InputSection.cpp revision 360784
1//===- InputSection.cpp ---------------------------------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8
9#include "InputSection.h"
10#include "Config.h"
11#include "EhFrame.h"
12#include "InputFiles.h"
13#include "LinkerScript.h"
14#include "OutputSections.h"
15#include "Relocations.h"
16#include "SymbolTable.h"
17#include "Symbols.h"
18#include "SyntheticSections.h"
19#include "Target.h"
20#include "Thunks.h"
21#include "lld/Common/ErrorHandler.h"
22#include "lld/Common/Memory.h"
23#include "llvm/Support/Compiler.h"
24#include "llvm/Support/Compression.h"
25#include "llvm/Support/Endian.h"
26#include "llvm/Support/Threading.h"
27#include "llvm/Support/xxhash.h"
28#include <algorithm>
29#include <mutex>
30#include <set>
31#include <vector>
32
33using namespace llvm;
34using namespace llvm::ELF;
35using namespace llvm::object;
36using namespace llvm::support;
37using namespace llvm::support::endian;
38using namespace llvm::sys;
39
40namespace lld {
41// Returns a string to construct an error message.
42std::string toString(const elf::InputSectionBase *sec) {
43  return (toString(sec->file) + ":(" + sec->name + ")").str();
44}
45
46namespace elf {
47std::vector<InputSectionBase *> inputSections;
48
49template <class ELFT>
50static ArrayRef<uint8_t> getSectionContents(ObjFile<ELFT> &file,
51                                            const typename ELFT::Shdr &hdr) {
52  if (hdr.sh_type == SHT_NOBITS)
53    return makeArrayRef<uint8_t>(nullptr, hdr.sh_size);
54  return check(file.getObj().getSectionContents(&hdr));
55}
56
57InputSectionBase::InputSectionBase(InputFile *file, uint64_t flags,
58                                   uint32_t type, uint64_t entsize,
59                                   uint32_t link, uint32_t info,
60                                   uint32_t alignment, ArrayRef<uint8_t> data,
61                                   StringRef name, Kind sectionKind)
62    : SectionBase(sectionKind, name, flags, entsize, alignment, type, info,
63                  link),
64      file(file), rawData(data) {
65  // In order to reduce memory allocation, we assume that mergeable
66  // sections are smaller than 4 GiB, which is not an unreasonable
67  // assumption as of 2017.
68  if (sectionKind == SectionBase::Merge && rawData.size() > UINT32_MAX)
69    error(toString(this) + ": section too large");
70
71  numRelocations = 0;
72  areRelocsRela = false;
73
74  // The ELF spec states that a value of 0 means the section has
75  // no alignment constraints.
76  uint32_t v = std::max<uint32_t>(alignment, 1);
77  if (!isPowerOf2_64(v))
78    fatal(toString(this) + ": sh_addralign is not a power of 2");
79  this->alignment = v;
80
81  // In ELF, each section can be compressed by zlib, and if compressed,
82  // section name may be mangled by appending "z" (e.g. ".zdebug_info").
83  // If that's the case, demangle section name so that we can handle a
84  // section as if it weren't compressed.
85  if ((flags & SHF_COMPRESSED) || name.startswith(".zdebug")) {
86    if (!zlib::isAvailable())
87      error(toString(file) + ": contains a compressed section, " +
88            "but zlib is not available");
89    parseCompressedHeader();
90  }
91}
92
93// Drop SHF_GROUP bit unless we are producing a re-linkable object file.
94// SHF_GROUP is a marker that a section belongs to some comdat group.
95// That flag doesn't make sense in an executable.
96static uint64_t getFlags(uint64_t flags) {
97  flags &= ~(uint64_t)SHF_INFO_LINK;
98  if (!config->relocatable)
99    flags &= ~(uint64_t)SHF_GROUP;
100  return flags;
101}
102
103// GNU assembler 2.24 and LLVM 4.0.0's MC (the newest release as of
104// March 2017) fail to infer section types for sections starting with
105// ".init_array." or ".fini_array.". They set SHT_PROGBITS instead of
106// SHF_INIT_ARRAY. As a result, the following assembler directive
107// creates ".init_array.100" with SHT_PROGBITS, for example.
108//
109//   .section .init_array.100, "aw"
110//
111// This function forces SHT_{INIT,FINI}_ARRAY so that we can handle
112// incorrect inputs as if they were correct from the beginning.
113static uint64_t getType(uint64_t type, StringRef name) {
114  if (type == SHT_PROGBITS && name.startswith(".init_array."))
115    return SHT_INIT_ARRAY;
116  if (type == SHT_PROGBITS && name.startswith(".fini_array."))
117    return SHT_FINI_ARRAY;
118  return type;
119}
120
121template <class ELFT>
122InputSectionBase::InputSectionBase(ObjFile<ELFT> &file,
123                                   const typename ELFT::Shdr &hdr,
124                                   StringRef name, Kind sectionKind)
125    : InputSectionBase(&file, getFlags(hdr.sh_flags),
126                       getType(hdr.sh_type, name), hdr.sh_entsize, hdr.sh_link,
127                       hdr.sh_info, hdr.sh_addralign,
128                       getSectionContents(file, hdr), name, sectionKind) {
129  // We reject object files having insanely large alignments even though
130  // they are allowed by the spec. I think 4GB is a reasonable limitation.
131  // We might want to relax this in the future.
132  if (hdr.sh_addralign > UINT32_MAX)
133    fatal(toString(&file) + ": section sh_addralign is too large");
134}
135
136size_t InputSectionBase::getSize() const {
137  if (auto *s = dyn_cast<SyntheticSection>(this))
138    return s->getSize();
139  if (uncompressedSize >= 0)
140    return uncompressedSize;
141  return rawData.size();
142}
143
144void InputSectionBase::uncompress() const {
145  size_t size = uncompressedSize;
146  char *uncompressedBuf;
147  {
148    static std::mutex mu;
149    std::lock_guard<std::mutex> lock(mu);
150    uncompressedBuf = bAlloc.Allocate<char>(size);
151  }
152
153  if (Error e = zlib::uncompress(toStringRef(rawData), uncompressedBuf, size))
154    fatal(toString(this) +
155          ": uncompress failed: " + llvm::toString(std::move(e)));
156  rawData = makeArrayRef((uint8_t *)uncompressedBuf, size);
157  uncompressedSize = -1;
158}
159
160uint64_t InputSectionBase::getOffsetInFile() const {
161  const uint8_t *fileStart = (const uint8_t *)file->mb.getBufferStart();
162  const uint8_t *secStart = data().begin();
163  return secStart - fileStart;
164}
165
166uint64_t SectionBase::getOffset(uint64_t offset) const {
167  switch (kind()) {
168  case Output: {
169    auto *os = cast<OutputSection>(this);
170    // For output sections we treat offset -1 as the end of the section.
171    return offset == uint64_t(-1) ? os->size : offset;
172  }
173  case Regular:
174  case Synthetic:
175    return cast<InputSection>(this)->getOffset(offset);
176  case EHFrame:
177    // The file crtbeginT.o has relocations pointing to the start of an empty
178    // .eh_frame that is known to be the first in the link. It does that to
179    // identify the start of the output .eh_frame.
180    return offset;
181  case Merge:
182    const MergeInputSection *ms = cast<MergeInputSection>(this);
183    if (InputSection *isec = ms->getParent())
184      return isec->getOffset(ms->getParentOffset(offset));
185    return ms->getParentOffset(offset);
186  }
187  llvm_unreachable("invalid section kind");
188}
189
190uint64_t SectionBase::getVA(uint64_t offset) const {
191  const OutputSection *out = getOutputSection();
192  return (out ? out->addr : 0) + getOffset(offset);
193}
194
195OutputSection *SectionBase::getOutputSection() {
196  InputSection *sec;
197  if (auto *isec = dyn_cast<InputSection>(this))
198    sec = isec;
199  else if (auto *ms = dyn_cast<MergeInputSection>(this))
200    sec = ms->getParent();
201  else if (auto *eh = dyn_cast<EhInputSection>(this))
202    sec = eh->getParent();
203  else
204    return cast<OutputSection>(this);
205  return sec ? sec->getParent() : nullptr;
206}
207
208// When a section is compressed, `rawData` consists with a header followed
209// by zlib-compressed data. This function parses a header to initialize
210// `uncompressedSize` member and remove the header from `rawData`.
211void InputSectionBase::parseCompressedHeader() {
212  using Chdr64 = typename ELF64LE::Chdr;
213  using Chdr32 = typename ELF32LE::Chdr;
214
215  // Old-style header
216  if (name.startswith(".zdebug")) {
217    if (!toStringRef(rawData).startswith("ZLIB")) {
218      error(toString(this) + ": corrupted compressed section header");
219      return;
220    }
221    rawData = rawData.slice(4);
222
223    if (rawData.size() < 8) {
224      error(toString(this) + ": corrupted compressed section header");
225      return;
226    }
227
228    uncompressedSize = read64be(rawData.data());
229    rawData = rawData.slice(8);
230
231    // Restore the original section name.
232    // (e.g. ".zdebug_info" -> ".debug_info")
233    name = saver.save("." + name.substr(2));
234    return;
235  }
236
237  assert(flags & SHF_COMPRESSED);
238  flags &= ~(uint64_t)SHF_COMPRESSED;
239
240  // New-style 64-bit header
241  if (config->is64) {
242    if (rawData.size() < sizeof(Chdr64)) {
243      error(toString(this) + ": corrupted compressed section");
244      return;
245    }
246
247    auto *hdr = reinterpret_cast<const Chdr64 *>(rawData.data());
248    if (hdr->ch_type != ELFCOMPRESS_ZLIB) {
249      error(toString(this) + ": unsupported compression type");
250      return;
251    }
252
253    uncompressedSize = hdr->ch_size;
254    alignment = std::max<uint32_t>(hdr->ch_addralign, 1);
255    rawData = rawData.slice(sizeof(*hdr));
256    return;
257  }
258
259  // New-style 32-bit header
260  if (rawData.size() < sizeof(Chdr32)) {
261    error(toString(this) + ": corrupted compressed section");
262    return;
263  }
264
265  auto *hdr = reinterpret_cast<const Chdr32 *>(rawData.data());
266  if (hdr->ch_type != ELFCOMPRESS_ZLIB) {
267    error(toString(this) + ": unsupported compression type");
268    return;
269  }
270
271  uncompressedSize = hdr->ch_size;
272  alignment = std::max<uint32_t>(hdr->ch_addralign, 1);
273  rawData = rawData.slice(sizeof(*hdr));
274}
275
276InputSection *InputSectionBase::getLinkOrderDep() const {
277  assert(link);
278  assert(flags & SHF_LINK_ORDER);
279  return cast<InputSection>(file->getSections()[link]);
280}
281
282// Find a function symbol that encloses a given location.
283template <class ELFT>
284Defined *InputSectionBase::getEnclosingFunction(uint64_t offset) {
285  for (Symbol *b : file->getSymbols())
286    if (Defined *d = dyn_cast<Defined>(b))
287      if (d->section == this && d->type == STT_FUNC && d->value <= offset &&
288          offset < d->value + d->size)
289        return d;
290  return nullptr;
291}
292
293// Returns a source location string. Used to construct an error message.
294template <class ELFT>
295std::string InputSectionBase::getLocation(uint64_t offset) {
296  std::string secAndOffset = (name + "+0x" + utohexstr(offset)).str();
297
298  // We don't have file for synthetic sections.
299  if (getFile<ELFT>() == nullptr)
300    return (config->outputFile + ":(" + secAndOffset + ")")
301        .str();
302
303  // First check if we can get desired values from debugging information.
304  if (Optional<DILineInfo> info = getFile<ELFT>()->getDILineInfo(this, offset))
305    return info->FileName + ":" + std::to_string(info->Line) + ":(" +
306           secAndOffset + ")";
307
308  // File->sourceFile contains STT_FILE symbol that contains a
309  // source file name. If it's missing, we use an object file name.
310  std::string srcFile = getFile<ELFT>()->sourceFile;
311  if (srcFile.empty())
312    srcFile = toString(file);
313
314  if (Defined *d = getEnclosingFunction<ELFT>(offset))
315    return srcFile + ":(function " + toString(*d) + ": " + secAndOffset + ")";
316
317  // If there's no symbol, print out the offset in the section.
318  return (srcFile + ":(" + secAndOffset + ")");
319}
320
321// This function is intended to be used for constructing an error message.
322// The returned message looks like this:
323//
324//   foo.c:42 (/home/alice/possibly/very/long/path/foo.c:42)
325//
326//  Returns an empty string if there's no way to get line info.
327std::string InputSectionBase::getSrcMsg(const Symbol &sym, uint64_t offset) {
328  return file->getSrcMsg(sym, *this, offset);
329}
330
331// Returns a filename string along with an optional section name. This
332// function is intended to be used for constructing an error
333// message. The returned message looks like this:
334//
335//   path/to/foo.o:(function bar)
336//
337// or
338//
339//   path/to/foo.o:(function bar) in archive path/to/bar.a
340std::string InputSectionBase::getObjMsg(uint64_t off) {
341  std::string filename = file->getName();
342
343  std::string archive;
344  if (!file->archiveName.empty())
345    archive = " in archive " + file->archiveName;
346
347  // Find a symbol that encloses a given location.
348  for (Symbol *b : file->getSymbols())
349    if (auto *d = dyn_cast<Defined>(b))
350      if (d->section == this && d->value <= off && off < d->value + d->size)
351        return filename + ":(" + toString(*d) + ")" + archive;
352
353  // If there's no symbol, print out the offset in the section.
354  return (filename + ":(" + name + "+0x" + utohexstr(off) + ")" + archive)
355      .str();
356}
357
358InputSection InputSection::discarded(nullptr, 0, 0, 0, ArrayRef<uint8_t>(), "");
359
360InputSection::InputSection(InputFile *f, uint64_t flags, uint32_t type,
361                           uint32_t alignment, ArrayRef<uint8_t> data,
362                           StringRef name, Kind k)
363    : InputSectionBase(f, flags, type,
364                       /*Entsize*/ 0, /*Link*/ 0, /*Info*/ 0, alignment, data,
365                       name, k) {}
366
367template <class ELFT>
368InputSection::InputSection(ObjFile<ELFT> &f, const typename ELFT::Shdr &header,
369                           StringRef name)
370    : InputSectionBase(f, header, name, InputSectionBase::Regular) {}
371
372bool InputSection::classof(const SectionBase *s) {
373  return s->kind() == SectionBase::Regular ||
374         s->kind() == SectionBase::Synthetic;
375}
376
377OutputSection *InputSection::getParent() const {
378  return cast_or_null<OutputSection>(parent);
379}
380
381// Copy SHT_GROUP section contents. Used only for the -r option.
382template <class ELFT> void InputSection::copyShtGroup(uint8_t *buf) {
383  // ELFT::Word is the 32-bit integral type in the target endianness.
384  using u32 = typename ELFT::Word;
385  ArrayRef<u32> from = getDataAs<u32>();
386  auto *to = reinterpret_cast<u32 *>(buf);
387
388  // The first entry is not a section number but a flag.
389  *to++ = from[0];
390
391  // Adjust section numbers because section numbers in an input object
392  // files are different in the output.
393  ArrayRef<InputSectionBase *> sections = file->getSections();
394  for (uint32_t idx : from.slice(1))
395    *to++ = sections[idx]->getOutputSection()->sectionIndex;
396}
397
398InputSectionBase *InputSection::getRelocatedSection() const {
399  if (!file || (type != SHT_RELA && type != SHT_REL))
400    return nullptr;
401  ArrayRef<InputSectionBase *> sections = file->getSections();
402  return sections[info];
403}
404
405// This is used for -r and --emit-relocs. We can't use memcpy to copy
406// relocations because we need to update symbol table offset and section index
407// for each relocation. So we copy relocations one by one.
408template <class ELFT, class RelTy>
409void InputSection::copyRelocations(uint8_t *buf, ArrayRef<RelTy> rels) {
410  InputSectionBase *sec = getRelocatedSection();
411
412  for (const RelTy &rel : rels) {
413    RelType type = rel.getType(config->isMips64EL);
414    const ObjFile<ELFT> *file = getFile<ELFT>();
415    Symbol &sym = file->getRelocTargetSym(rel);
416
417    auto *p = reinterpret_cast<typename ELFT::Rela *>(buf);
418    buf += sizeof(RelTy);
419
420    if (RelTy::IsRela)
421      p->r_addend = getAddend<ELFT>(rel);
422
423    // Output section VA is zero for -r, so r_offset is an offset within the
424    // section, but for --emit-relocs it is a virtual address.
425    p->r_offset = sec->getVA(rel.r_offset);
426    p->setSymbolAndType(in.symTab->getSymbolIndex(&sym), type,
427                        config->isMips64EL);
428
429    if (sym.type == STT_SECTION) {
430      // We combine multiple section symbols into only one per
431      // section. This means we have to update the addend. That is
432      // trivial for Elf_Rela, but for Elf_Rel we have to write to the
433      // section data. We do that by adding to the Relocation vector.
434
435      // .eh_frame is horribly special and can reference discarded sections. To
436      // avoid having to parse and recreate .eh_frame, we just replace any
437      // relocation in it pointing to discarded sections with R_*_NONE, which
438      // hopefully creates a frame that is ignored at runtime. Also, don't warn
439      // on .gcc_except_table and debug sections.
440      //
441      // See the comment in maybeReportUndefined for PPC32 .got2 and PPC64 .toc
442      auto *d = dyn_cast<Defined>(&sym);
443      if (!d) {
444        if (!sec->name.startswith(".debug") &&
445            !sec->name.startswith(".zdebug") && sec->name != ".eh_frame" &&
446            sec->name != ".gcc_except_table" && sec->name != ".got2" &&
447            sec->name != ".toc") {
448          uint32_t secIdx = cast<Undefined>(sym).discardedSecIdx;
449          Elf_Shdr_Impl<ELFT> sec =
450              CHECK(file->getObj().sections(), file)[secIdx];
451          warn("relocation refers to a discarded section: " +
452               CHECK(file->getObj().getSectionName(&sec), file) +
453               "\n>>> referenced by " + getObjMsg(p->r_offset));
454        }
455        p->setSymbolAndType(0, 0, false);
456        continue;
457      }
458      SectionBase *section = d->section->repl;
459      if (!section->isLive()) {
460        p->setSymbolAndType(0, 0, false);
461        continue;
462      }
463
464      int64_t addend = getAddend<ELFT>(rel);
465      const uint8_t *bufLoc = sec->data().begin() + rel.r_offset;
466      if (!RelTy::IsRela)
467        addend = target->getImplicitAddend(bufLoc, type);
468
469      if (config->emachine == EM_MIPS && config->relocatable &&
470          target->getRelExpr(type, sym, bufLoc) == R_MIPS_GOTREL) {
471        // Some MIPS relocations depend on "gp" value. By default,
472        // this value has 0x7ff0 offset from a .got section. But
473        // relocatable files produced by a compiler or a linker
474        // might redefine this default value and we must use it
475        // for a calculation of the relocation result. When we
476        // generate EXE or DSO it's trivial. Generating a relocatable
477        // output is more difficult case because the linker does
478        // not calculate relocations in this mode and loses
479        // individual "gp" values used by each input object file.
480        // As a workaround we add the "gp" value to the relocation
481        // addend and save it back to the file.
482        addend += sec->getFile<ELFT>()->mipsGp0;
483      }
484
485      if (RelTy::IsRela)
486        p->r_addend = sym.getVA(addend) - section->getOutputSection()->addr;
487      else if (config->relocatable && type != target->noneRel)
488        sec->relocations.push_back({R_ABS, type, rel.r_offset, addend, &sym});
489    } else if (config->emachine == EM_PPC && type == R_PPC_PLTREL24 &&
490               p->r_addend >= 0x8000) {
491      // Similar to R_MIPS_GPREL{16,32}. If the addend of R_PPC_PLTREL24
492      // indicates that r30 is relative to the input section .got2
493      // (r_addend>=0x8000), after linking, r30 should be relative to the output
494      // section .got2 . To compensate for the shift, adjust r_addend by
495      // ppc32Got2OutSecOff.
496      p->r_addend += sec->file->ppc32Got2OutSecOff;
497    }
498  }
499}
500
501// The ARM and AArch64 ABI handle pc-relative relocations to undefined weak
502// references specially. The general rule is that the value of the symbol in
503// this context is the address of the place P. A further special case is that
504// branch relocations to an undefined weak reference resolve to the next
505// instruction.
506static uint32_t getARMUndefinedRelativeWeakVA(RelType type, uint32_t a,
507                                              uint32_t p) {
508  switch (type) {
509  // Unresolved branch relocations to weak references resolve to next
510  // instruction, this will be either 2 or 4 bytes on from P.
511  case R_ARM_THM_JUMP11:
512    return p + 2 + a;
513  case R_ARM_CALL:
514  case R_ARM_JUMP24:
515  case R_ARM_PC24:
516  case R_ARM_PLT32:
517  case R_ARM_PREL31:
518  case R_ARM_THM_JUMP19:
519  case R_ARM_THM_JUMP24:
520    return p + 4 + a;
521  case R_ARM_THM_CALL:
522    // We don't want an interworking BLX to ARM
523    return p + 5 + a;
524  // Unresolved non branch pc-relative relocations
525  // R_ARM_TARGET2 which can be resolved relatively is not present as it never
526  // targets a weak-reference.
527  case R_ARM_MOVW_PREL_NC:
528  case R_ARM_MOVT_PREL:
529  case R_ARM_REL32:
530  case R_ARM_THM_MOVW_PREL_NC:
531  case R_ARM_THM_MOVT_PREL:
532    return p + a;
533  }
534  llvm_unreachable("ARM pc-relative relocation expected\n");
535}
536
537// The comment above getARMUndefinedRelativeWeakVA applies to this function.
538static uint64_t getAArch64UndefinedRelativeWeakVA(uint64_t type, uint64_t a,
539                                                  uint64_t p) {
540  switch (type) {
541  // Unresolved branch relocations to weak references resolve to next
542  // instruction, this is 4 bytes on from P.
543  case R_AARCH64_CALL26:
544  case R_AARCH64_CONDBR19:
545  case R_AARCH64_JUMP26:
546  case R_AARCH64_TSTBR14:
547    return p + 4 + a;
548  // Unresolved non branch pc-relative relocations
549  case R_AARCH64_PREL16:
550  case R_AARCH64_PREL32:
551  case R_AARCH64_PREL64:
552  case R_AARCH64_ADR_PREL_LO21:
553  case R_AARCH64_LD_PREL_LO19:
554    return p + a;
555  }
556  llvm_unreachable("AArch64 pc-relative relocation expected\n");
557}
558
559// ARM SBREL relocations are of the form S + A - B where B is the static base
560// The ARM ABI defines base to be "addressing origin of the output segment
561// defining the symbol S". We defined the "addressing origin"/static base to be
562// the base of the PT_LOAD segment containing the Sym.
563// The procedure call standard only defines a Read Write Position Independent
564// RWPI variant so in practice we should expect the static base to be the base
565// of the RW segment.
566static uint64_t getARMStaticBase(const Symbol &sym) {
567  OutputSection *os = sym.getOutputSection();
568  if (!os || !os->ptLoad || !os->ptLoad->firstSec)
569    fatal("SBREL relocation to " + sym.getName() + " without static base");
570  return os->ptLoad->firstSec->addr;
571}
572
573// For R_RISCV_PC_INDIRECT (R_RISCV_PCREL_LO12_{I,S}), the symbol actually
574// points the corresponding R_RISCV_PCREL_HI20 relocation, and the target VA
575// is calculated using PCREL_HI20's symbol.
576//
577// This function returns the R_RISCV_PCREL_HI20 relocation from
578// R_RISCV_PCREL_LO12's symbol and addend.
579static Relocation *getRISCVPCRelHi20(const Symbol *sym, uint64_t addend) {
580  const Defined *d = cast<Defined>(sym);
581  if (!d->section) {
582    error("R_RISCV_PCREL_LO12 relocation points to an absolute symbol: " +
583          sym->getName());
584    return nullptr;
585  }
586  InputSection *isec = cast<InputSection>(d->section);
587
588  if (addend != 0)
589    warn("Non-zero addend in R_RISCV_PCREL_LO12 relocation to " +
590         isec->getObjMsg(d->value) + " is ignored");
591
592  // Relocations are sorted by offset, so we can use std::equal_range to do
593  // binary search.
594  Relocation r;
595  r.offset = d->value;
596  auto range =
597      std::equal_range(isec->relocations.begin(), isec->relocations.end(), r,
598                       [](const Relocation &lhs, const Relocation &rhs) {
599                         return lhs.offset < rhs.offset;
600                       });
601
602  for (auto it = range.first; it != range.second; ++it)
603    if (it->type == R_RISCV_PCREL_HI20 || it->type == R_RISCV_GOT_HI20 ||
604        it->type == R_RISCV_TLS_GD_HI20 || it->type == R_RISCV_TLS_GOT_HI20)
605      return &*it;
606
607  error("R_RISCV_PCREL_LO12 relocation points to " + isec->getObjMsg(d->value) +
608        " without an associated R_RISCV_PCREL_HI20 relocation");
609  return nullptr;
610}
611
612// A TLS symbol's virtual address is relative to the TLS segment. Add a
613// target-specific adjustment to produce a thread-pointer-relative offset.
614static int64_t getTlsTpOffset(const Symbol &s) {
615  // On targets that support TLSDESC, _TLS_MODULE_BASE_@tpoff = 0.
616  if (&s == ElfSym::tlsModuleBase)
617    return 0;
618
619  // There are 2 TLS layouts. Among targets we support, x86 uses TLS Variant 2
620  // while most others use Variant 1. At run time TP will be aligned to p_align.
621
622  // Variant 1. TP will be followed by an optional gap (which is the size of 2
623  // pointers on ARM/AArch64, 0 on other targets), followed by alignment
624  // padding, then the static TLS blocks. The alignment padding is added so that
625  // (TP + gap + padding) is congruent to p_vaddr modulo p_align.
626  //
627  // Variant 2. Static TLS blocks, followed by alignment padding are placed
628  // before TP. The alignment padding is added so that (TP - padding -
629  // p_memsz) is congruent to p_vaddr modulo p_align.
630  PhdrEntry *tls = Out::tlsPhdr;
631  switch (config->emachine) {
632    // Variant 1.
633  case EM_ARM:
634  case EM_AARCH64:
635    return s.getVA(0) + config->wordsize * 2 +
636           ((tls->p_vaddr - config->wordsize * 2) & (tls->p_align - 1));
637  case EM_MIPS:
638  case EM_PPC:
639  case EM_PPC64:
640    // Adjusted Variant 1. TP is placed with a displacement of 0x7000, which is
641    // to allow a signed 16-bit offset to reach 0x1000 of TCB/thread-library
642    // data and 0xf000 of the program's TLS segment.
643    return s.getVA(0) + (tls->p_vaddr & (tls->p_align - 1)) - 0x7000;
644  case EM_RISCV:
645    return s.getVA(0) + (tls->p_vaddr & (tls->p_align - 1));
646
647    // Variant 2.
648  case EM_HEXAGON:
649  case EM_386:
650  case EM_X86_64:
651    return s.getVA(0) - tls->p_memsz -
652           ((-tls->p_vaddr - tls->p_memsz) & (tls->p_align - 1));
653  default:
654    llvm_unreachable("unhandled Config->EMachine");
655  }
656}
657
658static uint64_t getRelocTargetVA(const InputFile *file, RelType type, int64_t a,
659                                 uint64_t p, const Symbol &sym, RelExpr expr) {
660  switch (expr) {
661  case R_ABS:
662  case R_DTPREL:
663  case R_RELAX_TLS_LD_TO_LE_ABS:
664  case R_RELAX_GOT_PC_NOPIC:
665  case R_RISCV_ADD:
666    return sym.getVA(a);
667  case R_ADDEND:
668    return a;
669  case R_ARM_SBREL:
670    return sym.getVA(a) - getARMStaticBase(sym);
671  case R_GOT:
672  case R_RELAX_TLS_GD_TO_IE_ABS:
673    return sym.getGotVA() + a;
674  case R_GOTONLY_PC:
675    return in.got->getVA() + a - p;
676  case R_GOTPLTONLY_PC:
677    return in.gotPlt->getVA() + a - p;
678  case R_GOTREL:
679  case R_PPC64_RELAX_TOC:
680    return sym.getVA(a) - in.got->getVA();
681  case R_GOTPLTREL:
682    return sym.getVA(a) - in.gotPlt->getVA();
683  case R_GOTPLT:
684  case R_RELAX_TLS_GD_TO_IE_GOTPLT:
685    return sym.getGotVA() + a - in.gotPlt->getVA();
686  case R_TLSLD_GOT_OFF:
687  case R_GOT_OFF:
688  case R_RELAX_TLS_GD_TO_IE_GOT_OFF:
689    return sym.getGotOffset() + a;
690  case R_AARCH64_GOT_PAGE_PC:
691  case R_AARCH64_RELAX_TLS_GD_TO_IE_PAGE_PC:
692    return getAArch64Page(sym.getGotVA() + a) - getAArch64Page(p);
693  case R_GOT_PC:
694  case R_RELAX_TLS_GD_TO_IE:
695    return sym.getGotVA() + a - p;
696  case R_MIPS_GOTREL:
697    return sym.getVA(a) - in.mipsGot->getGp(file);
698  case R_MIPS_GOT_GP:
699    return in.mipsGot->getGp(file) + a;
700  case R_MIPS_GOT_GP_PC: {
701    // R_MIPS_LO16 expression has R_MIPS_GOT_GP_PC type iif the target
702    // is _gp_disp symbol. In that case we should use the following
703    // formula for calculation "AHL + GP - P + 4". For details see p. 4-19 at
704    // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
705    // microMIPS variants of these relocations use slightly different
706    // expressions: AHL + GP - P + 3 for %lo() and AHL + GP - P - 1 for %hi()
707    // to correctly handle less-sugnificant bit of the microMIPS symbol.
708    uint64_t v = in.mipsGot->getGp(file) + a - p;
709    if (type == R_MIPS_LO16 || type == R_MICROMIPS_LO16)
710      v += 4;
711    if (type == R_MICROMIPS_LO16 || type == R_MICROMIPS_HI16)
712      v -= 1;
713    return v;
714  }
715  case R_MIPS_GOT_LOCAL_PAGE:
716    // If relocation against MIPS local symbol requires GOT entry, this entry
717    // should be initialized by 'page address'. This address is high 16-bits
718    // of sum the symbol's value and the addend.
719    return in.mipsGot->getVA() + in.mipsGot->getPageEntryOffset(file, sym, a) -
720           in.mipsGot->getGp(file);
721  case R_MIPS_GOT_OFF:
722  case R_MIPS_GOT_OFF32:
723    // In case of MIPS if a GOT relocation has non-zero addend this addend
724    // should be applied to the GOT entry content not to the GOT entry offset.
725    // That is why we use separate expression type.
726    return in.mipsGot->getVA() + in.mipsGot->getSymEntryOffset(file, sym, a) -
727           in.mipsGot->getGp(file);
728  case R_MIPS_TLSGD:
729    return in.mipsGot->getVA() + in.mipsGot->getGlobalDynOffset(file, sym) -
730           in.mipsGot->getGp(file);
731  case R_MIPS_TLSLD:
732    return in.mipsGot->getVA() + in.mipsGot->getTlsIndexOffset(file) -
733           in.mipsGot->getGp(file);
734  case R_AARCH64_PAGE_PC: {
735    uint64_t val = sym.isUndefWeak() ? p + a : sym.getVA(a);
736    return getAArch64Page(val) - getAArch64Page(p);
737  }
738  case R_RISCV_PC_INDIRECT: {
739    if (const Relocation *hiRel = getRISCVPCRelHi20(&sym, a))
740      return getRelocTargetVA(file, hiRel->type, hiRel->addend, sym.getVA(),
741                              *hiRel->sym, hiRel->expr);
742    return 0;
743  }
744  case R_PC: {
745    uint64_t dest;
746    if (sym.isUndefWeak()) {
747      // On ARM and AArch64 a branch to an undefined weak resolves to the
748      // next instruction, otherwise the place.
749      if (config->emachine == EM_ARM)
750        dest = getARMUndefinedRelativeWeakVA(type, a, p);
751      else if (config->emachine == EM_AARCH64)
752        dest = getAArch64UndefinedRelativeWeakVA(type, a, p);
753      else if (config->emachine == EM_PPC)
754        dest = p;
755      else
756        dest = sym.getVA(a);
757    } else {
758      dest = sym.getVA(a);
759    }
760    return dest - p;
761  }
762  case R_PLT:
763    return sym.getPltVA() + a;
764  case R_PLT_PC:
765  case R_PPC64_CALL_PLT:
766    return sym.getPltVA() + a - p;
767  case R_PPC32_PLTREL:
768    // R_PPC_PLTREL24 uses the addend (usually 0 or 0x8000) to indicate r30
769    // stores _GLOBAL_OFFSET_TABLE_ or .got2+0x8000. The addend is ignored for
770    // target VA computation.
771    return sym.getPltVA() - p;
772  case R_PPC64_CALL: {
773    uint64_t symVA = sym.getVA(a);
774    // If we have an undefined weak symbol, we might get here with a symbol
775    // address of zero. That could overflow, but the code must be unreachable,
776    // so don't bother doing anything at all.
777    if (!symVA)
778      return 0;
779
780    // PPC64 V2 ABI describes two entry points to a function. The global entry
781    // point is used for calls where the caller and callee (may) have different
782    // TOC base pointers and r2 needs to be modified to hold the TOC base for
783    // the callee. For local calls the caller and callee share the same
784    // TOC base and so the TOC pointer initialization code should be skipped by
785    // branching to the local entry point.
786    return symVA - p + getPPC64GlobalEntryToLocalEntryOffset(sym.stOther);
787  }
788  case R_PPC64_TOCBASE:
789    return getPPC64TocBase() + a;
790  case R_RELAX_GOT_PC:
791    return sym.getVA(a) - p;
792  case R_RELAX_TLS_GD_TO_LE:
793  case R_RELAX_TLS_IE_TO_LE:
794  case R_RELAX_TLS_LD_TO_LE:
795  case R_TLS:
796    // It is not very clear what to return if the symbol is undefined. With
797    // --noinhibit-exec, even a non-weak undefined reference may reach here.
798    // Just return A, which matches R_ABS, and the behavior of some dynamic
799    // loaders.
800    if (sym.isUndefined())
801      return a;
802    return getTlsTpOffset(sym) + a;
803  case R_RELAX_TLS_GD_TO_LE_NEG:
804  case R_NEG_TLS:
805    if (sym.isUndefined())
806      return a;
807    return -getTlsTpOffset(sym) + a;
808  case R_SIZE:
809    return sym.getSize() + a;
810  case R_TLSDESC:
811    return in.got->getGlobalDynAddr(sym) + a;
812  case R_TLSDESC_PC:
813    return in.got->getGlobalDynAddr(sym) + a - p;
814  case R_AARCH64_TLSDESC_PAGE:
815    return getAArch64Page(in.got->getGlobalDynAddr(sym) + a) -
816           getAArch64Page(p);
817  case R_TLSGD_GOT:
818    return in.got->getGlobalDynOffset(sym) + a;
819  case R_TLSGD_GOTPLT:
820    return in.got->getVA() + in.got->getGlobalDynOffset(sym) + a - in.gotPlt->getVA();
821  case R_TLSGD_PC:
822    return in.got->getGlobalDynAddr(sym) + a - p;
823  case R_TLSLD_GOTPLT:
824    return in.got->getVA() + in.got->getTlsIndexOff() + a - in.gotPlt->getVA();
825  case R_TLSLD_GOT:
826    return in.got->getTlsIndexOff() + a;
827  case R_TLSLD_PC:
828    return in.got->getTlsIndexVA() + a - p;
829  default:
830    llvm_unreachable("invalid expression");
831  }
832}
833
834// This function applies relocations to sections without SHF_ALLOC bit.
835// Such sections are never mapped to memory at runtime. Debug sections are
836// an example. Relocations in non-alloc sections are much easier to
837// handle than in allocated sections because it will never need complex
838// treatment such as GOT or PLT (because at runtime no one refers them).
839// So, we handle relocations for non-alloc sections directly in this
840// function as a performance optimization.
841template <class ELFT, class RelTy>
842void InputSection::relocateNonAlloc(uint8_t *buf, ArrayRef<RelTy> rels) {
843  const unsigned bits = sizeof(typename ELFT::uint) * 8;
844
845  for (const RelTy &rel : rels) {
846    RelType type = rel.getType(config->isMips64EL);
847
848    // GCC 8.0 or earlier have a bug that they emit R_386_GOTPC relocations
849    // against _GLOBAL_OFFSET_TABLE_ for .debug_info. The bug has been fixed
850    // in 2017 (https://gcc.gnu.org/bugzilla/show_bug.cgi?id=82630), but we
851    // need to keep this bug-compatible code for a while.
852    if (config->emachine == EM_386 && type == R_386_GOTPC)
853      continue;
854
855    uint64_t offset = getOffset(rel.r_offset);
856    uint8_t *bufLoc = buf + offset;
857    int64_t addend = getAddend<ELFT>(rel);
858    if (!RelTy::IsRela)
859      addend += target->getImplicitAddend(bufLoc, type);
860
861    Symbol &sym = getFile<ELFT>()->getRelocTargetSym(rel);
862    RelExpr expr = target->getRelExpr(type, sym, bufLoc);
863    if (expr == R_NONE)
864      continue;
865
866    if (expr != R_ABS && expr != R_DTPREL && expr != R_RISCV_ADD) {
867      std::string msg = getLocation<ELFT>(offset) +
868                        ": has non-ABS relocation " + toString(type) +
869                        " against symbol '" + toString(sym) + "'";
870      if (expr != R_PC) {
871        error(msg);
872        return;
873      }
874
875      // If the control reaches here, we found a PC-relative relocation in a
876      // non-ALLOC section. Since non-ALLOC section is not loaded into memory
877      // at runtime, the notion of PC-relative doesn't make sense here. So,
878      // this is a usage error. However, GNU linkers historically accept such
879      // relocations without any errors and relocate them as if they were at
880      // address 0. For bug-compatibilty, we accept them with warnings. We
881      // know Steel Bank Common Lisp as of 2018 have this bug.
882      warn(msg);
883      target->relocateOne(bufLoc, type,
884                          SignExtend64<bits>(sym.getVA(addend - offset)));
885      continue;
886    }
887
888    if (sym.isTls() && !Out::tlsPhdr)
889      target->relocateOne(bufLoc, type, 0);
890    else
891      target->relocateOne(bufLoc, type, SignExtend64<bits>(sym.getVA(addend)));
892  }
893}
894
895// This is used when '-r' is given.
896// For REL targets, InputSection::copyRelocations() may store artificial
897// relocations aimed to update addends. They are handled in relocateAlloc()
898// for allocatable sections, and this function does the same for
899// non-allocatable sections, such as sections with debug information.
900static void relocateNonAllocForRelocatable(InputSection *sec, uint8_t *buf) {
901  const unsigned bits = config->is64 ? 64 : 32;
902
903  for (const Relocation &rel : sec->relocations) {
904    // InputSection::copyRelocations() adds only R_ABS relocations.
905    assert(rel.expr == R_ABS);
906    uint8_t *bufLoc = buf + rel.offset + sec->outSecOff;
907    uint64_t targetVA = SignExtend64(rel.sym->getVA(rel.addend), bits);
908    target->relocateOne(bufLoc, rel.type, targetVA);
909  }
910}
911
912template <class ELFT>
913void InputSectionBase::relocate(uint8_t *buf, uint8_t *bufEnd) {
914  if (flags & SHF_EXECINSTR)
915    adjustSplitStackFunctionPrologues<ELFT>(buf, bufEnd);
916
917  if (flags & SHF_ALLOC) {
918    relocateAlloc(buf, bufEnd);
919    return;
920  }
921
922  auto *sec = cast<InputSection>(this);
923  if (config->relocatable)
924    relocateNonAllocForRelocatable(sec, buf);
925  else if (sec->areRelocsRela)
926    sec->relocateNonAlloc<ELFT>(buf, sec->template relas<ELFT>());
927  else
928    sec->relocateNonAlloc<ELFT>(buf, sec->template rels<ELFT>());
929}
930
931void InputSectionBase::relocateAlloc(uint8_t *buf, uint8_t *bufEnd) {
932  assert(flags & SHF_ALLOC);
933  const unsigned bits = config->wordsize * 8;
934
935  for (const Relocation &rel : relocations) {
936    uint64_t offset = rel.offset;
937    if (auto *sec = dyn_cast<InputSection>(this))
938      offset += sec->outSecOff;
939    uint8_t *bufLoc = buf + offset;
940    RelType type = rel.type;
941
942    uint64_t addrLoc = getOutputSection()->addr + offset;
943    RelExpr expr = rel.expr;
944    uint64_t targetVA = SignExtend64(
945        getRelocTargetVA(file, type, rel.addend, addrLoc, *rel.sym, expr),
946        bits);
947
948    switch (expr) {
949    case R_RELAX_GOT_PC:
950    case R_RELAX_GOT_PC_NOPIC:
951      target->relaxGot(bufLoc, type, targetVA);
952      break;
953    case R_PPC64_RELAX_TOC:
954      if (!tryRelaxPPC64TocIndirection(type, rel, bufLoc))
955        target->relocateOne(bufLoc, type, targetVA);
956      break;
957    case R_RELAX_TLS_IE_TO_LE:
958      target->relaxTlsIeToLe(bufLoc, type, targetVA);
959      break;
960    case R_RELAX_TLS_LD_TO_LE:
961    case R_RELAX_TLS_LD_TO_LE_ABS:
962      target->relaxTlsLdToLe(bufLoc, type, targetVA);
963      break;
964    case R_RELAX_TLS_GD_TO_LE:
965    case R_RELAX_TLS_GD_TO_LE_NEG:
966      target->relaxTlsGdToLe(bufLoc, type, targetVA);
967      break;
968    case R_AARCH64_RELAX_TLS_GD_TO_IE_PAGE_PC:
969    case R_RELAX_TLS_GD_TO_IE:
970    case R_RELAX_TLS_GD_TO_IE_ABS:
971    case R_RELAX_TLS_GD_TO_IE_GOT_OFF:
972    case R_RELAX_TLS_GD_TO_IE_GOTPLT:
973      target->relaxTlsGdToIe(bufLoc, type, targetVA);
974      break;
975    case R_PPC64_CALL:
976      // If this is a call to __tls_get_addr, it may be part of a TLS
977      // sequence that has been relaxed and turned into a nop. In this
978      // case, we don't want to handle it as a call.
979      if (read32(bufLoc) == 0x60000000) // nop
980        break;
981
982      // Patch a nop (0x60000000) to a ld.
983      if (rel.sym->needsTocRestore) {
984        // gcc/gfortran 5.4, 6.3 and earlier versions do not add nop for
985        // recursive calls even if the function is preemptible. This is not
986        // wrong in the common case where the function is not preempted at
987        // runtime. Just ignore.
988        if ((bufLoc + 8 > bufEnd || read32(bufLoc + 4) != 0x60000000) &&
989            rel.sym->file != file) {
990          // Use substr(6) to remove the "__plt_" prefix.
991          errorOrWarn(getErrorLocation(bufLoc) + "call to " +
992                      lld::toString(*rel.sym).substr(6) +
993                      " lacks nop, can't restore toc");
994          break;
995        }
996        write32(bufLoc + 4, 0xe8410018); // ld %r2, 24(%r1)
997      }
998      target->relocateOne(bufLoc, type, targetVA);
999      break;
1000    default:
1001      target->relocateOne(bufLoc, type, targetVA);
1002      break;
1003    }
1004  }
1005}
1006
1007// For each function-defining prologue, find any calls to __morestack,
1008// and replace them with calls to __morestack_non_split.
1009static void switchMorestackCallsToMorestackNonSplit(
1010    DenseSet<Defined *> &prologues, std::vector<Relocation *> &morestackCalls) {
1011
1012  // If the target adjusted a function's prologue, all calls to
1013  // __morestack inside that function should be switched to
1014  // __morestack_non_split.
1015  Symbol *moreStackNonSplit = symtab->find("__morestack_non_split");
1016  if (!moreStackNonSplit) {
1017    error("Mixing split-stack objects requires a definition of "
1018          "__morestack_non_split");
1019    return;
1020  }
1021
1022  // Sort both collections to compare addresses efficiently.
1023  llvm::sort(morestackCalls, [](const Relocation *l, const Relocation *r) {
1024    return l->offset < r->offset;
1025  });
1026  std::vector<Defined *> functions(prologues.begin(), prologues.end());
1027  llvm::sort(functions, [](const Defined *l, const Defined *r) {
1028    return l->value < r->value;
1029  });
1030
1031  auto it = morestackCalls.begin();
1032  for (Defined *f : functions) {
1033    // Find the first call to __morestack within the function.
1034    while (it != morestackCalls.end() && (*it)->offset < f->value)
1035      ++it;
1036    // Adjust all calls inside the function.
1037    while (it != morestackCalls.end() && (*it)->offset < f->value + f->size) {
1038      (*it)->sym = moreStackNonSplit;
1039      ++it;
1040    }
1041  }
1042}
1043
1044static bool enclosingPrologueAttempted(uint64_t offset,
1045                                       const DenseSet<Defined *> &prologues) {
1046  for (Defined *f : prologues)
1047    if (f->value <= offset && offset < f->value + f->size)
1048      return true;
1049  return false;
1050}
1051
1052// If a function compiled for split stack calls a function not
1053// compiled for split stack, then the caller needs its prologue
1054// adjusted to ensure that the called function will have enough stack
1055// available. Find those functions, and adjust their prologues.
1056template <class ELFT>
1057void InputSectionBase::adjustSplitStackFunctionPrologues(uint8_t *buf,
1058                                                         uint8_t *end) {
1059  if (!getFile<ELFT>()->splitStack)
1060    return;
1061  DenseSet<Defined *> prologues;
1062  std::vector<Relocation *> morestackCalls;
1063
1064  for (Relocation &rel : relocations) {
1065    // Local symbols can't possibly be cross-calls, and should have been
1066    // resolved long before this line.
1067    if (rel.sym->isLocal())
1068      continue;
1069
1070    // Ignore calls into the split-stack api.
1071    if (rel.sym->getName().startswith("__morestack")) {
1072      if (rel.sym->getName().equals("__morestack"))
1073        morestackCalls.push_back(&rel);
1074      continue;
1075    }
1076
1077    // A relocation to non-function isn't relevant. Sometimes
1078    // __morestack is not marked as a function, so this check comes
1079    // after the name check.
1080    if (rel.sym->type != STT_FUNC)
1081      continue;
1082
1083    // If the callee's-file was compiled with split stack, nothing to do.  In
1084    // this context, a "Defined" symbol is one "defined by the binary currently
1085    // being produced". So an "undefined" symbol might be provided by a shared
1086    // library. It is not possible to tell how such symbols were compiled, so be
1087    // conservative.
1088    if (Defined *d = dyn_cast<Defined>(rel.sym))
1089      if (InputSection *isec = cast_or_null<InputSection>(d->section))
1090        if (!isec || !isec->getFile<ELFT>() || isec->getFile<ELFT>()->splitStack)
1091          continue;
1092
1093    if (enclosingPrologueAttempted(rel.offset, prologues))
1094      continue;
1095
1096    if (Defined *f = getEnclosingFunction<ELFT>(rel.offset)) {
1097      prologues.insert(f);
1098      if (target->adjustPrologueForCrossSplitStack(buf + getOffset(f->value),
1099                                                   end, f->stOther))
1100        continue;
1101      if (!getFile<ELFT>()->someNoSplitStack)
1102        error(toString(this) + ": " + f->getName() +
1103              " (with -fsplit-stack) calls " + rel.sym->getName() +
1104              " (without -fsplit-stack), but couldn't adjust its prologue");
1105    }
1106  }
1107
1108  if (target->needsMoreStackNonSplit)
1109    switchMorestackCallsToMorestackNonSplit(prologues, morestackCalls);
1110}
1111
1112template <class ELFT> void InputSection::writeTo(uint8_t *buf) {
1113  if (type == SHT_NOBITS)
1114    return;
1115
1116  if (auto *s = dyn_cast<SyntheticSection>(this)) {
1117    s->writeTo(buf + outSecOff);
1118    return;
1119  }
1120
1121  // If -r or --emit-relocs is given, then an InputSection
1122  // may be a relocation section.
1123  if (type == SHT_RELA) {
1124    copyRelocations<ELFT>(buf + outSecOff, getDataAs<typename ELFT::Rela>());
1125    return;
1126  }
1127  if (type == SHT_REL) {
1128    copyRelocations<ELFT>(buf + outSecOff, getDataAs<typename ELFT::Rel>());
1129    return;
1130  }
1131
1132  // If -r is given, we may have a SHT_GROUP section.
1133  if (type == SHT_GROUP) {
1134    copyShtGroup<ELFT>(buf + outSecOff);
1135    return;
1136  }
1137
1138  // If this is a compressed section, uncompress section contents directly
1139  // to the buffer.
1140  if (uncompressedSize >= 0) {
1141    size_t size = uncompressedSize;
1142    if (Error e = zlib::uncompress(toStringRef(rawData),
1143                                   (char *)(buf + outSecOff), size))
1144      fatal(toString(this) +
1145            ": uncompress failed: " + llvm::toString(std::move(e)));
1146    uint8_t *bufEnd = buf + outSecOff + size;
1147    relocate<ELFT>(buf, bufEnd);
1148    return;
1149  }
1150
1151  // Copy section contents from source object file to output file
1152  // and then apply relocations.
1153  memcpy(buf + outSecOff, data().data(), data().size());
1154  uint8_t *bufEnd = buf + outSecOff + data().size();
1155  relocate<ELFT>(buf, bufEnd);
1156}
1157
1158void InputSection::replace(InputSection *other) {
1159  alignment = std::max(alignment, other->alignment);
1160
1161  // When a section is replaced with another section that was allocated to
1162  // another partition, the replacement section (and its associated sections)
1163  // need to be placed in the main partition so that both partitions will be
1164  // able to access it.
1165  if (partition != other->partition) {
1166    partition = 1;
1167    for (InputSection *isec : dependentSections)
1168      isec->partition = 1;
1169  }
1170
1171  other->repl = repl;
1172  other->markDead();
1173}
1174
1175template <class ELFT>
1176EhInputSection::EhInputSection(ObjFile<ELFT> &f,
1177                               const typename ELFT::Shdr &header,
1178                               StringRef name)
1179    : InputSectionBase(f, header, name, InputSectionBase::EHFrame) {}
1180
1181SyntheticSection *EhInputSection::getParent() const {
1182  return cast_or_null<SyntheticSection>(parent);
1183}
1184
1185// Returns the index of the first relocation that points to a region between
1186// Begin and Begin+Size.
1187template <class IntTy, class RelTy>
1188static unsigned getReloc(IntTy begin, IntTy size, const ArrayRef<RelTy> &rels,
1189                         unsigned &relocI) {
1190  // Start search from RelocI for fast access. That works because the
1191  // relocations are sorted in .eh_frame.
1192  for (unsigned n = rels.size(); relocI < n; ++relocI) {
1193    const RelTy &rel = rels[relocI];
1194    if (rel.r_offset < begin)
1195      continue;
1196
1197    if (rel.r_offset < begin + size)
1198      return relocI;
1199    return -1;
1200  }
1201  return -1;
1202}
1203
1204// .eh_frame is a sequence of CIE or FDE records.
1205// This function splits an input section into records and returns them.
1206template <class ELFT> void EhInputSection::split() {
1207  if (areRelocsRela)
1208    split<ELFT>(relas<ELFT>());
1209  else
1210    split<ELFT>(rels<ELFT>());
1211}
1212
1213template <class ELFT, class RelTy>
1214void EhInputSection::split(ArrayRef<RelTy> rels) {
1215  unsigned relI = 0;
1216  for (size_t off = 0, end = data().size(); off != end;) {
1217    size_t size = readEhRecordSize(this, off);
1218    pieces.emplace_back(off, this, size, getReloc(off, size, rels, relI));
1219    // The empty record is the end marker.
1220    if (size == 4)
1221      break;
1222    off += size;
1223  }
1224}
1225
1226static size_t findNull(StringRef s, size_t entSize) {
1227  // Optimize the common case.
1228  if (entSize == 1)
1229    return s.find(0);
1230
1231  for (unsigned i = 0, n = s.size(); i != n; i += entSize) {
1232    const char *b = s.begin() + i;
1233    if (std::all_of(b, b + entSize, [](char c) { return c == 0; }))
1234      return i;
1235  }
1236  return StringRef::npos;
1237}
1238
1239SyntheticSection *MergeInputSection::getParent() const {
1240  return cast_or_null<SyntheticSection>(parent);
1241}
1242
1243// Split SHF_STRINGS section. Such section is a sequence of
1244// null-terminated strings.
1245void MergeInputSection::splitStrings(ArrayRef<uint8_t> data, size_t entSize) {
1246  size_t off = 0;
1247  bool isAlloc = flags & SHF_ALLOC;
1248  StringRef s = toStringRef(data);
1249
1250  while (!s.empty()) {
1251    size_t end = findNull(s, entSize);
1252    if (end == StringRef::npos)
1253      fatal(toString(this) + ": string is not null terminated");
1254    size_t size = end + entSize;
1255
1256    pieces.emplace_back(off, xxHash64(s.substr(0, size)), !isAlloc);
1257    s = s.substr(size);
1258    off += size;
1259  }
1260}
1261
1262// Split non-SHF_STRINGS section. Such section is a sequence of
1263// fixed size records.
1264void MergeInputSection::splitNonStrings(ArrayRef<uint8_t> data,
1265                                        size_t entSize) {
1266  size_t size = data.size();
1267  assert((size % entSize) == 0);
1268  bool isAlloc = flags & SHF_ALLOC;
1269
1270  for (size_t i = 0; i != size; i += entSize)
1271    pieces.emplace_back(i, xxHash64(data.slice(i, entSize)), !isAlloc);
1272}
1273
1274template <class ELFT>
1275MergeInputSection::MergeInputSection(ObjFile<ELFT> &f,
1276                                     const typename ELFT::Shdr &header,
1277                                     StringRef name)
1278    : InputSectionBase(f, header, name, InputSectionBase::Merge) {}
1279
1280MergeInputSection::MergeInputSection(uint64_t flags, uint32_t type,
1281                                     uint64_t entsize, ArrayRef<uint8_t> data,
1282                                     StringRef name)
1283    : InputSectionBase(nullptr, flags, type, entsize, /*Link*/ 0, /*Info*/ 0,
1284                       /*Alignment*/ entsize, data, name, SectionBase::Merge) {}
1285
1286// This function is called after we obtain a complete list of input sections
1287// that need to be linked. This is responsible to split section contents
1288// into small chunks for further processing.
1289//
1290// Note that this function is called from parallelForEach. This must be
1291// thread-safe (i.e. no memory allocation from the pools).
1292void MergeInputSection::splitIntoPieces() {
1293  assert(pieces.empty());
1294
1295  if (flags & SHF_STRINGS)
1296    splitStrings(data(), entsize);
1297  else
1298    splitNonStrings(data(), entsize);
1299}
1300
1301SectionPiece *MergeInputSection::getSectionPiece(uint64_t offset) {
1302  if (this->data().size() <= offset)
1303    fatal(toString(this) + ": offset is outside the section");
1304
1305  // If Offset is not at beginning of a section piece, it is not in the map.
1306  // In that case we need to  do a binary search of the original section piece vector.
1307  auto it = partition_point(
1308      pieces, [=](SectionPiece p) { return p.inputOff <= offset; });
1309  return &it[-1];
1310}
1311
1312// Returns the offset in an output section for a given input offset.
1313// Because contents of a mergeable section is not contiguous in output,
1314// it is not just an addition to a base output offset.
1315uint64_t MergeInputSection::getParentOffset(uint64_t offset) const {
1316  // If Offset is not at beginning of a section piece, it is not in the map.
1317  // In that case we need to search from the original section piece vector.
1318  const SectionPiece &piece =
1319      *(const_cast<MergeInputSection *>(this)->getSectionPiece (offset));
1320  uint64_t addend = offset - piece.inputOff;
1321  return piece.outputOff + addend;
1322}
1323
1324template InputSection::InputSection(ObjFile<ELF32LE> &, const ELF32LE::Shdr &,
1325                                    StringRef);
1326template InputSection::InputSection(ObjFile<ELF32BE> &, const ELF32BE::Shdr &,
1327                                    StringRef);
1328template InputSection::InputSection(ObjFile<ELF64LE> &, const ELF64LE::Shdr &,
1329                                    StringRef);
1330template InputSection::InputSection(ObjFile<ELF64BE> &, const ELF64BE::Shdr &,
1331                                    StringRef);
1332
1333template std::string InputSectionBase::getLocation<ELF32LE>(uint64_t);
1334template std::string InputSectionBase::getLocation<ELF32BE>(uint64_t);
1335template std::string InputSectionBase::getLocation<ELF64LE>(uint64_t);
1336template std::string InputSectionBase::getLocation<ELF64BE>(uint64_t);
1337
1338template void InputSection::writeTo<ELF32LE>(uint8_t *);
1339template void InputSection::writeTo<ELF32BE>(uint8_t *);
1340template void InputSection::writeTo<ELF64LE>(uint8_t *);
1341template void InputSection::writeTo<ELF64BE>(uint8_t *);
1342
1343template MergeInputSection::MergeInputSection(ObjFile<ELF32LE> &,
1344                                              const ELF32LE::Shdr &, StringRef);
1345template MergeInputSection::MergeInputSection(ObjFile<ELF32BE> &,
1346                                              const ELF32BE::Shdr &, StringRef);
1347template MergeInputSection::MergeInputSection(ObjFile<ELF64LE> &,
1348                                              const ELF64LE::Shdr &, StringRef);
1349template MergeInputSection::MergeInputSection(ObjFile<ELF64BE> &,
1350                                              const ELF64BE::Shdr &, StringRef);
1351
1352template EhInputSection::EhInputSection(ObjFile<ELF32LE> &,
1353                                        const ELF32LE::Shdr &, StringRef);
1354template EhInputSection::EhInputSection(ObjFile<ELF32BE> &,
1355                                        const ELF32BE::Shdr &, StringRef);
1356template EhInputSection::EhInputSection(ObjFile<ELF64LE> &,
1357                                        const ELF64LE::Shdr &, StringRef);
1358template EhInputSection::EhInputSection(ObjFile<ELF64BE> &,
1359                                        const ELF64BE::Shdr &, StringRef);
1360
1361template void EhInputSection::split<ELF32LE>();
1362template void EhInputSection::split<ELF32BE>();
1363template void EhInputSection::split<ELF64LE>();
1364template void EhInputSection::split<ELF64BE>();
1365
1366} // namespace elf
1367} // namespace lld
1368