SyntheticSections.cpp revision 360784
1//===- SyntheticSections.cpp ----------------------------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file contains linker-synthesized sections. Currently,
10// synthetic sections are created either output sections or input sections,
11// but we are rewriting code so that all synthetic sections are created as
12// input sections.
13//
14//===----------------------------------------------------------------------===//
15
16#include "SyntheticSections.h"
17#include "Config.h"
18#include "InputFiles.h"
19#include "LinkerScript.h"
20#include "OutputSections.h"
21#include "SymbolTable.h"
22#include "Symbols.h"
23#include "Target.h"
24#include "Writer.h"
25#include "lld/Common/ErrorHandler.h"
26#include "lld/Common/Memory.h"
27#include "lld/Common/Strings.h"
28#include "lld/Common/Threads.h"
29#include "lld/Common/Version.h"
30#include "llvm/ADT/SetOperations.h"
31#include "llvm/ADT/StringExtras.h"
32#include "llvm/BinaryFormat/Dwarf.h"
33#include "llvm/DebugInfo/DWARF/DWARFDebugPubTable.h"
34#include "llvm/Object/ELFObjectFile.h"
35#include "llvm/Support/Compression.h"
36#include "llvm/Support/Endian.h"
37#include "llvm/Support/LEB128.h"
38#include "llvm/Support/MD5.h"
39#include <cstdlib>
40#include <thread>
41
42using namespace llvm;
43using namespace llvm::dwarf;
44using namespace llvm::ELF;
45using namespace llvm::object;
46using namespace llvm::support;
47
48using llvm::support::endian::read32le;
49using llvm::support::endian::write32le;
50using llvm::support::endian::write64le;
51
52namespace lld {
53namespace elf {
54constexpr size_t MergeNoTailSection::numShards;
55
56static uint64_t readUint(uint8_t *buf) {
57  return config->is64 ? read64(buf) : read32(buf);
58}
59
60static void writeUint(uint8_t *buf, uint64_t val) {
61  if (config->is64)
62    write64(buf, val);
63  else
64    write32(buf, val);
65}
66
67// Returns an LLD version string.
68static ArrayRef<uint8_t> getVersion() {
69  // Check LLD_VERSION first for ease of testing.
70  // You can get consistent output by using the environment variable.
71  // This is only for testing.
72  StringRef s = getenv("LLD_VERSION");
73  if (s.empty())
74    s = saver.save(Twine("Linker: ") + getLLDVersion());
75
76  // +1 to include the terminating '\0'.
77  return {(const uint8_t *)s.data(), s.size() + 1};
78}
79
80// Creates a .comment section containing LLD version info.
81// With this feature, you can identify LLD-generated binaries easily
82// by "readelf --string-dump .comment <file>".
83// The returned object is a mergeable string section.
84MergeInputSection *createCommentSection() {
85  return make<MergeInputSection>(SHF_MERGE | SHF_STRINGS, SHT_PROGBITS, 1,
86                                 getVersion(), ".comment");
87}
88
89// .MIPS.abiflags section.
90template <class ELFT>
91MipsAbiFlagsSection<ELFT>::MipsAbiFlagsSection(Elf_Mips_ABIFlags flags)
92    : SyntheticSection(SHF_ALLOC, SHT_MIPS_ABIFLAGS, 8, ".MIPS.abiflags"),
93      flags(flags) {
94  this->entsize = sizeof(Elf_Mips_ABIFlags);
95}
96
97template <class ELFT> void MipsAbiFlagsSection<ELFT>::writeTo(uint8_t *buf) {
98  memcpy(buf, &flags, sizeof(flags));
99}
100
101template <class ELFT>
102MipsAbiFlagsSection<ELFT> *MipsAbiFlagsSection<ELFT>::create() {
103  Elf_Mips_ABIFlags flags = {};
104  bool create = false;
105
106  for (InputSectionBase *sec : inputSections) {
107    if (sec->type != SHT_MIPS_ABIFLAGS)
108      continue;
109    sec->markDead();
110    create = true;
111
112    std::string filename = toString(sec->file);
113    const size_t size = sec->data().size();
114    // Older version of BFD (such as the default FreeBSD linker) concatenate
115    // .MIPS.abiflags instead of merging. To allow for this case (or potential
116    // zero padding) we ignore everything after the first Elf_Mips_ABIFlags
117    if (size < sizeof(Elf_Mips_ABIFlags)) {
118      error(filename + ": invalid size of .MIPS.abiflags section: got " +
119            Twine(size) + " instead of " + Twine(sizeof(Elf_Mips_ABIFlags)));
120      return nullptr;
121    }
122    auto *s = reinterpret_cast<const Elf_Mips_ABIFlags *>(sec->data().data());
123    if (s->version != 0) {
124      error(filename + ": unexpected .MIPS.abiflags version " +
125            Twine(s->version));
126      return nullptr;
127    }
128
129    // LLD checks ISA compatibility in calcMipsEFlags(). Here we just
130    // select the highest number of ISA/Rev/Ext.
131    flags.isa_level = std::max(flags.isa_level, s->isa_level);
132    flags.isa_rev = std::max(flags.isa_rev, s->isa_rev);
133    flags.isa_ext = std::max(flags.isa_ext, s->isa_ext);
134    flags.gpr_size = std::max(flags.gpr_size, s->gpr_size);
135    flags.cpr1_size = std::max(flags.cpr1_size, s->cpr1_size);
136    flags.cpr2_size = std::max(flags.cpr2_size, s->cpr2_size);
137    flags.ases |= s->ases;
138    flags.flags1 |= s->flags1;
139    flags.flags2 |= s->flags2;
140    flags.fp_abi = getMipsFpAbiFlag(flags.fp_abi, s->fp_abi, filename);
141  };
142
143  if (create)
144    return make<MipsAbiFlagsSection<ELFT>>(flags);
145  return nullptr;
146}
147
148// .MIPS.options section.
149template <class ELFT>
150MipsOptionsSection<ELFT>::MipsOptionsSection(Elf_Mips_RegInfo reginfo)
151    : SyntheticSection(SHF_ALLOC, SHT_MIPS_OPTIONS, 8, ".MIPS.options"),
152      reginfo(reginfo) {
153  this->entsize = sizeof(Elf_Mips_Options) + sizeof(Elf_Mips_RegInfo);
154}
155
156template <class ELFT> void MipsOptionsSection<ELFT>::writeTo(uint8_t *buf) {
157  auto *options = reinterpret_cast<Elf_Mips_Options *>(buf);
158  options->kind = ODK_REGINFO;
159  options->size = getSize();
160
161  if (!config->relocatable)
162    reginfo.ri_gp_value = in.mipsGot->getGp();
163  memcpy(buf + sizeof(Elf_Mips_Options), &reginfo, sizeof(reginfo));
164}
165
166template <class ELFT>
167MipsOptionsSection<ELFT> *MipsOptionsSection<ELFT>::create() {
168  // N64 ABI only.
169  if (!ELFT::Is64Bits)
170    return nullptr;
171
172  std::vector<InputSectionBase *> sections;
173  for (InputSectionBase *sec : inputSections)
174    if (sec->type == SHT_MIPS_OPTIONS)
175      sections.push_back(sec);
176
177  if (sections.empty())
178    return nullptr;
179
180  Elf_Mips_RegInfo reginfo = {};
181  for (InputSectionBase *sec : sections) {
182    sec->markDead();
183
184    std::string filename = toString(sec->file);
185    ArrayRef<uint8_t> d = sec->data();
186
187    while (!d.empty()) {
188      if (d.size() < sizeof(Elf_Mips_Options)) {
189        error(filename + ": invalid size of .MIPS.options section");
190        break;
191      }
192
193      auto *opt = reinterpret_cast<const Elf_Mips_Options *>(d.data());
194      if (opt->kind == ODK_REGINFO) {
195        reginfo.ri_gprmask |= opt->getRegInfo().ri_gprmask;
196        sec->getFile<ELFT>()->mipsGp0 = opt->getRegInfo().ri_gp_value;
197        break;
198      }
199
200      if (!opt->size)
201        fatal(filename + ": zero option descriptor size");
202      d = d.slice(opt->size);
203    }
204  };
205
206  return make<MipsOptionsSection<ELFT>>(reginfo);
207}
208
209// MIPS .reginfo section.
210template <class ELFT>
211MipsReginfoSection<ELFT>::MipsReginfoSection(Elf_Mips_RegInfo reginfo)
212    : SyntheticSection(SHF_ALLOC, SHT_MIPS_REGINFO, 4, ".reginfo"),
213      reginfo(reginfo) {
214  this->entsize = sizeof(Elf_Mips_RegInfo);
215}
216
217template <class ELFT> void MipsReginfoSection<ELFT>::writeTo(uint8_t *buf) {
218  if (!config->relocatable)
219    reginfo.ri_gp_value = in.mipsGot->getGp();
220  memcpy(buf, &reginfo, sizeof(reginfo));
221}
222
223template <class ELFT>
224MipsReginfoSection<ELFT> *MipsReginfoSection<ELFT>::create() {
225  // Section should be alive for O32 and N32 ABIs only.
226  if (ELFT::Is64Bits)
227    return nullptr;
228
229  std::vector<InputSectionBase *> sections;
230  for (InputSectionBase *sec : inputSections)
231    if (sec->type == SHT_MIPS_REGINFO)
232      sections.push_back(sec);
233
234  if (sections.empty())
235    return nullptr;
236
237  Elf_Mips_RegInfo reginfo = {};
238  for (InputSectionBase *sec : sections) {
239    sec->markDead();
240
241    if (sec->data().size() != sizeof(Elf_Mips_RegInfo)) {
242      error(toString(sec->file) + ": invalid size of .reginfo section");
243      return nullptr;
244    }
245
246    auto *r = reinterpret_cast<const Elf_Mips_RegInfo *>(sec->data().data());
247    reginfo.ri_gprmask |= r->ri_gprmask;
248    sec->getFile<ELFT>()->mipsGp0 = r->ri_gp_value;
249  };
250
251  return make<MipsReginfoSection<ELFT>>(reginfo);
252}
253
254InputSection *createInterpSection() {
255  // StringSaver guarantees that the returned string ends with '\0'.
256  StringRef s = saver.save(config->dynamicLinker);
257  ArrayRef<uint8_t> contents = {(const uint8_t *)s.data(), s.size() + 1};
258
259  return make<InputSection>(nullptr, SHF_ALLOC, SHT_PROGBITS, 1, contents,
260                            ".interp");
261}
262
263Defined *addSyntheticLocal(StringRef name, uint8_t type, uint64_t value,
264                           uint64_t size, InputSectionBase &section) {
265  auto *s = make<Defined>(section.file, name, STB_LOCAL, STV_DEFAULT, type,
266                          value, size, &section);
267  if (in.symTab)
268    in.symTab->addSymbol(s);
269  return s;
270}
271
272static size_t getHashSize() {
273  switch (config->buildId) {
274  case BuildIdKind::Fast:
275    return 8;
276  case BuildIdKind::Md5:
277  case BuildIdKind::Uuid:
278    return 16;
279  case BuildIdKind::Sha1:
280    return 20;
281  case BuildIdKind::Hexstring:
282    return config->buildIdVector.size();
283  default:
284    llvm_unreachable("unknown BuildIdKind");
285  }
286}
287
288// This class represents a linker-synthesized .note.gnu.property section.
289//
290// In x86 and AArch64, object files may contain feature flags indicating the
291// features that they have used. The flags are stored in a .note.gnu.property
292// section.
293//
294// lld reads the sections from input files and merges them by computing AND of
295// the flags. The result is written as a new .note.gnu.property section.
296//
297// If the flag is zero (which indicates that the intersection of the feature
298// sets is empty, or some input files didn't have .note.gnu.property sections),
299// we don't create this section.
300GnuPropertySection::GnuPropertySection()
301    : SyntheticSection(llvm::ELF::SHF_ALLOC, llvm::ELF::SHT_NOTE,
302                       config->wordsize, ".note.gnu.property") {}
303
304void GnuPropertySection::writeTo(uint8_t *buf) {
305  uint32_t featureAndType = config->emachine == EM_AARCH64
306                                ? GNU_PROPERTY_AARCH64_FEATURE_1_AND
307                                : GNU_PROPERTY_X86_FEATURE_1_AND;
308
309  write32(buf, 4);                                   // Name size
310  write32(buf + 4, config->is64 ? 16 : 12);          // Content size
311  write32(buf + 8, NT_GNU_PROPERTY_TYPE_0);          // Type
312  memcpy(buf + 12, "GNU", 4);                        // Name string
313  write32(buf + 16, featureAndType);                 // Feature type
314  write32(buf + 20, 4);                              // Feature size
315  write32(buf + 24, config->andFeatures);            // Feature flags
316  if (config->is64)
317    write32(buf + 28, 0); // Padding
318}
319
320size_t GnuPropertySection::getSize() const { return config->is64 ? 32 : 28; }
321
322BuildIdSection::BuildIdSection()
323    : SyntheticSection(SHF_ALLOC, SHT_NOTE, 4, ".note.gnu.build-id"),
324      hashSize(getHashSize()) {}
325
326void BuildIdSection::writeTo(uint8_t *buf) {
327  write32(buf, 4);                      // Name size
328  write32(buf + 4, hashSize);           // Content size
329  write32(buf + 8, NT_GNU_BUILD_ID);    // Type
330  memcpy(buf + 12, "GNU", 4);           // Name string
331  hashBuf = buf + 16;
332}
333
334void BuildIdSection::writeBuildId(ArrayRef<uint8_t> buf) {
335  assert(buf.size() == hashSize);
336  memcpy(hashBuf, buf.data(), hashSize);
337}
338
339BssSection::BssSection(StringRef name, uint64_t size, uint32_t alignment)
340    : SyntheticSection(SHF_ALLOC | SHF_WRITE, SHT_NOBITS, alignment, name) {
341  this->bss = true;
342  this->size = size;
343}
344
345EhFrameSection::EhFrameSection()
346    : SyntheticSection(SHF_ALLOC, SHT_PROGBITS, 1, ".eh_frame") {}
347
348// Search for an existing CIE record or create a new one.
349// CIE records from input object files are uniquified by their contents
350// and where their relocations point to.
351template <class ELFT, class RelTy>
352CieRecord *EhFrameSection::addCie(EhSectionPiece &cie, ArrayRef<RelTy> rels) {
353  Symbol *personality = nullptr;
354  unsigned firstRelI = cie.firstRelocation;
355  if (firstRelI != (unsigned)-1)
356    personality =
357        &cie.sec->template getFile<ELFT>()->getRelocTargetSym(rels[firstRelI]);
358
359  // Search for an existing CIE by CIE contents/relocation target pair.
360  CieRecord *&rec = cieMap[{cie.data(), personality}];
361
362  // If not found, create a new one.
363  if (!rec) {
364    rec = make<CieRecord>();
365    rec->cie = &cie;
366    cieRecords.push_back(rec);
367  }
368  return rec;
369}
370
371// There is one FDE per function. Returns true if a given FDE
372// points to a live function.
373template <class ELFT, class RelTy>
374bool EhFrameSection::isFdeLive(EhSectionPiece &fde, ArrayRef<RelTy> rels) {
375  auto *sec = cast<EhInputSection>(fde.sec);
376  unsigned firstRelI = fde.firstRelocation;
377
378  // An FDE should point to some function because FDEs are to describe
379  // functions. That's however not always the case due to an issue of
380  // ld.gold with -r. ld.gold may discard only functions and leave their
381  // corresponding FDEs, which results in creating bad .eh_frame sections.
382  // To deal with that, we ignore such FDEs.
383  if (firstRelI == (unsigned)-1)
384    return false;
385
386  const RelTy &rel = rels[firstRelI];
387  Symbol &b = sec->template getFile<ELFT>()->getRelocTargetSym(rel);
388
389  // FDEs for garbage-collected or merged-by-ICF sections, or sections in
390  // another partition, are dead.
391  if (auto *d = dyn_cast<Defined>(&b))
392    if (SectionBase *sec = d->section)
393      return sec->partition == partition;
394  return false;
395}
396
397// .eh_frame is a sequence of CIE or FDE records. In general, there
398// is one CIE record per input object file which is followed by
399// a list of FDEs. This function searches an existing CIE or create a new
400// one and associates FDEs to the CIE.
401template <class ELFT, class RelTy>
402void EhFrameSection::addRecords(EhInputSection *sec, ArrayRef<RelTy> rels) {
403  offsetToCie.clear();
404  for (EhSectionPiece &piece : sec->pieces) {
405    // The empty record is the end marker.
406    if (piece.size == 4)
407      return;
408
409    size_t offset = piece.inputOff;
410    uint32_t id = read32(piece.data().data() + 4);
411    if (id == 0) {
412      offsetToCie[offset] = addCie<ELFT>(piece, rels);
413      continue;
414    }
415
416    uint32_t cieOffset = offset + 4 - id;
417    CieRecord *rec = offsetToCie[cieOffset];
418    if (!rec)
419      fatal(toString(sec) + ": invalid CIE reference");
420
421    if (!isFdeLive<ELFT>(piece, rels))
422      continue;
423    rec->fdes.push_back(&piece);
424    numFdes++;
425  }
426}
427
428template <class ELFT>
429void EhFrameSection::addSectionAux(EhInputSection *sec) {
430  if (!sec->isLive())
431    return;
432  if (sec->areRelocsRela)
433    addRecords<ELFT>(sec, sec->template relas<ELFT>());
434  else
435    addRecords<ELFT>(sec, sec->template rels<ELFT>());
436}
437
438void EhFrameSection::addSection(EhInputSection *sec) {
439  sec->parent = this;
440
441  alignment = std::max(alignment, sec->alignment);
442  sections.push_back(sec);
443
444  for (auto *ds : sec->dependentSections)
445    dependentSections.push_back(ds);
446}
447
448static void writeCieFde(uint8_t *buf, ArrayRef<uint8_t> d) {
449  memcpy(buf, d.data(), d.size());
450
451  size_t aligned = alignTo(d.size(), config->wordsize);
452
453  // Zero-clear trailing padding if it exists.
454  memset(buf + d.size(), 0, aligned - d.size());
455
456  // Fix the size field. -4 since size does not include the size field itself.
457  write32(buf, aligned - 4);
458}
459
460void EhFrameSection::finalizeContents() {
461  assert(!this->size); // Not finalized.
462
463  switch (config->ekind) {
464  case ELFNoneKind:
465    llvm_unreachable("invalid ekind");
466  case ELF32LEKind:
467    for (EhInputSection *sec : sections)
468      addSectionAux<ELF32LE>(sec);
469    break;
470  case ELF32BEKind:
471    for (EhInputSection *sec : sections)
472      addSectionAux<ELF32BE>(sec);
473    break;
474  case ELF64LEKind:
475    for (EhInputSection *sec : sections)
476      addSectionAux<ELF64LE>(sec);
477    break;
478  case ELF64BEKind:
479    for (EhInputSection *sec : sections)
480      addSectionAux<ELF64BE>(sec);
481    break;
482  }
483
484  size_t off = 0;
485  for (CieRecord *rec : cieRecords) {
486    rec->cie->outputOff = off;
487    off += alignTo(rec->cie->size, config->wordsize);
488
489    for (EhSectionPiece *fde : rec->fdes) {
490      fde->outputOff = off;
491      off += alignTo(fde->size, config->wordsize);
492    }
493  }
494
495  // The LSB standard does not allow a .eh_frame section with zero
496  // Call Frame Information records. glibc unwind-dw2-fde.c
497  // classify_object_over_fdes expects there is a CIE record length 0 as a
498  // terminator. Thus we add one unconditionally.
499  off += 4;
500
501  this->size = off;
502}
503
504// Returns data for .eh_frame_hdr. .eh_frame_hdr is a binary search table
505// to get an FDE from an address to which FDE is applied. This function
506// returns a list of such pairs.
507std::vector<EhFrameSection::FdeData> EhFrameSection::getFdeData() const {
508  uint8_t *buf = Out::bufferStart + getParent()->offset + outSecOff;
509  std::vector<FdeData> ret;
510
511  uint64_t va = getPartition().ehFrameHdr->getVA();
512  for (CieRecord *rec : cieRecords) {
513    uint8_t enc = getFdeEncoding(rec->cie);
514    for (EhSectionPiece *fde : rec->fdes) {
515      uint64_t pc = getFdePc(buf, fde->outputOff, enc);
516      uint64_t fdeVA = getParent()->addr + fde->outputOff;
517      if (!isInt<32>(pc - va))
518        fatal(toString(fde->sec) + ": PC offset is too large: 0x" +
519              Twine::utohexstr(pc - va));
520      ret.push_back({uint32_t(pc - va), uint32_t(fdeVA - va)});
521    }
522  }
523
524  // Sort the FDE list by their PC and uniqueify. Usually there is only
525  // one FDE for a PC (i.e. function), but if ICF merges two functions
526  // into one, there can be more than one FDEs pointing to the address.
527  auto less = [](const FdeData &a, const FdeData &b) {
528    return a.pcRel < b.pcRel;
529  };
530  llvm::stable_sort(ret, less);
531  auto eq = [](const FdeData &a, const FdeData &b) {
532    return a.pcRel == b.pcRel;
533  };
534  ret.erase(std::unique(ret.begin(), ret.end(), eq), ret.end());
535
536  return ret;
537}
538
539static uint64_t readFdeAddr(uint8_t *buf, int size) {
540  switch (size) {
541  case DW_EH_PE_udata2:
542    return read16(buf);
543  case DW_EH_PE_sdata2:
544    return (int16_t)read16(buf);
545  case DW_EH_PE_udata4:
546    return read32(buf);
547  case DW_EH_PE_sdata4:
548    return (int32_t)read32(buf);
549  case DW_EH_PE_udata8:
550  case DW_EH_PE_sdata8:
551    return read64(buf);
552  case DW_EH_PE_absptr:
553    return readUint(buf);
554  }
555  fatal("unknown FDE size encoding");
556}
557
558// Returns the VA to which a given FDE (on a mmap'ed buffer) is applied to.
559// We need it to create .eh_frame_hdr section.
560uint64_t EhFrameSection::getFdePc(uint8_t *buf, size_t fdeOff,
561                                  uint8_t enc) const {
562  // The starting address to which this FDE applies is
563  // stored at FDE + 8 byte.
564  size_t off = fdeOff + 8;
565  uint64_t addr = readFdeAddr(buf + off, enc & 0xf);
566  if ((enc & 0x70) == DW_EH_PE_absptr)
567    return addr;
568  if ((enc & 0x70) == DW_EH_PE_pcrel)
569    return addr + getParent()->addr + off;
570  fatal("unknown FDE size relative encoding");
571}
572
573void EhFrameSection::writeTo(uint8_t *buf) {
574  // Write CIE and FDE records.
575  for (CieRecord *rec : cieRecords) {
576    size_t cieOffset = rec->cie->outputOff;
577    writeCieFde(buf + cieOffset, rec->cie->data());
578
579    for (EhSectionPiece *fde : rec->fdes) {
580      size_t off = fde->outputOff;
581      writeCieFde(buf + off, fde->data());
582
583      // FDE's second word should have the offset to an associated CIE.
584      // Write it.
585      write32(buf + off + 4, off + 4 - cieOffset);
586    }
587  }
588
589  // Apply relocations. .eh_frame section contents are not contiguous
590  // in the output buffer, but relocateAlloc() still works because
591  // getOffset() takes care of discontiguous section pieces.
592  for (EhInputSection *s : sections)
593    s->relocateAlloc(buf, nullptr);
594
595  if (getPartition().ehFrameHdr && getPartition().ehFrameHdr->getParent())
596    getPartition().ehFrameHdr->write();
597}
598
599GotSection::GotSection()
600    : SyntheticSection(SHF_ALLOC | SHF_WRITE, SHT_PROGBITS, config->wordsize,
601                       ".got") {
602  // If ElfSym::globalOffsetTable is relative to .got and is referenced,
603  // increase numEntries by the number of entries used to emit
604  // ElfSym::globalOffsetTable.
605  if (ElfSym::globalOffsetTable && !target->gotBaseSymInGotPlt)
606    numEntries += target->gotHeaderEntriesNum;
607}
608
609void GotSection::addEntry(Symbol &sym) {
610  sym.gotIndex = numEntries;
611  ++numEntries;
612}
613
614bool GotSection::addDynTlsEntry(Symbol &sym) {
615  if (sym.globalDynIndex != -1U)
616    return false;
617  sym.globalDynIndex = numEntries;
618  // Global Dynamic TLS entries take two GOT slots.
619  numEntries += 2;
620  return true;
621}
622
623// Reserves TLS entries for a TLS module ID and a TLS block offset.
624// In total it takes two GOT slots.
625bool GotSection::addTlsIndex() {
626  if (tlsIndexOff != uint32_t(-1))
627    return false;
628  tlsIndexOff = numEntries * config->wordsize;
629  numEntries += 2;
630  return true;
631}
632
633uint64_t GotSection::getGlobalDynAddr(const Symbol &b) const {
634  return this->getVA() + b.globalDynIndex * config->wordsize;
635}
636
637uint64_t GotSection::getGlobalDynOffset(const Symbol &b) const {
638  return b.globalDynIndex * config->wordsize;
639}
640
641void GotSection::finalizeContents() {
642  size = numEntries * config->wordsize;
643}
644
645bool GotSection::isNeeded() const {
646  // We need to emit a GOT even if it's empty if there's a relocation that is
647  // relative to GOT(such as GOTOFFREL).
648  return numEntries || hasGotOffRel;
649}
650
651void GotSection::writeTo(uint8_t *buf) {
652  // Buf points to the start of this section's buffer,
653  // whereas InputSectionBase::relocateAlloc() expects its argument
654  // to point to the start of the output section.
655  target->writeGotHeader(buf);
656  relocateAlloc(buf - outSecOff, buf - outSecOff + size);
657}
658
659static uint64_t getMipsPageAddr(uint64_t addr) {
660  return (addr + 0x8000) & ~0xffff;
661}
662
663static uint64_t getMipsPageCount(uint64_t size) {
664  return (size + 0xfffe) / 0xffff + 1;
665}
666
667MipsGotSection::MipsGotSection()
668    : SyntheticSection(SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL, SHT_PROGBITS, 16,
669                       ".got") {}
670
671void MipsGotSection::addEntry(InputFile &file, Symbol &sym, int64_t addend,
672                              RelExpr expr) {
673  FileGot &g = getGot(file);
674  if (expr == R_MIPS_GOT_LOCAL_PAGE) {
675    if (const OutputSection *os = sym.getOutputSection())
676      g.pagesMap.insert({os, {}});
677    else
678      g.local16.insert({{nullptr, getMipsPageAddr(sym.getVA(addend))}, 0});
679  } else if (sym.isTls())
680    g.tls.insert({&sym, 0});
681  else if (sym.isPreemptible && expr == R_ABS)
682    g.relocs.insert({&sym, 0});
683  else if (sym.isPreemptible)
684    g.global.insert({&sym, 0});
685  else if (expr == R_MIPS_GOT_OFF32)
686    g.local32.insert({{&sym, addend}, 0});
687  else
688    g.local16.insert({{&sym, addend}, 0});
689}
690
691void MipsGotSection::addDynTlsEntry(InputFile &file, Symbol &sym) {
692  getGot(file).dynTlsSymbols.insert({&sym, 0});
693}
694
695void MipsGotSection::addTlsIndex(InputFile &file) {
696  getGot(file).dynTlsSymbols.insert({nullptr, 0});
697}
698
699size_t MipsGotSection::FileGot::getEntriesNum() const {
700  return getPageEntriesNum() + local16.size() + global.size() + relocs.size() +
701         tls.size() + dynTlsSymbols.size() * 2;
702}
703
704size_t MipsGotSection::FileGot::getPageEntriesNum() const {
705  size_t num = 0;
706  for (const std::pair<const OutputSection *, FileGot::PageBlock> &p : pagesMap)
707    num += p.second.count;
708  return num;
709}
710
711size_t MipsGotSection::FileGot::getIndexedEntriesNum() const {
712  size_t count = getPageEntriesNum() + local16.size() + global.size();
713  // If there are relocation-only entries in the GOT, TLS entries
714  // are allocated after them. TLS entries should be addressable
715  // by 16-bit index so count both reloc-only and TLS entries.
716  if (!tls.empty() || !dynTlsSymbols.empty())
717    count += relocs.size() + tls.size() + dynTlsSymbols.size() * 2;
718  return count;
719}
720
721MipsGotSection::FileGot &MipsGotSection::getGot(InputFile &f) {
722  if (!f.mipsGotIndex.hasValue()) {
723    gots.emplace_back();
724    gots.back().file = &f;
725    f.mipsGotIndex = gots.size() - 1;
726  }
727  return gots[*f.mipsGotIndex];
728}
729
730uint64_t MipsGotSection::getPageEntryOffset(const InputFile *f,
731                                            const Symbol &sym,
732                                            int64_t addend) const {
733  const FileGot &g = gots[*f->mipsGotIndex];
734  uint64_t index = 0;
735  if (const OutputSection *outSec = sym.getOutputSection()) {
736    uint64_t secAddr = getMipsPageAddr(outSec->addr);
737    uint64_t symAddr = getMipsPageAddr(sym.getVA(addend));
738    index = g.pagesMap.lookup(outSec).firstIndex + (symAddr - secAddr) / 0xffff;
739  } else {
740    index = g.local16.lookup({nullptr, getMipsPageAddr(sym.getVA(addend))});
741  }
742  return index * config->wordsize;
743}
744
745uint64_t MipsGotSection::getSymEntryOffset(const InputFile *f, const Symbol &s,
746                                           int64_t addend) const {
747  const FileGot &g = gots[*f->mipsGotIndex];
748  Symbol *sym = const_cast<Symbol *>(&s);
749  if (sym->isTls())
750    return g.tls.lookup(sym) * config->wordsize;
751  if (sym->isPreemptible)
752    return g.global.lookup(sym) * config->wordsize;
753  return g.local16.lookup({sym, addend}) * config->wordsize;
754}
755
756uint64_t MipsGotSection::getTlsIndexOffset(const InputFile *f) const {
757  const FileGot &g = gots[*f->mipsGotIndex];
758  return g.dynTlsSymbols.lookup(nullptr) * config->wordsize;
759}
760
761uint64_t MipsGotSection::getGlobalDynOffset(const InputFile *f,
762                                            const Symbol &s) const {
763  const FileGot &g = gots[*f->mipsGotIndex];
764  Symbol *sym = const_cast<Symbol *>(&s);
765  return g.dynTlsSymbols.lookup(sym) * config->wordsize;
766}
767
768const Symbol *MipsGotSection::getFirstGlobalEntry() const {
769  if (gots.empty())
770    return nullptr;
771  const FileGot &primGot = gots.front();
772  if (!primGot.global.empty())
773    return primGot.global.front().first;
774  if (!primGot.relocs.empty())
775    return primGot.relocs.front().first;
776  return nullptr;
777}
778
779unsigned MipsGotSection::getLocalEntriesNum() const {
780  if (gots.empty())
781    return headerEntriesNum;
782  return headerEntriesNum + gots.front().getPageEntriesNum() +
783         gots.front().local16.size();
784}
785
786bool MipsGotSection::tryMergeGots(FileGot &dst, FileGot &src, bool isPrimary) {
787  FileGot tmp = dst;
788  set_union(tmp.pagesMap, src.pagesMap);
789  set_union(tmp.local16, src.local16);
790  set_union(tmp.global, src.global);
791  set_union(tmp.relocs, src.relocs);
792  set_union(tmp.tls, src.tls);
793  set_union(tmp.dynTlsSymbols, src.dynTlsSymbols);
794
795  size_t count = isPrimary ? headerEntriesNum : 0;
796  count += tmp.getIndexedEntriesNum();
797
798  if (count * config->wordsize > config->mipsGotSize)
799    return false;
800
801  std::swap(tmp, dst);
802  return true;
803}
804
805void MipsGotSection::finalizeContents() { updateAllocSize(); }
806
807bool MipsGotSection::updateAllocSize() {
808  size = headerEntriesNum * config->wordsize;
809  for (const FileGot &g : gots)
810    size += g.getEntriesNum() * config->wordsize;
811  return false;
812}
813
814void MipsGotSection::build() {
815  if (gots.empty())
816    return;
817
818  std::vector<FileGot> mergedGots(1);
819
820  // For each GOT move non-preemptible symbols from the `Global`
821  // to `Local16` list. Preemptible symbol might become non-preemptible
822  // one if, for example, it gets a related copy relocation.
823  for (FileGot &got : gots) {
824    for (auto &p: got.global)
825      if (!p.first->isPreemptible)
826        got.local16.insert({{p.first, 0}, 0});
827    got.global.remove_if([&](const std::pair<Symbol *, size_t> &p) {
828      return !p.first->isPreemptible;
829    });
830  }
831
832  // For each GOT remove "reloc-only" entry if there is "global"
833  // entry for the same symbol. And add local entries which indexed
834  // using 32-bit value at the end of 16-bit entries.
835  for (FileGot &got : gots) {
836    got.relocs.remove_if([&](const std::pair<Symbol *, size_t> &p) {
837      return got.global.count(p.first);
838    });
839    set_union(got.local16, got.local32);
840    got.local32.clear();
841  }
842
843  // Evaluate number of "reloc-only" entries in the resulting GOT.
844  // To do that put all unique "reloc-only" and "global" entries
845  // from all GOTs to the future primary GOT.
846  FileGot *primGot = &mergedGots.front();
847  for (FileGot &got : gots) {
848    set_union(primGot->relocs, got.global);
849    set_union(primGot->relocs, got.relocs);
850    got.relocs.clear();
851  }
852
853  // Evaluate number of "page" entries in each GOT.
854  for (FileGot &got : gots) {
855    for (std::pair<const OutputSection *, FileGot::PageBlock> &p :
856         got.pagesMap) {
857      const OutputSection *os = p.first;
858      uint64_t secSize = 0;
859      for (BaseCommand *cmd : os->sectionCommands) {
860        if (auto *isd = dyn_cast<InputSectionDescription>(cmd))
861          for (InputSection *isec : isd->sections) {
862            uint64_t off = alignTo(secSize, isec->alignment);
863            secSize = off + isec->getSize();
864          }
865      }
866      p.second.count = getMipsPageCount(secSize);
867    }
868  }
869
870  // Merge GOTs. Try to join as much as possible GOTs but do not exceed
871  // maximum GOT size. At first, try to fill the primary GOT because
872  // the primary GOT can be accessed in the most effective way. If it
873  // is not possible, try to fill the last GOT in the list, and finally
874  // create a new GOT if both attempts failed.
875  for (FileGot &srcGot : gots) {
876    InputFile *file = srcGot.file;
877    if (tryMergeGots(mergedGots.front(), srcGot, true)) {
878      file->mipsGotIndex = 0;
879    } else {
880      // If this is the first time we failed to merge with the primary GOT,
881      // MergedGots.back() will also be the primary GOT. We must make sure not
882      // to try to merge again with isPrimary=false, as otherwise, if the
883      // inputs are just right, we could allow the primary GOT to become 1 or 2
884      // words bigger due to ignoring the header size.
885      if (mergedGots.size() == 1 ||
886          !tryMergeGots(mergedGots.back(), srcGot, false)) {
887        mergedGots.emplace_back();
888        std::swap(mergedGots.back(), srcGot);
889      }
890      file->mipsGotIndex = mergedGots.size() - 1;
891    }
892  }
893  std::swap(gots, mergedGots);
894
895  // Reduce number of "reloc-only" entries in the primary GOT
896  // by subtracting "global" entries in the primary GOT.
897  primGot = &gots.front();
898  primGot->relocs.remove_if([&](const std::pair<Symbol *, size_t> &p) {
899    return primGot->global.count(p.first);
900  });
901
902  // Calculate indexes for each GOT entry.
903  size_t index = headerEntriesNum;
904  for (FileGot &got : gots) {
905    got.startIndex = &got == primGot ? 0 : index;
906    for (std::pair<const OutputSection *, FileGot::PageBlock> &p :
907         got.pagesMap) {
908      // For each output section referenced by GOT page relocations calculate
909      // and save into pagesMap an upper bound of MIPS GOT entries required
910      // to store page addresses of local symbols. We assume the worst case -
911      // each 64kb page of the output section has at least one GOT relocation
912      // against it. And take in account the case when the section intersects
913      // page boundaries.
914      p.second.firstIndex = index;
915      index += p.second.count;
916    }
917    for (auto &p: got.local16)
918      p.second = index++;
919    for (auto &p: got.global)
920      p.second = index++;
921    for (auto &p: got.relocs)
922      p.second = index++;
923    for (auto &p: got.tls)
924      p.second = index++;
925    for (auto &p: got.dynTlsSymbols) {
926      p.second = index;
927      index += 2;
928    }
929  }
930
931  // Update Symbol::gotIndex field to use this
932  // value later in the `sortMipsSymbols` function.
933  for (auto &p : primGot->global)
934    p.first->gotIndex = p.second;
935  for (auto &p : primGot->relocs)
936    p.first->gotIndex = p.second;
937
938  // Create dynamic relocations.
939  for (FileGot &got : gots) {
940    // Create dynamic relocations for TLS entries.
941    for (std::pair<Symbol *, size_t> &p : got.tls) {
942      Symbol *s = p.first;
943      uint64_t offset = p.second * config->wordsize;
944      if (s->isPreemptible)
945        mainPart->relaDyn->addReloc(target->tlsGotRel, this, offset, s);
946    }
947    for (std::pair<Symbol *, size_t> &p : got.dynTlsSymbols) {
948      Symbol *s = p.first;
949      uint64_t offset = p.second * config->wordsize;
950      if (s == nullptr) {
951        if (!config->isPic)
952          continue;
953        mainPart->relaDyn->addReloc(target->tlsModuleIndexRel, this, offset, s);
954      } else {
955        // When building a shared library we still need a dynamic relocation
956        // for the module index. Therefore only checking for
957        // S->isPreemptible is not sufficient (this happens e.g. for
958        // thread-locals that have been marked as local through a linker script)
959        if (!s->isPreemptible && !config->isPic)
960          continue;
961        mainPart->relaDyn->addReloc(target->tlsModuleIndexRel, this, offset, s);
962        // However, we can skip writing the TLS offset reloc for non-preemptible
963        // symbols since it is known even in shared libraries
964        if (!s->isPreemptible)
965          continue;
966        offset += config->wordsize;
967        mainPart->relaDyn->addReloc(target->tlsOffsetRel, this, offset, s);
968      }
969    }
970
971    // Do not create dynamic relocations for non-TLS
972    // entries in the primary GOT.
973    if (&got == primGot)
974      continue;
975
976    // Dynamic relocations for "global" entries.
977    for (const std::pair<Symbol *, size_t> &p : got.global) {
978      uint64_t offset = p.second * config->wordsize;
979      mainPart->relaDyn->addReloc(target->relativeRel, this, offset, p.first);
980    }
981    if (!config->isPic)
982      continue;
983    // Dynamic relocations for "local" entries in case of PIC.
984    for (const std::pair<const OutputSection *, FileGot::PageBlock> &l :
985         got.pagesMap) {
986      size_t pageCount = l.second.count;
987      for (size_t pi = 0; pi < pageCount; ++pi) {
988        uint64_t offset = (l.second.firstIndex + pi) * config->wordsize;
989        mainPart->relaDyn->addReloc({target->relativeRel, this, offset, l.first,
990                                 int64_t(pi * 0x10000)});
991      }
992    }
993    for (const std::pair<GotEntry, size_t> &p : got.local16) {
994      uint64_t offset = p.second * config->wordsize;
995      mainPart->relaDyn->addReloc({target->relativeRel, this, offset, true,
996                               p.first.first, p.first.second});
997    }
998  }
999}
1000
1001bool MipsGotSection::isNeeded() const {
1002  // We add the .got section to the result for dynamic MIPS target because
1003  // its address and properties are mentioned in the .dynamic section.
1004  return !config->relocatable;
1005}
1006
1007uint64_t MipsGotSection::getGp(const InputFile *f) const {
1008  // For files without related GOT or files refer a primary GOT
1009  // returns "common" _gp value. For secondary GOTs calculate
1010  // individual _gp values.
1011  if (!f || !f->mipsGotIndex.hasValue() || *f->mipsGotIndex == 0)
1012    return ElfSym::mipsGp->getVA(0);
1013  return getVA() + gots[*f->mipsGotIndex].startIndex * config->wordsize +
1014         0x7ff0;
1015}
1016
1017void MipsGotSection::writeTo(uint8_t *buf) {
1018  // Set the MSB of the second GOT slot. This is not required by any
1019  // MIPS ABI documentation, though.
1020  //
1021  // There is a comment in glibc saying that "The MSB of got[1] of a
1022  // gnu object is set to identify gnu objects," and in GNU gold it
1023  // says "the second entry will be used by some runtime loaders".
1024  // But how this field is being used is unclear.
1025  //
1026  // We are not really willing to mimic other linkers behaviors
1027  // without understanding why they do that, but because all files
1028  // generated by GNU tools have this special GOT value, and because
1029  // we've been doing this for years, it is probably a safe bet to
1030  // keep doing this for now. We really need to revisit this to see
1031  // if we had to do this.
1032  writeUint(buf + config->wordsize, (uint64_t)1 << (config->wordsize * 8 - 1));
1033  for (const FileGot &g : gots) {
1034    auto write = [&](size_t i, const Symbol *s, int64_t a) {
1035      uint64_t va = a;
1036      if (s)
1037        va = s->getVA(a);
1038      writeUint(buf + i * config->wordsize, va);
1039    };
1040    // Write 'page address' entries to the local part of the GOT.
1041    for (const std::pair<const OutputSection *, FileGot::PageBlock> &l :
1042         g.pagesMap) {
1043      size_t pageCount = l.second.count;
1044      uint64_t firstPageAddr = getMipsPageAddr(l.first->addr);
1045      for (size_t pi = 0; pi < pageCount; ++pi)
1046        write(l.second.firstIndex + pi, nullptr, firstPageAddr + pi * 0x10000);
1047    }
1048    // Local, global, TLS, reloc-only  entries.
1049    // If TLS entry has a corresponding dynamic relocations, leave it
1050    // initialized by zero. Write down adjusted TLS symbol's values otherwise.
1051    // To calculate the adjustments use offsets for thread-local storage.
1052    // https://www.linux-mips.org/wiki/NPTL
1053    for (const std::pair<GotEntry, size_t> &p : g.local16)
1054      write(p.second, p.first.first, p.first.second);
1055    // Write VA to the primary GOT only. For secondary GOTs that
1056    // will be done by REL32 dynamic relocations.
1057    if (&g == &gots.front())
1058      for (const std::pair<Symbol *, size_t> &p : g.global)
1059        write(p.second, p.first, 0);
1060    for (const std::pair<Symbol *, size_t> &p : g.relocs)
1061      write(p.second, p.first, 0);
1062    for (const std::pair<Symbol *, size_t> &p : g.tls)
1063      write(p.second, p.first, p.first->isPreemptible ? 0 : -0x7000);
1064    for (const std::pair<Symbol *, size_t> &p : g.dynTlsSymbols) {
1065      if (p.first == nullptr && !config->isPic)
1066        write(p.second, nullptr, 1);
1067      else if (p.first && !p.first->isPreemptible) {
1068        // If we are emitting PIC code with relocations we mustn't write
1069        // anything to the GOT here. When using Elf_Rel relocations the value
1070        // one will be treated as an addend and will cause crashes at runtime
1071        if (!config->isPic)
1072          write(p.second, nullptr, 1);
1073        write(p.second + 1, p.first, -0x8000);
1074      }
1075    }
1076  }
1077}
1078
1079// On PowerPC the .plt section is used to hold the table of function addresses
1080// instead of the .got.plt, and the type is SHT_NOBITS similar to a .bss
1081// section. I don't know why we have a BSS style type for the section but it is
1082// consistent across both 64-bit PowerPC ABIs as well as the 32-bit PowerPC ABI.
1083GotPltSection::GotPltSection()
1084    : SyntheticSection(SHF_ALLOC | SHF_WRITE, SHT_PROGBITS, config->wordsize,
1085                       ".got.plt") {
1086  if (config->emachine == EM_PPC) {
1087    name = ".plt";
1088  } else if (config->emachine == EM_PPC64) {
1089    type = SHT_NOBITS;
1090    name = ".plt";
1091  }
1092}
1093
1094void GotPltSection::addEntry(Symbol &sym) {
1095  assert(sym.pltIndex == entries.size());
1096  entries.push_back(&sym);
1097}
1098
1099size_t GotPltSection::getSize() const {
1100  return (target->gotPltHeaderEntriesNum + entries.size()) * config->wordsize;
1101}
1102
1103void GotPltSection::writeTo(uint8_t *buf) {
1104  target->writeGotPltHeader(buf);
1105  buf += target->gotPltHeaderEntriesNum * config->wordsize;
1106  for (const Symbol *b : entries) {
1107    target->writeGotPlt(buf, *b);
1108    buf += config->wordsize;
1109  }
1110}
1111
1112bool GotPltSection::isNeeded() const {
1113  // We need to emit GOTPLT even if it's empty if there's a relocation relative
1114  // to it.
1115  return !entries.empty() || hasGotPltOffRel;
1116}
1117
1118static StringRef getIgotPltName() {
1119  // On ARM the IgotPltSection is part of the GotSection.
1120  if (config->emachine == EM_ARM)
1121    return ".got";
1122
1123  // On PowerPC64 the GotPltSection is renamed to '.plt' so the IgotPltSection
1124  // needs to be named the same.
1125  if (config->emachine == EM_PPC64)
1126    return ".plt";
1127
1128  return ".got.plt";
1129}
1130
1131// On PowerPC64 the GotPltSection type is SHT_NOBITS so we have to follow suit
1132// with the IgotPltSection.
1133IgotPltSection::IgotPltSection()
1134    : SyntheticSection(SHF_ALLOC | SHF_WRITE,
1135                       config->emachine == EM_PPC64 ? SHT_NOBITS : SHT_PROGBITS,
1136                       config->wordsize, getIgotPltName()) {}
1137
1138void IgotPltSection::addEntry(Symbol &sym) {
1139  assert(sym.pltIndex == entries.size());
1140  entries.push_back(&sym);
1141}
1142
1143size_t IgotPltSection::getSize() const {
1144  return entries.size() * config->wordsize;
1145}
1146
1147void IgotPltSection::writeTo(uint8_t *buf) {
1148  for (const Symbol *b : entries) {
1149    target->writeIgotPlt(buf, *b);
1150    buf += config->wordsize;
1151  }
1152}
1153
1154StringTableSection::StringTableSection(StringRef name, bool dynamic)
1155    : SyntheticSection(dynamic ? (uint64_t)SHF_ALLOC : 0, SHT_STRTAB, 1, name),
1156      dynamic(dynamic) {
1157  // ELF string tables start with a NUL byte.
1158  addString("");
1159}
1160
1161// Adds a string to the string table. If `hashIt` is true we hash and check for
1162// duplicates. It is optional because the name of global symbols are already
1163// uniqued and hashing them again has a big cost for a small value: uniquing
1164// them with some other string that happens to be the same.
1165unsigned StringTableSection::addString(StringRef s, bool hashIt) {
1166  if (hashIt) {
1167    auto r = stringMap.insert(std::make_pair(s, this->size));
1168    if (!r.second)
1169      return r.first->second;
1170  }
1171  unsigned ret = this->size;
1172  this->size = this->size + s.size() + 1;
1173  strings.push_back(s);
1174  return ret;
1175}
1176
1177void StringTableSection::writeTo(uint8_t *buf) {
1178  for (StringRef s : strings) {
1179    memcpy(buf, s.data(), s.size());
1180    buf[s.size()] = '\0';
1181    buf += s.size() + 1;
1182  }
1183}
1184
1185// Returns the number of entries in .gnu.version_d: the number of
1186// non-VER_NDX_LOCAL-non-VER_NDX_GLOBAL definitions, plus 1.
1187// Note that we don't support vd_cnt > 1 yet.
1188static unsigned getVerDefNum() {
1189  return namedVersionDefs().size() + 1;
1190}
1191
1192template <class ELFT>
1193DynamicSection<ELFT>::DynamicSection()
1194    : SyntheticSection(SHF_ALLOC | SHF_WRITE, SHT_DYNAMIC, config->wordsize,
1195                       ".dynamic") {
1196  this->entsize = ELFT::Is64Bits ? 16 : 8;
1197
1198  // .dynamic section is not writable on MIPS and on Fuchsia OS
1199  // which passes -z rodynamic.
1200  // See "Special Section" in Chapter 4 in the following document:
1201  // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
1202  if (config->emachine == EM_MIPS || config->zRodynamic)
1203    this->flags = SHF_ALLOC;
1204}
1205
1206template <class ELFT>
1207void DynamicSection<ELFT>::add(int32_t tag, std::function<uint64_t()> fn) {
1208  entries.push_back({tag, fn});
1209}
1210
1211template <class ELFT>
1212void DynamicSection<ELFT>::addInt(int32_t tag, uint64_t val) {
1213  entries.push_back({tag, [=] { return val; }});
1214}
1215
1216template <class ELFT>
1217void DynamicSection<ELFT>::addInSec(int32_t tag, InputSection *sec) {
1218  entries.push_back({tag, [=] { return sec->getVA(0); }});
1219}
1220
1221template <class ELFT>
1222void DynamicSection<ELFT>::addInSecRelative(int32_t tag, InputSection *sec) {
1223  size_t tagOffset = entries.size() * entsize;
1224  entries.push_back(
1225      {tag, [=] { return sec->getVA(0) - (getVA() + tagOffset); }});
1226}
1227
1228template <class ELFT>
1229void DynamicSection<ELFT>::addOutSec(int32_t tag, OutputSection *sec) {
1230  entries.push_back({tag, [=] { return sec->addr; }});
1231}
1232
1233template <class ELFT>
1234void DynamicSection<ELFT>::addSize(int32_t tag, OutputSection *sec) {
1235  entries.push_back({tag, [=] { return sec->size; }});
1236}
1237
1238template <class ELFT>
1239void DynamicSection<ELFT>::addSym(int32_t tag, Symbol *sym) {
1240  entries.push_back({tag, [=] { return sym->getVA(); }});
1241}
1242
1243// The output section .rela.dyn may include these synthetic sections:
1244//
1245// - part.relaDyn
1246// - in.relaIplt: this is included if in.relaIplt is named .rela.dyn
1247// - in.relaPlt: this is included if a linker script places .rela.plt inside
1248//   .rela.dyn
1249//
1250// DT_RELASZ is the total size of the included sections.
1251static std::function<uint64_t()> addRelaSz(RelocationBaseSection *relaDyn) {
1252  return [=]() {
1253    size_t size = relaDyn->getSize();
1254    if (in.relaIplt->getParent() == relaDyn->getParent())
1255      size += in.relaIplt->getSize();
1256    if (in.relaPlt->getParent() == relaDyn->getParent())
1257      size += in.relaPlt->getSize();
1258    return size;
1259  };
1260}
1261
1262// A Linker script may assign the RELA relocation sections to the same
1263// output section. When this occurs we cannot just use the OutputSection
1264// Size. Moreover the [DT_JMPREL, DT_JMPREL + DT_PLTRELSZ) is permitted to
1265// overlap with the [DT_RELA, DT_RELA + DT_RELASZ).
1266static uint64_t addPltRelSz() {
1267  size_t size = in.relaPlt->getSize();
1268  if (in.relaIplt->getParent() == in.relaPlt->getParent() &&
1269      in.relaIplt->name == in.relaPlt->name)
1270    size += in.relaIplt->getSize();
1271  return size;
1272}
1273
1274// Add remaining entries to complete .dynamic contents.
1275template <class ELFT> void DynamicSection<ELFT>::finalizeContents() {
1276  Partition &part = getPartition();
1277  bool isMain = part.name.empty();
1278
1279  for (StringRef s : config->filterList)
1280    addInt(DT_FILTER, part.dynStrTab->addString(s));
1281  for (StringRef s : config->auxiliaryList)
1282    addInt(DT_AUXILIARY, part.dynStrTab->addString(s));
1283
1284  if (!config->rpath.empty())
1285    addInt(config->enableNewDtags ? DT_RUNPATH : DT_RPATH,
1286           part.dynStrTab->addString(config->rpath));
1287
1288  for (SharedFile *file : sharedFiles)
1289    if (file->isNeeded)
1290      addInt(DT_NEEDED, part.dynStrTab->addString(file->soName));
1291
1292  if (isMain) {
1293    if (!config->soName.empty())
1294      addInt(DT_SONAME, part.dynStrTab->addString(config->soName));
1295  } else {
1296    if (!config->soName.empty())
1297      addInt(DT_NEEDED, part.dynStrTab->addString(config->soName));
1298    addInt(DT_SONAME, part.dynStrTab->addString(part.name));
1299  }
1300
1301  // Set DT_FLAGS and DT_FLAGS_1.
1302  uint32_t dtFlags = 0;
1303  uint32_t dtFlags1 = 0;
1304  if (config->bsymbolic)
1305    dtFlags |= DF_SYMBOLIC;
1306  if (config->zGlobal)
1307    dtFlags1 |= DF_1_GLOBAL;
1308  if (config->zInitfirst)
1309    dtFlags1 |= DF_1_INITFIRST;
1310  if (config->zInterpose)
1311    dtFlags1 |= DF_1_INTERPOSE;
1312  if (config->zNodefaultlib)
1313    dtFlags1 |= DF_1_NODEFLIB;
1314  if (config->zNodelete)
1315    dtFlags1 |= DF_1_NODELETE;
1316  if (config->zNodlopen)
1317    dtFlags1 |= DF_1_NOOPEN;
1318  if (config->zNow) {
1319    dtFlags |= DF_BIND_NOW;
1320    dtFlags1 |= DF_1_NOW;
1321  }
1322  if (config->zOrigin) {
1323    dtFlags |= DF_ORIGIN;
1324    dtFlags1 |= DF_1_ORIGIN;
1325  }
1326  if (!config->zText)
1327    dtFlags |= DF_TEXTREL;
1328  if (config->hasStaticTlsModel)
1329    dtFlags |= DF_STATIC_TLS;
1330
1331  if (dtFlags)
1332    addInt(DT_FLAGS, dtFlags);
1333  if (dtFlags1)
1334    addInt(DT_FLAGS_1, dtFlags1);
1335
1336  // DT_DEBUG is a pointer to debug information used by debuggers at runtime. We
1337  // need it for each process, so we don't write it for DSOs. The loader writes
1338  // the pointer into this entry.
1339  //
1340  // DT_DEBUG is the only .dynamic entry that needs to be written to. Some
1341  // systems (currently only Fuchsia OS) provide other means to give the
1342  // debugger this information. Such systems may choose make .dynamic read-only.
1343  // If the target is such a system (used -z rodynamic) don't write DT_DEBUG.
1344  if (!config->shared && !config->relocatable && !config->zRodynamic)
1345    addInt(DT_DEBUG, 0);
1346
1347  if (OutputSection *sec = part.dynStrTab->getParent())
1348    this->link = sec->sectionIndex;
1349
1350  if (part.relaDyn->isNeeded() ||
1351      (in.relaIplt->isNeeded() &&
1352       part.relaDyn->getParent() == in.relaIplt->getParent())) {
1353    addInSec(part.relaDyn->dynamicTag, part.relaDyn);
1354    entries.push_back({part.relaDyn->sizeDynamicTag, addRelaSz(part.relaDyn)});
1355
1356    bool isRela = config->isRela;
1357    addInt(isRela ? DT_RELAENT : DT_RELENT,
1358           isRela ? sizeof(Elf_Rela) : sizeof(Elf_Rel));
1359
1360    // MIPS dynamic loader does not support RELCOUNT tag.
1361    // The problem is in the tight relation between dynamic
1362    // relocations and GOT. So do not emit this tag on MIPS.
1363    if (config->emachine != EM_MIPS) {
1364      size_t numRelativeRels = part.relaDyn->getRelativeRelocCount();
1365      if (config->zCombreloc && numRelativeRels)
1366        addInt(isRela ? DT_RELACOUNT : DT_RELCOUNT, numRelativeRels);
1367    }
1368  }
1369  if (part.relrDyn && !part.relrDyn->relocs.empty()) {
1370    addInSec(config->useAndroidRelrTags ? DT_ANDROID_RELR : DT_RELR,
1371             part.relrDyn);
1372    addSize(config->useAndroidRelrTags ? DT_ANDROID_RELRSZ : DT_RELRSZ,
1373            part.relrDyn->getParent());
1374    addInt(config->useAndroidRelrTags ? DT_ANDROID_RELRENT : DT_RELRENT,
1375           sizeof(Elf_Relr));
1376  }
1377  // .rel[a].plt section usually consists of two parts, containing plt and
1378  // iplt relocations. It is possible to have only iplt relocations in the
1379  // output. In that case relaPlt is empty and have zero offset, the same offset
1380  // as relaIplt has. And we still want to emit proper dynamic tags for that
1381  // case, so here we always use relaPlt as marker for the beginning of
1382  // .rel[a].plt section.
1383  if (isMain && (in.relaPlt->isNeeded() || in.relaIplt->isNeeded())) {
1384    addInSec(DT_JMPREL, in.relaPlt);
1385    entries.push_back({DT_PLTRELSZ, addPltRelSz});
1386    switch (config->emachine) {
1387    case EM_MIPS:
1388      addInSec(DT_MIPS_PLTGOT, in.gotPlt);
1389      break;
1390    case EM_SPARCV9:
1391      addInSec(DT_PLTGOT, in.plt);
1392      break;
1393    default:
1394      addInSec(DT_PLTGOT, in.gotPlt);
1395      break;
1396    }
1397    addInt(DT_PLTREL, config->isRela ? DT_RELA : DT_REL);
1398  }
1399
1400  if (config->emachine == EM_AARCH64) {
1401    if (config->andFeatures & GNU_PROPERTY_AARCH64_FEATURE_1_BTI)
1402      addInt(DT_AARCH64_BTI_PLT, 0);
1403    if (config->andFeatures & GNU_PROPERTY_AARCH64_FEATURE_1_PAC)
1404      addInt(DT_AARCH64_PAC_PLT, 0);
1405  }
1406
1407  addInSec(DT_SYMTAB, part.dynSymTab);
1408  addInt(DT_SYMENT, sizeof(Elf_Sym));
1409  addInSec(DT_STRTAB, part.dynStrTab);
1410  addInt(DT_STRSZ, part.dynStrTab->getSize());
1411  if (!config->zText)
1412    addInt(DT_TEXTREL, 0);
1413  if (part.gnuHashTab)
1414    addInSec(DT_GNU_HASH, part.gnuHashTab);
1415  if (part.hashTab)
1416    addInSec(DT_HASH, part.hashTab);
1417
1418  if (isMain) {
1419    if (Out::preinitArray) {
1420      addOutSec(DT_PREINIT_ARRAY, Out::preinitArray);
1421      addSize(DT_PREINIT_ARRAYSZ, Out::preinitArray);
1422    }
1423    if (Out::initArray) {
1424      addOutSec(DT_INIT_ARRAY, Out::initArray);
1425      addSize(DT_INIT_ARRAYSZ, Out::initArray);
1426    }
1427    if (Out::finiArray) {
1428      addOutSec(DT_FINI_ARRAY, Out::finiArray);
1429      addSize(DT_FINI_ARRAYSZ, Out::finiArray);
1430    }
1431
1432    if (Symbol *b = symtab->find(config->init))
1433      if (b->isDefined())
1434        addSym(DT_INIT, b);
1435    if (Symbol *b = symtab->find(config->fini))
1436      if (b->isDefined())
1437        addSym(DT_FINI, b);
1438  }
1439
1440  if (part.verSym && part.verSym->isNeeded())
1441    addInSec(DT_VERSYM, part.verSym);
1442  if (part.verDef && part.verDef->isLive()) {
1443    addInSec(DT_VERDEF, part.verDef);
1444    addInt(DT_VERDEFNUM, getVerDefNum());
1445  }
1446  if (part.verNeed && part.verNeed->isNeeded()) {
1447    addInSec(DT_VERNEED, part.verNeed);
1448    unsigned needNum = 0;
1449    for (SharedFile *f : sharedFiles)
1450      if (!f->vernauxs.empty())
1451        ++needNum;
1452    addInt(DT_VERNEEDNUM, needNum);
1453  }
1454
1455  if (config->emachine == EM_MIPS) {
1456    addInt(DT_MIPS_RLD_VERSION, 1);
1457    addInt(DT_MIPS_FLAGS, RHF_NOTPOT);
1458    addInt(DT_MIPS_BASE_ADDRESS, target->getImageBase());
1459    addInt(DT_MIPS_SYMTABNO, part.dynSymTab->getNumSymbols());
1460
1461    add(DT_MIPS_LOCAL_GOTNO, [] { return in.mipsGot->getLocalEntriesNum(); });
1462
1463    if (const Symbol *b = in.mipsGot->getFirstGlobalEntry())
1464      addInt(DT_MIPS_GOTSYM, b->dynsymIndex);
1465    else
1466      addInt(DT_MIPS_GOTSYM, part.dynSymTab->getNumSymbols());
1467    addInSec(DT_PLTGOT, in.mipsGot);
1468    if (in.mipsRldMap) {
1469      if (!config->pie)
1470        addInSec(DT_MIPS_RLD_MAP, in.mipsRldMap);
1471      // Store the offset to the .rld_map section
1472      // relative to the address of the tag.
1473      addInSecRelative(DT_MIPS_RLD_MAP_REL, in.mipsRldMap);
1474    }
1475  }
1476
1477  // DT_PPC_GOT indicates to glibc Secure PLT is used. If DT_PPC_GOT is absent,
1478  // glibc assumes the old-style BSS PLT layout which we don't support.
1479  if (config->emachine == EM_PPC)
1480    add(DT_PPC_GOT, [] { return in.got->getVA(); });
1481
1482  // Glink dynamic tag is required by the V2 abi if the plt section isn't empty.
1483  if (config->emachine == EM_PPC64 && in.plt->isNeeded()) {
1484    // The Glink tag points to 32 bytes before the first lazy symbol resolution
1485    // stub, which starts directly after the header.
1486    entries.push_back({DT_PPC64_GLINK, [=] {
1487                         unsigned offset = target->pltHeaderSize - 32;
1488                         return in.plt->getVA(0) + offset;
1489                       }});
1490  }
1491
1492  addInt(DT_NULL, 0);
1493
1494  getParent()->link = this->link;
1495  this->size = entries.size() * this->entsize;
1496}
1497
1498template <class ELFT> void DynamicSection<ELFT>::writeTo(uint8_t *buf) {
1499  auto *p = reinterpret_cast<Elf_Dyn *>(buf);
1500
1501  for (std::pair<int32_t, std::function<uint64_t()>> &kv : entries) {
1502    p->d_tag = kv.first;
1503    p->d_un.d_val = kv.second();
1504    ++p;
1505  }
1506}
1507
1508uint64_t DynamicReloc::getOffset() const {
1509  return inputSec->getVA(offsetInSec);
1510}
1511
1512int64_t DynamicReloc::computeAddend() const {
1513  if (useSymVA)
1514    return sym->getVA(addend);
1515  if (!outputSec)
1516    return addend;
1517  // See the comment in the DynamicReloc ctor.
1518  return getMipsPageAddr(outputSec->addr) + addend;
1519}
1520
1521uint32_t DynamicReloc::getSymIndex(SymbolTableBaseSection *symTab) const {
1522  if (sym && !useSymVA)
1523    return symTab->getSymbolIndex(sym);
1524  return 0;
1525}
1526
1527RelocationBaseSection::RelocationBaseSection(StringRef name, uint32_t type,
1528                                             int32_t dynamicTag,
1529                                             int32_t sizeDynamicTag)
1530    : SyntheticSection(SHF_ALLOC, type, config->wordsize, name),
1531      dynamicTag(dynamicTag), sizeDynamicTag(sizeDynamicTag) {}
1532
1533void RelocationBaseSection::addReloc(RelType dynType, InputSectionBase *isec,
1534                                     uint64_t offsetInSec, Symbol *sym) {
1535  addReloc({dynType, isec, offsetInSec, false, sym, 0});
1536}
1537
1538void RelocationBaseSection::addReloc(RelType dynType,
1539                                     InputSectionBase *inputSec,
1540                                     uint64_t offsetInSec, Symbol *sym,
1541                                     int64_t addend, RelExpr expr,
1542                                     RelType type) {
1543  // Write the addends to the relocated address if required. We skip
1544  // it if the written value would be zero.
1545  if (config->writeAddends && (expr != R_ADDEND || addend != 0))
1546    inputSec->relocations.push_back({expr, type, offsetInSec, addend, sym});
1547  addReloc({dynType, inputSec, offsetInSec, expr != R_ADDEND, sym, addend});
1548}
1549
1550void RelocationBaseSection::addReloc(const DynamicReloc &reloc) {
1551  if (reloc.type == target->relativeRel)
1552    ++numRelativeRelocs;
1553  relocs.push_back(reloc);
1554}
1555
1556void RelocationBaseSection::finalizeContents() {
1557  SymbolTableBaseSection *symTab = getPartition().dynSymTab;
1558
1559  // When linking glibc statically, .rel{,a}.plt contains R_*_IRELATIVE
1560  // relocations due to IFUNC (e.g. strcpy). sh_link will be set to 0 in that
1561  // case.
1562  if (symTab && symTab->getParent())
1563    getParent()->link = symTab->getParent()->sectionIndex;
1564  else
1565    getParent()->link = 0;
1566
1567  if (in.relaPlt == this)
1568    getParent()->info = in.gotPlt->getParent()->sectionIndex;
1569  if (in.relaIplt == this)
1570    getParent()->info = in.igotPlt->getParent()->sectionIndex;
1571}
1572
1573RelrBaseSection::RelrBaseSection()
1574    : SyntheticSection(SHF_ALLOC,
1575                       config->useAndroidRelrTags ? SHT_ANDROID_RELR : SHT_RELR,
1576                       config->wordsize, ".relr.dyn") {}
1577
1578template <class ELFT>
1579static void encodeDynamicReloc(SymbolTableBaseSection *symTab,
1580                               typename ELFT::Rela *p,
1581                               const DynamicReloc &rel) {
1582  if (config->isRela)
1583    p->r_addend = rel.computeAddend();
1584  p->r_offset = rel.getOffset();
1585  p->setSymbolAndType(rel.getSymIndex(symTab), rel.type, config->isMips64EL);
1586}
1587
1588template <class ELFT>
1589RelocationSection<ELFT>::RelocationSection(StringRef name, bool sort)
1590    : RelocationBaseSection(name, config->isRela ? SHT_RELA : SHT_REL,
1591                            config->isRela ? DT_RELA : DT_REL,
1592                            config->isRela ? DT_RELASZ : DT_RELSZ),
1593      sort(sort) {
1594  this->entsize = config->isRela ? sizeof(Elf_Rela) : sizeof(Elf_Rel);
1595}
1596
1597template <class ELFT> void RelocationSection<ELFT>::writeTo(uint8_t *buf) {
1598  SymbolTableBaseSection *symTab = getPartition().dynSymTab;
1599
1600  // Sort by (!IsRelative,SymIndex,r_offset). DT_REL[A]COUNT requires us to
1601  // place R_*_RELATIVE first. SymIndex is to improve locality, while r_offset
1602  // is to make results easier to read.
1603  if (sort)
1604    llvm::stable_sort(
1605        relocs, [&](const DynamicReloc &a, const DynamicReloc &b) {
1606          return std::make_tuple(a.type != target->relativeRel,
1607                                 a.getSymIndex(symTab), a.getOffset()) <
1608                 std::make_tuple(b.type != target->relativeRel,
1609                                 b.getSymIndex(symTab), b.getOffset());
1610        });
1611
1612  for (const DynamicReloc &rel : relocs) {
1613    encodeDynamicReloc<ELFT>(symTab, reinterpret_cast<Elf_Rela *>(buf), rel);
1614    buf += config->isRela ? sizeof(Elf_Rela) : sizeof(Elf_Rel);
1615  }
1616}
1617
1618template <class ELFT>
1619AndroidPackedRelocationSection<ELFT>::AndroidPackedRelocationSection(
1620    StringRef name)
1621    : RelocationBaseSection(
1622          name, config->isRela ? SHT_ANDROID_RELA : SHT_ANDROID_REL,
1623          config->isRela ? DT_ANDROID_RELA : DT_ANDROID_REL,
1624          config->isRela ? DT_ANDROID_RELASZ : DT_ANDROID_RELSZ) {
1625  this->entsize = 1;
1626}
1627
1628template <class ELFT>
1629bool AndroidPackedRelocationSection<ELFT>::updateAllocSize() {
1630  // This function computes the contents of an Android-format packed relocation
1631  // section.
1632  //
1633  // This format compresses relocations by using relocation groups to factor out
1634  // fields that are common between relocations and storing deltas from previous
1635  // relocations in SLEB128 format (which has a short representation for small
1636  // numbers). A good example of a relocation type with common fields is
1637  // R_*_RELATIVE, which is normally used to represent function pointers in
1638  // vtables. In the REL format, each relative relocation has the same r_info
1639  // field, and is only different from other relative relocations in terms of
1640  // the r_offset field. By sorting relocations by offset, grouping them by
1641  // r_info and representing each relocation with only the delta from the
1642  // previous offset, each 8-byte relocation can be compressed to as little as 1
1643  // byte (or less with run-length encoding). This relocation packer was able to
1644  // reduce the size of the relocation section in an Android Chromium DSO from
1645  // 2,911,184 bytes to 174,693 bytes, or 6% of the original size.
1646  //
1647  // A relocation section consists of a header containing the literal bytes
1648  // 'APS2' followed by a sequence of SLEB128-encoded integers. The first two
1649  // elements are the total number of relocations in the section and an initial
1650  // r_offset value. The remaining elements define a sequence of relocation
1651  // groups. Each relocation group starts with a header consisting of the
1652  // following elements:
1653  //
1654  // - the number of relocations in the relocation group
1655  // - flags for the relocation group
1656  // - (if RELOCATION_GROUPED_BY_OFFSET_DELTA_FLAG is set) the r_offset delta
1657  //   for each relocation in the group.
1658  // - (if RELOCATION_GROUPED_BY_INFO_FLAG is set) the value of the r_info
1659  //   field for each relocation in the group.
1660  // - (if RELOCATION_GROUP_HAS_ADDEND_FLAG and
1661  //   RELOCATION_GROUPED_BY_ADDEND_FLAG are set) the r_addend delta for
1662  //   each relocation in the group.
1663  //
1664  // Following the relocation group header are descriptions of each of the
1665  // relocations in the group. They consist of the following elements:
1666  //
1667  // - (if RELOCATION_GROUPED_BY_OFFSET_DELTA_FLAG is not set) the r_offset
1668  //   delta for this relocation.
1669  // - (if RELOCATION_GROUPED_BY_INFO_FLAG is not set) the value of the r_info
1670  //   field for this relocation.
1671  // - (if RELOCATION_GROUP_HAS_ADDEND_FLAG is set and
1672  //   RELOCATION_GROUPED_BY_ADDEND_FLAG is not set) the r_addend delta for
1673  //   this relocation.
1674
1675  size_t oldSize = relocData.size();
1676
1677  relocData = {'A', 'P', 'S', '2'};
1678  raw_svector_ostream os(relocData);
1679  auto add = [&](int64_t v) { encodeSLEB128(v, os); };
1680
1681  // The format header includes the number of relocations and the initial
1682  // offset (we set this to zero because the first relocation group will
1683  // perform the initial adjustment).
1684  add(relocs.size());
1685  add(0);
1686
1687  std::vector<Elf_Rela> relatives, nonRelatives;
1688
1689  for (const DynamicReloc &rel : relocs) {
1690    Elf_Rela r;
1691    encodeDynamicReloc<ELFT>(getPartition().dynSymTab, &r, rel);
1692
1693    if (r.getType(config->isMips64EL) == target->relativeRel)
1694      relatives.push_back(r);
1695    else
1696      nonRelatives.push_back(r);
1697  }
1698
1699  llvm::sort(relatives, [](const Elf_Rel &a, const Elf_Rel &b) {
1700    return a.r_offset < b.r_offset;
1701  });
1702
1703  // Try to find groups of relative relocations which are spaced one word
1704  // apart from one another. These generally correspond to vtable entries. The
1705  // format allows these groups to be encoded using a sort of run-length
1706  // encoding, but each group will cost 7 bytes in addition to the offset from
1707  // the previous group, so it is only profitable to do this for groups of
1708  // size 8 or larger.
1709  std::vector<Elf_Rela> ungroupedRelatives;
1710  std::vector<std::vector<Elf_Rela>> relativeGroups;
1711  for (auto i = relatives.begin(), e = relatives.end(); i != e;) {
1712    std::vector<Elf_Rela> group;
1713    do {
1714      group.push_back(*i++);
1715    } while (i != e && (i - 1)->r_offset + config->wordsize == i->r_offset);
1716
1717    if (group.size() < 8)
1718      ungroupedRelatives.insert(ungroupedRelatives.end(), group.begin(),
1719                                group.end());
1720    else
1721      relativeGroups.emplace_back(std::move(group));
1722  }
1723
1724  // For non-relative relocations, we would like to:
1725  //   1. Have relocations with the same symbol offset to be consecutive, so
1726  //      that the runtime linker can speed-up symbol lookup by implementing an
1727  //      1-entry cache.
1728  //   2. Group relocations by r_info to reduce the size of the relocation
1729  //      section.
1730  // Since the symbol offset is the high bits in r_info, sorting by r_info
1731  // allows us to do both.
1732  //
1733  // For Rela, we also want to sort by r_addend when r_info is the same. This
1734  // enables us to group by r_addend as well.
1735  llvm::stable_sort(nonRelatives, [](const Elf_Rela &a, const Elf_Rela &b) {
1736    if (a.r_info != b.r_info)
1737      return a.r_info < b.r_info;
1738    if (config->isRela)
1739      return a.r_addend < b.r_addend;
1740    return false;
1741  });
1742
1743  // Group relocations with the same r_info. Note that each group emits a group
1744  // header and that may make the relocation section larger. It is hard to
1745  // estimate the size of a group header as the encoded size of that varies
1746  // based on r_info. However, we can approximate this trade-off by the number
1747  // of values encoded. Each group header contains 3 values, and each relocation
1748  // in a group encodes one less value, as compared to when it is not grouped.
1749  // Therefore, we only group relocations if there are 3 or more of them with
1750  // the same r_info.
1751  //
1752  // For Rela, the addend for most non-relative relocations is zero, and thus we
1753  // can usually get a smaller relocation section if we group relocations with 0
1754  // addend as well.
1755  std::vector<Elf_Rela> ungroupedNonRelatives;
1756  std::vector<std::vector<Elf_Rela>> nonRelativeGroups;
1757  for (auto i = nonRelatives.begin(), e = nonRelatives.end(); i != e;) {
1758    auto j = i + 1;
1759    while (j != e && i->r_info == j->r_info &&
1760           (!config->isRela || i->r_addend == j->r_addend))
1761      ++j;
1762    if (j - i < 3 || (config->isRela && i->r_addend != 0))
1763      ungroupedNonRelatives.insert(ungroupedNonRelatives.end(), i, j);
1764    else
1765      nonRelativeGroups.emplace_back(i, j);
1766    i = j;
1767  }
1768
1769  // Sort ungrouped relocations by offset to minimize the encoded length.
1770  llvm::sort(ungroupedNonRelatives, [](const Elf_Rela &a, const Elf_Rela &b) {
1771    return a.r_offset < b.r_offset;
1772  });
1773
1774  unsigned hasAddendIfRela =
1775      config->isRela ? RELOCATION_GROUP_HAS_ADDEND_FLAG : 0;
1776
1777  uint64_t offset = 0;
1778  uint64_t addend = 0;
1779
1780  // Emit the run-length encoding for the groups of adjacent relative
1781  // relocations. Each group is represented using two groups in the packed
1782  // format. The first is used to set the current offset to the start of the
1783  // group (and also encodes the first relocation), and the second encodes the
1784  // remaining relocations.
1785  for (std::vector<Elf_Rela> &g : relativeGroups) {
1786    // The first relocation in the group.
1787    add(1);
1788    add(RELOCATION_GROUPED_BY_OFFSET_DELTA_FLAG |
1789        RELOCATION_GROUPED_BY_INFO_FLAG | hasAddendIfRela);
1790    add(g[0].r_offset - offset);
1791    add(target->relativeRel);
1792    if (config->isRela) {
1793      add(g[0].r_addend - addend);
1794      addend = g[0].r_addend;
1795    }
1796
1797    // The remaining relocations.
1798    add(g.size() - 1);
1799    add(RELOCATION_GROUPED_BY_OFFSET_DELTA_FLAG |
1800        RELOCATION_GROUPED_BY_INFO_FLAG | hasAddendIfRela);
1801    add(config->wordsize);
1802    add(target->relativeRel);
1803    if (config->isRela) {
1804      for (auto i = g.begin() + 1, e = g.end(); i != e; ++i) {
1805        add(i->r_addend - addend);
1806        addend = i->r_addend;
1807      }
1808    }
1809
1810    offset = g.back().r_offset;
1811  }
1812
1813  // Now the ungrouped relatives.
1814  if (!ungroupedRelatives.empty()) {
1815    add(ungroupedRelatives.size());
1816    add(RELOCATION_GROUPED_BY_INFO_FLAG | hasAddendIfRela);
1817    add(target->relativeRel);
1818    for (Elf_Rela &r : ungroupedRelatives) {
1819      add(r.r_offset - offset);
1820      offset = r.r_offset;
1821      if (config->isRela) {
1822        add(r.r_addend - addend);
1823        addend = r.r_addend;
1824      }
1825    }
1826  }
1827
1828  // Grouped non-relatives.
1829  for (ArrayRef<Elf_Rela> g : nonRelativeGroups) {
1830    add(g.size());
1831    add(RELOCATION_GROUPED_BY_INFO_FLAG);
1832    add(g[0].r_info);
1833    for (const Elf_Rela &r : g) {
1834      add(r.r_offset - offset);
1835      offset = r.r_offset;
1836    }
1837    addend = 0;
1838  }
1839
1840  // Finally the ungrouped non-relative relocations.
1841  if (!ungroupedNonRelatives.empty()) {
1842    add(ungroupedNonRelatives.size());
1843    add(hasAddendIfRela);
1844    for (Elf_Rela &r : ungroupedNonRelatives) {
1845      add(r.r_offset - offset);
1846      offset = r.r_offset;
1847      add(r.r_info);
1848      if (config->isRela) {
1849        add(r.r_addend - addend);
1850        addend = r.r_addend;
1851      }
1852    }
1853  }
1854
1855  // Don't allow the section to shrink; otherwise the size of the section can
1856  // oscillate infinitely.
1857  if (relocData.size() < oldSize)
1858    relocData.append(oldSize - relocData.size(), 0);
1859
1860  // Returns whether the section size changed. We need to keep recomputing both
1861  // section layout and the contents of this section until the size converges
1862  // because changing this section's size can affect section layout, which in
1863  // turn can affect the sizes of the LEB-encoded integers stored in this
1864  // section.
1865  return relocData.size() != oldSize;
1866}
1867
1868template <class ELFT> RelrSection<ELFT>::RelrSection() {
1869  this->entsize = config->wordsize;
1870}
1871
1872template <class ELFT> bool RelrSection<ELFT>::updateAllocSize() {
1873  // This function computes the contents of an SHT_RELR packed relocation
1874  // section.
1875  //
1876  // Proposal for adding SHT_RELR sections to generic-abi is here:
1877  //   https://groups.google.com/forum/#!topic/generic-abi/bX460iggiKg
1878  //
1879  // The encoded sequence of Elf64_Relr entries in a SHT_RELR section looks
1880  // like [ AAAAAAAA BBBBBBB1 BBBBBBB1 ... AAAAAAAA BBBBBB1 ... ]
1881  //
1882  // i.e. start with an address, followed by any number of bitmaps. The address
1883  // entry encodes 1 relocation. The subsequent bitmap entries encode up to 63
1884  // relocations each, at subsequent offsets following the last address entry.
1885  //
1886  // The bitmap entries must have 1 in the least significant bit. The assumption
1887  // here is that an address cannot have 1 in lsb. Odd addresses are not
1888  // supported.
1889  //
1890  // Excluding the least significant bit in the bitmap, each non-zero bit in
1891  // the bitmap represents a relocation to be applied to a corresponding machine
1892  // word that follows the base address word. The second least significant bit
1893  // represents the machine word immediately following the initial address, and
1894  // each bit that follows represents the next word, in linear order. As such,
1895  // a single bitmap can encode up to 31 relocations in a 32-bit object, and
1896  // 63 relocations in a 64-bit object.
1897  //
1898  // This encoding has a couple of interesting properties:
1899  // 1. Looking at any entry, it is clear whether it's an address or a bitmap:
1900  //    even means address, odd means bitmap.
1901  // 2. Just a simple list of addresses is a valid encoding.
1902
1903  size_t oldSize = relrRelocs.size();
1904  relrRelocs.clear();
1905
1906  // Same as Config->Wordsize but faster because this is a compile-time
1907  // constant.
1908  const size_t wordsize = sizeof(typename ELFT::uint);
1909
1910  // Number of bits to use for the relocation offsets bitmap.
1911  // Must be either 63 or 31.
1912  const size_t nBits = wordsize * 8 - 1;
1913
1914  // Get offsets for all relative relocations and sort them.
1915  std::vector<uint64_t> offsets;
1916  for (const RelativeReloc &rel : relocs)
1917    offsets.push_back(rel.getOffset());
1918  llvm::sort(offsets);
1919
1920  // For each leading relocation, find following ones that can be folded
1921  // as a bitmap and fold them.
1922  for (size_t i = 0, e = offsets.size(); i < e;) {
1923    // Add a leading relocation.
1924    relrRelocs.push_back(Elf_Relr(offsets[i]));
1925    uint64_t base = offsets[i] + wordsize;
1926    ++i;
1927
1928    // Find foldable relocations to construct bitmaps.
1929    while (i < e) {
1930      uint64_t bitmap = 0;
1931
1932      while (i < e) {
1933        uint64_t delta = offsets[i] - base;
1934
1935        // If it is too far, it cannot be folded.
1936        if (delta >= nBits * wordsize)
1937          break;
1938
1939        // If it is not a multiple of wordsize away, it cannot be folded.
1940        if (delta % wordsize)
1941          break;
1942
1943        // Fold it.
1944        bitmap |= 1ULL << (delta / wordsize);
1945        ++i;
1946      }
1947
1948      if (!bitmap)
1949        break;
1950
1951      relrRelocs.push_back(Elf_Relr((bitmap << 1) | 1));
1952      base += nBits * wordsize;
1953    }
1954  }
1955
1956  // Don't allow the section to shrink; otherwise the size of the section can
1957  // oscillate infinitely. Trailing 1s do not decode to more relocations.
1958  if (relrRelocs.size() < oldSize) {
1959    log(".relr.dyn needs " + Twine(oldSize - relrRelocs.size()) +
1960        " padding word(s)");
1961    relrRelocs.resize(oldSize, Elf_Relr(1));
1962  }
1963
1964  return relrRelocs.size() != oldSize;
1965}
1966
1967SymbolTableBaseSection::SymbolTableBaseSection(StringTableSection &strTabSec)
1968    : SyntheticSection(strTabSec.isDynamic() ? (uint64_t)SHF_ALLOC : 0,
1969                       strTabSec.isDynamic() ? SHT_DYNSYM : SHT_SYMTAB,
1970                       config->wordsize,
1971                       strTabSec.isDynamic() ? ".dynsym" : ".symtab"),
1972      strTabSec(strTabSec) {}
1973
1974// Orders symbols according to their positions in the GOT,
1975// in compliance with MIPS ABI rules.
1976// See "Global Offset Table" in Chapter 5 in the following document
1977// for detailed description:
1978// ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
1979static bool sortMipsSymbols(const SymbolTableEntry &l,
1980                            const SymbolTableEntry &r) {
1981  // Sort entries related to non-local preemptible symbols by GOT indexes.
1982  // All other entries go to the beginning of a dynsym in arbitrary order.
1983  if (l.sym->isInGot() && r.sym->isInGot())
1984    return l.sym->gotIndex < r.sym->gotIndex;
1985  if (!l.sym->isInGot() && !r.sym->isInGot())
1986    return false;
1987  return !l.sym->isInGot();
1988}
1989
1990void SymbolTableBaseSection::finalizeContents() {
1991  if (OutputSection *sec = strTabSec.getParent())
1992    getParent()->link = sec->sectionIndex;
1993
1994  if (this->type != SHT_DYNSYM) {
1995    sortSymTabSymbols();
1996    return;
1997  }
1998
1999  // If it is a .dynsym, there should be no local symbols, but we need
2000  // to do a few things for the dynamic linker.
2001
2002  // Section's Info field has the index of the first non-local symbol.
2003  // Because the first symbol entry is a null entry, 1 is the first.
2004  getParent()->info = 1;
2005
2006  if (getPartition().gnuHashTab) {
2007    // NB: It also sorts Symbols to meet the GNU hash table requirements.
2008    getPartition().gnuHashTab->addSymbols(symbols);
2009  } else if (config->emachine == EM_MIPS) {
2010    llvm::stable_sort(symbols, sortMipsSymbols);
2011  }
2012
2013  // Only the main partition's dynsym indexes are stored in the symbols
2014  // themselves. All other partitions use a lookup table.
2015  if (this == mainPart->dynSymTab) {
2016    size_t i = 0;
2017    for (const SymbolTableEntry &s : symbols)
2018      s.sym->dynsymIndex = ++i;
2019  }
2020}
2021
2022// The ELF spec requires that all local symbols precede global symbols, so we
2023// sort symbol entries in this function. (For .dynsym, we don't do that because
2024// symbols for dynamic linking are inherently all globals.)
2025//
2026// Aside from above, we put local symbols in groups starting with the STT_FILE
2027// symbol. That is convenient for purpose of identifying where are local symbols
2028// coming from.
2029void SymbolTableBaseSection::sortSymTabSymbols() {
2030  // Move all local symbols before global symbols.
2031  auto e = std::stable_partition(
2032      symbols.begin(), symbols.end(), [](const SymbolTableEntry &s) {
2033        return s.sym->isLocal() || s.sym->computeBinding() == STB_LOCAL;
2034      });
2035  size_t numLocals = e - symbols.begin();
2036  getParent()->info = numLocals + 1;
2037
2038  // We want to group the local symbols by file. For that we rebuild the local
2039  // part of the symbols vector. We do not need to care about the STT_FILE
2040  // symbols, they are already naturally placed first in each group. That
2041  // happens because STT_FILE is always the first symbol in the object and hence
2042  // precede all other local symbols we add for a file.
2043  MapVector<InputFile *, std::vector<SymbolTableEntry>> arr;
2044  for (const SymbolTableEntry &s : llvm::make_range(symbols.begin(), e))
2045    arr[s.sym->file].push_back(s);
2046
2047  auto i = symbols.begin();
2048  for (std::pair<InputFile *, std::vector<SymbolTableEntry>> &p : arr)
2049    for (SymbolTableEntry &entry : p.second)
2050      *i++ = entry;
2051}
2052
2053void SymbolTableBaseSection::addSymbol(Symbol *b) {
2054  // Adding a local symbol to a .dynsym is a bug.
2055  assert(this->type != SHT_DYNSYM || !b->isLocal());
2056
2057  bool hashIt = b->isLocal();
2058  symbols.push_back({b, strTabSec.addString(b->getName(), hashIt)});
2059}
2060
2061size_t SymbolTableBaseSection::getSymbolIndex(Symbol *sym) {
2062  if (this == mainPart->dynSymTab)
2063    return sym->dynsymIndex;
2064
2065  // Initializes symbol lookup tables lazily. This is used only for -r,
2066  // -emit-relocs and dynsyms in partitions other than the main one.
2067  llvm::call_once(onceFlag, [&] {
2068    symbolIndexMap.reserve(symbols.size());
2069    size_t i = 0;
2070    for (const SymbolTableEntry &e : symbols) {
2071      if (e.sym->type == STT_SECTION)
2072        sectionIndexMap[e.sym->getOutputSection()] = ++i;
2073      else
2074        symbolIndexMap[e.sym] = ++i;
2075    }
2076  });
2077
2078  // Section symbols are mapped based on their output sections
2079  // to maintain their semantics.
2080  if (sym->type == STT_SECTION)
2081    return sectionIndexMap.lookup(sym->getOutputSection());
2082  return symbolIndexMap.lookup(sym);
2083}
2084
2085template <class ELFT>
2086SymbolTableSection<ELFT>::SymbolTableSection(StringTableSection &strTabSec)
2087    : SymbolTableBaseSection(strTabSec) {
2088  this->entsize = sizeof(Elf_Sym);
2089}
2090
2091static BssSection *getCommonSec(Symbol *sym) {
2092  if (!config->defineCommon)
2093    if (auto *d = dyn_cast<Defined>(sym))
2094      return dyn_cast_or_null<BssSection>(d->section);
2095  return nullptr;
2096}
2097
2098static uint32_t getSymSectionIndex(Symbol *sym) {
2099  if (getCommonSec(sym))
2100    return SHN_COMMON;
2101  if (!isa<Defined>(sym) || sym->needsPltAddr)
2102    return SHN_UNDEF;
2103  if (const OutputSection *os = sym->getOutputSection())
2104    return os->sectionIndex >= SHN_LORESERVE ? (uint32_t)SHN_XINDEX
2105                                             : os->sectionIndex;
2106  return SHN_ABS;
2107}
2108
2109// Write the internal symbol table contents to the output symbol table.
2110template <class ELFT> void SymbolTableSection<ELFT>::writeTo(uint8_t *buf) {
2111  // The first entry is a null entry as per the ELF spec.
2112  memset(buf, 0, sizeof(Elf_Sym));
2113  buf += sizeof(Elf_Sym);
2114
2115  auto *eSym = reinterpret_cast<Elf_Sym *>(buf);
2116
2117  for (SymbolTableEntry &ent : symbols) {
2118    Symbol *sym = ent.sym;
2119    bool isDefinedHere = type == SHT_SYMTAB || sym->partition == partition;
2120
2121    // Set st_info and st_other.
2122    eSym->st_other = 0;
2123    if (sym->isLocal()) {
2124      eSym->setBindingAndType(STB_LOCAL, sym->type);
2125    } else {
2126      eSym->setBindingAndType(sym->computeBinding(), sym->type);
2127      eSym->setVisibility(sym->visibility);
2128    }
2129
2130    // The 3 most significant bits of st_other are used by OpenPOWER ABI.
2131    // See getPPC64GlobalEntryToLocalEntryOffset() for more details.
2132    if (config->emachine == EM_PPC64)
2133      eSym->st_other |= sym->stOther & 0xe0;
2134
2135    eSym->st_name = ent.strTabOffset;
2136    if (isDefinedHere)
2137      eSym->st_shndx = getSymSectionIndex(ent.sym);
2138    else
2139      eSym->st_shndx = 0;
2140
2141    // Copy symbol size if it is a defined symbol. st_size is not significant
2142    // for undefined symbols, so whether copying it or not is up to us if that's
2143    // the case. We'll leave it as zero because by not setting a value, we can
2144    // get the exact same outputs for two sets of input files that differ only
2145    // in undefined symbol size in DSOs.
2146    if (eSym->st_shndx == SHN_UNDEF || !isDefinedHere)
2147      eSym->st_size = 0;
2148    else
2149      eSym->st_size = sym->getSize();
2150
2151    // st_value is usually an address of a symbol, but that has a
2152    // special meaining for uninstantiated common symbols (this can
2153    // occur if -r is given).
2154    if (BssSection *commonSec = getCommonSec(ent.sym))
2155      eSym->st_value = commonSec->alignment;
2156    else if (isDefinedHere)
2157      eSym->st_value = sym->getVA();
2158    else
2159      eSym->st_value = 0;
2160
2161    ++eSym;
2162  }
2163
2164  // On MIPS we need to mark symbol which has a PLT entry and requires
2165  // pointer equality by STO_MIPS_PLT flag. That is necessary to help
2166  // dynamic linker distinguish such symbols and MIPS lazy-binding stubs.
2167  // https://sourceware.org/ml/binutils/2008-07/txt00000.txt
2168  if (config->emachine == EM_MIPS) {
2169    auto *eSym = reinterpret_cast<Elf_Sym *>(buf);
2170
2171    for (SymbolTableEntry &ent : symbols) {
2172      Symbol *sym = ent.sym;
2173      if (sym->isInPlt() && sym->needsPltAddr)
2174        eSym->st_other |= STO_MIPS_PLT;
2175      if (isMicroMips()) {
2176        // We already set the less-significant bit for symbols
2177        // marked by the `STO_MIPS_MICROMIPS` flag and for microMIPS PLT
2178        // records. That allows us to distinguish such symbols in
2179        // the `MIPS<ELFT>::relocateOne()` routine. Now we should
2180        // clear that bit for non-dynamic symbol table, so tools
2181        // like `objdump` will be able to deal with a correct
2182        // symbol position.
2183        if (sym->isDefined() &&
2184            ((sym->stOther & STO_MIPS_MICROMIPS) || sym->needsPltAddr)) {
2185          if (!strTabSec.isDynamic())
2186            eSym->st_value &= ~1;
2187          eSym->st_other |= STO_MIPS_MICROMIPS;
2188        }
2189      }
2190      if (config->relocatable)
2191        if (auto *d = dyn_cast<Defined>(sym))
2192          if (isMipsPIC<ELFT>(d))
2193            eSym->st_other |= STO_MIPS_PIC;
2194      ++eSym;
2195    }
2196  }
2197}
2198
2199SymtabShndxSection::SymtabShndxSection()
2200    : SyntheticSection(0, SHT_SYMTAB_SHNDX, 4, ".symtab_shndx") {
2201  this->entsize = 4;
2202}
2203
2204void SymtabShndxSection::writeTo(uint8_t *buf) {
2205  // We write an array of 32 bit values, where each value has 1:1 association
2206  // with an entry in .symtab. If the corresponding entry contains SHN_XINDEX,
2207  // we need to write actual index, otherwise, we must write SHN_UNDEF(0).
2208  buf += 4; // Ignore .symtab[0] entry.
2209  for (const SymbolTableEntry &entry : in.symTab->getSymbols()) {
2210    if (getSymSectionIndex(entry.sym) == SHN_XINDEX)
2211      write32(buf, entry.sym->getOutputSection()->sectionIndex);
2212    buf += 4;
2213  }
2214}
2215
2216bool SymtabShndxSection::isNeeded() const {
2217  // SHT_SYMTAB can hold symbols with section indices values up to
2218  // SHN_LORESERVE. If we need more, we want to use extension SHT_SYMTAB_SHNDX
2219  // section. Problem is that we reveal the final section indices a bit too
2220  // late, and we do not know them here. For simplicity, we just always create
2221  // a .symtab_shndx section when the amount of output sections is huge.
2222  size_t size = 0;
2223  for (BaseCommand *base : script->sectionCommands)
2224    if (isa<OutputSection>(base))
2225      ++size;
2226  return size >= SHN_LORESERVE;
2227}
2228
2229void SymtabShndxSection::finalizeContents() {
2230  getParent()->link = in.symTab->getParent()->sectionIndex;
2231}
2232
2233size_t SymtabShndxSection::getSize() const {
2234  return in.symTab->getNumSymbols() * 4;
2235}
2236
2237// .hash and .gnu.hash sections contain on-disk hash tables that map
2238// symbol names to their dynamic symbol table indices. Their purpose
2239// is to help the dynamic linker resolve symbols quickly. If ELF files
2240// don't have them, the dynamic linker has to do linear search on all
2241// dynamic symbols, which makes programs slower. Therefore, a .hash
2242// section is added to a DSO by default. A .gnu.hash is added if you
2243// give the -hash-style=gnu or -hash-style=both option.
2244//
2245// The Unix semantics of resolving dynamic symbols is somewhat expensive.
2246// Each ELF file has a list of DSOs that the ELF file depends on and a
2247// list of dynamic symbols that need to be resolved from any of the
2248// DSOs. That means resolving all dynamic symbols takes O(m)*O(n)
2249// where m is the number of DSOs and n is the number of dynamic
2250// symbols. For modern large programs, both m and n are large.  So
2251// making each step faster by using hash tables substiantially
2252// improves time to load programs.
2253//
2254// (Note that this is not the only way to design the shared library.
2255// For instance, the Windows DLL takes a different approach. On
2256// Windows, each dynamic symbol has a name of DLL from which the symbol
2257// has to be resolved. That makes the cost of symbol resolution O(n).
2258// This disables some hacky techniques you can use on Unix such as
2259// LD_PRELOAD, but this is arguably better semantics than the Unix ones.)
2260//
2261// Due to historical reasons, we have two different hash tables, .hash
2262// and .gnu.hash. They are for the same purpose, and .gnu.hash is a new
2263// and better version of .hash. .hash is just an on-disk hash table, but
2264// .gnu.hash has a bloom filter in addition to a hash table to skip
2265// DSOs very quickly. If you are sure that your dynamic linker knows
2266// about .gnu.hash, you want to specify -hash-style=gnu. Otherwise, a
2267// safe bet is to specify -hash-style=both for backward compatibility.
2268GnuHashTableSection::GnuHashTableSection()
2269    : SyntheticSection(SHF_ALLOC, SHT_GNU_HASH, config->wordsize, ".gnu.hash") {
2270}
2271
2272void GnuHashTableSection::finalizeContents() {
2273  if (OutputSection *sec = getPartition().dynSymTab->getParent())
2274    getParent()->link = sec->sectionIndex;
2275
2276  // Computes bloom filter size in word size. We want to allocate 12
2277  // bits for each symbol. It must be a power of two.
2278  if (symbols.empty()) {
2279    maskWords = 1;
2280  } else {
2281    uint64_t numBits = symbols.size() * 12;
2282    maskWords = NextPowerOf2(numBits / (config->wordsize * 8));
2283  }
2284
2285  size = 16;                            // Header
2286  size += config->wordsize * maskWords; // Bloom filter
2287  size += nBuckets * 4;                 // Hash buckets
2288  size += symbols.size() * 4;           // Hash values
2289}
2290
2291void GnuHashTableSection::writeTo(uint8_t *buf) {
2292  // The output buffer is not guaranteed to be zero-cleared because we pre-
2293  // fill executable sections with trap instructions. This is a precaution
2294  // for that case, which happens only when -no-rosegment is given.
2295  memset(buf, 0, size);
2296
2297  // Write a header.
2298  write32(buf, nBuckets);
2299  write32(buf + 4, getPartition().dynSymTab->getNumSymbols() - symbols.size());
2300  write32(buf + 8, maskWords);
2301  write32(buf + 12, Shift2);
2302  buf += 16;
2303
2304  // Write a bloom filter and a hash table.
2305  writeBloomFilter(buf);
2306  buf += config->wordsize * maskWords;
2307  writeHashTable(buf);
2308}
2309
2310// This function writes a 2-bit bloom filter. This bloom filter alone
2311// usually filters out 80% or more of all symbol lookups [1].
2312// The dynamic linker uses the hash table only when a symbol is not
2313// filtered out by a bloom filter.
2314//
2315// [1] Ulrich Drepper (2011), "How To Write Shared Libraries" (Ver. 4.1.2),
2316//     p.9, https://www.akkadia.org/drepper/dsohowto.pdf
2317void GnuHashTableSection::writeBloomFilter(uint8_t *buf) {
2318  unsigned c = config->is64 ? 64 : 32;
2319  for (const Entry &sym : symbols) {
2320    // When C = 64, we choose a word with bits [6:...] and set 1 to two bits in
2321    // the word using bits [0:5] and [26:31].
2322    size_t i = (sym.hash / c) & (maskWords - 1);
2323    uint64_t val = readUint(buf + i * config->wordsize);
2324    val |= uint64_t(1) << (sym.hash % c);
2325    val |= uint64_t(1) << ((sym.hash >> Shift2) % c);
2326    writeUint(buf + i * config->wordsize, val);
2327  }
2328}
2329
2330void GnuHashTableSection::writeHashTable(uint8_t *buf) {
2331  uint32_t *buckets = reinterpret_cast<uint32_t *>(buf);
2332  uint32_t oldBucket = -1;
2333  uint32_t *values = buckets + nBuckets;
2334  for (auto i = symbols.begin(), e = symbols.end(); i != e; ++i) {
2335    // Write a hash value. It represents a sequence of chains that share the
2336    // same hash modulo value. The last element of each chain is terminated by
2337    // LSB 1.
2338    uint32_t hash = i->hash;
2339    bool isLastInChain = (i + 1) == e || i->bucketIdx != (i + 1)->bucketIdx;
2340    hash = isLastInChain ? hash | 1 : hash & ~1;
2341    write32(values++, hash);
2342
2343    if (i->bucketIdx == oldBucket)
2344      continue;
2345    // Write a hash bucket. Hash buckets contain indices in the following hash
2346    // value table.
2347    write32(buckets + i->bucketIdx,
2348            getPartition().dynSymTab->getSymbolIndex(i->sym));
2349    oldBucket = i->bucketIdx;
2350  }
2351}
2352
2353static uint32_t hashGnu(StringRef name) {
2354  uint32_t h = 5381;
2355  for (uint8_t c : name)
2356    h = (h << 5) + h + c;
2357  return h;
2358}
2359
2360// Add symbols to this symbol hash table. Note that this function
2361// destructively sort a given vector -- which is needed because
2362// GNU-style hash table places some sorting requirements.
2363void GnuHashTableSection::addSymbols(std::vector<SymbolTableEntry> &v) {
2364  // We cannot use 'auto' for Mid because GCC 6.1 cannot deduce
2365  // its type correctly.
2366  std::vector<SymbolTableEntry>::iterator mid =
2367      std::stable_partition(v.begin(), v.end(), [&](const SymbolTableEntry &s) {
2368        return !s.sym->isDefined() || s.sym->partition != partition;
2369      });
2370
2371  // We chose load factor 4 for the on-disk hash table. For each hash
2372  // collision, the dynamic linker will compare a uint32_t hash value.
2373  // Since the integer comparison is quite fast, we believe we can
2374  // make the load factor even larger. 4 is just a conservative choice.
2375  //
2376  // Note that we don't want to create a zero-sized hash table because
2377  // Android loader as of 2018 doesn't like a .gnu.hash containing such
2378  // table. If that's the case, we create a hash table with one unused
2379  // dummy slot.
2380  nBuckets = std::max<size_t>((v.end() - mid) / 4, 1);
2381
2382  if (mid == v.end())
2383    return;
2384
2385  for (SymbolTableEntry &ent : llvm::make_range(mid, v.end())) {
2386    Symbol *b = ent.sym;
2387    uint32_t hash = hashGnu(b->getName());
2388    uint32_t bucketIdx = hash % nBuckets;
2389    symbols.push_back({b, ent.strTabOffset, hash, bucketIdx});
2390  }
2391
2392  llvm::stable_sort(symbols, [](const Entry &l, const Entry &r) {
2393    return l.bucketIdx < r.bucketIdx;
2394  });
2395
2396  v.erase(mid, v.end());
2397  for (const Entry &ent : symbols)
2398    v.push_back({ent.sym, ent.strTabOffset});
2399}
2400
2401HashTableSection::HashTableSection()
2402    : SyntheticSection(SHF_ALLOC, SHT_HASH, 4, ".hash") {
2403  this->entsize = 4;
2404}
2405
2406void HashTableSection::finalizeContents() {
2407  SymbolTableBaseSection *symTab = getPartition().dynSymTab;
2408
2409  if (OutputSection *sec = symTab->getParent())
2410    getParent()->link = sec->sectionIndex;
2411
2412  unsigned numEntries = 2;               // nbucket and nchain.
2413  numEntries += symTab->getNumSymbols(); // The chain entries.
2414
2415  // Create as many buckets as there are symbols.
2416  numEntries += symTab->getNumSymbols();
2417  this->size = numEntries * 4;
2418}
2419
2420void HashTableSection::writeTo(uint8_t *buf) {
2421  SymbolTableBaseSection *symTab = getPartition().dynSymTab;
2422
2423  // See comment in GnuHashTableSection::writeTo.
2424  memset(buf, 0, size);
2425
2426  unsigned numSymbols = symTab->getNumSymbols();
2427
2428  uint32_t *p = reinterpret_cast<uint32_t *>(buf);
2429  write32(p++, numSymbols); // nbucket
2430  write32(p++, numSymbols); // nchain
2431
2432  uint32_t *buckets = p;
2433  uint32_t *chains = p + numSymbols;
2434
2435  for (const SymbolTableEntry &s : symTab->getSymbols()) {
2436    Symbol *sym = s.sym;
2437    StringRef name = sym->getName();
2438    unsigned i = sym->dynsymIndex;
2439    uint32_t hash = hashSysV(name) % numSymbols;
2440    chains[i] = buckets[hash];
2441    write32(buckets + hash, i);
2442  }
2443}
2444
2445PltSection::PltSection()
2446    : SyntheticSection(SHF_ALLOC | SHF_EXECINSTR, SHT_PROGBITS, 16, ".plt"),
2447      headerSize(target->pltHeaderSize) {
2448  // On PowerPC, this section contains lazy symbol resolvers.
2449  if (config->emachine == EM_PPC64) {
2450    name = ".glink";
2451    alignment = 4;
2452  }
2453
2454  // On x86 when IBT is enabled, this section contains the second PLT (lazy
2455  // symbol resolvers).
2456  if ((config->emachine == EM_386 || config->emachine == EM_X86_64) &&
2457      (config->andFeatures & GNU_PROPERTY_X86_FEATURE_1_IBT))
2458    name = ".plt.sec";
2459
2460  // The PLT needs to be writable on SPARC as the dynamic linker will
2461  // modify the instructions in the PLT entries.
2462  if (config->emachine == EM_SPARCV9)
2463    this->flags |= SHF_WRITE;
2464}
2465
2466void PltSection::writeTo(uint8_t *buf) {
2467  // At beginning of PLT, we have code to call the dynamic
2468  // linker to resolve dynsyms at runtime. Write such code.
2469  target->writePltHeader(buf);
2470  size_t off = headerSize;
2471
2472  for (const Symbol *sym : entries) {
2473    target->writePlt(buf + off, *sym, getVA() + off);
2474    off += target->pltEntrySize;
2475  }
2476}
2477
2478void PltSection::addEntry(Symbol &sym) {
2479  sym.pltIndex = entries.size();
2480  entries.push_back(&sym);
2481}
2482
2483size_t PltSection::getSize() const {
2484  return headerSize + entries.size() * target->pltEntrySize;
2485}
2486
2487bool PltSection::isNeeded() const {
2488  // For -z retpolineplt, .iplt needs the .plt header.
2489  return !entries.empty() || (config->zRetpolineplt && in.iplt->isNeeded());
2490}
2491
2492// Used by ARM to add mapping symbols in the PLT section, which aid
2493// disassembly.
2494void PltSection::addSymbols() {
2495  target->addPltHeaderSymbols(*this);
2496
2497  size_t off = headerSize;
2498  for (size_t i = 0; i < entries.size(); ++i) {
2499    target->addPltSymbols(*this, off);
2500    off += target->pltEntrySize;
2501  }
2502}
2503
2504IpltSection::IpltSection()
2505    : SyntheticSection(SHF_ALLOC | SHF_EXECINSTR, SHT_PROGBITS, 16, ".iplt") {
2506  if (config->emachine == EM_PPC || config->emachine == EM_PPC64) {
2507    name = ".glink";
2508    alignment = 4;
2509  }
2510}
2511
2512void IpltSection::writeTo(uint8_t *buf) {
2513  uint32_t off = 0;
2514  for (const Symbol *sym : entries) {
2515    target->writeIplt(buf + off, *sym, getVA() + off);
2516    off += target->ipltEntrySize;
2517  }
2518}
2519
2520size_t IpltSection::getSize() const {
2521  return entries.size() * target->ipltEntrySize;
2522}
2523
2524void IpltSection::addEntry(Symbol &sym) {
2525  sym.pltIndex = entries.size();
2526  entries.push_back(&sym);
2527}
2528
2529// ARM uses mapping symbols to aid disassembly.
2530void IpltSection::addSymbols() {
2531  size_t off = 0;
2532  for (size_t i = 0, e = entries.size(); i != e; ++i) {
2533    target->addPltSymbols(*this, off);
2534    off += target->pltEntrySize;
2535  }
2536}
2537
2538PPC32GlinkSection::PPC32GlinkSection() {
2539  name = ".glink";
2540  alignment = 4;
2541}
2542
2543void PPC32GlinkSection::writeTo(uint8_t *buf) {
2544  writePPC32GlinkSection(buf, entries.size());
2545}
2546
2547size_t PPC32GlinkSection::getSize() const {
2548  return headerSize + entries.size() * target->pltEntrySize + footerSize;
2549}
2550
2551// This is an x86-only extra PLT section and used only when a security
2552// enhancement feature called CET is enabled. In this comment, I'll explain what
2553// the feature is and why we have two PLT sections if CET is enabled.
2554//
2555// So, what does CET do? CET introduces a new restriction to indirect jump
2556// instructions. CET works this way. Assume that CET is enabled. Then, if you
2557// execute an indirect jump instruction, the processor verifies that a special
2558// "landing pad" instruction (which is actually a repurposed NOP instruction and
2559// now called "endbr32" or "endbr64") is at the jump target. If the jump target
2560// does not start with that instruction, the processor raises an exception
2561// instead of continuing executing code.
2562//
2563// If CET is enabled, the compiler emits endbr to all locations where indirect
2564// jumps may jump to.
2565//
2566// This mechanism makes it extremely hard to transfer the control to a middle of
2567// a function that is not supporsed to be a indirect jump target, preventing
2568// certain types of attacks such as ROP or JOP.
2569//
2570// Note that the processors in the market as of 2019 don't actually support the
2571// feature. Only the spec is available at the moment.
2572//
2573// Now, I'll explain why we have this extra PLT section for CET.
2574//
2575// Since you can indirectly jump to a PLT entry, we have to make PLT entries
2576// start with endbr. The problem is there's no extra space for endbr (which is 4
2577// bytes long), as the PLT entry is only 16 bytes long and all bytes are already
2578// used.
2579//
2580// In order to deal with the issue, we split a PLT entry into two PLT entries.
2581// Remember that each PLT entry contains code to jump to an address read from
2582// .got.plt AND code to resolve a dynamic symbol lazily. With the 2-PLT scheme,
2583// the former code is written to .plt.sec, and the latter code is written to
2584// .plt.
2585//
2586// Lazy symbol resolution in the 2-PLT scheme works in the usual way, except
2587// that the regular .plt is now called .plt.sec and .plt is repurposed to
2588// contain only code for lazy symbol resolution.
2589//
2590// In other words, this is how the 2-PLT scheme works. Application code is
2591// supposed to jump to .plt.sec to call an external function. Each .plt.sec
2592// entry contains code to read an address from a corresponding .got.plt entry
2593// and jump to that address. Addresses in .got.plt initially point to .plt, so
2594// when an application calls an external function for the first time, the
2595// control is transferred to a function that resolves a symbol name from
2596// external shared object files. That function then rewrites a .got.plt entry
2597// with a resolved address, so that the subsequent function calls directly jump
2598// to a desired location from .plt.sec.
2599//
2600// There is an open question as to whether the 2-PLT scheme was desirable or
2601// not. We could have simply extended the PLT entry size to 32-bytes to
2602// accommodate endbr, and that scheme would have been much simpler than the
2603// 2-PLT scheme. One reason to split PLT was, by doing that, we could keep hot
2604// code (.plt.sec) from cold code (.plt). But as far as I know no one proved
2605// that the optimization actually makes a difference.
2606//
2607// That said, the 2-PLT scheme is a part of the ABI, debuggers and other tools
2608// depend on it, so we implement the ABI.
2609IBTPltSection::IBTPltSection()
2610    : SyntheticSection(SHF_ALLOC | SHF_EXECINSTR, SHT_PROGBITS, 16, ".plt") {}
2611
2612void IBTPltSection::writeTo(uint8_t *buf) {
2613  target->writeIBTPlt(buf, in.plt->getNumEntries());
2614}
2615
2616size_t IBTPltSection::getSize() const {
2617  // 16 is the header size of .plt.
2618  return 16 + in.plt->getNumEntries() * target->pltEntrySize;
2619}
2620
2621// The string hash function for .gdb_index.
2622static uint32_t computeGdbHash(StringRef s) {
2623  uint32_t h = 0;
2624  for (uint8_t c : s)
2625    h = h * 67 + toLower(c) - 113;
2626  return h;
2627}
2628
2629GdbIndexSection::GdbIndexSection()
2630    : SyntheticSection(0, SHT_PROGBITS, 1, ".gdb_index") {}
2631
2632// Returns the desired size of an on-disk hash table for a .gdb_index section.
2633// There's a tradeoff between size and collision rate. We aim 75% utilization.
2634size_t GdbIndexSection::computeSymtabSize() const {
2635  return std::max<size_t>(NextPowerOf2(symbols.size() * 4 / 3), 1024);
2636}
2637
2638// Compute the output section size.
2639void GdbIndexSection::initOutputSize() {
2640  size = sizeof(GdbIndexHeader) + computeSymtabSize() * 8;
2641
2642  for (GdbChunk &chunk : chunks)
2643    size += chunk.compilationUnits.size() * 16 + chunk.addressAreas.size() * 20;
2644
2645  // Add the constant pool size if exists.
2646  if (!symbols.empty()) {
2647    GdbSymbol &sym = symbols.back();
2648    size += sym.nameOff + sym.name.size() + 1;
2649  }
2650}
2651
2652static std::vector<InputSection *> getDebugInfoSections() {
2653  std::vector<InputSection *> ret;
2654  for (InputSectionBase *s : inputSections)
2655    if (InputSection *isec = dyn_cast<InputSection>(s))
2656      if (isec->name == ".debug_info")
2657        ret.push_back(isec);
2658  return ret;
2659}
2660
2661static std::vector<GdbIndexSection::CuEntry> readCuList(DWARFContext &dwarf) {
2662  std::vector<GdbIndexSection::CuEntry> ret;
2663  for (std::unique_ptr<DWARFUnit> &cu : dwarf.compile_units())
2664    ret.push_back({cu->getOffset(), cu->getLength() + 4});
2665  return ret;
2666}
2667
2668static std::vector<GdbIndexSection::AddressEntry>
2669readAddressAreas(DWARFContext &dwarf, InputSection *sec) {
2670  std::vector<GdbIndexSection::AddressEntry> ret;
2671
2672  uint32_t cuIdx = 0;
2673  for (std::unique_ptr<DWARFUnit> &cu : dwarf.compile_units()) {
2674    if (Error e = cu->tryExtractDIEsIfNeeded(false)) {
2675      error(toString(sec) + ": " + toString(std::move(e)));
2676      return {};
2677    }
2678    Expected<DWARFAddressRangesVector> ranges = cu->collectAddressRanges();
2679    if (!ranges) {
2680      error(toString(sec) + ": " + toString(ranges.takeError()));
2681      return {};
2682    }
2683
2684    ArrayRef<InputSectionBase *> sections = sec->file->getSections();
2685    for (DWARFAddressRange &r : *ranges) {
2686      if (r.SectionIndex == -1ULL)
2687        continue;
2688      InputSectionBase *s = sections[r.SectionIndex];
2689      if (!s || s == &InputSection::discarded || !s->isLive())
2690        continue;
2691      // Range list with zero size has no effect.
2692      if (r.LowPC == r.HighPC)
2693        continue;
2694      auto *isec = cast<InputSection>(s);
2695      uint64_t offset = isec->getOffsetInFile();
2696      ret.push_back({isec, r.LowPC - offset, r.HighPC - offset, cuIdx});
2697    }
2698    ++cuIdx;
2699  }
2700
2701  return ret;
2702}
2703
2704template <class ELFT>
2705static std::vector<GdbIndexSection::NameAttrEntry>
2706readPubNamesAndTypes(const LLDDwarfObj<ELFT> &obj,
2707                     const std::vector<GdbIndexSection::CuEntry> &cus) {
2708  const DWARFSection &pubNames = obj.getGnuPubnamesSection();
2709  const DWARFSection &pubTypes = obj.getGnuPubtypesSection();
2710
2711  std::vector<GdbIndexSection::NameAttrEntry> ret;
2712  for (const DWARFSection *pub : {&pubNames, &pubTypes}) {
2713    DWARFDebugPubTable table(obj, *pub, config->isLE, true);
2714    for (const DWARFDebugPubTable::Set &set : table.getData()) {
2715      // The value written into the constant pool is kind << 24 | cuIndex. As we
2716      // don't know how many compilation units precede this object to compute
2717      // cuIndex, we compute (kind << 24 | cuIndexInThisObject) instead, and add
2718      // the number of preceding compilation units later.
2719      uint32_t i = llvm::partition_point(cus,
2720                                         [&](GdbIndexSection::CuEntry cu) {
2721                                           return cu.cuOffset < set.Offset;
2722                                         }) -
2723                   cus.begin();
2724      for (const DWARFDebugPubTable::Entry &ent : set.Entries)
2725        ret.push_back({{ent.Name, computeGdbHash(ent.Name)},
2726                       (ent.Descriptor.toBits() << 24) | i});
2727    }
2728  }
2729  return ret;
2730}
2731
2732// Create a list of symbols from a given list of symbol names and types
2733// by uniquifying them by name.
2734static std::vector<GdbIndexSection::GdbSymbol>
2735createSymbols(ArrayRef<std::vector<GdbIndexSection::NameAttrEntry>> nameAttrs,
2736              const std::vector<GdbIndexSection::GdbChunk> &chunks) {
2737  using GdbSymbol = GdbIndexSection::GdbSymbol;
2738  using NameAttrEntry = GdbIndexSection::NameAttrEntry;
2739
2740  // For each chunk, compute the number of compilation units preceding it.
2741  uint32_t cuIdx = 0;
2742  std::vector<uint32_t> cuIdxs(chunks.size());
2743  for (uint32_t i = 0, e = chunks.size(); i != e; ++i) {
2744    cuIdxs[i] = cuIdx;
2745    cuIdx += chunks[i].compilationUnits.size();
2746  }
2747
2748  // The number of symbols we will handle in this function is of the order
2749  // of millions for very large executables, so we use multi-threading to
2750  // speed it up.
2751  size_t numShards = 32;
2752  size_t concurrency = 1;
2753  if (threadsEnabled)
2754    concurrency =
2755        std::min<size_t>(PowerOf2Floor(hardware_concurrency()), numShards);
2756
2757  // A sharded map to uniquify symbols by name.
2758  std::vector<DenseMap<CachedHashStringRef, size_t>> map(numShards);
2759  size_t shift = 32 - countTrailingZeros(numShards);
2760
2761  // Instantiate GdbSymbols while uniqufying them by name.
2762  std::vector<std::vector<GdbSymbol>> symbols(numShards);
2763  parallelForEachN(0, concurrency, [&](size_t threadId) {
2764    uint32_t i = 0;
2765    for (ArrayRef<NameAttrEntry> entries : nameAttrs) {
2766      for (const NameAttrEntry &ent : entries) {
2767        size_t shardId = ent.name.hash() >> shift;
2768        if ((shardId & (concurrency - 1)) != threadId)
2769          continue;
2770
2771        uint32_t v = ent.cuIndexAndAttrs + cuIdxs[i];
2772        size_t &idx = map[shardId][ent.name];
2773        if (idx) {
2774          symbols[shardId][idx - 1].cuVector.push_back(v);
2775          continue;
2776        }
2777
2778        idx = symbols[shardId].size() + 1;
2779        symbols[shardId].push_back({ent.name, {v}, 0, 0});
2780      }
2781      ++i;
2782    }
2783  });
2784
2785  size_t numSymbols = 0;
2786  for (ArrayRef<GdbSymbol> v : symbols)
2787    numSymbols += v.size();
2788
2789  // The return type is a flattened vector, so we'll copy each vector
2790  // contents to Ret.
2791  std::vector<GdbSymbol> ret;
2792  ret.reserve(numSymbols);
2793  for (std::vector<GdbSymbol> &vec : symbols)
2794    for (GdbSymbol &sym : vec)
2795      ret.push_back(std::move(sym));
2796
2797  // CU vectors and symbol names are adjacent in the output file.
2798  // We can compute their offsets in the output file now.
2799  size_t off = 0;
2800  for (GdbSymbol &sym : ret) {
2801    sym.cuVectorOff = off;
2802    off += (sym.cuVector.size() + 1) * 4;
2803  }
2804  for (GdbSymbol &sym : ret) {
2805    sym.nameOff = off;
2806    off += sym.name.size() + 1;
2807  }
2808
2809  return ret;
2810}
2811
2812// Returns a newly-created .gdb_index section.
2813template <class ELFT> GdbIndexSection *GdbIndexSection::create() {
2814  std::vector<InputSection *> sections = getDebugInfoSections();
2815
2816  // .debug_gnu_pub{names,types} are useless in executables.
2817  // They are present in input object files solely for creating
2818  // a .gdb_index. So we can remove them from the output.
2819  for (InputSectionBase *s : inputSections)
2820    if (s->name == ".debug_gnu_pubnames" || s->name == ".debug_gnu_pubtypes")
2821      s->markDead();
2822
2823  std::vector<GdbChunk> chunks(sections.size());
2824  std::vector<std::vector<NameAttrEntry>> nameAttrs(sections.size());
2825
2826  parallelForEachN(0, sections.size(), [&](size_t i) {
2827    ObjFile<ELFT> *file = sections[i]->getFile<ELFT>();
2828    DWARFContext dwarf(std::make_unique<LLDDwarfObj<ELFT>>(file));
2829
2830    chunks[i].sec = sections[i];
2831    chunks[i].compilationUnits = readCuList(dwarf);
2832    chunks[i].addressAreas = readAddressAreas(dwarf, sections[i]);
2833    nameAttrs[i] = readPubNamesAndTypes<ELFT>(
2834        static_cast<const LLDDwarfObj<ELFT> &>(dwarf.getDWARFObj()),
2835        chunks[i].compilationUnits);
2836  });
2837
2838  auto *ret = make<GdbIndexSection>();
2839  ret->chunks = std::move(chunks);
2840  ret->symbols = createSymbols(nameAttrs, ret->chunks);
2841  ret->initOutputSize();
2842  return ret;
2843}
2844
2845void GdbIndexSection::writeTo(uint8_t *buf) {
2846  // Write the header.
2847  auto *hdr = reinterpret_cast<GdbIndexHeader *>(buf);
2848  uint8_t *start = buf;
2849  hdr->version = 7;
2850  buf += sizeof(*hdr);
2851
2852  // Write the CU list.
2853  hdr->cuListOff = buf - start;
2854  for (GdbChunk &chunk : chunks) {
2855    for (CuEntry &cu : chunk.compilationUnits) {
2856      write64le(buf, chunk.sec->outSecOff + cu.cuOffset);
2857      write64le(buf + 8, cu.cuLength);
2858      buf += 16;
2859    }
2860  }
2861
2862  // Write the address area.
2863  hdr->cuTypesOff = buf - start;
2864  hdr->addressAreaOff = buf - start;
2865  uint32_t cuOff = 0;
2866  for (GdbChunk &chunk : chunks) {
2867    for (AddressEntry &e : chunk.addressAreas) {
2868      uint64_t baseAddr = e.section->getVA(0);
2869      write64le(buf, baseAddr + e.lowAddress);
2870      write64le(buf + 8, baseAddr + e.highAddress);
2871      write32le(buf + 16, e.cuIndex + cuOff);
2872      buf += 20;
2873    }
2874    cuOff += chunk.compilationUnits.size();
2875  }
2876
2877  // Write the on-disk open-addressing hash table containing symbols.
2878  hdr->symtabOff = buf - start;
2879  size_t symtabSize = computeSymtabSize();
2880  uint32_t mask = symtabSize - 1;
2881
2882  for (GdbSymbol &sym : symbols) {
2883    uint32_t h = sym.name.hash();
2884    uint32_t i = h & mask;
2885    uint32_t step = ((h * 17) & mask) | 1;
2886
2887    while (read32le(buf + i * 8))
2888      i = (i + step) & mask;
2889
2890    write32le(buf + i * 8, sym.nameOff);
2891    write32le(buf + i * 8 + 4, sym.cuVectorOff);
2892  }
2893
2894  buf += symtabSize * 8;
2895
2896  // Write the string pool.
2897  hdr->constantPoolOff = buf - start;
2898  parallelForEach(symbols, [&](GdbSymbol &sym) {
2899    memcpy(buf + sym.nameOff, sym.name.data(), sym.name.size());
2900  });
2901
2902  // Write the CU vectors.
2903  for (GdbSymbol &sym : symbols) {
2904    write32le(buf, sym.cuVector.size());
2905    buf += 4;
2906    for (uint32_t val : sym.cuVector) {
2907      write32le(buf, val);
2908      buf += 4;
2909    }
2910  }
2911}
2912
2913bool GdbIndexSection::isNeeded() const { return !chunks.empty(); }
2914
2915EhFrameHeader::EhFrameHeader()
2916    : SyntheticSection(SHF_ALLOC, SHT_PROGBITS, 4, ".eh_frame_hdr") {}
2917
2918void EhFrameHeader::writeTo(uint8_t *buf) {
2919  // Unlike most sections, the EhFrameHeader section is written while writing
2920  // another section, namely EhFrameSection, which calls the write() function
2921  // below from its writeTo() function. This is necessary because the contents
2922  // of EhFrameHeader depend on the relocated contents of EhFrameSection and we
2923  // don't know which order the sections will be written in.
2924}
2925
2926// .eh_frame_hdr contains a binary search table of pointers to FDEs.
2927// Each entry of the search table consists of two values,
2928// the starting PC from where FDEs covers, and the FDE's address.
2929// It is sorted by PC.
2930void EhFrameHeader::write() {
2931  uint8_t *buf = Out::bufferStart + getParent()->offset + outSecOff;
2932  using FdeData = EhFrameSection::FdeData;
2933
2934  std::vector<FdeData> fdes = getPartition().ehFrame->getFdeData();
2935
2936  buf[0] = 1;
2937  buf[1] = DW_EH_PE_pcrel | DW_EH_PE_sdata4;
2938  buf[2] = DW_EH_PE_udata4;
2939  buf[3] = DW_EH_PE_datarel | DW_EH_PE_sdata4;
2940  write32(buf + 4,
2941          getPartition().ehFrame->getParent()->addr - this->getVA() - 4);
2942  write32(buf + 8, fdes.size());
2943  buf += 12;
2944
2945  for (FdeData &fde : fdes) {
2946    write32(buf, fde.pcRel);
2947    write32(buf + 4, fde.fdeVARel);
2948    buf += 8;
2949  }
2950}
2951
2952size_t EhFrameHeader::getSize() const {
2953  // .eh_frame_hdr has a 12 bytes header followed by an array of FDEs.
2954  return 12 + getPartition().ehFrame->numFdes * 8;
2955}
2956
2957bool EhFrameHeader::isNeeded() const {
2958  return isLive() && getPartition().ehFrame->isNeeded();
2959}
2960
2961VersionDefinitionSection::VersionDefinitionSection()
2962    : SyntheticSection(SHF_ALLOC, SHT_GNU_verdef, sizeof(uint32_t),
2963                       ".gnu.version_d") {}
2964
2965StringRef VersionDefinitionSection::getFileDefName() {
2966  if (!getPartition().name.empty())
2967    return getPartition().name;
2968  if (!config->soName.empty())
2969    return config->soName;
2970  return config->outputFile;
2971}
2972
2973void VersionDefinitionSection::finalizeContents() {
2974  fileDefNameOff = getPartition().dynStrTab->addString(getFileDefName());
2975  for (const VersionDefinition &v : namedVersionDefs())
2976    verDefNameOffs.push_back(getPartition().dynStrTab->addString(v.name));
2977
2978  if (OutputSection *sec = getPartition().dynStrTab->getParent())
2979    getParent()->link = sec->sectionIndex;
2980
2981  // sh_info should be set to the number of definitions. This fact is missed in
2982  // documentation, but confirmed by binutils community:
2983  // https://sourceware.org/ml/binutils/2014-11/msg00355.html
2984  getParent()->info = getVerDefNum();
2985}
2986
2987void VersionDefinitionSection::writeOne(uint8_t *buf, uint32_t index,
2988                                        StringRef name, size_t nameOff) {
2989  uint16_t flags = index == 1 ? VER_FLG_BASE : 0;
2990
2991  // Write a verdef.
2992  write16(buf, 1);                  // vd_version
2993  write16(buf + 2, flags);          // vd_flags
2994  write16(buf + 4, index);          // vd_ndx
2995  write16(buf + 6, 1);              // vd_cnt
2996  write32(buf + 8, hashSysV(name)); // vd_hash
2997  write32(buf + 12, 20);            // vd_aux
2998  write32(buf + 16, 28);            // vd_next
2999
3000  // Write a veraux.
3001  write32(buf + 20, nameOff); // vda_name
3002  write32(buf + 24, 0);       // vda_next
3003}
3004
3005void VersionDefinitionSection::writeTo(uint8_t *buf) {
3006  writeOne(buf, 1, getFileDefName(), fileDefNameOff);
3007
3008  auto nameOffIt = verDefNameOffs.begin();
3009  for (const VersionDefinition &v : namedVersionDefs()) {
3010    buf += EntrySize;
3011    writeOne(buf, v.id, v.name, *nameOffIt++);
3012  }
3013
3014  // Need to terminate the last version definition.
3015  write32(buf + 16, 0); // vd_next
3016}
3017
3018size_t VersionDefinitionSection::getSize() const {
3019  return EntrySize * getVerDefNum();
3020}
3021
3022// .gnu.version is a table where each entry is 2 byte long.
3023VersionTableSection::VersionTableSection()
3024    : SyntheticSection(SHF_ALLOC, SHT_GNU_versym, sizeof(uint16_t),
3025                       ".gnu.version") {
3026  this->entsize = 2;
3027}
3028
3029void VersionTableSection::finalizeContents() {
3030  // At the moment of june 2016 GNU docs does not mention that sh_link field
3031  // should be set, but Sun docs do. Also readelf relies on this field.
3032  getParent()->link = getPartition().dynSymTab->getParent()->sectionIndex;
3033}
3034
3035size_t VersionTableSection::getSize() const {
3036  return (getPartition().dynSymTab->getSymbols().size() + 1) * 2;
3037}
3038
3039void VersionTableSection::writeTo(uint8_t *buf) {
3040  buf += 2;
3041  for (const SymbolTableEntry &s : getPartition().dynSymTab->getSymbols()) {
3042    write16(buf, s.sym->versionId);
3043    buf += 2;
3044  }
3045}
3046
3047bool VersionTableSection::isNeeded() const {
3048  return isLive() &&
3049         (getPartition().verDef || getPartition().verNeed->isNeeded());
3050}
3051
3052void addVerneed(Symbol *ss) {
3053  auto &file = cast<SharedFile>(*ss->file);
3054  if (ss->verdefIndex == VER_NDX_GLOBAL) {
3055    ss->versionId = VER_NDX_GLOBAL;
3056    return;
3057  }
3058
3059  if (file.vernauxs.empty())
3060    file.vernauxs.resize(file.verdefs.size());
3061
3062  // Select a version identifier for the vernaux data structure, if we haven't
3063  // already allocated one. The verdef identifiers cover the range
3064  // [1..getVerDefNum()]; this causes the vernaux identifiers to start from
3065  // getVerDefNum()+1.
3066  if (file.vernauxs[ss->verdefIndex] == 0)
3067    file.vernauxs[ss->verdefIndex] = ++SharedFile::vernauxNum + getVerDefNum();
3068
3069  ss->versionId = file.vernauxs[ss->verdefIndex];
3070}
3071
3072template <class ELFT>
3073VersionNeedSection<ELFT>::VersionNeedSection()
3074    : SyntheticSection(SHF_ALLOC, SHT_GNU_verneed, sizeof(uint32_t),
3075                       ".gnu.version_r") {}
3076
3077template <class ELFT> void VersionNeedSection<ELFT>::finalizeContents() {
3078  for (SharedFile *f : sharedFiles) {
3079    if (f->vernauxs.empty())
3080      continue;
3081    verneeds.emplace_back();
3082    Verneed &vn = verneeds.back();
3083    vn.nameStrTab = getPartition().dynStrTab->addString(f->soName);
3084    for (unsigned i = 0; i != f->vernauxs.size(); ++i) {
3085      if (f->vernauxs[i] == 0)
3086        continue;
3087      auto *verdef =
3088          reinterpret_cast<const typename ELFT::Verdef *>(f->verdefs[i]);
3089      vn.vernauxs.push_back(
3090          {verdef->vd_hash, f->vernauxs[i],
3091           getPartition().dynStrTab->addString(f->getStringTable().data() +
3092                                               verdef->getAux()->vda_name)});
3093    }
3094  }
3095
3096  if (OutputSection *sec = getPartition().dynStrTab->getParent())
3097    getParent()->link = sec->sectionIndex;
3098  getParent()->info = verneeds.size();
3099}
3100
3101template <class ELFT> void VersionNeedSection<ELFT>::writeTo(uint8_t *buf) {
3102  // The Elf_Verneeds need to appear first, followed by the Elf_Vernauxs.
3103  auto *verneed = reinterpret_cast<Elf_Verneed *>(buf);
3104  auto *vernaux = reinterpret_cast<Elf_Vernaux *>(verneed + verneeds.size());
3105
3106  for (auto &vn : verneeds) {
3107    // Create an Elf_Verneed for this DSO.
3108    verneed->vn_version = 1;
3109    verneed->vn_cnt = vn.vernauxs.size();
3110    verneed->vn_file = vn.nameStrTab;
3111    verneed->vn_aux =
3112        reinterpret_cast<char *>(vernaux) - reinterpret_cast<char *>(verneed);
3113    verneed->vn_next = sizeof(Elf_Verneed);
3114    ++verneed;
3115
3116    // Create the Elf_Vernauxs for this Elf_Verneed.
3117    for (auto &vna : vn.vernauxs) {
3118      vernaux->vna_hash = vna.hash;
3119      vernaux->vna_flags = 0;
3120      vernaux->vna_other = vna.verneedIndex;
3121      vernaux->vna_name = vna.nameStrTab;
3122      vernaux->vna_next = sizeof(Elf_Vernaux);
3123      ++vernaux;
3124    }
3125
3126    vernaux[-1].vna_next = 0;
3127  }
3128  verneed[-1].vn_next = 0;
3129}
3130
3131template <class ELFT> size_t VersionNeedSection<ELFT>::getSize() const {
3132  return verneeds.size() * sizeof(Elf_Verneed) +
3133         SharedFile::vernauxNum * sizeof(Elf_Vernaux);
3134}
3135
3136template <class ELFT> bool VersionNeedSection<ELFT>::isNeeded() const {
3137  return isLive() && SharedFile::vernauxNum != 0;
3138}
3139
3140void MergeSyntheticSection::addSection(MergeInputSection *ms) {
3141  ms->parent = this;
3142  sections.push_back(ms);
3143  assert(alignment == ms->alignment || !(ms->flags & SHF_STRINGS));
3144  alignment = std::max(alignment, ms->alignment);
3145}
3146
3147MergeTailSection::MergeTailSection(StringRef name, uint32_t type,
3148                                   uint64_t flags, uint32_t alignment)
3149    : MergeSyntheticSection(name, type, flags, alignment),
3150      builder(StringTableBuilder::RAW, alignment) {}
3151
3152size_t MergeTailSection::getSize() const { return builder.getSize(); }
3153
3154void MergeTailSection::writeTo(uint8_t *buf) { builder.write(buf); }
3155
3156void MergeTailSection::finalizeContents() {
3157  // Add all string pieces to the string table builder to create section
3158  // contents.
3159  for (MergeInputSection *sec : sections)
3160    for (size_t i = 0, e = sec->pieces.size(); i != e; ++i)
3161      if (sec->pieces[i].live)
3162        builder.add(sec->getData(i));
3163
3164  // Fix the string table content. After this, the contents will never change.
3165  builder.finalize();
3166
3167  // finalize() fixed tail-optimized strings, so we can now get
3168  // offsets of strings. Get an offset for each string and save it
3169  // to a corresponding SectionPiece for easy access.
3170  for (MergeInputSection *sec : sections)
3171    for (size_t i = 0, e = sec->pieces.size(); i != e; ++i)
3172      if (sec->pieces[i].live)
3173        sec->pieces[i].outputOff = builder.getOffset(sec->getData(i));
3174}
3175
3176void MergeNoTailSection::writeTo(uint8_t *buf) {
3177  for (size_t i = 0; i < numShards; ++i)
3178    shards[i].write(buf + shardOffsets[i]);
3179}
3180
3181// This function is very hot (i.e. it can take several seconds to finish)
3182// because sometimes the number of inputs is in an order of magnitude of
3183// millions. So, we use multi-threading.
3184//
3185// For any strings S and T, we know S is not mergeable with T if S's hash
3186// value is different from T's. If that's the case, we can safely put S and
3187// T into different string builders without worrying about merge misses.
3188// We do it in parallel.
3189void MergeNoTailSection::finalizeContents() {
3190  // Initializes string table builders.
3191  for (size_t i = 0; i < numShards; ++i)
3192    shards.emplace_back(StringTableBuilder::RAW, alignment);
3193
3194  // Concurrency level. Must be a power of 2 to avoid expensive modulo
3195  // operations in the following tight loop.
3196  size_t concurrency = 1;
3197  if (threadsEnabled)
3198    concurrency =
3199        std::min<size_t>(PowerOf2Floor(hardware_concurrency()), numShards);
3200
3201  // Add section pieces to the builders.
3202  parallelForEachN(0, concurrency, [&](size_t threadId) {
3203    for (MergeInputSection *sec : sections) {
3204      for (size_t i = 0, e = sec->pieces.size(); i != e; ++i) {
3205        if (!sec->pieces[i].live)
3206          continue;
3207        size_t shardId = getShardId(sec->pieces[i].hash);
3208        if ((shardId & (concurrency - 1)) == threadId)
3209          sec->pieces[i].outputOff = shards[shardId].add(sec->getData(i));
3210      }
3211    }
3212  });
3213
3214  // Compute an in-section offset for each shard.
3215  size_t off = 0;
3216  for (size_t i = 0; i < numShards; ++i) {
3217    shards[i].finalizeInOrder();
3218    if (shards[i].getSize() > 0)
3219      off = alignTo(off, alignment);
3220    shardOffsets[i] = off;
3221    off += shards[i].getSize();
3222  }
3223  size = off;
3224
3225  // So far, section pieces have offsets from beginning of shards, but
3226  // we want offsets from beginning of the whole section. Fix them.
3227  parallelForEach(sections, [&](MergeInputSection *sec) {
3228    for (size_t i = 0, e = sec->pieces.size(); i != e; ++i)
3229      if (sec->pieces[i].live)
3230        sec->pieces[i].outputOff +=
3231            shardOffsets[getShardId(sec->pieces[i].hash)];
3232  });
3233}
3234
3235MergeSyntheticSection *createMergeSynthetic(StringRef name, uint32_t type,
3236                                            uint64_t flags,
3237                                            uint32_t alignment) {
3238  bool shouldTailMerge = (flags & SHF_STRINGS) && config->optimize >= 2;
3239  if (shouldTailMerge)
3240    return make<MergeTailSection>(name, type, flags, alignment);
3241  return make<MergeNoTailSection>(name, type, flags, alignment);
3242}
3243
3244template <class ELFT> void splitSections() {
3245  // splitIntoPieces needs to be called on each MergeInputSection
3246  // before calling finalizeContents().
3247  parallelForEach(inputSections, [](InputSectionBase *sec) {
3248    if (auto *s = dyn_cast<MergeInputSection>(sec))
3249      s->splitIntoPieces();
3250    else if (auto *eh = dyn_cast<EhInputSection>(sec))
3251      eh->split<ELFT>();
3252  });
3253}
3254
3255MipsRldMapSection::MipsRldMapSection()
3256    : SyntheticSection(SHF_ALLOC | SHF_WRITE, SHT_PROGBITS, config->wordsize,
3257                       ".rld_map") {}
3258
3259ARMExidxSyntheticSection::ARMExidxSyntheticSection()
3260    : SyntheticSection(SHF_ALLOC | SHF_LINK_ORDER, SHT_ARM_EXIDX,
3261                       config->wordsize, ".ARM.exidx") {}
3262
3263static InputSection *findExidxSection(InputSection *isec) {
3264  for (InputSection *d : isec->dependentSections)
3265    if (d->type == SHT_ARM_EXIDX)
3266      return d;
3267  return nullptr;
3268}
3269
3270static bool isValidExidxSectionDep(InputSection *isec) {
3271  return (isec->flags & SHF_ALLOC) && (isec->flags & SHF_EXECINSTR) &&
3272         isec->getSize() > 0;
3273}
3274
3275bool ARMExidxSyntheticSection::addSection(InputSection *isec) {
3276  if (isec->type == SHT_ARM_EXIDX) {
3277    if (InputSection *dep = isec->getLinkOrderDep())
3278      if (isValidExidxSectionDep(dep))
3279        exidxSections.push_back(isec);
3280    return true;
3281  }
3282
3283  if (isValidExidxSectionDep(isec)) {
3284    executableSections.push_back(isec);
3285    return false;
3286  }
3287
3288  // FIXME: we do not output a relocation section when --emit-relocs is used
3289  // as we do not have relocation sections for linker generated table entries
3290  // and we would have to erase at a late stage relocations from merged entries.
3291  // Given that exception tables are already position independent and a binary
3292  // analyzer could derive the relocations we choose to erase the relocations.
3293  if (config->emitRelocs && isec->type == SHT_REL)
3294    if (InputSectionBase *ex = isec->getRelocatedSection())
3295      if (isa<InputSection>(ex) && ex->type == SHT_ARM_EXIDX)
3296        return true;
3297
3298  return false;
3299}
3300
3301// References to .ARM.Extab Sections have bit 31 clear and are not the
3302// special EXIDX_CANTUNWIND bit-pattern.
3303static bool isExtabRef(uint32_t unwind) {
3304  return (unwind & 0x80000000) == 0 && unwind != 0x1;
3305}
3306
3307// Return true if the .ARM.exidx section Cur can be merged into the .ARM.exidx
3308// section Prev, where Cur follows Prev in the table. This can be done if the
3309// unwinding instructions in Cur are identical to Prev. Linker generated
3310// EXIDX_CANTUNWIND entries are represented by nullptr as they do not have an
3311// InputSection.
3312static bool isDuplicateArmExidxSec(InputSection *prev, InputSection *cur) {
3313
3314  struct ExidxEntry {
3315    ulittle32_t fn;
3316    ulittle32_t unwind;
3317  };
3318  // Get the last table Entry from the previous .ARM.exidx section. If Prev is
3319  // nullptr then it will be a synthesized EXIDX_CANTUNWIND entry.
3320  ExidxEntry prevEntry = {ulittle32_t(0), ulittle32_t(1)};
3321  if (prev)
3322    prevEntry = prev->getDataAs<ExidxEntry>().back();
3323  if (isExtabRef(prevEntry.unwind))
3324    return false;
3325
3326  // We consider the unwind instructions of an .ARM.exidx table entry
3327  // a duplicate if the previous unwind instructions if:
3328  // - Both are the special EXIDX_CANTUNWIND.
3329  // - Both are the same inline unwind instructions.
3330  // We do not attempt to follow and check links into .ARM.extab tables as
3331  // consecutive identical entries are rare and the effort to check that they
3332  // are identical is high.
3333
3334  // If Cur is nullptr then this is synthesized EXIDX_CANTUNWIND entry.
3335  if (cur == nullptr)
3336    return prevEntry.unwind == 1;
3337
3338  for (const ExidxEntry entry : cur->getDataAs<ExidxEntry>())
3339    if (isExtabRef(entry.unwind) || entry.unwind != prevEntry.unwind)
3340      return false;
3341
3342  // All table entries in this .ARM.exidx Section can be merged into the
3343  // previous Section.
3344  return true;
3345}
3346
3347// The .ARM.exidx table must be sorted in ascending order of the address of the
3348// functions the table describes. Optionally duplicate adjacent table entries
3349// can be removed. At the end of the function the executableSections must be
3350// sorted in ascending order of address, Sentinel is set to the InputSection
3351// with the highest address and any InputSections that have mergeable
3352// .ARM.exidx table entries are removed from it.
3353void ARMExidxSyntheticSection::finalizeContents() {
3354  // The executableSections and exidxSections that we use to derive the final
3355  // contents of this SyntheticSection are populated before
3356  // processSectionCommands() and ICF. A /DISCARD/ entry in SECTIONS command or
3357  // ICF may remove executable InputSections and their dependent .ARM.exidx
3358  // section that we recorded earlier.
3359  auto isDiscarded = [](const InputSection *isec) { return !isec->isLive(); };
3360  llvm::erase_if(executableSections, isDiscarded);
3361  llvm::erase_if(exidxSections, isDiscarded);
3362
3363  // Sort the executable sections that may or may not have associated
3364  // .ARM.exidx sections by order of ascending address. This requires the
3365  // relative positions of InputSections to be known.
3366  auto compareByFilePosition = [](const InputSection *a,
3367                                  const InputSection *b) {
3368    OutputSection *aOut = a->getParent();
3369    OutputSection *bOut = b->getParent();
3370
3371    if (aOut != bOut)
3372      return aOut->sectionIndex < bOut->sectionIndex;
3373    return a->outSecOff < b->outSecOff;
3374  };
3375  llvm::stable_sort(executableSections, compareByFilePosition);
3376  sentinel = executableSections.back();
3377  // Optionally merge adjacent duplicate entries.
3378  if (config->mergeArmExidx) {
3379    std::vector<InputSection *> selectedSections;
3380    selectedSections.reserve(executableSections.size());
3381    selectedSections.push_back(executableSections[0]);
3382    size_t prev = 0;
3383    for (size_t i = 1; i < executableSections.size(); ++i) {
3384      InputSection *ex1 = findExidxSection(executableSections[prev]);
3385      InputSection *ex2 = findExidxSection(executableSections[i]);
3386      if (!isDuplicateArmExidxSec(ex1, ex2)) {
3387        selectedSections.push_back(executableSections[i]);
3388        prev = i;
3389      }
3390    }
3391    executableSections = std::move(selectedSections);
3392  }
3393
3394  size_t offset = 0;
3395  size = 0;
3396  for (InputSection *isec : executableSections) {
3397    if (InputSection *d = findExidxSection(isec)) {
3398      d->outSecOff = offset;
3399      d->parent = getParent();
3400      offset += d->getSize();
3401    } else {
3402      offset += 8;
3403    }
3404  }
3405  // Size includes Sentinel.
3406  size = offset + 8;
3407}
3408
3409InputSection *ARMExidxSyntheticSection::getLinkOrderDep() const {
3410  return executableSections.front();
3411}
3412
3413// To write the .ARM.exidx table from the ExecutableSections we have three cases
3414// 1.) The InputSection has a .ARM.exidx InputSection in its dependent sections.
3415//     We write the .ARM.exidx section contents and apply its relocations.
3416// 2.) The InputSection does not have a dependent .ARM.exidx InputSection. We
3417//     must write the contents of an EXIDX_CANTUNWIND directly. We use the
3418//     start of the InputSection as the purpose of the linker generated
3419//     section is to terminate the address range of the previous entry.
3420// 3.) A trailing EXIDX_CANTUNWIND sentinel section is required at the end of
3421//     the table to terminate the address range of the final entry.
3422void ARMExidxSyntheticSection::writeTo(uint8_t *buf) {
3423
3424  const uint8_t cantUnwindData[8] = {0, 0, 0, 0,  // PREL31 to target
3425                                     1, 0, 0, 0}; // EXIDX_CANTUNWIND
3426
3427  uint64_t offset = 0;
3428  for (InputSection *isec : executableSections) {
3429    assert(isec->getParent() != nullptr);
3430    if (InputSection *d = findExidxSection(isec)) {
3431      memcpy(buf + offset, d->data().data(), d->data().size());
3432      d->relocateAlloc(buf, buf + d->getSize());
3433      offset += d->getSize();
3434    } else {
3435      // A Linker generated CANTUNWIND section.
3436      memcpy(buf + offset, cantUnwindData, sizeof(cantUnwindData));
3437      uint64_t s = isec->getVA();
3438      uint64_t p = getVA() + offset;
3439      target->relocateOne(buf + offset, R_ARM_PREL31, s - p);
3440      offset += 8;
3441    }
3442  }
3443  // Write Sentinel.
3444  memcpy(buf + offset, cantUnwindData, sizeof(cantUnwindData));
3445  uint64_t s = sentinel->getVA(sentinel->getSize());
3446  uint64_t p = getVA() + offset;
3447  target->relocateOne(buf + offset, R_ARM_PREL31, s - p);
3448  assert(size == offset + 8);
3449}
3450
3451bool ARMExidxSyntheticSection::isNeeded() const {
3452  return llvm::find_if(exidxSections, [](InputSection *isec) {
3453           return isec->isLive();
3454         }) != exidxSections.end();
3455}
3456
3457bool ARMExidxSyntheticSection::classof(const SectionBase *d) {
3458  return d->kind() == InputSectionBase::Synthetic && d->type == SHT_ARM_EXIDX;
3459}
3460
3461ThunkSection::ThunkSection(OutputSection *os, uint64_t off)
3462    : SyntheticSection(SHF_ALLOC | SHF_EXECINSTR, SHT_PROGBITS, 4,
3463                       ".text.thunk") {
3464  this->parent = os;
3465  this->outSecOff = off;
3466}
3467
3468size_t ThunkSection::getSize() const {
3469  if (roundUpSizeForErrata)
3470    return alignTo(size, 4096);
3471  return size;
3472}
3473
3474void ThunkSection::addThunk(Thunk *t) {
3475  thunks.push_back(t);
3476  t->addSymbols(*this);
3477}
3478
3479void ThunkSection::writeTo(uint8_t *buf) {
3480  for (Thunk *t : thunks)
3481    t->writeTo(buf + t->offset);
3482}
3483
3484InputSection *ThunkSection::getTargetInputSection() const {
3485  if (thunks.empty())
3486    return nullptr;
3487  const Thunk *t = thunks.front();
3488  return t->getTargetInputSection();
3489}
3490
3491bool ThunkSection::assignOffsets() {
3492  uint64_t off = 0;
3493  for (Thunk *t : thunks) {
3494    off = alignTo(off, t->alignment);
3495    t->setOffset(off);
3496    uint32_t size = t->size();
3497    t->getThunkTargetSym()->size = size;
3498    off += size;
3499  }
3500  bool changed = off != size;
3501  size = off;
3502  return changed;
3503}
3504
3505PPC32Got2Section::PPC32Got2Section()
3506    : SyntheticSection(SHF_ALLOC | SHF_WRITE, SHT_PROGBITS, 4, ".got2") {}
3507
3508bool PPC32Got2Section::isNeeded() const {
3509  // See the comment below. This is not needed if there is no other
3510  // InputSection.
3511  for (BaseCommand *base : getParent()->sectionCommands)
3512    if (auto *isd = dyn_cast<InputSectionDescription>(base))
3513      for (InputSection *isec : isd->sections)
3514        if (isec != this)
3515          return true;
3516  return false;
3517}
3518
3519void PPC32Got2Section::finalizeContents() {
3520  // PPC32 may create multiple GOT sections for -fPIC/-fPIE, one per file in
3521  // .got2 . This function computes outSecOff of each .got2 to be used in
3522  // PPC32PltCallStub::writeTo(). The purpose of this empty synthetic section is
3523  // to collect input sections named ".got2".
3524  uint32_t offset = 0;
3525  for (BaseCommand *base : getParent()->sectionCommands)
3526    if (auto *isd = dyn_cast<InputSectionDescription>(base)) {
3527      for (InputSection *isec : isd->sections) {
3528        if (isec == this)
3529          continue;
3530        isec->file->ppc32Got2OutSecOff = offset;
3531        offset += (uint32_t)isec->getSize();
3532      }
3533    }
3534}
3535
3536// If linking position-dependent code then the table will store the addresses
3537// directly in the binary so the section has type SHT_PROGBITS. If linking
3538// position-independent code the section has type SHT_NOBITS since it will be
3539// allocated and filled in by the dynamic linker.
3540PPC64LongBranchTargetSection::PPC64LongBranchTargetSection()
3541    : SyntheticSection(SHF_ALLOC | SHF_WRITE,
3542                       config->isPic ? SHT_NOBITS : SHT_PROGBITS, 8,
3543                       ".branch_lt") {}
3544
3545uint64_t PPC64LongBranchTargetSection::getEntryVA(const Symbol *sym,
3546                                                  int64_t addend) {
3547  return getVA() + entry_index.find({sym, addend})->second * 8;
3548}
3549
3550Optional<uint32_t> PPC64LongBranchTargetSection::addEntry(const Symbol *sym,
3551                                                          int64_t addend) {
3552  auto res =
3553      entry_index.try_emplace(std::make_pair(sym, addend), entries.size());
3554  if (!res.second)
3555    return None;
3556  entries.emplace_back(sym, addend);
3557  return res.first->second;
3558}
3559
3560size_t PPC64LongBranchTargetSection::getSize() const {
3561  return entries.size() * 8;
3562}
3563
3564void PPC64LongBranchTargetSection::writeTo(uint8_t *buf) {
3565  // If linking non-pic we have the final addresses of the targets and they get
3566  // written to the table directly. For pic the dynamic linker will allocate
3567  // the section and fill it it.
3568  if (config->isPic)
3569    return;
3570
3571  for (auto entry : entries) {
3572    const Symbol *sym = entry.first;
3573    int64_t addend = entry.second;
3574    assert(sym->getVA());
3575    // Need calls to branch to the local entry-point since a long-branch
3576    // must be a local-call.
3577    write64(buf, sym->getVA(addend) +
3578                     getPPC64GlobalEntryToLocalEntryOffset(sym->stOther));
3579    buf += 8;
3580  }
3581}
3582
3583bool PPC64LongBranchTargetSection::isNeeded() const {
3584  // `removeUnusedSyntheticSections()` is called before thunk allocation which
3585  // is too early to determine if this section will be empty or not. We need
3586  // Finalized to keep the section alive until after thunk creation. Finalized
3587  // only gets set to true once `finalizeSections()` is called after thunk
3588  // creation. Because of this, if we don't create any long-branch thunks we end
3589  // up with an empty .branch_lt section in the binary.
3590  return !finalized || !entries.empty();
3591}
3592
3593static uint8_t getAbiVersion() {
3594  // MIPS non-PIC executable gets ABI version 1.
3595  if (config->emachine == EM_MIPS) {
3596    if (!config->isPic && !config->relocatable &&
3597        (config->eflags & (EF_MIPS_PIC | EF_MIPS_CPIC)) == EF_MIPS_CPIC)
3598      return 1;
3599    return 0;
3600  }
3601
3602  if (config->emachine == EM_AMDGPU) {
3603    uint8_t ver = objectFiles[0]->abiVersion;
3604    for (InputFile *file : makeArrayRef(objectFiles).slice(1))
3605      if (file->abiVersion != ver)
3606        error("incompatible ABI version: " + toString(file));
3607    return ver;
3608  }
3609
3610  return 0;
3611}
3612
3613template <typename ELFT> void writeEhdr(uint8_t *buf, Partition &part) {
3614  // For executable segments, the trap instructions are written before writing
3615  // the header. Setting Elf header bytes to zero ensures that any unused bytes
3616  // in header are zero-cleared, instead of having trap instructions.
3617  memset(buf, 0, sizeof(typename ELFT::Ehdr));
3618  memcpy(buf, "\177ELF", 4);
3619
3620  auto *eHdr = reinterpret_cast<typename ELFT::Ehdr *>(buf);
3621  eHdr->e_ident[EI_CLASS] = config->is64 ? ELFCLASS64 : ELFCLASS32;
3622  eHdr->e_ident[EI_DATA] = config->isLE ? ELFDATA2LSB : ELFDATA2MSB;
3623  eHdr->e_ident[EI_VERSION] = EV_CURRENT;
3624  eHdr->e_ident[EI_OSABI] = config->osabi;
3625  eHdr->e_ident[EI_ABIVERSION] = getAbiVersion();
3626  eHdr->e_machine = config->emachine;
3627  eHdr->e_version = EV_CURRENT;
3628  eHdr->e_flags = config->eflags;
3629  eHdr->e_ehsize = sizeof(typename ELFT::Ehdr);
3630  eHdr->e_phnum = part.phdrs.size();
3631  eHdr->e_shentsize = sizeof(typename ELFT::Shdr);
3632
3633  if (!config->relocatable) {
3634    eHdr->e_phoff = sizeof(typename ELFT::Ehdr);
3635    eHdr->e_phentsize = sizeof(typename ELFT::Phdr);
3636  }
3637}
3638
3639template <typename ELFT> void writePhdrs(uint8_t *buf, Partition &part) {
3640  // Write the program header table.
3641  auto *hBuf = reinterpret_cast<typename ELFT::Phdr *>(buf);
3642  for (PhdrEntry *p : part.phdrs) {
3643    hBuf->p_type = p->p_type;
3644    hBuf->p_flags = p->p_flags;
3645    hBuf->p_offset = p->p_offset;
3646    hBuf->p_vaddr = p->p_vaddr;
3647    hBuf->p_paddr = p->p_paddr;
3648    hBuf->p_filesz = p->p_filesz;
3649    hBuf->p_memsz = p->p_memsz;
3650    hBuf->p_align = p->p_align;
3651    ++hBuf;
3652  }
3653}
3654
3655template <typename ELFT>
3656PartitionElfHeaderSection<ELFT>::PartitionElfHeaderSection()
3657    : SyntheticSection(SHF_ALLOC, SHT_LLVM_PART_EHDR, 1, "") {}
3658
3659template <typename ELFT>
3660size_t PartitionElfHeaderSection<ELFT>::getSize() const {
3661  return sizeof(typename ELFT::Ehdr);
3662}
3663
3664template <typename ELFT>
3665void PartitionElfHeaderSection<ELFT>::writeTo(uint8_t *buf) {
3666  writeEhdr<ELFT>(buf, getPartition());
3667
3668  // Loadable partitions are always ET_DYN.
3669  auto *eHdr = reinterpret_cast<typename ELFT::Ehdr *>(buf);
3670  eHdr->e_type = ET_DYN;
3671}
3672
3673template <typename ELFT>
3674PartitionProgramHeadersSection<ELFT>::PartitionProgramHeadersSection()
3675    : SyntheticSection(SHF_ALLOC, SHT_LLVM_PART_PHDR, 1, ".phdrs") {}
3676
3677template <typename ELFT>
3678size_t PartitionProgramHeadersSection<ELFT>::getSize() const {
3679  return sizeof(typename ELFT::Phdr) * getPartition().phdrs.size();
3680}
3681
3682template <typename ELFT>
3683void PartitionProgramHeadersSection<ELFT>::writeTo(uint8_t *buf) {
3684  writePhdrs<ELFT>(buf, getPartition());
3685}
3686
3687PartitionIndexSection::PartitionIndexSection()
3688    : SyntheticSection(SHF_ALLOC, SHT_PROGBITS, 4, ".rodata") {}
3689
3690size_t PartitionIndexSection::getSize() const {
3691  return 12 * (partitions.size() - 1);
3692}
3693
3694void PartitionIndexSection::finalizeContents() {
3695  for (size_t i = 1; i != partitions.size(); ++i)
3696    partitions[i].nameStrTab = mainPart->dynStrTab->addString(partitions[i].name);
3697}
3698
3699void PartitionIndexSection::writeTo(uint8_t *buf) {
3700  uint64_t va = getVA();
3701  for (size_t i = 1; i != partitions.size(); ++i) {
3702    write32(buf, mainPart->dynStrTab->getVA() + partitions[i].nameStrTab - va);
3703    write32(buf + 4, partitions[i].elfHeader->getVA() - (va + 4));
3704
3705    SyntheticSection *next =
3706        i == partitions.size() - 1 ? in.partEnd : partitions[i + 1].elfHeader;
3707    write32(buf + 8, next->getVA() - partitions[i].elfHeader->getVA());
3708
3709    va += 12;
3710    buf += 12;
3711  }
3712}
3713
3714InStruct in;
3715
3716std::vector<Partition> partitions;
3717Partition *mainPart;
3718
3719template GdbIndexSection *GdbIndexSection::create<ELF32LE>();
3720template GdbIndexSection *GdbIndexSection::create<ELF32BE>();
3721template GdbIndexSection *GdbIndexSection::create<ELF64LE>();
3722template GdbIndexSection *GdbIndexSection::create<ELF64BE>();
3723
3724template void splitSections<ELF32LE>();
3725template void splitSections<ELF32BE>();
3726template void splitSections<ELF64LE>();
3727template void splitSections<ELF64BE>();
3728
3729template class MipsAbiFlagsSection<ELF32LE>;
3730template class MipsAbiFlagsSection<ELF32BE>;
3731template class MipsAbiFlagsSection<ELF64LE>;
3732template class MipsAbiFlagsSection<ELF64BE>;
3733
3734template class MipsOptionsSection<ELF32LE>;
3735template class MipsOptionsSection<ELF32BE>;
3736template class MipsOptionsSection<ELF64LE>;
3737template class MipsOptionsSection<ELF64BE>;
3738
3739template class MipsReginfoSection<ELF32LE>;
3740template class MipsReginfoSection<ELF32BE>;
3741template class MipsReginfoSection<ELF64LE>;
3742template class MipsReginfoSection<ELF64BE>;
3743
3744template class DynamicSection<ELF32LE>;
3745template class DynamicSection<ELF32BE>;
3746template class DynamicSection<ELF64LE>;
3747template class DynamicSection<ELF64BE>;
3748
3749template class RelocationSection<ELF32LE>;
3750template class RelocationSection<ELF32BE>;
3751template class RelocationSection<ELF64LE>;
3752template class RelocationSection<ELF64BE>;
3753
3754template class AndroidPackedRelocationSection<ELF32LE>;
3755template class AndroidPackedRelocationSection<ELF32BE>;
3756template class AndroidPackedRelocationSection<ELF64LE>;
3757template class AndroidPackedRelocationSection<ELF64BE>;
3758
3759template class RelrSection<ELF32LE>;
3760template class RelrSection<ELF32BE>;
3761template class RelrSection<ELF64LE>;
3762template class RelrSection<ELF64BE>;
3763
3764template class SymbolTableSection<ELF32LE>;
3765template class SymbolTableSection<ELF32BE>;
3766template class SymbolTableSection<ELF64LE>;
3767template class SymbolTableSection<ELF64BE>;
3768
3769template class VersionNeedSection<ELF32LE>;
3770template class VersionNeedSection<ELF32BE>;
3771template class VersionNeedSection<ELF64LE>;
3772template class VersionNeedSection<ELF64BE>;
3773
3774template void writeEhdr<ELF32LE>(uint8_t *Buf, Partition &Part);
3775template void writeEhdr<ELF32BE>(uint8_t *Buf, Partition &Part);
3776template void writeEhdr<ELF64LE>(uint8_t *Buf, Partition &Part);
3777template void writeEhdr<ELF64BE>(uint8_t *Buf, Partition &Part);
3778
3779template void writePhdrs<ELF32LE>(uint8_t *Buf, Partition &Part);
3780template void writePhdrs<ELF32BE>(uint8_t *Buf, Partition &Part);
3781template void writePhdrs<ELF64LE>(uint8_t *Buf, Partition &Part);
3782template void writePhdrs<ELF64BE>(uint8_t *Buf, Partition &Part);
3783
3784template class PartitionElfHeaderSection<ELF32LE>;
3785template class PartitionElfHeaderSection<ELF32BE>;
3786template class PartitionElfHeaderSection<ELF64LE>;
3787template class PartitionElfHeaderSection<ELF64BE>;
3788
3789template class PartitionProgramHeadersSection<ELF32LE>;
3790template class PartitionProgramHeadersSection<ELF32BE>;
3791template class PartitionProgramHeadersSection<ELF64LE>;
3792template class PartitionProgramHeadersSection<ELF64BE>;
3793
3794} // namespace elf
3795} // namespace lld
3796