Symbols.h revision 360784
1//===- Symbols.h ------------------------------------------------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file defines various types of Symbols.
10//
11//===----------------------------------------------------------------------===//
12
13#ifndef LLD_ELF_SYMBOLS_H
14#define LLD_ELF_SYMBOLS_H
15
16#include "InputFiles.h"
17#include "InputSection.h"
18#include "lld/Common/LLVM.h"
19#include "lld/Common/Strings.h"
20#include "llvm/Object/Archive.h"
21#include "llvm/Object/ELF.h"
22
23namespace lld {
24std::string toString(const elf::Symbol &);
25
26// There are two different ways to convert an Archive::Symbol to a string:
27// One for Microsoft name mangling and one for Itanium name mangling.
28// Call the functions toCOFFString and toELFString, not just toString.
29std::string toELFString(const llvm::object::Archive::Symbol &);
30
31namespace elf {
32class CommonSymbol;
33class Defined;
34class InputFile;
35class LazyArchive;
36class LazyObject;
37class SharedSymbol;
38class Symbol;
39class Undefined;
40
41// This is a StringRef-like container that doesn't run strlen().
42//
43// ELF string tables contain a lot of null-terminated strings. Most of them
44// are not necessary for the linker because they are names of local symbols,
45// and the linker doesn't use local symbol names for name resolution. So, we
46// use this class to represents strings read from string tables.
47struct StringRefZ {
48  StringRefZ(const char *s) : data(s), size(-1) {}
49  StringRefZ(StringRef s) : data(s.data()), size(s.size()) {}
50
51  const char *data;
52  const uint32_t size;
53};
54
55// The base class for real symbol classes.
56class Symbol {
57public:
58  enum Kind {
59    PlaceholderKind,
60    DefinedKind,
61    CommonKind,
62    SharedKind,
63    UndefinedKind,
64    LazyArchiveKind,
65    LazyObjectKind,
66  };
67
68  Kind kind() const { return static_cast<Kind>(symbolKind); }
69
70  // The file from which this symbol was created.
71  InputFile *file;
72
73protected:
74  const char *nameData;
75  mutable uint32_t nameSize;
76
77public:
78  uint32_t dynsymIndex = 0;
79  uint32_t gotIndex = -1;
80  uint32_t pltIndex = -1;
81
82  uint32_t globalDynIndex = -1;
83
84  // This field is a index to the symbol's version definition.
85  uint32_t verdefIndex = -1;
86
87  // Version definition index.
88  uint16_t versionId;
89
90  // Symbol binding. This is not overwritten by replace() to track
91  // changes during resolution. In particular:
92  //  - An undefined weak is still weak when it resolves to a shared library.
93  //  - An undefined weak will not fetch archive members, but we have to
94  //    remember it is weak.
95  uint8_t binding;
96
97  // The following fields have the same meaning as the ELF symbol attributes.
98  uint8_t type;    // symbol type
99  uint8_t stOther; // st_other field value
100
101  uint8_t symbolKind;
102
103  // Symbol visibility. This is the computed minimum visibility of all
104  // observed non-DSO symbols.
105  uint8_t visibility : 2;
106
107  // True if the symbol was used for linking and thus need to be added to the
108  // output file's symbol table. This is true for all symbols except for
109  // unreferenced DSO symbols, lazy (archive) symbols, and bitcode symbols that
110  // are unreferenced except by other bitcode objects.
111  uint8_t isUsedInRegularObj : 1;
112
113  // Used by a Defined symbol with protected or default visibility, to record
114  // whether it is required to be exported into .dynsym. This is set when any of
115  // the following conditions hold:
116  //
117  // - If there is an interposable symbol from a DSO.
118  // - If -shared or --export-dynamic is specified, any symbol in an object
119  //   file/bitcode sets this property, unless suppressed by LTO
120  //   canBeOmittedFromSymbolTable().
121  uint8_t exportDynamic : 1;
122
123  // True if the symbol is in the --dynamic-list file. A Defined symbol with
124  // protected or default visibility with this property is required to be
125  // exported into .dynsym.
126  uint8_t inDynamicList : 1;
127
128  // False if LTO shouldn't inline whatever this symbol points to. If a symbol
129  // is overwritten after LTO, LTO shouldn't inline the symbol because it
130  // doesn't know the final contents of the symbol.
131  uint8_t canInline : 1;
132
133  // Used by Undefined and SharedSymbol to track if there has been at least one
134  // undefined reference to the symbol. The binding may change to STB_WEAK if
135  // the first undefined reference from a non-shared object is weak.
136  uint8_t referenced : 1;
137
138  // True if this symbol is specified by --trace-symbol option.
139  uint8_t traced : 1;
140
141  inline void replace(const Symbol &newSym);
142
143  bool includeInDynsym() const;
144  uint8_t computeBinding() const;
145  bool isWeak() const { return binding == llvm::ELF::STB_WEAK; }
146
147  bool isUndefined() const { return symbolKind == UndefinedKind; }
148  bool isCommon() const { return symbolKind == CommonKind; }
149  bool isDefined() const { return symbolKind == DefinedKind; }
150  bool isShared() const { return symbolKind == SharedKind; }
151  bool isPlaceholder() const { return symbolKind == PlaceholderKind; }
152
153  bool isLocal() const { return binding == llvm::ELF::STB_LOCAL; }
154
155  bool isLazy() const {
156    return symbolKind == LazyArchiveKind || symbolKind == LazyObjectKind;
157  }
158
159  // True if this is an undefined weak symbol. This only works once
160  // all input files have been added.
161  bool isUndefWeak() const {
162    // See comment on lazy symbols for details.
163    return isWeak() && (isUndefined() || isLazy());
164  }
165
166  StringRef getName() const {
167    if (nameSize == (uint32_t)-1)
168      nameSize = strlen(nameData);
169    return {nameData, nameSize};
170  }
171
172  void setName(StringRef s) {
173    nameData = s.data();
174    nameSize = s.size();
175  }
176
177  void parseSymbolVersion();
178
179  bool isInGot() const { return gotIndex != -1U; }
180  bool isInPlt() const { return pltIndex != -1U; }
181
182  uint64_t getVA(int64_t addend = 0) const;
183
184  uint64_t getGotOffset() const;
185  uint64_t getGotVA() const;
186  uint64_t getGotPltOffset() const;
187  uint64_t getGotPltVA() const;
188  uint64_t getPltVA() const;
189  uint64_t getSize() const;
190  OutputSection *getOutputSection() const;
191
192  // The following two functions are used for symbol resolution.
193  //
194  // You are expected to call mergeProperties for all symbols in input
195  // files so that attributes that are attached to names rather than
196  // indivisual symbol (such as visibility) are merged together.
197  //
198  // Every time you read a new symbol from an input, you are supposed
199  // to call resolve() with the new symbol. That function replaces
200  // "this" object as a result of name resolution if the new symbol is
201  // more appropriate to be included in the output.
202  //
203  // For example, if "this" is an undefined symbol and a new symbol is
204  // a defined symbol, "this" is replaced with the new symbol.
205  void mergeProperties(const Symbol &other);
206  void resolve(const Symbol &other);
207
208  // If this is a lazy symbol, fetch an input file and add the symbol
209  // in the file to the symbol table. Calling this function on
210  // non-lazy object causes a runtime error.
211  void fetch() const;
212
213private:
214  static bool isExportDynamic(Kind k, uint8_t visibility) {
215    if (k == SharedKind)
216      return visibility == llvm::ELF::STV_DEFAULT;
217    return config->shared || config->exportDynamic;
218  }
219
220  void resolveUndefined(const Undefined &other);
221  void resolveCommon(const CommonSymbol &other);
222  void resolveDefined(const Defined &other);
223  template <class LazyT> void resolveLazy(const LazyT &other);
224  void resolveShared(const SharedSymbol &other);
225
226  int compare(const Symbol *other) const;
227
228  inline size_t getSymbolSize() const;
229
230protected:
231  Symbol(Kind k, InputFile *file, StringRefZ name, uint8_t binding,
232         uint8_t stOther, uint8_t type)
233      : file(file), nameData(name.data), nameSize(name.size), binding(binding),
234        type(type), stOther(stOther), symbolKind(k), visibility(stOther & 3),
235        isUsedInRegularObj(!file || file->kind() == InputFile::ObjKind),
236        exportDynamic(isExportDynamic(k, visibility)), inDynamicList(false),
237        canInline(false), referenced(false), traced(false), needsPltAddr(false),
238        isInIplt(false), gotInIgot(false), isPreemptible(false),
239        used(!config->gcSections), needsTocRestore(false),
240        scriptDefined(false) {}
241
242public:
243  // True the symbol should point to its PLT entry.
244  // For SharedSymbol only.
245  uint8_t needsPltAddr : 1;
246
247  // True if this symbol is in the Iplt sub-section of the Plt and the Igot
248  // sub-section of the .got.plt or .got.
249  uint8_t isInIplt : 1;
250
251  // True if this symbol needs a GOT entry and its GOT entry is actually in
252  // Igot. This will be true only for certain non-preemptible ifuncs.
253  uint8_t gotInIgot : 1;
254
255  // True if this symbol is preemptible at load time.
256  uint8_t isPreemptible : 1;
257
258  // True if an undefined or shared symbol is used from a live section.
259  uint8_t used : 1;
260
261  // True if a call to this symbol needs to be followed by a restore of the
262  // PPC64 toc pointer.
263  uint8_t needsTocRestore : 1;
264
265  // True if this symbol is defined by a linker script.
266  uint8_t scriptDefined : 1;
267
268  // The partition whose dynamic symbol table contains this symbol's definition.
269  uint8_t partition = 1;
270
271  bool isSection() const { return type == llvm::ELF::STT_SECTION; }
272  bool isTls() const { return type == llvm::ELF::STT_TLS; }
273  bool isFunc() const { return type == llvm::ELF::STT_FUNC; }
274  bool isGnuIFunc() const { return type == llvm::ELF::STT_GNU_IFUNC; }
275  bool isObject() const { return type == llvm::ELF::STT_OBJECT; }
276  bool isFile() const { return type == llvm::ELF::STT_FILE; }
277};
278
279// Represents a symbol that is defined in the current output file.
280class Defined : public Symbol {
281public:
282  Defined(InputFile *file, StringRefZ name, uint8_t binding, uint8_t stOther,
283          uint8_t type, uint64_t value, uint64_t size, SectionBase *section)
284      : Symbol(DefinedKind, file, name, binding, stOther, type), value(value),
285        size(size), section(section) {}
286
287  static bool classof(const Symbol *s) { return s->isDefined(); }
288
289  uint64_t value;
290  uint64_t size;
291  SectionBase *section;
292};
293
294// Represents a common symbol.
295//
296// On Unix, it is traditionally allowed to write variable definitions
297// without initialization expressions (such as "int foo;") to header
298// files. Such definition is called "tentative definition".
299//
300// Using tentative definition is usually considered a bad practice
301// because you should write only declarations (such as "extern int
302// foo;") to header files. Nevertheless, the linker and the compiler
303// have to do something to support bad code by allowing duplicate
304// definitions for this particular case.
305//
306// Common symbols represent variable definitions without initializations.
307// The compiler creates common symbols when it sees variable definitions
308// without initialization (you can suppress this behavior and let the
309// compiler create a regular defined symbol by -fno-common).
310//
311// The linker allows common symbols to be replaced by regular defined
312// symbols. If there are remaining common symbols after name resolution is
313// complete, they are converted to regular defined symbols in a .bss
314// section. (Therefore, the later passes don't see any CommonSymbols.)
315class CommonSymbol : public Symbol {
316public:
317  CommonSymbol(InputFile *file, StringRefZ name, uint8_t binding,
318               uint8_t stOther, uint8_t type, uint64_t alignment, uint64_t size)
319      : Symbol(CommonKind, file, name, binding, stOther, type),
320        alignment(alignment), size(size) {}
321
322  static bool classof(const Symbol *s) { return s->isCommon(); }
323
324  uint32_t alignment;
325  uint64_t size;
326};
327
328class Undefined : public Symbol {
329public:
330  Undefined(InputFile *file, StringRefZ name, uint8_t binding, uint8_t stOther,
331            uint8_t type, uint32_t discardedSecIdx = 0)
332      : Symbol(UndefinedKind, file, name, binding, stOther, type),
333        discardedSecIdx(discardedSecIdx) {}
334
335  static bool classof(const Symbol *s) { return s->kind() == UndefinedKind; }
336
337  // The section index if in a discarded section, 0 otherwise.
338  uint32_t discardedSecIdx;
339};
340
341class SharedSymbol : public Symbol {
342public:
343  static bool classof(const Symbol *s) { return s->kind() == SharedKind; }
344
345  SharedSymbol(InputFile &file, StringRef name, uint8_t binding,
346               uint8_t stOther, uint8_t type, uint64_t value, uint64_t size,
347               uint32_t alignment, uint32_t verdefIndex)
348      : Symbol(SharedKind, &file, name, binding, stOther, type), value(value),
349        size(size), alignment(alignment) {
350    this->verdefIndex = verdefIndex;
351    // GNU ifunc is a mechanism to allow user-supplied functions to
352    // resolve PLT slot values at load-time. This is contrary to the
353    // regular symbol resolution scheme in which symbols are resolved just
354    // by name. Using this hook, you can program how symbols are solved
355    // for you program. For example, you can make "memcpy" to be resolved
356    // to a SSE-enabled version of memcpy only when a machine running the
357    // program supports the SSE instruction set.
358    //
359    // Naturally, such symbols should always be called through their PLT
360    // slots. What GNU ifunc symbols point to are resolver functions, and
361    // calling them directly doesn't make sense (unless you are writing a
362    // loader).
363    //
364    // For DSO symbols, we always call them through PLT slots anyway.
365    // So there's no difference between GNU ifunc and regular function
366    // symbols if they are in DSOs. So we can handle GNU_IFUNC as FUNC.
367    if (this->type == llvm::ELF::STT_GNU_IFUNC)
368      this->type = llvm::ELF::STT_FUNC;
369  }
370
371  SharedFile &getFile() const { return *cast<SharedFile>(file); }
372
373  uint64_t value; // st_value
374  uint64_t size;  // st_size
375  uint32_t alignment;
376};
377
378// LazyArchive and LazyObject represent a symbols that is not yet in the link,
379// but we know where to find it if needed. If the resolver finds both Undefined
380// and Lazy for the same name, it will ask the Lazy to load a file.
381//
382// A special complication is the handling of weak undefined symbols. They should
383// not load a file, but we have to remember we have seen both the weak undefined
384// and the lazy. We represent that with a lazy symbol with a weak binding. This
385// means that code looking for undefined symbols normally also has to take lazy
386// symbols into consideration.
387
388// This class represents a symbol defined in an archive file. It is
389// created from an archive file header, and it knows how to load an
390// object file from an archive to replace itself with a defined
391// symbol.
392class LazyArchive : public Symbol {
393public:
394  LazyArchive(InputFile &file, const llvm::object::Archive::Symbol s)
395      : Symbol(LazyArchiveKind, &file, s.getName(), llvm::ELF::STB_GLOBAL,
396               llvm::ELF::STV_DEFAULT, llvm::ELF::STT_NOTYPE),
397        sym(s) {}
398
399  static bool classof(const Symbol *s) { return s->kind() == LazyArchiveKind; }
400
401  MemoryBufferRef getMemberBuffer();
402
403  const llvm::object::Archive::Symbol sym;
404};
405
406// LazyObject symbols represents symbols in object files between
407// --start-lib and --end-lib options.
408class LazyObject : public Symbol {
409public:
410  LazyObject(InputFile &file, StringRef name)
411      : Symbol(LazyObjectKind, &file, name, llvm::ELF::STB_GLOBAL,
412               llvm::ELF::STV_DEFAULT, llvm::ELF::STT_NOTYPE) {}
413
414  static bool classof(const Symbol *s) { return s->kind() == LazyObjectKind; }
415};
416
417// Some linker-generated symbols need to be created as
418// Defined symbols.
419struct ElfSym {
420  // __bss_start
421  static Defined *bss;
422
423  // etext and _etext
424  static Defined *etext1;
425  static Defined *etext2;
426
427  // edata and _edata
428  static Defined *edata1;
429  static Defined *edata2;
430
431  // end and _end
432  static Defined *end1;
433  static Defined *end2;
434
435  // The _GLOBAL_OFFSET_TABLE_ symbol is defined by target convention to
436  // be at some offset from the base of the .got section, usually 0 or
437  // the end of the .got.
438  static Defined *globalOffsetTable;
439
440  // _gp, _gp_disp and __gnu_local_gp symbols. Only for MIPS.
441  static Defined *mipsGp;
442  static Defined *mipsGpDisp;
443  static Defined *mipsLocalGp;
444
445  // __rel{,a}_iplt_{start,end} symbols.
446  static Defined *relaIpltStart;
447  static Defined *relaIpltEnd;
448
449  // __global_pointer$ for RISC-V.
450  static Defined *riscvGlobalPointer;
451
452  // _TLS_MODULE_BASE_ on targets that support TLSDESC.
453  static Defined *tlsModuleBase;
454};
455
456// A buffer class that is large enough to hold any Symbol-derived
457// object. We allocate memory using this class and instantiate a symbol
458// using the placement new.
459union SymbolUnion {
460  alignas(Defined) char a[sizeof(Defined)];
461  alignas(CommonSymbol) char b[sizeof(CommonSymbol)];
462  alignas(Undefined) char c[sizeof(Undefined)];
463  alignas(SharedSymbol) char d[sizeof(SharedSymbol)];
464  alignas(LazyArchive) char e[sizeof(LazyArchive)];
465  alignas(LazyObject) char f[sizeof(LazyObject)];
466};
467
468// It is important to keep the size of SymbolUnion small for performance and
469// memory usage reasons. 80 bytes is a soft limit based on the size of Defined
470// on a 64-bit system.
471static_assert(sizeof(SymbolUnion) <= 80, "SymbolUnion too large");
472
473template <typename T> struct AssertSymbol {
474  static_assert(std::is_trivially_destructible<T>(),
475                "Symbol types must be trivially destructible");
476  static_assert(sizeof(T) <= sizeof(SymbolUnion), "SymbolUnion too small");
477  static_assert(alignof(T) <= alignof(SymbolUnion),
478                "SymbolUnion not aligned enough");
479};
480
481static inline void assertSymbols() {
482  AssertSymbol<Defined>();
483  AssertSymbol<CommonSymbol>();
484  AssertSymbol<Undefined>();
485  AssertSymbol<SharedSymbol>();
486  AssertSymbol<LazyArchive>();
487  AssertSymbol<LazyObject>();
488}
489
490void printTraceSymbol(const Symbol *sym);
491
492size_t Symbol::getSymbolSize() const {
493  switch (kind()) {
494  case CommonKind:
495    return sizeof(CommonSymbol);
496  case DefinedKind:
497    return sizeof(Defined);
498  case LazyArchiveKind:
499    return sizeof(LazyArchive);
500  case LazyObjectKind:
501    return sizeof(LazyObject);
502  case SharedKind:
503    return sizeof(SharedSymbol);
504  case UndefinedKind:
505    return sizeof(Undefined);
506  case PlaceholderKind:
507    return sizeof(Symbol);
508  }
509  llvm_unreachable("unknown symbol kind");
510}
511
512// replace() replaces "this" object with a given symbol by memcpy'ing
513// it over to "this". This function is called as a result of name
514// resolution, e.g. to replace an undefind symbol with a defined symbol.
515void Symbol::replace(const Symbol &newSym) {
516  using llvm::ELF::STT_TLS;
517
518  // Symbols representing thread-local variables must be referenced by
519  // TLS-aware relocations, and non-TLS symbols must be reference by
520  // non-TLS relocations, so there's a clear distinction between TLS
521  // and non-TLS symbols. It is an error if the same symbol is defined
522  // as a TLS symbol in one file and as a non-TLS symbol in other file.
523  if (symbolKind != PlaceholderKind && !isLazy() && !newSym.isLazy() &&
524      (type == STT_TLS) != (newSym.type == STT_TLS))
525    error("TLS attribute mismatch: " + toString(*this) + "\n>>> defined in " +
526          toString(newSym.file) + "\n>>> defined in " + toString(file));
527
528  Symbol old = *this;
529  memcpy(this, &newSym, newSym.getSymbolSize());
530
531  // old may be a placeholder. The referenced fields must be initialized in
532  // SymbolTable::insert.
533  versionId = old.versionId;
534  visibility = old.visibility;
535  isUsedInRegularObj = old.isUsedInRegularObj;
536  exportDynamic = old.exportDynamic;
537  inDynamicList = old.inDynamicList;
538  canInline = old.canInline;
539  referenced = old.referenced;
540  traced = old.traced;
541  isPreemptible = old.isPreemptible;
542  scriptDefined = old.scriptDefined;
543  partition = old.partition;
544
545  // Symbol length is computed lazily. If we already know a symbol length,
546  // propagate it.
547  if (nameData == old.nameData && nameSize == 0 && old.nameSize != 0)
548    nameSize = old.nameSize;
549
550  // Print out a log message if --trace-symbol was specified.
551  // This is for debugging.
552  if (traced)
553    printTraceSymbol(this);
554}
555
556void maybeWarnUnorderableSymbol(const Symbol *sym);
557bool computeIsPreemptible(const Symbol &sym);
558
559} // namespace elf
560} // namespace lld
561
562#endif
563