:
269    case k_machine_edi:
270    case k_machine_esp:
271      return true;
272    default:
273      return false;
274    }
275  }
276  if (m_cpu == k_x86_64) {
277    switch (machine_regno) {
278    case k_machine_rbx:
279    case k_machine_rsp:
280    case k_machine_rbp: // not actually a nonvolatile but often treated as such
281                        // by convention
282    case k_machine_r12:
283    case k_machine_r13:
284    case k_machine_r14:
285    case k_machine_r15:
286      return true;
287    default:
288      return false;
289    }
290  }
291  return false;
292}
293
294// Macro to detect if this is a REX mode prefix byte.
295#define REX_W_PREFIX_P(opcode) (((opcode) & (~0x5)) == 0x48)
296
297// The high bit which should be added to the source register number (the "R"
298// bit)
299#define REX_W_SRCREG(opcode) (((opcode)&0x4) >> 2)
300
301// The high bit which should be added to the destination register number (the
302// "B" bit)
303#define REX_W_DSTREG(opcode) ((opcode)&0x1)
304
305// pushq %rbp [0x55]
306bool x86AssemblyInspectionEngine::push_rbp_pattern_p() {
307  uint8_t *p = m_cur_insn;
308  return *p == 0x55;
309}
310
311// pushq $0 ; the first instruction in start() [0x6a 0x00]
312bool x86AssemblyInspectionEngine::push_0_pattern_p() {
313  uint8_t *p = m_cur_insn;
314  return *p == 0x6a && *(p + 1) == 0x0;
315}
316
317// pushq $0
318// pushl $0
319bool x86AssemblyInspectionEngine::push_imm_pattern_p() {
320  uint8_t *p = m_cur_insn;
321  return *p == 0x68 || *p == 0x6a;
322}
323
324// pushl imm8(%esp)
325//
326// e.g. 0xff 0x74 0x24 0x20 - 'pushl 0x20(%esp)' (same byte pattern for 'pushq
327// 0x20(%rsp)' in an x86_64 program)
328//
329// 0xff (with opcode bits '6' in next byte, PUSH r/m32) 0x74 (ModR/M byte with
330// three bits used to specify the opcode)
331//      mod == b01, opcode == b110, R/M == b100
332//      "+disp8"
333// 0x24 (SIB byte - scaled index = 0, r32 == esp) 0x20 imm8 value
334
335bool x86AssemblyInspectionEngine::push_extended_pattern_p() {
336  if (*m_cur_insn == 0xff) {
337    // Get the 3 opcode bits from the ModR/M byte
338    uint8_t opcode = (*(m_cur_insn + 1) >> 3) & 7;
339    if (opcode == 6) {
340      // I'm only looking for 0xff /6 here - I
341      // don't really care what value is being pushed, just that we're pushing
342      // a 32/64 bit value on to the stack is enough.
343      return true;
344    }
345  }
346  return false;
347}
348
349// instructions only valid in 32-bit mode:
350// 0x0e - push cs
351// 0x16 - push ss
352// 0x1e - push ds
353// 0x06 - push es
354bool x86AssemblyInspectionEngine::push_misc_reg_p() {
355  uint8_t p = *m_cur_insn;
356  if (m_wordsize == 4) {
357    if (p == 0x0e || p == 0x16 || p == 0x1e || p == 0x06)
358      return true;
359  }
360  return false;
361}
362
363// pushq %rbx
364// pushl %ebx
365bool x86AssemblyInspectionEngine::push_reg_p(int &regno) {
366  uint8_t *p = m_cur_insn;
367  int regno_prefix_bit = 0;
368  // If we have a rex prefix byte, check to see if a B bit is set
369  if (m_wordsize == 8 && (*p & 0xfe) == 0x40) {
370    regno_prefix_bit = (*p & 1) << 3;
371    p++;
372  }
373  if (*p >= 0x50 && *p <= 0x57) {
374    regno = (*p - 0x50) | regno_prefix_bit;
375    return true;
376  }
377  return false;
378}
379
380// movq %rsp, %rbp [0x48 0x8b 0xec] or [0x48 0x89 0xe5] movl %esp, %ebp [0x8b
381// 0xec] or [0x89 0xe5]
382bool x86AssemblyInspectionEngine::mov_rsp_rbp_pattern_p() {
383  uint8_t *p = m_cur_insn;
384  if (m_wordsize == 8 && *p == 0x48)
385    p++;
386  if (*(p) == 0x8b && *(p + 1) == 0xec)
387    return true;
388  if (*(p) == 0x89 && *(p + 1) == 0xe5)
389    return true;
390  return false;
391}
392
393// movq %rsp, %rbx [0x48 0x8b 0xdc] or [0x48 0x89 0xe3]
394// movl %esp, %ebx [0x8b 0xdc] or [0x89 0xe3]
395bool x86AssemblyInspectionEngine::mov_rsp_rbx_pattern_p() {
396  uint8_t *p = m_cur_insn;
397  if (m_wordsize == 8 && *p == 0x48)
398    p++;
399  if (*(p) == 0x8b && *(p + 1) == 0xdc)
400    return true;
401  if (*(p) == 0x89 && *(p + 1) == 0xe3)
402    return true;
403  return false;
404}
405
406// movq %rbp, %rsp [0x48 0x8b 0xe5] or [0x48 0x89 0xec]
407// movl %ebp, %esp [0x8b 0xe5] or [0x89 0xec]
408bool x86AssemblyInspectionEngine::mov_rbp_rsp_pattern_p() {
409  uint8_t *p = m_cur_insn;
410  if (m_wordsize == 8 && *p == 0x48)
411    p++;
412  if (*(p) == 0x8b && *(p + 1) == 0xe5)
413    return true;
414  if (*(p) == 0x89 && *(p + 1) == 0xec)
415    return true;
416  return false;
417}
418
419// movq %rbx, %rsp [0x48 0x8b 0xe3] or [0x48 0x89 0xdc]
420// movl %ebx, %esp [0x8b 0xe3] or [0x89 0xdc]
421bool x86AssemblyInspectionEngine::mov_rbx_rsp_pattern_p() {
422  uint8_t *p = m_cur_insn;
423  if (m_wordsize == 8 && *p == 0x48)
424    p++;
425  if (*(p) == 0x8b && *(p + 1) == 0xe3)
426    return true;
427  if (*(p) == 0x89 && *(p + 1) == 0xdc)
428    return true;
429  return false;
430}
431
432// subq $0x20, %rsp
433bool x86AssemblyInspectionEngine::sub_rsp_pattern_p(int &amount) {
434  uint8_t *p = m_cur_insn;
435  if (m_wordsize == 8 && *p == 0x48)
436    p++;
437  // 8-bit immediate operand
438  if (*p == 0x83 && *(p + 1) == 0xec) {
439    amount = (int8_t) * (p + 2);
440    return true;
441  }
442  // 32-bit immediate operand
443  if (*p == 0x81 && *(p + 1) == 0xec) {
444    amount = (int32_t)extract_4(p + 2);
445    return true;
446  }
447  return false;
448}
449
450// addq $0x20, %rsp
451bool x86AssemblyInspectionEngine::add_rsp_pattern_p(int &amount) {
452  uint8_t *p = m_cur_insn;
453  if (m_wordsize == 8 && *p == 0x48)
454    p++;
455  // 8-bit immediate operand
456  if (*p == 0x83 && *(p + 1) == 0xc4) {
457    amount = (int8_t) * (p + 2);
458    return true;
459  }
460  // 32-bit immediate operand
461  if (*p == 0x81 && *(p + 1) == 0xc4) {
462    amount = (int32_t)extract_4(p + 2);
463    return true;
464  }
465  return false;
466}
467
468// lea esp, [esp - 0x28]
469// lea esp, [esp + 0x28]
470bool x86AssemblyInspectionEngine::lea_rsp_pattern_p(int &amount) {
471  uint8_t *p = m_cur_insn;
472  if (m_wordsize == 8 && *p == 0x48)
473    p++;
474
475  // Check opcode
476  if (*p != 0x8d)
477    return false;
478
479  // 8 bit displacement
480  if (*(p + 1) == 0x64 && (*(p + 2) & 0x3f) == 0x24) {
481    amount = (int8_t) * (p + 3);
482    return true;
483  }
484
485  // 32 bit displacement
486  if (*(p + 1) == 0xa4 && (*(p + 2) & 0x3f) == 0x24) {
487    amount = (int32_t)extract_4(p + 3);
488    return true;
489  }
490
491  return false;
492}
493
494// lea -0x28(%ebp), %esp
495// (32-bit and 64-bit variants, 8-bit and 32-bit displacement)
496bool x86AssemblyInspectionEngine::lea_rbp_rsp_pattern_p(int &amount) {
497  uint8_t *p = m_cur_insn;
498  if (m_wordsize == 8 && *p == 0x48)
499    p++;
500
501  // Check opcode
502  if (*p != 0x8d)
503    return false;
504  ++p;
505
506  // 8 bit displacement
507  if (*p == 0x65) {
508    amount = (int8_t)p[1];
509    return true;
510  }
511
512  // 32 bit displacement
513  if (*p == 0xa5) {
514    amount = (int32_t)extract_4(p + 1);
515    return true;
516  }
517
518  return false;
519}
520
521// lea -0x28(%ebx), %esp
522// (32-bit and 64-bit variants, 8-bit and 32-bit displacement)
523bool x86AssemblyInspectionEngine::lea_rbx_rsp_pattern_p(int &amount) {
524  uint8_t *p = m_cur_insn;
525  if (m_wordsize == 8 && *p == 0x48)
526    p++;
527
528  // Check opcode
529  if (*p != 0x8d)
530    return false;
531  ++p;
532
533  // 8 bit displacement
534  if (*p == 0x63) {
535    amount = (int8_t)p[1];
536    return true;
537  }
538
539  // 32 bit displacement
540  if (*p == 0xa3) {
541    amount = (int32_t)extract_4(p + 1);
542    return true;
543  }
544
545  return false;
546}
547
548// and -0xfffffff0, %esp
549// (32-bit and 64-bit variants, 8-bit and 32-bit displacement)
550bool x86AssemblyInspectionEngine::and_rsp_pattern_p() {
551  uint8_t *p = m_cur_insn;
552  if (m_wordsize == 8 && *p == 0x48)
553    p++;
554
555  if (*p != 0x81 && *p != 0x83)
556    return false;
557
558  return *++p == 0xe4;
559}
560
561// popq %rbx
562// popl %ebx
563bool x86AssemblyInspectionEngine::pop_reg_p(int &regno) {
564  uint8_t *p = m_cur_insn;
565  int regno_prefix_bit = 0;
566  // If we have a rex prefix byte, check to see if a B bit is set
567  if (m_wordsize == 8 && (*p & 0xfe) == 0x40) {
568    regno_prefix_bit = (*p & 1) << 3;
569    p++;
570  }
571  if (*p >= 0x58 && *p <= 0x5f) {
572    regno = (*p - 0x58) | regno_prefix_bit;
573    return true;
574  }
575  return false;
576}
577
578// popq %rbp [0x5d]
579// popl %ebp [0x5d]
580bool x86AssemblyInspectionEngine::pop_rbp_pattern_p() {
581  uint8_t *p = m_cur_insn;
582  return (*p == 0x5d);
583}
584
585// instructions valid only in 32-bit mode:
586// 0x1f - pop ds
587// 0x07 - pop es
588// 0x17 - pop ss
589bool x86AssemblyInspectionEngine::pop_misc_reg_p() {
590  uint8_t p = *m_cur_insn;
591  if (m_wordsize == 4) {
592    if (p == 0x1f || p == 0x07 || p == 0x17)
593      return true;
594  }
595  return false;
596}
597
598// leave [0xc9]
599bool x86AssemblyInspectionEngine::leave_pattern_p() {
600  uint8_t *p = m_cur_insn;
601  return (*p == 0xc9);
602}
603
604// call $0 [0xe8 0x0 0x0 0x0 0x0]
605bool x86AssemblyInspectionEngine::call_next_insn_pattern_p() {
606  uint8_t *p = m_cur_insn;
607  return (*p == 0xe8) && (*(p + 1) == 0x0) && (*(p + 2) == 0x0) &&
608         (*(p + 3) == 0x0) && (*(p + 4) == 0x0);
609}
610
611// Look for an instruction sequence storing a nonvolatile register on to the
612// stack frame.
613
614//  movq %rax, -0x10(%rbp) [0x48 0x89 0x45 0xf0]
615//  movl %eax, -0xc(%ebp)  [0x89 0x45 0xf4]
616
617// The offset value returned in rbp_offset will be positive -- but it must be
618// subtraced from the frame base register to get the actual location.  The
619// positive value returned for the offset is a convention used elsewhere for
620// CFA offsets et al.
621
622bool x86AssemblyInspectionEngine::mov_reg_to_local_stack_frame_p(
623    int &regno, int &rbp_offset) {
624  uint8_t *p = m_cur_insn;
625  int src_reg_prefix_bit = 0;
626  int target_reg_prefix_bit = 0;
627
628  if (m_wordsize == 8 && REX_W_PREFIX_P(*p)) {
629    src_reg_prefix_bit = REX_W_SRCREG(*p) << 3;
630    target_reg_prefix_bit = REX_W_DSTREG(*p) << 3;
631    if (target_reg_prefix_bit == 1) {
632      // rbp/ebp don't need a prefix bit - we know this isn't the reg we care
633      // about.
634      return false;
635    }
636    p++;
637  }
638
639  if (*p == 0x89) {
640    /* Mask off the 3-5 bits which indicate the destination register
641       if this is a ModR/M byte.  */
642    int opcode_destreg_masked_out = *(p + 1) & (~0x38);
643
644    /* Is this a ModR/M byte with Mod bits 01 and R/M bits 101
645       and three bits between them, e.g. 01nnn101
646       We're looking for a destination of ebp-disp8 or ebp-disp32.   */
647    int immsize;
648    if (opcode_destreg_masked_out == 0x45)
649      immsize = 2;
650    else if (opcode_destreg_masked_out == 0x85)
651      immsize = 4;
652    else
653      return false;
654
655    int offset = 0;
656    if (immsize == 2)
657      offset = (int8_t) * (p + 2);
658    if (immsize == 4)
659      offset = (uint32_t)extract_4(p + 2);
660    if (offset > 0)
661      return false;
662
663    regno = ((*(p + 1) >> 3) & 0x7) | src_reg_prefix_bit;
664    rbp_offset = offset > 0 ? offset : -offset;
665    return true;
666  }
667  return false;
668}
669
670// Returns true if this is a jmp instruction where we can't
671// know the destination address statically.
672//
673// ff e0                                   jmpq   *%rax
674// ff e1                                   jmpq   *%rcx
675// ff 60 28                                jmpq   *0x28(%rax)
676// ff 60 60                                jmpq   *0x60(%rax)
677bool x86AssemblyInspectionEngine::jmp_to_reg_p() {
678  if (*m_cur_insn != 0xff)
679    return false;
680
681  // The second byte is a ModR/M /4 byte, strip off the registers
682  uint8_t second_byte_sans_reg = *(m_cur_insn + 1) & ~7;
683
684  // Don't handle 0x24 disp32, because the target address is
685  // knowable statically - pc_rel_branch_or_jump_p() will
686  // return the target address.
687
688  // [reg]
689  if (second_byte_sans_reg == 0x20)
690    return true;
691
692  // [reg]+disp8
693  if (second_byte_sans_reg == 0x60)
694    return true;
695
696  // [reg]+disp32
697  if (second_byte_sans_reg == 0xa0)
698    return true;
699
700  // reg
701  if (second_byte_sans_reg == 0xe0)
702    return true;
703
704  // disp32
705  // jumps to an address stored in memory, the value can't be cached
706  // in an unwind plan.
707  if (second_byte_sans_reg == 0x24)
708    return true;
709
710  // use SIB byte
711  // ff 24 fe  jmpq   *(%rsi,%rdi,8)
712  if (second_byte_sans_reg == 0x24)
713    return true;
714
715  return false;
716}
717
718// Detect branches to fixed pc-relative offsets.
719// Returns the offset from the address of the next instruction
720// that may be branch/jumped to.
721//
722// Cannot determine the offset of a JMP that jumps to the address in
723// a register ("jmpq *%rax") or offset from a register value
724// ("jmpq *0x28(%rax)"), this method will return false on those
725// instructions.
726//
727// These instructions all end in either a relative 8/16/32 bit value
728// depending on the instruction and the current execution mode of the
729// inferior process.  Once we know the size of the opcode instruction,
730// we can use the total instruction length to determine the size of
731// the relative offset without having to compute it correctly.
732
733bool x86AssemblyInspectionEngine::pc_rel_branch_or_jump_p (
734    const int instruction_length, int &offset)
735{
736  int opcode_size = 0;
737
738  uint8_t b1 = m_cur_insn[0];
739
740  switch (b1) {
741    case 0x77: // JA/JNBE rel8
742    case 0x73: // JAE/JNB/JNC rel8
743    case 0x72: // JB/JC/JNAE rel8
744    case 0x76: // JBE/JNA rel8
745    case 0xe3: // JCXZ/JECXZ/JRCXZ rel8
746    case 0x74: // JE/JZ rel8
747    case 0x7f: // JG/JNLE rel8
748    case 0x7d: // JGE/JNL rel8
749    case 0x7c: // JL/JNGE rel8
750    case 0x7e: // JNG/JLE rel8
751    case 0x71: // JNO rel8
752    case 0x7b: // JNP/JPO rel8
753    case 0x79: // JNS rel8
754    case 0x75: // JNE/JNZ rel8
755    case 0x70: // JO rel8
756    case 0x7a: // JP/JPE rel8
757    case 0x78: // JS rel8
758    case 0xeb: // JMP rel8
759    case 0xe9: // JMP rel16/rel32
760      opcode_size = 1;
761      break;
762    default:
763      break;
764  }
765  if (b1 == 0x0f && opcode_size == 0) {
766    uint8_t b2 = m_cur_insn[1];
767    switch (b2) {
768      case 0x87: // JA/JNBE rel16/rel32
769      case 0x86: // JBE/JNA rel16/rel32
770      case 0x84: // JE/JZ rel16/rel32
771      case 0x8f: // JG/JNLE rel16/rel32
772      case 0x8d: // JNL/JGE rel16/rel32
773      case 0x8e: // JLE rel16/rel32
774      case 0x82: // JB/JC/JNAE rel16/rel32
775      case 0x83: // JAE/JNB/JNC rel16/rel32
776      case 0x85: // JNE/JNZ rel16/rel32
777      case 0x8c: // JL/JNGE rel16/rel32
778      case 0x81: // JNO rel16/rel32
779      case 0x8b: // JNP/JPO rel16/rel32
780      case 0x89: // JNS rel16/rel32
781      case 0x80: // JO rel16/rel32
782      case 0x8a: // JP rel16/rel32
783      case 0x88: // JS rel16/rel32
784        opcode_size = 2;
785        break;
786      default:
787        break;
788    }
789  }
790
791  if (opcode_size == 0)
792    return false;
793
794  offset = 0;
795  if (instruction_length - opcode_size == 1) {
796    int8_t rel8 = (int8_t) *(m_cur_insn + opcode_size);
797    offset = rel8;
798  } else if (instruction_length - opcode_size == 2) {
799    int16_t rel16 = extract_2_signed (m_cur_insn + opcode_size);
800    offset = rel16;
801  } else if (instruction_length - opcode_size == 4) {
802    int32_t rel32 = extract_4_signed (m_cur_insn + opcode_size);
803    offset = rel32;
804  } else {
805    return false;
806  }
807  return true;
808}
809
810// Returns true if this instruction is a intra-function branch or jump -
811// a branch/jump within the bounds of this same function.
812// Cannot predict where a jump through a register value ("jmpq *%rax")
813// will go, so it will return false on that instruction.
814bool x86AssemblyInspectionEngine::local_branch_p (
815    const addr_t current_func_text_offset,
816    const AddressRange &func_range,
817    const int instruction_length,
818    addr_t &target_insn_offset) {
819  int offset;
820  if (pc_rel_branch_or_jump_p (instruction_length, offset) && offset != 0) {
821    addr_t next_pc_value = current_func_text_offset + instruction_length;
822    if (offset < 0 && addr_t(-offset) > current_func_text_offset) {
823      // Branch target is before the start of this function
824      return false;
825    }
826    if (offset + next_pc_value > func_range.GetByteSize()) {
827      // Branch targets outside this function's bounds
828      return false;
829    }
830    // This instruction branches to target_insn_offset (byte offset into the function)
831    target_insn_offset = next_pc_value + offset;
832    return true;
833  }
834  return false;
835}
836
837// Returns true if this instruction is a inter-function branch or jump - a
838// branch/jump to another function.
839// Cannot predict where a jump through a register value ("jmpq *%rax")
840// will go, so it will return false on that instruction.
841bool x86AssemblyInspectionEngine::non_local_branch_p (
842    const addr_t current_func_text_offset,
843    const AddressRange &func_range,
844    const int instruction_length) {
845  int offset;
846  addr_t target_insn_offset;
847  if (pc_rel_branch_or_jump_p (instruction_length, offset)) {
848    return !local_branch_p(current_func_text_offset,func_range,instruction_length,target_insn_offset);
849  }
850  return false;
851}
852
853// ret [0xc3] or [0xcb] or [0xc2 imm16] or [0xca imm16]
854bool x86AssemblyInspectionEngine::ret_pattern_p() {
855  uint8_t *p = m_cur_insn;
856  return *p == 0xc3 || *p == 0xc2 || *p == 0xca || *p == 0xcb;
857}
858
859uint16_t x86AssemblyInspectionEngine::extract_2(uint8_t *b) {
860  uint16_t v = 0;
861  for (int i = 1; i >= 0; i--)
862    v = (v << 8) | b[i];
863  return v;
864}
865
866int16_t x86AssemblyInspectionEngine::extract_2_signed(uint8_t *b) {
867  int16_t v = 0;
868  for (int i = 1; i >= 0; i--)
869    v = (v << 8) | b[i];
870  return v;
871}
872
873uint32_t x86AssemblyInspectionEngine::extract_4(uint8_t *b) {
874  uint32_t v = 0;
875  for (int i = 3; i >= 0; i--)
876    v = (v << 8) | b[i];
877  return v;
878}
879
880int32_t x86AssemblyInspectionEngine::extract_4_signed(uint8_t *b) {
881  int32_t v = 0;
882  for (int i = 3; i >= 0; i--)
883    v = (v << 8) | b[i];
884  return v;
885}
886
887
888bool x86AssemblyInspectionEngine::instruction_length(uint8_t *insn_p,
889                                                     int &length,
890                                                     uint32_t buffer_remaining_bytes) {
891
892  uint32_t max_op_byte_size = std::min(buffer_remaining_bytes, m_arch.GetMaximumOpcodeByteSize());
893  llvm::SmallVector<uint8_t, 32> opcode_data;
894  opcode_data.resize(max_op_byte_size);
895
896  char out_string[512];
897  const size_t inst_size =
898      ::LLVMDisasmInstruction(m_disasm_context, insn_p, max_op_byte_size, 0,
899                              out_string, sizeof(out_string));
900
901  length = inst_size;
902  return true;
903}
904
905bool x86AssemblyInspectionEngine::machine_regno_to_lldb_regno(
906    int machine_regno, uint32_t &lldb_regno) {
907  MachineRegnumToNameAndLLDBRegnum::iterator it = m_reg_map.find(machine_regno);
908  if (it != m_reg_map.end()) {
909    lldb_regno = it->second.lldb_regnum;
910    return true;
911  }
912  return false;
913}
914
915bool x86AssemblyInspectionEngine::GetNonCallSiteUnwindPlanFromAssembly(
916    uint8_t *data, size_t size, AddressRange &func_range,
917    UnwindPlan &unwind_plan) {
918  unwind_plan.Clear();
919
920  if (data == nullptr || size == 0)
921    return false;
922
923  if (!m_register_map_initialized)
924    return false;
925
926  addr_t current_func_text_offset = 0;
927  int current_sp_bytes_offset_from_fa = 0;
928  bool is_aligned = false;
929  UnwindPlan::Row::RegisterLocation initial_regloc;
930  UnwindPlan::RowSP row(new UnwindPlan::Row);
931
932  unwind_plan.SetPlanValidAddressRange(func_range);
933  unwind_plan.SetRegisterKind(eRegisterKindLLDB);
934
935  // At the start of the function, find the CFA by adding wordsize to the SP
936  // register
937  row->SetOffset(current_func_text_offset);
938  row->GetCFAValue().SetIsRegisterPlusOffset(m_lldb_sp_regnum, m_wordsize);
939
940  // caller's stack pointer value before the call insn is the CFA address
941  initial_regloc.SetIsCFAPlusOffset(0);
942  row->SetRegisterInfo(m_lldb_sp_regnum, initial_regloc);
943
944  // saved instruction pointer can be found at CFA - wordsize.
945  current_sp_bytes_offset_from_fa = m_wordsize;
946  initial_regloc.SetAtCFAPlusOffset(-current_sp_bytes_offset_from_fa);
947  row->SetRegisterInfo(m_lldb_ip_regnum, initial_regloc);
948
949  unwind_plan.AppendRow(row);
950
951  // Allocate a new Row, populate it with the existing Row contents.
952  UnwindPlan::Row *newrow = new UnwindPlan::Row;
953  *newrow = *row.get();
954  row.reset(newrow);
955
956  // Track which registers have been saved so far in the prologue. If we see
957  // another push of that register, it's not part of the prologue. The register
958  // numbers used here are the machine register #'s (i386_register_numbers,
959  // x86_64_register_numbers).
960  std::vector<bool> saved_registers(32, false);
961
962  // Once the prologue has completed we'll save a copy of the unwind
963  // instructions If there is an epilogue in the middle of the function, after
964  // that epilogue we'll reinstate the unwind setup -- we assume that some code
965  // path jumps over the mid-function epilogue
966
967  UnwindPlan::RowSP prologue_completed_row; // copy of prologue row of CFI
968  int prologue_completed_sp_bytes_offset_from_cfa; // The sp value before the
969                                                   // epilogue started executed
970  bool prologue_completed_is_aligned;
971  std::vector<bool> prologue_completed_saved_registers;
972
973  while (current_func_text_offset < size) {
974    int stack_offset, insn_len;
975    int machine_regno;   // register numbers masked directly out of instructions
976    uint32_t lldb_regno; // register numbers in lldb's eRegisterKindLLDB
977                         // numbering scheme
978
979    bool in_epilogue = false; // we're in the middle of an epilogue sequence
980    bool row_updated = false; // The UnwindPlan::Row 'row' has been updated
981
982    m_cur_insn = data + current_func_text_offset;
983    if (!instruction_length(m_cur_insn, insn_len, size - current_func_text_offset)
984        || insn_len == 0
985        || insn_len > kMaxInstructionByteSize) {
986      // An unrecognized/junk instruction
987      break;
988    }
989
990    auto &cfa_value = row->GetCFAValue();
991    auto &afa_value = row->GetAFAValue();
992    auto fa_value_ptr = is_aligned ? &afa_value : &cfa_value;
993
994    if (mov_rsp_rbp_pattern_p()) {
995      if (fa_value_ptr->GetRegisterNumber() == m_lldb_sp_regnum) {
996        fa_value_ptr->SetIsRegisterPlusOffset(
997            m_lldb_fp_regnum, fa_value_ptr->GetOffset());
998        row_updated = true;
999      }
1000    }
1001
1002    else if (mov_rsp_rbx_pattern_p()) {
1003      if (fa_value_ptr->GetRegisterNumber() == m_lldb_sp_regnum) {
1004        fa_value_ptr->SetIsRegisterPlusOffset(
1005            m_lldb_alt_fp_regnum, fa_value_ptr->GetOffset());
1006        row_updated = true;
1007      }
1008    }
1009
1010    else if (and_rsp_pattern_p()) {
1011      current_sp_bytes_offset_from_fa = 0;
1012      afa_value.SetIsRegisterPlusOffset(
1013          m_lldb_sp_regnum, current_sp_bytes_offset_from_fa);
1014      fa_value_ptr = &afa_value;
1015      is_aligned = true;
1016      row_updated = true;
1017    }
1018
1019    else if (mov_rbp_rsp_pattern_p()) {
1020      if (is_aligned && cfa_value.GetRegisterNumber() == m_lldb_fp_regnum)
1021      {
1022        is_aligned = false;
1023        fa_value_ptr = &cfa_value;
1024        afa_value.SetUnspecified();
1025        row_updated = true;
1026      }
1027      if (fa_value_ptr->GetRegisterNumber() == m_lldb_fp_regnum)
1028        current_sp_bytes_offset_from_fa = fa_value_ptr->GetOffset();
1029    }
1030
1031    else if (mov_rbx_rsp_pattern_p()) {
1032      if (is_aligned && cfa_value.GetRegisterNumber() == m_lldb_alt_fp_regnum)
1033      {
1034        is_aligned = false;
1035        fa_value_ptr = &cfa_value;
1036        afa_value.SetUnspecified();
1037        row_updated = true;
1038      }
1039      if (fa_value_ptr->GetRegisterNumber() == m_lldb_alt_fp_regnum)
1040        current_sp_bytes_offset_from_fa = fa_value_ptr->GetOffset();
1041    }
1042
1043    // This is the start() function (or a pthread equivalent), it starts with a
1044    // pushl $0x0 which puts the saved pc value of 0 on the stack.  In this
1045    // case we want to pretend we didn't see a stack movement at all --
1046    // normally the saved pc value is already on the stack by the time the
1047    // function starts executing.
1048    else if (push_0_pattern_p()) {
1049    }
1050
1051    else if (push_reg_p(machine_regno)) {
1052      current_sp_bytes_offset_from_fa += m_wordsize;
1053      // the PUSH instruction has moved the stack pointer - if the FA is set
1054      // in terms of the stack pointer, we need to add a new row of
1055      // instructions.
1056      if (fa_value_ptr->GetRegisterNumber() == m_lldb_sp_regnum) {
1057        fa_value_ptr->SetOffset(current_sp_bytes_offset_from_fa);
1058        row_updated = true;
1059      }
1060      // record where non-volatile (callee-saved, spilled) registers are saved
1061      // on the stack
1062      if (nonvolatile_reg_p(machine_regno) &&
1063          machine_regno_to_lldb_regno(machine_regno, lldb_regno) &&
1064          !saved_registers[machine_regno]) {
1065        UnwindPlan::Row::RegisterLocation regloc;
1066        if (is_aligned)
1067            regloc.SetAtAFAPlusOffset(-current_sp_bytes_offset_from_fa);
1068        else
1069            regloc.SetAtCFAPlusOffset(-current_sp_bytes_offset_from_fa);
1070        row->SetRegisterInfo(lldb_regno, regloc);
1071        saved_registers[machine_regno] = true;
1072        row_updated = true;
1073      }
1074    }
1075
1076    else if (pop_reg_p(machine_regno)) {
1077      current_sp_bytes_offset_from_fa -= m_wordsize;
1078
1079      if (nonvolatile_reg_p(machine_regno) &&
1080          machine_regno_to_lldb_regno(machine_regno, lldb_regno) &&
1081          saved_registers[machine_regno]) {
1082        saved_registers[machine_regno] = false;
1083        row->RemoveRegisterInfo(lldb_regno);
1084
1085        if (lldb_regno == fa_value_ptr->GetRegisterNumber()) {
1086          fa_value_ptr->SetIsRegisterPlusOffset(
1087              m_lldb_sp_regnum, fa_value_ptr->GetOffset());
1088        }
1089
1090        in_epilogue = true;
1091        row_updated = true;
1092      }
1093
1094      // the POP instruction has moved the stack pointer - if the FA is set in
1095      // terms of the stack pointer, we need to add a new row of instructions.
1096      if (fa_value_ptr->GetRegisterNumber() == m_lldb_sp_regnum) {
1097        fa_value_ptr->SetIsRegisterPlusOffset(
1098            m_lldb_sp_regnum, current_sp_bytes_offset_from_fa);
1099        row_updated = true;
1100      }
1101    }
1102
1103    else if (pop_misc_reg_p()) {
1104      current_sp_bytes_offset_from_fa -= m_wordsize;
1105      if (fa_value_ptr->GetRegisterNumber() == m_lldb_sp_regnum) {
1106        fa_value_ptr->SetIsRegisterPlusOffset(
1107            m_lldb_sp_regnum, current_sp_bytes_offset_from_fa);
1108        row_updated = true;
1109      }
1110    }
1111
1112    // The LEAVE instruction moves the value from rbp into rsp and pops a value
1113    // off the stack into rbp (restoring the caller's rbp value). It is the
1114    // opposite of ENTER, or 'push rbp, mov rsp rbp'.
1115    else if (leave_pattern_p()) {
1116      if (saved_registers[m_machine_fp_regnum]) {
1117        saved_registers[m_machine_fp_regnum] = false;
1118        row->RemoveRegisterInfo(m_lldb_fp_regnum);
1119
1120        row_updated = true;
1121      }
1122
1123      if (is_aligned && cfa_value.GetRegisterNumber() == m_lldb_fp_regnum)
1124      {
1125        is_aligned = false;
1126        fa_value_ptr = &cfa_value;
1127        afa_value.SetUnspecified();
1128        row_updated = true;
1129      }
1130
1131      if (fa_value_ptr->GetRegisterNumber() == m_lldb_fp_regnum)
1132      {
1133        fa_value_ptr->SetIsRegisterPlusOffset(
1134            m_lldb_sp_regnum, fa_value_ptr->GetOffset());
1135
1136        current_sp_bytes_offset_from_fa = fa_value_ptr->GetOffset();
1137      }
1138
1139      current_sp_bytes_offset_from_fa -= m_wordsize;
1140
1141      if (fa_value_ptr->GetRegisterNumber() == m_lldb_sp_regnum) {
1142        fa_value_ptr->SetIsRegisterPlusOffset(
1143            m_lldb_sp_regnum, current_sp_bytes_offset_from_fa);
1144        row_updated = true;
1145      }
1146
1147      in_epilogue = true;
1148    }
1149
1150    else if (mov_reg_to_local_stack_frame_p(machine_regno, stack_offset) &&
1151             nonvolatile_reg_p(machine_regno) &&
1152             machine_regno_to_lldb_regno(machine_regno, lldb_regno) &&
1153             !saved_registers[machine_regno]) {
1154      saved_registers[machine_regno] = true;
1155
1156      UnwindPlan::Row::RegisterLocation regloc;
1157
1158      // stack_offset for 'movq %r15, -80(%rbp)' will be 80. In the Row, we
1159      // want to express this as the offset from the FA.  If the frame base is
1160      // rbp (like the above instruction), the FA offset for rbp is probably
1161      // 16.  So we want to say that the value is stored at the FA address -
1162      // 96.
1163      if (is_aligned)
1164          regloc.SetAtAFAPlusOffset(-(stack_offset + fa_value_ptr->GetOffset()));
1165      else
1166          regloc.SetAtCFAPlusOffset(-(stack_offset + fa_value_ptr->GetOffset()));
1167
1168      row->SetRegisterInfo(lldb_regno, regloc);
1169
1170      row_updated = true;
1171    }
1172
1173    else if (sub_rsp_pattern_p(stack_offset)) {
1174      current_sp_bytes_offset_from_fa += stack_offset;
1175      if (fa_value_ptr->GetRegisterNumber() == m_lldb_sp_regnum) {
1176        fa_value_ptr->SetOffset(current_sp_bytes_offset_from_fa);
1177        row_updated = true;
1178      }
1179    }
1180
1181    else if (add_rsp_pattern_p(stack_offset)) {
1182      current_sp_bytes_offset_from_fa -= stack_offset;
1183      if (fa_value_ptr->GetRegisterNumber() == m_lldb_sp_regnum) {
1184        fa_value_ptr->SetOffset(current_sp_bytes_offset_from_fa);
1185        row_updated = true;
1186      }
1187      in_epilogue = true;
1188    }
1189
1190    else if (push_extended_pattern_p() || push_imm_pattern_p() ||
1191             push_misc_reg_p()) {
1192      current_sp_bytes_offset_from_fa += m_wordsize;
1193      if (fa_value_ptr->GetRegisterNumber() == m_lldb_sp_regnum) {
1194        fa_value_ptr->SetOffset(current_sp_bytes_offset_from_fa);
1195        row_updated = true;
1196      }
1197    }
1198
1199    else if (lea_rsp_pattern_p(stack_offset)) {
1200      current_sp_bytes_offset_from_fa -= stack_offset;
1201      if (fa_value_ptr->GetRegisterNumber() == m_lldb_sp_regnum) {
1202        fa_value_ptr->SetOffset(current_sp_bytes_offset_from_fa);
1203        row_updated = true;
1204      }
1205      if (stack_offset > 0)
1206        in_epilogue = true;
1207    }
1208
1209    else if (lea_rbp_rsp_pattern_p(stack_offset)) {
1210      if (is_aligned &&
1211          cfa_value.GetRegisterNumber() == m_lldb_fp_regnum) {
1212        is_aligned = false;
1213        fa_value_ptr = &cfa_value;
1214        afa_value.SetUnspecified();
1215        row_updated = true;
1216      }
1217      if (fa_value_ptr->GetRegisterNumber() == m_lldb_fp_regnum) {
1218        current_sp_bytes_offset_from_fa =
1219          fa_value_ptr->GetOffset() - stack_offset;
1220      }
1221    }
1222
1223    else if (lea_rbx_rsp_pattern_p(stack_offset)) {
1224      if (is_aligned &&
1225          cfa_value.GetRegisterNumber() == m_lldb_alt_fp_regnum) {
1226        is_aligned = false;
1227        fa_value_ptr = &cfa_value;
1228        afa_value.SetUnspecified();
1229        row_updated = true;
1230      }
1231      if (fa_value_ptr->GetRegisterNumber() == m_lldb_alt_fp_regnum) {
1232        current_sp_bytes_offset_from_fa = fa_value_ptr->GetOffset() - stack_offset;
1233      }
1234    }
1235
1236    else if (prologue_completed_row.get() &&
1237             (ret_pattern_p() ||
1238              non_local_branch_p (current_func_text_offset, func_range, insn_len) ||
1239              jmp_to_reg_p())) {
1240      // Check if the current instruction is the end of an epilogue sequence,
1241      // and if so, re-instate the prologue-completed unwind state.
1242
1243      // The current instruction is a branch/jump outside this function,
1244      // a ret, or a jump through a register value which we cannot
1245      // determine the effcts of.  Verify that the stack frame state
1246      // has been unwound to the same as it was at function entry to avoid
1247      // mis-identifying a JMP instruction as an epilogue.
1248      UnwindPlan::Row::RegisterLocation sp, pc;
1249      if (row->GetRegisterInfo(m_lldb_sp_regnum, sp) &&
1250          row->GetRegisterInfo(m_lldb_ip_regnum, pc)) {
1251        // Any ret instruction variant is definitely indicative of an
1252        // epilogue; for other insn patterns verify that we're back to
1253        // the original unwind state.
1254        if (ret_pattern_p() ||
1255            (sp.IsCFAPlusOffset() && sp.GetOffset() == 0 &&
1256            pc.IsAtCFAPlusOffset() && pc.GetOffset() == -m_wordsize)) {
1257          // Reinstate the saved prologue setup for any instructions that come
1258          // after the epilogue
1259
1260          UnwindPlan::Row *newrow = new UnwindPlan::Row;
1261          *newrow = *prologue_completed_row.get();
1262          row.reset(newrow);
1263          current_sp_bytes_offset_from_fa =
1264              prologue_completed_sp_bytes_offset_from_cfa;
1265          is_aligned = prologue_completed_is_aligned;
1266
1267          saved_registers.clear();
1268          saved_registers.resize(prologue_completed_saved_registers.size(), false);
1269          for (size_t i = 0; i < prologue_completed_saved_registers.size(); ++i) {
1270            saved_registers[i] = prologue_completed_saved_registers[i];
1271          }
1272
1273          in_epilogue = true;
1274          row_updated = true;
1275        }
1276      }
1277    }
1278
1279    // call next instruction
1280    //     call 0
1281    //  => pop  %ebx
1282    // This is used in i386 programs to get the PIC base address for finding
1283    // global data
1284    else if (call_next_insn_pattern_p()) {
1285      current_sp_bytes_offset_from_fa += m_wordsize;
1286      if (fa_value_ptr->GetRegisterNumber() == m_lldb_sp_regnum) {
1287        fa_value_ptr->SetOffset(current_sp_bytes_offset_from_fa);
1288        row_updated = true;
1289      }
1290    }
1291
1292    if (row_updated) {
1293      if (current_func_text_offset + insn_len < size) {
1294        row->SetOffset(current_func_text_offset + insn_len);
1295        unwind_plan.AppendRow(row);
1296        // Allocate a new Row, populate it with the existing Row contents.
1297        newrow = new UnwindPlan::Row;
1298        *newrow = *row.get();
1299        row.reset(newrow);
1300      }
1301    }
1302
1303    if (!in_epilogue && row_updated) {
1304      // If we're not in an epilogue sequence, save the updated Row
1305      UnwindPlan::Row *newrow = new UnwindPlan::Row;
1306      *newrow = *row.get();
1307      prologue_completed_row.reset(newrow);
1308
1309      prologue_completed_saved_registers.clear();
1310      prologue_completed_saved_registers.resize(saved_registers.size(), false);
1311      for (size_t i = 0; i < saved_registers.size(); ++i) {
1312        prologue_completed_saved_registers[i] = saved_registers[i];
1313      }
1314    }
1315
1316    // We may change the sp value without adding a new Row necessarily -- keep
1317    // track of it either way.
1318    if (!in_epilogue) {
1319      prologue_completed_sp_bytes_offset_from_cfa =
1320          current_sp_bytes_offset_from_fa;
1321      prologue_completed_is_aligned = is_aligned;
1322    }
1323
1324    m_cur_insn = m_cur_insn + insn_len;
1325    current_func_text_offset += insn_len;
1326  }
1327
1328  unwind_plan.SetSourceName("assembly insn profiling");
1329  unwind_plan.SetSourcedFromCompiler(eLazyBoolNo);
1330  unwind_plan.SetUnwindPlanValidAtAllInstructions(eLazyBoolYes);
1331  unwind_plan.SetUnwindPlanForSignalTrap(eLazyBoolNo);
1332
1333  return true;
1334}
1335
1336bool x86AssemblyInspectionEngine::AugmentUnwindPlanFromCallSite(
1337    uint8_t *data, size_t size, AddressRange &func_range,
1338    UnwindPlan &unwind_plan, RegisterContextSP &reg_ctx) {
1339  Address addr_start = func_range.GetBaseAddress();
1340  if (!addr_start.IsValid())
1341    return false;
1342
1343  // We either need a live RegisterContext, or we need the UnwindPlan to
1344  // already be in the lldb register numbering scheme.
1345  if (reg_ctx.get() == nullptr &&
1346      unwind_plan.GetRegisterKind() != eRegisterKindLLDB)
1347    return false;
1348
1349  // Is original unwind_plan valid?
1350  // unwind_plan should have at least one row which is ABI-default (CFA
1351  // register is sp), and another row in mid-function.
1352  if (unwind_plan.GetRowCount() < 2)
1353    return false;
1354
1355  UnwindPlan::RowSP first_row = unwind_plan.GetRowAtIndex(0);
1356  if (first_row->GetOffset() != 0)
1357    return false;
1358  uint32_t cfa_reg = first_row->GetCFAValue().GetRegisterNumber();
1359  if (unwind_plan.GetRegisterKind() != eRegisterKindLLDB) {
1360    cfa_reg = reg_ctx->ConvertRegisterKindToRegisterNumber(
1361        unwind_plan.GetRegisterKind(),
1362        first_row->GetCFAValue().GetRegisterNumber());
1363  }
1364  if (cfa_reg != m_lldb_sp_regnum ||
1365      first_row->GetCFAValue().GetOffset() != m_wordsize)
1366    return false;
1367
1368  UnwindPlan::RowSP original_last_row = unwind_plan.GetRowForFunctionOffset(-1);
1369
1370  size_t offset = 0;
1371  int row_id = 1;
1372  bool unwind_plan_updated = false;
1373  UnwindPlan::RowSP row(new UnwindPlan::Row(*first_row));
1374
1375  // After a mid-function epilogue we will need to re-insert the original
1376  // unwind rules so unwinds work for the remainder of the function.  These
1377  // aren't common with clang/gcc on x86 but it is possible.
1378  bool reinstate_unwind_state = false;
1379
1380  while (offset < size) {
1381    m_cur_insn = data + offset;
1382    int insn_len;
1383    if (!instruction_length(m_cur_insn, insn_len, size - offset) ||
1384        insn_len == 0 || insn_len > kMaxInstructionByteSize) {
1385      // An unrecognized/junk instruction.
1386      break;
1387    }
1388
1389    // Advance offsets.
1390    offset += insn_len;
1391
1392    // offset is pointing beyond the bounds of the function; stop looping.
1393    if (offset >= size)
1394      continue;
1395
1396    if (reinstate_unwind_state) {
1397      UnwindPlan::RowSP new_row(new UnwindPlan::Row());
1398      *new_row = *original_last_row;
1399      new_row->SetOffset(offset);
1400      unwind_plan.AppendRow(new_row);
1401      row = std::make_shared<UnwindPlan::Row>();
1402      *row = *new_row;
1403      reinstate_unwind_state = false;
1404      unwind_plan_updated = true;
1405      continue;
1406    }
1407
1408    // If we already have one row for this instruction, we can continue.
1409    while (row_id < unwind_plan.GetRowCount() &&
1410           unwind_plan.GetRowAtIndex(row_id)->GetOffset() <= offset) {
1411      row_id++;
1412    }
1413    UnwindPlan::RowSP original_row = unwind_plan.GetRowAtIndex(row_id - 1);
1414    if (original_row->GetOffset() == offset) {
1415      *row = *original_row;
1416      continue;
1417    }
1418
1419    if (row_id == 0) {
1420      // If we are here, compiler didn't generate CFI for prologue. This won't
1421      // happen to GCC or clang. In this case, bail out directly.
1422      return false;
1423    }
1424
1425    // Inspect the instruction to check if we need a new row for it.
1426    cfa_reg = row->GetCFAValue().GetRegisterNumber();
1427    if (unwind_plan.GetRegisterKind() != eRegisterKindLLDB) {
1428      cfa_reg = reg_ctx->ConvertRegisterKindToRegisterNumber(
1429          unwind_plan.GetRegisterKind(),
1430          row->GetCFAValue().GetRegisterNumber());
1431    }
1432    if (cfa_reg == m_lldb_sp_regnum) {
1433      // CFA register is sp.
1434
1435      // call next instruction
1436      //     call 0
1437      //  => pop  %ebx
1438      if (call_next_insn_pattern_p()) {
1439        row->SetOffset(offset);
1440        row->GetCFAValue().IncOffset(m_wordsize);
1441
1442        UnwindPlan::RowSP new_row(new UnwindPlan::Row(*row));
1443        unwind_plan.InsertRow(new_row);
1444        unwind_plan_updated = true;
1445        continue;
1446      }
1447
1448      // push/pop register
1449      int regno;
1450      if (push_reg_p(regno)) {
1451        row->SetOffset(offset);
1452        row->GetCFAValue().IncOffset(m_wordsize);
1453
1454        UnwindPlan::RowSP new_row(new UnwindPlan::Row(*row));
1455        unwind_plan.InsertRow(new_row);
1456        unwind_plan_updated = true;
1457        continue;
1458      }
1459      if (pop_reg_p(regno)) {
1460        // Technically, this might be a nonvolatile register recover in
1461        // epilogue. We should reset RegisterInfo for the register. But in
1462        // practice, previous rule for the register is still valid... So we
1463        // ignore this case.
1464
1465        row->SetOffset(offset);
1466        row->GetCFAValue().IncOffset(-m_wordsize);
1467
1468        UnwindPlan::RowSP new_row(new UnwindPlan::Row(*row));
1469        unwind_plan.InsertRow(new_row);
1470        unwind_plan_updated = true;
1471        continue;
1472      }
1473
1474      if (pop_misc_reg_p()) {
1475        row->SetOffset(offset);
1476        row->GetCFAValue().IncOffset(-m_wordsize);
1477
1478        UnwindPlan::RowSP new_row(new UnwindPlan::Row(*row));
1479        unwind_plan.InsertRow(new_row);
1480        unwind_plan_updated = true;
1481        continue;
1482      }
1483
1484      // push imm
1485      if (push_imm_pattern_p()) {
1486        row->SetOffset(offset);
1487        row->GetCFAValue().IncOffset(m_wordsize);
1488        UnwindPlan::RowSP new_row(new UnwindPlan::Row(*row));
1489        unwind_plan.InsertRow(new_row);
1490        unwind_plan_updated = true;
1491        continue;
1492      }
1493
1494      // push extended
1495      if (push_extended_pattern_p() || push_misc_reg_p()) {
1496        row->SetOffset(offset);
1497        row->GetCFAValue().IncOffset(m_wordsize);
1498        UnwindPlan::RowSP new_row(new UnwindPlan::Row(*row));
1499        unwind_plan.InsertRow(new_row);
1500        unwind_plan_updated = true;
1501        continue;
1502      }
1503
1504      // add/sub %rsp/%esp
1505      int amount;
1506      if (add_rsp_pattern_p(amount)) {
1507        row->SetOffset(offset);
1508        row->GetCFAValue().IncOffset(-amount);
1509
1510        UnwindPlan::RowSP new_row(new UnwindPlan::Row(*row));
1511        unwind_plan.InsertRow(new_row);
1512        unwind_plan_updated = true;
1513        continue;
1514      }
1515      if (sub_rsp_pattern_p(amount)) {
1516        row->SetOffset(offset);
1517        row->GetCFAValue().IncOffset(amount);
1518
1519        UnwindPlan::RowSP new_row(new UnwindPlan::Row(*row));
1520        unwind_plan.InsertRow(new_row);
1521        unwind_plan_updated = true;
1522        continue;
1523      }
1524
1525      // lea %rsp, [%rsp + $offset]
1526      if (lea_rsp_pattern_p(amount)) {
1527        row->SetOffset(offset);
1528        row->GetCFAValue().IncOffset(-amount);
1529
1530        UnwindPlan::RowSP new_row(new UnwindPlan::Row(*row));
1531        unwind_plan.InsertRow(new_row);
1532        unwind_plan_updated = true;
1533        continue;
1534      }
1535
1536      if (ret_pattern_p()) {
1537        reinstate_unwind_state = true;
1538        continue;
1539      }
1540    } else if (cfa_reg == m_lldb_fp_regnum) {
1541      // CFA register is fp.
1542
1543      // The only case we care about is epilogue:
1544      //     [0x5d] pop %rbp/%ebp
1545      //  => [0xc3] ret
1546      if (pop_rbp_pattern_p() || leave_pattern_p()) {
1547        m_cur_insn++;
1548        if (ret_pattern_p()) {
1549          row->SetOffset(offset);
1550          row->GetCFAValue().SetIsRegisterPlusOffset(
1551              first_row->GetCFAValue().GetRegisterNumber(), m_wordsize);
1552
1553          UnwindPlan::RowSP new_row(new UnwindPlan::Row(*row));
1554          unwind_plan.InsertRow(new_row);
1555          unwind_plan_updated = true;
1556          reinstate_unwind_state = true;
1557          continue;
1558        }
1559      }
1560    } else {
1561      // CFA register is not sp or fp.
1562
1563      // This must be hand-written assembly.
1564      // Just trust eh_frame and assume we have finished.
1565      break;
1566    }
1567  }
1568
1569  unwind_plan.SetPlanValidAddressRange(func_range);
1570  if (unwind_plan_updated) {
1571    std::string unwind_plan_source(unwind_plan.GetSourceName().AsCString());
1572    unwind_plan_source += " plus augmentation from assembly parsing";
1573    unwind_plan.SetSourceName(unwind_plan_source.c_str());
1574    unwind_plan.SetSourcedFromCompiler(eLazyBoolNo);
1575    unwind_plan.SetUnwindPlanValidAtAllInstructions(eLazyBoolYes);
1576  }
1577  return true;
1578}
1579
1580bool x86AssemblyInspectionEngine::FindFirstNonPrologueInstruction(
1581    uint8_t *data, size_t size, size_t &offset) {
1582  offset = 0;
1583
1584  if (!m_register_map_initialized)
1585    return false;
1586
1587  while (offset < size) {
1588    int regno;
1589    int insn_len;
1590    int scratch;
1591
1592    m_cur_insn = data + offset;
1593    if (!instruction_length(m_cur_insn, insn_len, size - offset)
1594        || insn_len > kMaxInstructionByteSize
1595        || insn_len == 0) {
1596      // An error parsing the instruction, i.e. probably data/garbage - stop
1597      // scanning
1598      break;
1599    }
1600
1601    if (push_rbp_pattern_p() || mov_rsp_rbp_pattern_p() ||
1602        sub_rsp_pattern_p(scratch) || push_reg_p(regno) ||
1603        mov_reg_to_local_stack_frame_p(regno, scratch) ||
1604        (lea_rsp_pattern_p(scratch) && offset == 0)) {
1605      offset += insn_len;
1606      continue;
1607    }
1608    //
1609    // Unknown non-prologue instruction - stop scanning
1610    break;
1611  }
1612
1613  return true;
1614}
1615