InputFiles.cpp revision 360784
1//===- InputFiles.cpp -----------------------------------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8
9#include "InputFiles.h"
10#include "Driver.h"
11#include "InputSection.h"
12#include "LinkerScript.h"
13#include "SymbolTable.h"
14#include "Symbols.h"
15#include "SyntheticSections.h"
16#include "lld/Common/DWARF.h"
17#include "lld/Common/ErrorHandler.h"
18#include "lld/Common/Memory.h"
19#include "llvm/ADT/STLExtras.h"
20#include "llvm/CodeGen/Analysis.h"
21#include "llvm/IR/LLVMContext.h"
22#include "llvm/IR/Module.h"
23#include "llvm/LTO/LTO.h"
24#include "llvm/MC/StringTableBuilder.h"
25#include "llvm/Object/ELFObjectFile.h"
26#include "llvm/Support/ARMAttributeParser.h"
27#include "llvm/Support/ARMBuildAttributes.h"
28#include "llvm/Support/Endian.h"
29#include "llvm/Support/Path.h"
30#include "llvm/Support/TarWriter.h"
31#include "llvm/Support/raw_ostream.h"
32
33using namespace llvm;
34using namespace llvm::ELF;
35using namespace llvm::object;
36using namespace llvm::sys;
37using namespace llvm::sys::fs;
38using namespace llvm::support::endian;
39
40namespace lld {
41// Returns "<internal>", "foo.a(bar.o)" or "baz.o".
42std::string toString(const elf::InputFile *f) {
43  if (!f)
44    return "<internal>";
45
46  if (f->toStringCache.empty()) {
47    if (f->archiveName.empty())
48      f->toStringCache = f->getName();
49    else
50      f->toStringCache = (f->archiveName + "(" + f->getName() + ")").str();
51  }
52  return f->toStringCache;
53}
54
55namespace elf {
56bool InputFile::isInGroup;
57uint32_t InputFile::nextGroupId;
58std::vector<BinaryFile *> binaryFiles;
59std::vector<BitcodeFile *> bitcodeFiles;
60std::vector<LazyObjFile *> lazyObjFiles;
61std::vector<InputFile *> objectFiles;
62std::vector<SharedFile *> sharedFiles;
63
64std::unique_ptr<TarWriter> tar;
65
66static ELFKind getELFKind(MemoryBufferRef mb, StringRef archiveName) {
67  unsigned char size;
68  unsigned char endian;
69  std::tie(size, endian) = getElfArchType(mb.getBuffer());
70
71  auto report = [&](StringRef msg) {
72    StringRef filename = mb.getBufferIdentifier();
73    if (archiveName.empty())
74      fatal(filename + ": " + msg);
75    else
76      fatal(archiveName + "(" + filename + "): " + msg);
77  };
78
79  if (!mb.getBuffer().startswith(ElfMagic))
80    report("not an ELF file");
81  if (endian != ELFDATA2LSB && endian != ELFDATA2MSB)
82    report("corrupted ELF file: invalid data encoding");
83  if (size != ELFCLASS32 && size != ELFCLASS64)
84    report("corrupted ELF file: invalid file class");
85
86  size_t bufSize = mb.getBuffer().size();
87  if ((size == ELFCLASS32 && bufSize < sizeof(Elf32_Ehdr)) ||
88      (size == ELFCLASS64 && bufSize < sizeof(Elf64_Ehdr)))
89    report("corrupted ELF file: file is too short");
90
91  if (size == ELFCLASS32)
92    return (endian == ELFDATA2LSB) ? ELF32LEKind : ELF32BEKind;
93  return (endian == ELFDATA2LSB) ? ELF64LEKind : ELF64BEKind;
94}
95
96InputFile::InputFile(Kind k, MemoryBufferRef m)
97    : mb(m), groupId(nextGroupId), fileKind(k) {
98  // All files within the same --{start,end}-group get the same group ID.
99  // Otherwise, a new file will get a new group ID.
100  if (!isInGroup)
101    ++nextGroupId;
102}
103
104Optional<MemoryBufferRef> readFile(StringRef path) {
105  // The --chroot option changes our virtual root directory.
106  // This is useful when you are dealing with files created by --reproduce.
107  if (!config->chroot.empty() && path.startswith("/"))
108    path = saver.save(config->chroot + path);
109
110  log(path);
111
112  auto mbOrErr = MemoryBuffer::getFile(path, -1, false);
113  if (auto ec = mbOrErr.getError()) {
114    error("cannot open " + path + ": " + ec.message());
115    return None;
116  }
117
118  std::unique_ptr<MemoryBuffer> &mb = *mbOrErr;
119  MemoryBufferRef mbref = mb->getMemBufferRef();
120  make<std::unique_ptr<MemoryBuffer>>(std::move(mb)); // take MB ownership
121
122  if (tar)
123    tar->append(relativeToRoot(path), mbref.getBuffer());
124  return mbref;
125}
126
127// All input object files must be for the same architecture
128// (e.g. it does not make sense to link x86 object files with
129// MIPS object files.) This function checks for that error.
130static bool isCompatible(InputFile *file) {
131  if (!file->isElf() && !isa<BitcodeFile>(file))
132    return true;
133
134  if (file->ekind == config->ekind && file->emachine == config->emachine) {
135    if (config->emachine != EM_MIPS)
136      return true;
137    if (isMipsN32Abi(file) == config->mipsN32Abi)
138      return true;
139  }
140
141  if (!config->emulation.empty()) {
142    error(toString(file) + " is incompatible with " + config->emulation);
143    return false;
144  }
145
146  InputFile *existing;
147  if (!objectFiles.empty())
148    existing = objectFiles[0];
149  else if (!sharedFiles.empty())
150    existing = sharedFiles[0];
151  else
152    existing = bitcodeFiles[0];
153
154  error(toString(file) + " is incompatible with " + toString(existing));
155  return false;
156}
157
158template <class ELFT> static void doParseFile(InputFile *file) {
159  if (!isCompatible(file))
160    return;
161
162  // Binary file
163  if (auto *f = dyn_cast<BinaryFile>(file)) {
164    binaryFiles.push_back(f);
165    f->parse();
166    return;
167  }
168
169  // .a file
170  if (auto *f = dyn_cast<ArchiveFile>(file)) {
171    f->parse();
172    return;
173  }
174
175  // Lazy object file
176  if (auto *f = dyn_cast<LazyObjFile>(file)) {
177    lazyObjFiles.push_back(f);
178    f->parse<ELFT>();
179    return;
180  }
181
182  if (config->trace)
183    message(toString(file));
184
185  // .so file
186  if (auto *f = dyn_cast<SharedFile>(file)) {
187    f->parse<ELFT>();
188    return;
189  }
190
191  // LLVM bitcode file
192  if (auto *f = dyn_cast<BitcodeFile>(file)) {
193    bitcodeFiles.push_back(f);
194    f->parse<ELFT>();
195    return;
196  }
197
198  // Regular object file
199  objectFiles.push_back(file);
200  cast<ObjFile<ELFT>>(file)->parse();
201}
202
203// Add symbols in File to the symbol table.
204void parseFile(InputFile *file) {
205  switch (config->ekind) {
206  case ELF32LEKind:
207    doParseFile<ELF32LE>(file);
208    return;
209  case ELF32BEKind:
210    doParseFile<ELF32BE>(file);
211    return;
212  case ELF64LEKind:
213    doParseFile<ELF64LE>(file);
214    return;
215  case ELF64BEKind:
216    doParseFile<ELF64BE>(file);
217    return;
218  default:
219    llvm_unreachable("unknown ELFT");
220  }
221}
222
223// Concatenates arguments to construct a string representing an error location.
224static std::string createFileLineMsg(StringRef path, unsigned line) {
225  std::string filename = path::filename(path);
226  std::string lineno = ":" + std::to_string(line);
227  if (filename == path)
228    return filename + lineno;
229  return filename + lineno + " (" + path.str() + lineno + ")";
230}
231
232template <class ELFT>
233static std::string getSrcMsgAux(ObjFile<ELFT> &file, const Symbol &sym,
234                                InputSectionBase &sec, uint64_t offset) {
235  // In DWARF, functions and variables are stored to different places.
236  // First, lookup a function for a given offset.
237  if (Optional<DILineInfo> info = file.getDILineInfo(&sec, offset))
238    return createFileLineMsg(info->FileName, info->Line);
239
240  // If it failed, lookup again as a variable.
241  if (Optional<std::pair<std::string, unsigned>> fileLine =
242          file.getVariableLoc(sym.getName()))
243    return createFileLineMsg(fileLine->first, fileLine->second);
244
245  // File.sourceFile contains STT_FILE symbol, and that is a last resort.
246  return file.sourceFile;
247}
248
249std::string InputFile::getSrcMsg(const Symbol &sym, InputSectionBase &sec,
250                                 uint64_t offset) {
251  if (kind() != ObjKind)
252    return "";
253  switch (config->ekind) {
254  default:
255    llvm_unreachable("Invalid kind");
256  case ELF32LEKind:
257    return getSrcMsgAux(cast<ObjFile<ELF32LE>>(*this), sym, sec, offset);
258  case ELF32BEKind:
259    return getSrcMsgAux(cast<ObjFile<ELF32BE>>(*this), sym, sec, offset);
260  case ELF64LEKind:
261    return getSrcMsgAux(cast<ObjFile<ELF64LE>>(*this), sym, sec, offset);
262  case ELF64BEKind:
263    return getSrcMsgAux(cast<ObjFile<ELF64BE>>(*this), sym, sec, offset);
264  }
265}
266
267template <class ELFT> void ObjFile<ELFT>::initializeDwarf() {
268  dwarf = make<DWARFCache>(std::make_unique<DWARFContext>(
269      std::make_unique<LLDDwarfObj<ELFT>>(this)));
270}
271
272// Returns the pair of file name and line number describing location of data
273// object (variable, array, etc) definition.
274template <class ELFT>
275Optional<std::pair<std::string, unsigned>>
276ObjFile<ELFT>::getVariableLoc(StringRef name) {
277  llvm::call_once(initDwarfLine, [this]() { initializeDwarf(); });
278
279  return dwarf->getVariableLoc(name);
280}
281
282// Returns source line information for a given offset
283// using DWARF debug info.
284template <class ELFT>
285Optional<DILineInfo> ObjFile<ELFT>::getDILineInfo(InputSectionBase *s,
286                                                  uint64_t offset) {
287  llvm::call_once(initDwarfLine, [this]() { initializeDwarf(); });
288
289  // Detect SectionIndex for specified section.
290  uint64_t sectionIndex = object::SectionedAddress::UndefSection;
291  ArrayRef<InputSectionBase *> sections = s->file->getSections();
292  for (uint64_t curIndex = 0; curIndex < sections.size(); ++curIndex) {
293    if (s == sections[curIndex]) {
294      sectionIndex = curIndex;
295      break;
296    }
297  }
298
299  // Use fake address calculated by adding section file offset and offset in
300  // section. See comments for ObjectInfo class.
301  return dwarf->getDILineInfo(s->getOffsetInFile() + offset, sectionIndex);
302}
303
304ELFFileBase::ELFFileBase(Kind k, MemoryBufferRef mb) : InputFile(k, mb) {
305  ekind = getELFKind(mb, "");
306
307  switch (ekind) {
308  case ELF32LEKind:
309    init<ELF32LE>();
310    break;
311  case ELF32BEKind:
312    init<ELF32BE>();
313    break;
314  case ELF64LEKind:
315    init<ELF64LE>();
316    break;
317  case ELF64BEKind:
318    init<ELF64BE>();
319    break;
320  default:
321    llvm_unreachable("getELFKind");
322  }
323}
324
325template <typename Elf_Shdr>
326static const Elf_Shdr *findSection(ArrayRef<Elf_Shdr> sections, uint32_t type) {
327  for (const Elf_Shdr &sec : sections)
328    if (sec.sh_type == type)
329      return &sec;
330  return nullptr;
331}
332
333template <class ELFT> void ELFFileBase::init() {
334  using Elf_Shdr = typename ELFT::Shdr;
335  using Elf_Sym = typename ELFT::Sym;
336
337  // Initialize trivial attributes.
338  const ELFFile<ELFT> &obj = getObj<ELFT>();
339  emachine = obj.getHeader()->e_machine;
340  osabi = obj.getHeader()->e_ident[llvm::ELF::EI_OSABI];
341  abiVersion = obj.getHeader()->e_ident[llvm::ELF::EI_ABIVERSION];
342
343  ArrayRef<Elf_Shdr> sections = CHECK(obj.sections(), this);
344
345  // Find a symbol table.
346  bool isDSO =
347      (identify_magic(mb.getBuffer()) == file_magic::elf_shared_object);
348  const Elf_Shdr *symtabSec =
349      findSection(sections, isDSO ? SHT_DYNSYM : SHT_SYMTAB);
350
351  if (!symtabSec)
352    return;
353
354  // Initialize members corresponding to a symbol table.
355  firstGlobal = symtabSec->sh_info;
356
357  ArrayRef<Elf_Sym> eSyms = CHECK(obj.symbols(symtabSec), this);
358  if (firstGlobal == 0 || firstGlobal > eSyms.size())
359    fatal(toString(this) + ": invalid sh_info in symbol table");
360
361  elfSyms = reinterpret_cast<const void *>(eSyms.data());
362  numELFSyms = eSyms.size();
363  stringTable = CHECK(obj.getStringTableForSymtab(*symtabSec, sections), this);
364}
365
366template <class ELFT>
367uint32_t ObjFile<ELFT>::getSectionIndex(const Elf_Sym &sym) const {
368  return CHECK(
369      this->getObj().getSectionIndex(&sym, getELFSyms<ELFT>(), shndxTable),
370      this);
371}
372
373template <class ELFT> ArrayRef<Symbol *> ObjFile<ELFT>::getLocalSymbols() {
374  if (this->symbols.empty())
375    return {};
376  return makeArrayRef(this->symbols).slice(1, this->firstGlobal - 1);
377}
378
379template <class ELFT> ArrayRef<Symbol *> ObjFile<ELFT>::getGlobalSymbols() {
380  return makeArrayRef(this->symbols).slice(this->firstGlobal);
381}
382
383template <class ELFT> void ObjFile<ELFT>::parse(bool ignoreComdats) {
384  // Read a section table. justSymbols is usually false.
385  if (this->justSymbols)
386    initializeJustSymbols();
387  else
388    initializeSections(ignoreComdats);
389
390  // Read a symbol table.
391  initializeSymbols();
392}
393
394// Sections with SHT_GROUP and comdat bits define comdat section groups.
395// They are identified and deduplicated by group name. This function
396// returns a group name.
397template <class ELFT>
398StringRef ObjFile<ELFT>::getShtGroupSignature(ArrayRef<Elf_Shdr> sections,
399                                              const Elf_Shdr &sec) {
400  typename ELFT::SymRange symbols = this->getELFSyms<ELFT>();
401  if (sec.sh_info >= symbols.size())
402    fatal(toString(this) + ": invalid symbol index");
403  const typename ELFT::Sym &sym = symbols[sec.sh_info];
404  StringRef signature = CHECK(sym.getName(this->stringTable), this);
405
406  // As a special case, if a symbol is a section symbol and has no name,
407  // we use a section name as a signature.
408  //
409  // Such SHT_GROUP sections are invalid from the perspective of the ELF
410  // standard, but GNU gold 1.14 (the newest version as of July 2017) or
411  // older produce such sections as outputs for the -r option, so we need
412  // a bug-compatibility.
413  if (signature.empty() && sym.getType() == STT_SECTION)
414    return getSectionName(sec);
415  return signature;
416}
417
418template <class ELFT>
419bool ObjFile<ELFT>::shouldMerge(const Elf_Shdr &sec, StringRef name) {
420  // On a regular link we don't merge sections if -O0 (default is -O1). This
421  // sometimes makes the linker significantly faster, although the output will
422  // be bigger.
423  //
424  // Doing the same for -r would create a problem as it would combine sections
425  // with different sh_entsize. One option would be to just copy every SHF_MERGE
426  // section as is to the output. While this would produce a valid ELF file with
427  // usable SHF_MERGE sections, tools like (llvm-)?dwarfdump get confused when
428  // they see two .debug_str. We could have separate logic for combining
429  // SHF_MERGE sections based both on their name and sh_entsize, but that seems
430  // to be more trouble than it is worth. Instead, we just use the regular (-O1)
431  // logic for -r.
432  if (config->optimize == 0 && !config->relocatable)
433    return false;
434
435  // A mergeable section with size 0 is useless because they don't have
436  // any data to merge. A mergeable string section with size 0 can be
437  // argued as invalid because it doesn't end with a null character.
438  // We'll avoid a mess by handling them as if they were non-mergeable.
439  if (sec.sh_size == 0)
440    return false;
441
442  // Check for sh_entsize. The ELF spec is not clear about the zero
443  // sh_entsize. It says that "the member [sh_entsize] contains 0 if
444  // the section does not hold a table of fixed-size entries". We know
445  // that Rust 1.13 produces a string mergeable section with a zero
446  // sh_entsize. Here we just accept it rather than being picky about it.
447  uint64_t entSize = sec.sh_entsize;
448  if (entSize == 0)
449    return false;
450  if (sec.sh_size % entSize)
451    fatal(toString(this) + ":(" + name + "): SHF_MERGE section size (" +
452          Twine(sec.sh_size) + ") must be a multiple of sh_entsize (" +
453          Twine(entSize) + ")");
454
455  uint64_t flags = sec.sh_flags;
456  if (!(flags & SHF_MERGE))
457    return false;
458  if (flags & SHF_WRITE)
459    fatal(toString(this) + ":(" + name +
460          "): writable SHF_MERGE section is not supported");
461
462  return true;
463}
464
465// This is for --just-symbols.
466//
467// --just-symbols is a very minor feature that allows you to link your
468// output against other existing program, so that if you load both your
469// program and the other program into memory, your output can refer the
470// other program's symbols.
471//
472// When the option is given, we link "just symbols". The section table is
473// initialized with null pointers.
474template <class ELFT> void ObjFile<ELFT>::initializeJustSymbols() {
475  ArrayRef<Elf_Shdr> sections = CHECK(this->getObj().sections(), this);
476  this->sections.resize(sections.size());
477}
478
479// An ELF object file may contain a `.deplibs` section. If it exists, the
480// section contains a list of library specifiers such as `m` for libm. This
481// function resolves a given name by finding the first matching library checking
482// the various ways that a library can be specified to LLD. This ELF extension
483// is a form of autolinking and is called `dependent libraries`. It is currently
484// unique to LLVM and lld.
485static void addDependentLibrary(StringRef specifier, const InputFile *f) {
486  if (!config->dependentLibraries)
487    return;
488  if (fs::exists(specifier))
489    driver->addFile(specifier, /*withLOption=*/false);
490  else if (Optional<std::string> s = findFromSearchPaths(specifier))
491    driver->addFile(*s, /*withLOption=*/true);
492  else if (Optional<std::string> s = searchLibraryBaseName(specifier))
493    driver->addFile(*s, /*withLOption=*/true);
494  else
495    error(toString(f) +
496          ": unable to find library from dependent library specifier: " +
497          specifier);
498}
499
500// Record the membership of a section group so that in the garbage collection
501// pass, section group members are kept or discarded as a unit.
502template <class ELFT>
503static void handleSectionGroup(ArrayRef<InputSectionBase *> sections,
504                               ArrayRef<typename ELFT::Word> entries) {
505  bool hasAlloc = false;
506  for (uint32_t index : entries.slice(1)) {
507    if (index >= sections.size())
508      return;
509    if (InputSectionBase *s = sections[index])
510      if (s != &InputSection::discarded && s->flags & SHF_ALLOC)
511        hasAlloc = true;
512  }
513
514  // If any member has the SHF_ALLOC flag, the whole group is subject to garbage
515  // collection. See the comment in markLive(). This rule retains .debug_types
516  // and .rela.debug_types.
517  if (!hasAlloc)
518    return;
519
520  // Connect the members in a circular doubly-linked list via
521  // nextInSectionGroup.
522  InputSectionBase *head;
523  InputSectionBase *prev = nullptr;
524  for (uint32_t index : entries.slice(1)) {
525    InputSectionBase *s = sections[index];
526    if (!s || s == &InputSection::discarded)
527      continue;
528    if (prev)
529      prev->nextInSectionGroup = s;
530    else
531      head = s;
532    prev = s;
533  }
534  if (prev)
535    prev->nextInSectionGroup = head;
536}
537
538template <class ELFT>
539void ObjFile<ELFT>::initializeSections(bool ignoreComdats) {
540  const ELFFile<ELFT> &obj = this->getObj();
541
542  ArrayRef<Elf_Shdr> objSections = CHECK(obj.sections(), this);
543  uint64_t size = objSections.size();
544  this->sections.resize(size);
545  this->sectionStringTable =
546      CHECK(obj.getSectionStringTable(objSections), this);
547
548  std::vector<ArrayRef<Elf_Word>> selectedGroups;
549
550  for (size_t i = 0, e = objSections.size(); i < e; ++i) {
551    if (this->sections[i] == &InputSection::discarded)
552      continue;
553    const Elf_Shdr &sec = objSections[i];
554
555    if (sec.sh_type == ELF::SHT_LLVM_CALL_GRAPH_PROFILE)
556      cgProfile =
557          check(obj.template getSectionContentsAsArray<Elf_CGProfile>(&sec));
558
559    // SHF_EXCLUDE'ed sections are discarded by the linker. However,
560    // if -r is given, we'll let the final link discard such sections.
561    // This is compatible with GNU.
562    if ((sec.sh_flags & SHF_EXCLUDE) && !config->relocatable) {
563      if (sec.sh_type == SHT_LLVM_ADDRSIG) {
564        // We ignore the address-significance table if we know that the object
565        // file was created by objcopy or ld -r. This is because these tools
566        // will reorder the symbols in the symbol table, invalidating the data
567        // in the address-significance table, which refers to symbols by index.
568        if (sec.sh_link != 0)
569          this->addrsigSec = &sec;
570        else if (config->icf == ICFLevel::Safe)
571          warn(toString(this) + ": --icf=safe is incompatible with object "
572                                "files created using objcopy or ld -r");
573      }
574      this->sections[i] = &InputSection::discarded;
575      continue;
576    }
577
578    switch (sec.sh_type) {
579    case SHT_GROUP: {
580      // De-duplicate section groups by their signatures.
581      StringRef signature = getShtGroupSignature(objSections, sec);
582      this->sections[i] = &InputSection::discarded;
583
584
585      ArrayRef<Elf_Word> entries =
586          CHECK(obj.template getSectionContentsAsArray<Elf_Word>(&sec), this);
587      if (entries.empty())
588        fatal(toString(this) + ": empty SHT_GROUP");
589
590      // The first word of a SHT_GROUP section contains flags. Currently,
591      // the standard defines only "GRP_COMDAT" flag for the COMDAT group.
592      // An group with the empty flag doesn't define anything; such sections
593      // are just skipped.
594      if (entries[0] == 0)
595        continue;
596
597      if (entries[0] != GRP_COMDAT)
598        fatal(toString(this) + ": unsupported SHT_GROUP format");
599
600      bool isNew =
601          ignoreComdats ||
602          symtab->comdatGroups.try_emplace(CachedHashStringRef(signature), this)
603              .second;
604      if (isNew) {
605        if (config->relocatable)
606          this->sections[i] = createInputSection(sec);
607        selectedGroups.push_back(entries);
608        continue;
609      }
610
611      // Otherwise, discard group members.
612      for (uint32_t secIndex : entries.slice(1)) {
613        if (secIndex >= size)
614          fatal(toString(this) +
615                ": invalid section index in group: " + Twine(secIndex));
616        this->sections[secIndex] = &InputSection::discarded;
617      }
618      break;
619    }
620    case SHT_SYMTAB_SHNDX:
621      shndxTable = CHECK(obj.getSHNDXTable(sec, objSections), this);
622      break;
623    case SHT_SYMTAB:
624    case SHT_STRTAB:
625    case SHT_NULL:
626      break;
627    default:
628      this->sections[i] = createInputSection(sec);
629    }
630  }
631
632  // This block handles SHF_LINK_ORDER.
633  for (size_t i = 0, e = objSections.size(); i < e; ++i) {
634    if (this->sections[i] == &InputSection::discarded)
635      continue;
636    const Elf_Shdr &sec = objSections[i];
637    if (!(sec.sh_flags & SHF_LINK_ORDER))
638      continue;
639
640    // .ARM.exidx sections have a reverse dependency on the InputSection they
641    // have a SHF_LINK_ORDER dependency, this is identified by the sh_link.
642    InputSectionBase *linkSec = nullptr;
643    if (sec.sh_link < this->sections.size())
644      linkSec = this->sections[sec.sh_link];
645    if (!linkSec)
646      fatal(toString(this) + ": invalid sh_link index: " + Twine(sec.sh_link));
647
648    InputSection *isec = cast<InputSection>(this->sections[i]);
649    linkSec->dependentSections.push_back(isec);
650    if (!isa<InputSection>(linkSec))
651      error("a section " + isec->name +
652            " with SHF_LINK_ORDER should not refer a non-regular section: " +
653            toString(linkSec));
654  }
655
656  for (ArrayRef<Elf_Word> entries : selectedGroups)
657    handleSectionGroup<ELFT>(this->sections, entries);
658}
659
660// For ARM only, to set the EF_ARM_ABI_FLOAT_SOFT or EF_ARM_ABI_FLOAT_HARD
661// flag in the ELF Header we need to look at Tag_ABI_VFP_args to find out how
662// the input objects have been compiled.
663static void updateARMVFPArgs(const ARMAttributeParser &attributes,
664                             const InputFile *f) {
665  if (!attributes.hasAttribute(ARMBuildAttrs::ABI_VFP_args))
666    // If an ABI tag isn't present then it is implicitly given the value of 0
667    // which maps to ARMBuildAttrs::BaseAAPCS. However many assembler files,
668    // including some in glibc that don't use FP args (and should have value 3)
669    // don't have the attribute so we do not consider an implicit value of 0
670    // as a clash.
671    return;
672
673  unsigned vfpArgs = attributes.getAttributeValue(ARMBuildAttrs::ABI_VFP_args);
674  ARMVFPArgKind arg;
675  switch (vfpArgs) {
676  case ARMBuildAttrs::BaseAAPCS:
677    arg = ARMVFPArgKind::Base;
678    break;
679  case ARMBuildAttrs::HardFPAAPCS:
680    arg = ARMVFPArgKind::VFP;
681    break;
682  case ARMBuildAttrs::ToolChainFPPCS:
683    // Tool chain specific convention that conforms to neither AAPCS variant.
684    arg = ARMVFPArgKind::ToolChain;
685    break;
686  case ARMBuildAttrs::CompatibleFPAAPCS:
687    // Object compatible with all conventions.
688    return;
689  default:
690    error(toString(f) + ": unknown Tag_ABI_VFP_args value: " + Twine(vfpArgs));
691    return;
692  }
693  // Follow ld.bfd and error if there is a mix of calling conventions.
694  if (config->armVFPArgs != arg && config->armVFPArgs != ARMVFPArgKind::Default)
695    error(toString(f) + ": incompatible Tag_ABI_VFP_args");
696  else
697    config->armVFPArgs = arg;
698}
699
700// The ARM support in lld makes some use of instructions that are not available
701// on all ARM architectures. Namely:
702// - Use of BLX instruction for interworking between ARM and Thumb state.
703// - Use of the extended Thumb branch encoding in relocation.
704// - Use of the MOVT/MOVW instructions in Thumb Thunks.
705// The ARM Attributes section contains information about the architecture chosen
706// at compile time. We follow the convention that if at least one input object
707// is compiled with an architecture that supports these features then lld is
708// permitted to use them.
709static void updateSupportedARMFeatures(const ARMAttributeParser &attributes) {
710  if (!attributes.hasAttribute(ARMBuildAttrs::CPU_arch))
711    return;
712  auto arch = attributes.getAttributeValue(ARMBuildAttrs::CPU_arch);
713  switch (arch) {
714  case ARMBuildAttrs::Pre_v4:
715  case ARMBuildAttrs::v4:
716  case ARMBuildAttrs::v4T:
717    // Architectures prior to v5 do not support BLX instruction
718    break;
719  case ARMBuildAttrs::v5T:
720  case ARMBuildAttrs::v5TE:
721  case ARMBuildAttrs::v5TEJ:
722  case ARMBuildAttrs::v6:
723  case ARMBuildAttrs::v6KZ:
724  case ARMBuildAttrs::v6K:
725    config->armHasBlx = true;
726    // Architectures used in pre-Cortex processors do not support
727    // The J1 = 1 J2 = 1 Thumb branch range extension, with the exception
728    // of Architecture v6T2 (arm1156t2-s and arm1156t2f-s) that do.
729    break;
730  default:
731    // All other Architectures have BLX and extended branch encoding
732    config->armHasBlx = true;
733    config->armJ1J2BranchEncoding = true;
734    if (arch != ARMBuildAttrs::v6_M && arch != ARMBuildAttrs::v6S_M)
735      // All Architectures used in Cortex processors with the exception
736      // of v6-M and v6S-M have the MOVT and MOVW instructions.
737      config->armHasMovtMovw = true;
738    break;
739  }
740}
741
742// If a source file is compiled with x86 hardware-assisted call flow control
743// enabled, the generated object file contains feature flags indicating that
744// fact. This function reads the feature flags and returns it.
745//
746// Essentially we want to read a single 32-bit value in this function, but this
747// function is rather complicated because the value is buried deep inside a
748// .note.gnu.property section.
749//
750// The section consists of one or more NOTE records. Each NOTE record consists
751// of zero or more type-length-value fields. We want to find a field of a
752// certain type. It seems a bit too much to just store a 32-bit value, perhaps
753// the ABI is unnecessarily complicated.
754template <class ELFT>
755static uint32_t readAndFeatures(ObjFile<ELFT> *obj, ArrayRef<uint8_t> data) {
756  using Elf_Nhdr = typename ELFT::Nhdr;
757  using Elf_Note = typename ELFT::Note;
758
759  uint32_t featuresSet = 0;
760  while (!data.empty()) {
761    // Read one NOTE record.
762    if (data.size() < sizeof(Elf_Nhdr))
763      fatal(toString(obj) + ": .note.gnu.property: section too short");
764
765    auto *nhdr = reinterpret_cast<const Elf_Nhdr *>(data.data());
766    if (data.size() < nhdr->getSize())
767      fatal(toString(obj) + ": .note.gnu.property: section too short");
768
769    Elf_Note note(*nhdr);
770    if (nhdr->n_type != NT_GNU_PROPERTY_TYPE_0 || note.getName() != "GNU") {
771      data = data.slice(nhdr->getSize());
772      continue;
773    }
774
775    uint32_t featureAndType = config->emachine == EM_AARCH64
776                                  ? GNU_PROPERTY_AARCH64_FEATURE_1_AND
777                                  : GNU_PROPERTY_X86_FEATURE_1_AND;
778
779    // Read a body of a NOTE record, which consists of type-length-value fields.
780    ArrayRef<uint8_t> desc = note.getDesc();
781    while (!desc.empty()) {
782      if (desc.size() < 8)
783        fatal(toString(obj) + ": .note.gnu.property: section too short");
784
785      uint32_t type = read32le(desc.data());
786      uint32_t size = read32le(desc.data() + 4);
787
788      if (type == featureAndType) {
789        // We found a FEATURE_1_AND field. There may be more than one of these
790        // in a .note.gnu.property section, for a relocatable object we
791        // accumulate the bits set.
792        featuresSet |= read32le(desc.data() + 8);
793      }
794
795      // On 64-bit, a payload may be followed by a 4-byte padding to make its
796      // size a multiple of 8.
797      if (ELFT::Is64Bits)
798        size = alignTo(size, 8);
799
800      desc = desc.slice(size + 8); // +8 for Type and Size
801    }
802
803    // Go to next NOTE record to look for more FEATURE_1_AND descriptions.
804    data = data.slice(nhdr->getSize());
805  }
806
807  return featuresSet;
808}
809
810template <class ELFT>
811InputSectionBase *ObjFile<ELFT>::getRelocTarget(const Elf_Shdr &sec) {
812  uint32_t idx = sec.sh_info;
813  if (idx >= this->sections.size())
814    fatal(toString(this) + ": invalid relocated section index: " + Twine(idx));
815  InputSectionBase *target = this->sections[idx];
816
817  // Strictly speaking, a relocation section must be included in the
818  // group of the section it relocates. However, LLVM 3.3 and earlier
819  // would fail to do so, so we gracefully handle that case.
820  if (target == &InputSection::discarded)
821    return nullptr;
822
823  if (!target)
824    fatal(toString(this) + ": unsupported relocation reference");
825  return target;
826}
827
828// Create a regular InputSection class that has the same contents
829// as a given section.
830static InputSection *toRegularSection(MergeInputSection *sec) {
831  return make<InputSection>(sec->file, sec->flags, sec->type, sec->alignment,
832                            sec->data(), sec->name);
833}
834
835template <class ELFT>
836InputSectionBase *ObjFile<ELFT>::createInputSection(const Elf_Shdr &sec) {
837  StringRef name = getSectionName(sec);
838
839  switch (sec.sh_type) {
840  case SHT_ARM_ATTRIBUTES: {
841    if (config->emachine != EM_ARM)
842      break;
843    ARMAttributeParser attributes;
844    ArrayRef<uint8_t> contents = check(this->getObj().getSectionContents(&sec));
845    attributes.Parse(contents, /*isLittle*/ config->ekind == ELF32LEKind);
846    updateSupportedARMFeatures(attributes);
847    updateARMVFPArgs(attributes, this);
848
849    // FIXME: Retain the first attribute section we see. The eglibc ARM
850    // dynamic loaders require the presence of an attribute section for dlopen
851    // to work. In a full implementation we would merge all attribute sections.
852    if (in.armAttributes == nullptr) {
853      in.armAttributes = make<InputSection>(*this, sec, name);
854      return in.armAttributes;
855    }
856    return &InputSection::discarded;
857  }
858  case SHT_LLVM_DEPENDENT_LIBRARIES: {
859    if (config->relocatable)
860      break;
861    ArrayRef<char> data =
862        CHECK(this->getObj().template getSectionContentsAsArray<char>(&sec), this);
863    if (!data.empty() && data.back() != '\0') {
864      error(toString(this) +
865            ": corrupted dependent libraries section (unterminated string): " +
866            name);
867      return &InputSection::discarded;
868    }
869    for (const char *d = data.begin(), *e = data.end(); d < e;) {
870      StringRef s(d);
871      addDependentLibrary(s, this);
872      d += s.size() + 1;
873    }
874    return &InputSection::discarded;
875  }
876  case SHT_RELA:
877  case SHT_REL: {
878    // Find a relocation target section and associate this section with that.
879    // Target may have been discarded if it is in a different section group
880    // and the group is discarded, even though it's a violation of the
881    // spec. We handle that situation gracefully by discarding dangling
882    // relocation sections.
883    InputSectionBase *target = getRelocTarget(sec);
884    if (!target)
885      return nullptr;
886
887    // ELF spec allows mergeable sections with relocations, but they are
888    // rare, and it is in practice hard to merge such sections by contents,
889    // because applying relocations at end of linking changes section
890    // contents. So, we simply handle such sections as non-mergeable ones.
891    // Degrading like this is acceptable because section merging is optional.
892    if (auto *ms = dyn_cast<MergeInputSection>(target)) {
893      target = toRegularSection(ms);
894      this->sections[sec.sh_info] = target;
895    }
896
897    // This section contains relocation information.
898    // If -r is given, we do not interpret or apply relocation
899    // but just copy relocation sections to output.
900    if (config->relocatable) {
901      InputSection *relocSec = make<InputSection>(*this, sec, name);
902      // We want to add a dependency to target, similar like we do for
903      // -emit-relocs below. This is useful for the case when linker script
904      // contains the "/DISCARD/". It is perhaps uncommon to use a script with
905      // -r, but we faced it in the Linux kernel and have to handle such case
906      // and not to crash.
907      target->dependentSections.push_back(relocSec);
908      return relocSec;
909    }
910
911    if (target->firstRelocation)
912      fatal(toString(this) +
913            ": multiple relocation sections to one section are not supported");
914
915    if (sec.sh_type == SHT_RELA) {
916      ArrayRef<Elf_Rela> rels = CHECK(getObj().relas(&sec), this);
917      target->firstRelocation = rels.begin();
918      target->numRelocations = rels.size();
919      target->areRelocsRela = true;
920    } else {
921      ArrayRef<Elf_Rel> rels = CHECK(getObj().rels(&sec), this);
922      target->firstRelocation = rels.begin();
923      target->numRelocations = rels.size();
924      target->areRelocsRela = false;
925    }
926    assert(isUInt<31>(target->numRelocations));
927
928    // Relocation sections processed by the linker are usually removed
929    // from the output, so returning `nullptr` for the normal case.
930    // However, if -emit-relocs is given, we need to leave them in the output.
931    // (Some post link analysis tools need this information.)
932    if (config->emitRelocs) {
933      InputSection *relocSec = make<InputSection>(*this, sec, name);
934      // We will not emit relocation section if target was discarded.
935      target->dependentSections.push_back(relocSec);
936      return relocSec;
937    }
938    return nullptr;
939  }
940  }
941
942  // The GNU linker uses .note.GNU-stack section as a marker indicating
943  // that the code in the object file does not expect that the stack is
944  // executable (in terms of NX bit). If all input files have the marker,
945  // the GNU linker adds a PT_GNU_STACK segment to tells the loader to
946  // make the stack non-executable. Most object files have this section as
947  // of 2017.
948  //
949  // But making the stack non-executable is a norm today for security
950  // reasons. Failure to do so may result in a serious security issue.
951  // Therefore, we make LLD always add PT_GNU_STACK unless it is
952  // explicitly told to do otherwise (by -z execstack). Because the stack
953  // executable-ness is controlled solely by command line options,
954  // .note.GNU-stack sections are simply ignored.
955  if (name == ".note.GNU-stack")
956    return &InputSection::discarded;
957
958  // Object files that use processor features such as Intel Control-Flow
959  // Enforcement (CET) or AArch64 Branch Target Identification BTI, use a
960  // .note.gnu.property section containing a bitfield of feature bits like the
961  // GNU_PROPERTY_X86_FEATURE_1_IBT flag. Read a bitmap containing the flag.
962  //
963  // Since we merge bitmaps from multiple object files to create a new
964  // .note.gnu.property containing a single AND'ed bitmap, we discard an input
965  // file's .note.gnu.property section.
966  if (name == ".note.gnu.property") {
967    ArrayRef<uint8_t> contents = check(this->getObj().getSectionContents(&sec));
968    this->andFeatures = readAndFeatures(this, contents);
969    return &InputSection::discarded;
970  }
971
972  // Split stacks is a feature to support a discontiguous stack,
973  // commonly used in the programming language Go. For the details,
974  // see https://gcc.gnu.org/wiki/SplitStacks. An object file compiled
975  // for split stack will include a .note.GNU-split-stack section.
976  if (name == ".note.GNU-split-stack") {
977    if (config->relocatable) {
978      error("cannot mix split-stack and non-split-stack in a relocatable link");
979      return &InputSection::discarded;
980    }
981    this->splitStack = true;
982    return &InputSection::discarded;
983  }
984
985  // An object file cmpiled for split stack, but where some of the
986  // functions were compiled with the no_split_stack_attribute will
987  // include a .note.GNU-no-split-stack section.
988  if (name == ".note.GNU-no-split-stack") {
989    this->someNoSplitStack = true;
990    return &InputSection::discarded;
991  }
992
993  // The linkonce feature is a sort of proto-comdat. Some glibc i386 object
994  // files contain definitions of symbol "__x86.get_pc_thunk.bx" in linkonce
995  // sections. Drop those sections to avoid duplicate symbol errors.
996  // FIXME: This is glibc PR20543, we should remove this hack once that has been
997  // fixed for a while.
998  if (name == ".gnu.linkonce.t.__x86.get_pc_thunk.bx" ||
999      name == ".gnu.linkonce.t.__i686.get_pc_thunk.bx")
1000    return &InputSection::discarded;
1001
1002  // If we are creating a new .build-id section, strip existing .build-id
1003  // sections so that the output won't have more than one .build-id.
1004  // This is not usually a problem because input object files normally don't
1005  // have .build-id sections, but you can create such files by
1006  // "ld.{bfd,gold,lld} -r --build-id", and we want to guard against it.
1007  if (name == ".note.gnu.build-id" && config->buildId != BuildIdKind::None)
1008    return &InputSection::discarded;
1009
1010  // The linker merges EH (exception handling) frames and creates a
1011  // .eh_frame_hdr section for runtime. So we handle them with a special
1012  // class. For relocatable outputs, they are just passed through.
1013  if (name == ".eh_frame" && !config->relocatable)
1014    return make<EhInputSection>(*this, sec, name);
1015
1016  if (shouldMerge(sec, name))
1017    return make<MergeInputSection>(*this, sec, name);
1018  return make<InputSection>(*this, sec, name);
1019}
1020
1021template <class ELFT>
1022StringRef ObjFile<ELFT>::getSectionName(const Elf_Shdr &sec) {
1023  return CHECK(getObj().getSectionName(&sec, sectionStringTable), this);
1024}
1025
1026// Initialize this->Symbols. this->Symbols is a parallel array as
1027// its corresponding ELF symbol table.
1028template <class ELFT> void ObjFile<ELFT>::initializeSymbols() {
1029  ArrayRef<Elf_Sym> eSyms = this->getELFSyms<ELFT>();
1030  this->symbols.resize(eSyms.size());
1031
1032  // Our symbol table may have already been partially initialized
1033  // because of LazyObjFile.
1034  for (size_t i = 0, end = eSyms.size(); i != end; ++i)
1035    if (!this->symbols[i] && eSyms[i].getBinding() != STB_LOCAL)
1036      this->symbols[i] =
1037          symtab->insert(CHECK(eSyms[i].getName(this->stringTable), this));
1038
1039  // Fill this->Symbols. A symbol is either local or global.
1040  for (size_t i = 0, end = eSyms.size(); i != end; ++i) {
1041    const Elf_Sym &eSym = eSyms[i];
1042
1043    // Read symbol attributes.
1044    uint32_t secIdx = getSectionIndex(eSym);
1045    if (secIdx >= this->sections.size())
1046      fatal(toString(this) + ": invalid section index: " + Twine(secIdx));
1047
1048    InputSectionBase *sec = this->sections[secIdx];
1049    uint8_t binding = eSym.getBinding();
1050    uint8_t stOther = eSym.st_other;
1051    uint8_t type = eSym.getType();
1052    uint64_t value = eSym.st_value;
1053    uint64_t size = eSym.st_size;
1054    StringRefZ name = this->stringTable.data() + eSym.st_name;
1055
1056    // Handle local symbols. Local symbols are not added to the symbol
1057    // table because they are not visible from other object files. We
1058    // allocate symbol instances and add their pointers to Symbols.
1059    if (binding == STB_LOCAL) {
1060      if (eSym.getType() == STT_FILE)
1061        sourceFile = CHECK(eSym.getName(this->stringTable), this);
1062
1063      if (this->stringTable.size() <= eSym.st_name)
1064        fatal(toString(this) + ": invalid symbol name offset");
1065
1066      if (eSym.st_shndx == SHN_UNDEF)
1067        this->symbols[i] = make<Undefined>(this, name, binding, stOther, type);
1068      else if (sec == &InputSection::discarded)
1069        this->symbols[i] = make<Undefined>(this, name, binding, stOther, type,
1070                                           /*DiscardedSecIdx=*/secIdx);
1071      else
1072        this->symbols[i] =
1073            make<Defined>(this, name, binding, stOther, type, value, size, sec);
1074      continue;
1075    }
1076
1077    // Handle global undefined symbols.
1078    if (eSym.st_shndx == SHN_UNDEF) {
1079      this->symbols[i]->resolve(Undefined{this, name, binding, stOther, type});
1080      this->symbols[i]->referenced = true;
1081      continue;
1082    }
1083
1084    // Handle global common symbols.
1085    if (eSym.st_shndx == SHN_COMMON) {
1086      if (value == 0 || value >= UINT32_MAX)
1087        fatal(toString(this) + ": common symbol '" + StringRef(name.data) +
1088              "' has invalid alignment: " + Twine(value));
1089      this->symbols[i]->resolve(
1090          CommonSymbol{this, name, binding, stOther, type, value, size});
1091      continue;
1092    }
1093
1094    // If a defined symbol is in a discarded section, handle it as if it
1095    // were an undefined symbol. Such symbol doesn't comply with the
1096    // standard, but in practice, a .eh_frame often directly refer
1097    // COMDAT member sections, and if a comdat group is discarded, some
1098    // defined symbol in a .eh_frame becomes dangling symbols.
1099    if (sec == &InputSection::discarded) {
1100      this->symbols[i]->resolve(
1101          Undefined{this, name, binding, stOther, type, secIdx});
1102      continue;
1103    }
1104
1105    // Handle global defined symbols.
1106    if (binding == STB_GLOBAL || binding == STB_WEAK ||
1107        binding == STB_GNU_UNIQUE) {
1108      this->symbols[i]->resolve(
1109          Defined{this, name, binding, stOther, type, value, size, sec});
1110      continue;
1111    }
1112
1113    fatal(toString(this) + ": unexpected binding: " + Twine((int)binding));
1114  }
1115}
1116
1117ArchiveFile::ArchiveFile(std::unique_ptr<Archive> &&file)
1118    : InputFile(ArchiveKind, file->getMemoryBufferRef()),
1119      file(std::move(file)) {}
1120
1121void ArchiveFile::parse() {
1122  for (const Archive::Symbol &sym : file->symbols())
1123    symtab->addSymbol(LazyArchive{*this, sym});
1124}
1125
1126// Returns a buffer pointing to a member file containing a given symbol.
1127void ArchiveFile::fetch(const Archive::Symbol &sym) {
1128  Archive::Child c =
1129      CHECK(sym.getMember(), toString(this) +
1130                                 ": could not get the member for symbol " +
1131                                 toELFString(sym));
1132
1133  if (!seen.insert(c.getChildOffset()).second)
1134    return;
1135
1136  MemoryBufferRef mb =
1137      CHECK(c.getMemoryBufferRef(),
1138            toString(this) +
1139                ": could not get the buffer for the member defining symbol " +
1140                toELFString(sym));
1141
1142  if (tar && c.getParent()->isThin())
1143    tar->append(relativeToRoot(CHECK(c.getFullName(), this)), mb.getBuffer());
1144
1145  InputFile *file = createObjectFile(
1146      mb, getName(), c.getParent()->isThin() ? 0 : c.getChildOffset());
1147  file->groupId = groupId;
1148  parseFile(file);
1149}
1150
1151unsigned SharedFile::vernauxNum;
1152
1153// Parse the version definitions in the object file if present, and return a
1154// vector whose nth element contains a pointer to the Elf_Verdef for version
1155// identifier n. Version identifiers that are not definitions map to nullptr.
1156template <typename ELFT>
1157static std::vector<const void *> parseVerdefs(const uint8_t *base,
1158                                              const typename ELFT::Shdr *sec) {
1159  if (!sec)
1160    return {};
1161
1162  // We cannot determine the largest verdef identifier without inspecting
1163  // every Elf_Verdef, but both bfd and gold assign verdef identifiers
1164  // sequentially starting from 1, so we predict that the largest identifier
1165  // will be verdefCount.
1166  unsigned verdefCount = sec->sh_info;
1167  std::vector<const void *> verdefs(verdefCount + 1);
1168
1169  // Build the Verdefs array by following the chain of Elf_Verdef objects
1170  // from the start of the .gnu.version_d section.
1171  const uint8_t *verdef = base + sec->sh_offset;
1172  for (unsigned i = 0; i != verdefCount; ++i) {
1173    auto *curVerdef = reinterpret_cast<const typename ELFT::Verdef *>(verdef);
1174    verdef += curVerdef->vd_next;
1175    unsigned verdefIndex = curVerdef->vd_ndx;
1176    verdefs.resize(verdefIndex + 1);
1177    verdefs[verdefIndex] = curVerdef;
1178  }
1179  return verdefs;
1180}
1181
1182// We do not usually care about alignments of data in shared object
1183// files because the loader takes care of it. However, if we promote a
1184// DSO symbol to point to .bss due to copy relocation, we need to keep
1185// the original alignment requirements. We infer it in this function.
1186template <typename ELFT>
1187static uint64_t getAlignment(ArrayRef<typename ELFT::Shdr> sections,
1188                             const typename ELFT::Sym &sym) {
1189  uint64_t ret = UINT64_MAX;
1190  if (sym.st_value)
1191    ret = 1ULL << countTrailingZeros((uint64_t)sym.st_value);
1192  if (0 < sym.st_shndx && sym.st_shndx < sections.size())
1193    ret = std::min<uint64_t>(ret, sections[sym.st_shndx].sh_addralign);
1194  return (ret > UINT32_MAX) ? 0 : ret;
1195}
1196
1197// Fully parse the shared object file.
1198//
1199// This function parses symbol versions. If a DSO has version information,
1200// the file has a ".gnu.version_d" section which contains symbol version
1201// definitions. Each symbol is associated to one version through a table in
1202// ".gnu.version" section. That table is a parallel array for the symbol
1203// table, and each table entry contains an index in ".gnu.version_d".
1204//
1205// The special index 0 is reserved for VERF_NDX_LOCAL and 1 is for
1206// VER_NDX_GLOBAL. There's no table entry for these special versions in
1207// ".gnu.version_d".
1208//
1209// The file format for symbol versioning is perhaps a bit more complicated
1210// than necessary, but you can easily understand the code if you wrap your
1211// head around the data structure described above.
1212template <class ELFT> void SharedFile::parse() {
1213  using Elf_Dyn = typename ELFT::Dyn;
1214  using Elf_Shdr = typename ELFT::Shdr;
1215  using Elf_Sym = typename ELFT::Sym;
1216  using Elf_Verdef = typename ELFT::Verdef;
1217  using Elf_Versym = typename ELFT::Versym;
1218
1219  ArrayRef<Elf_Dyn> dynamicTags;
1220  const ELFFile<ELFT> obj = this->getObj<ELFT>();
1221  ArrayRef<Elf_Shdr> sections = CHECK(obj.sections(), this);
1222
1223  const Elf_Shdr *versymSec = nullptr;
1224  const Elf_Shdr *verdefSec = nullptr;
1225
1226  // Search for .dynsym, .dynamic, .symtab, .gnu.version and .gnu.version_d.
1227  for (const Elf_Shdr &sec : sections) {
1228    switch (sec.sh_type) {
1229    default:
1230      continue;
1231    case SHT_DYNAMIC:
1232      dynamicTags =
1233          CHECK(obj.template getSectionContentsAsArray<Elf_Dyn>(&sec), this);
1234      break;
1235    case SHT_GNU_versym:
1236      versymSec = &sec;
1237      break;
1238    case SHT_GNU_verdef:
1239      verdefSec = &sec;
1240      break;
1241    }
1242  }
1243
1244  if (versymSec && numELFSyms == 0) {
1245    error("SHT_GNU_versym should be associated with symbol table");
1246    return;
1247  }
1248
1249  // Search for a DT_SONAME tag to initialize this->soName.
1250  for (const Elf_Dyn &dyn : dynamicTags) {
1251    if (dyn.d_tag == DT_NEEDED) {
1252      uint64_t val = dyn.getVal();
1253      if (val >= this->stringTable.size())
1254        fatal(toString(this) + ": invalid DT_NEEDED entry");
1255      dtNeeded.push_back(this->stringTable.data() + val);
1256    } else if (dyn.d_tag == DT_SONAME) {
1257      uint64_t val = dyn.getVal();
1258      if (val >= this->stringTable.size())
1259        fatal(toString(this) + ": invalid DT_SONAME entry");
1260      soName = this->stringTable.data() + val;
1261    }
1262  }
1263
1264  // DSOs are uniquified not by filename but by soname.
1265  DenseMap<StringRef, SharedFile *>::iterator it;
1266  bool wasInserted;
1267  std::tie(it, wasInserted) = symtab->soNames.try_emplace(soName, this);
1268
1269  // If a DSO appears more than once on the command line with and without
1270  // --as-needed, --no-as-needed takes precedence over --as-needed because a
1271  // user can add an extra DSO with --no-as-needed to force it to be added to
1272  // the dependency list.
1273  it->second->isNeeded |= isNeeded;
1274  if (!wasInserted)
1275    return;
1276
1277  sharedFiles.push_back(this);
1278
1279  verdefs = parseVerdefs<ELFT>(obj.base(), verdefSec);
1280
1281  // Parse ".gnu.version" section which is a parallel array for the symbol
1282  // table. If a given file doesn't have a ".gnu.version" section, we use
1283  // VER_NDX_GLOBAL.
1284  size_t size = numELFSyms - firstGlobal;
1285  std::vector<uint32_t> versyms(size, VER_NDX_GLOBAL);
1286  if (versymSec) {
1287    ArrayRef<Elf_Versym> versym =
1288        CHECK(obj.template getSectionContentsAsArray<Elf_Versym>(versymSec),
1289              this)
1290            .slice(firstGlobal);
1291    for (size_t i = 0; i < size; ++i)
1292      versyms[i] = versym[i].vs_index;
1293  }
1294
1295  // System libraries can have a lot of symbols with versions. Using a
1296  // fixed buffer for computing the versions name (foo@ver) can save a
1297  // lot of allocations.
1298  SmallString<0> versionedNameBuffer;
1299
1300  // Add symbols to the symbol table.
1301  ArrayRef<Elf_Sym> syms = this->getGlobalELFSyms<ELFT>();
1302  for (size_t i = 0; i < syms.size(); ++i) {
1303    const Elf_Sym &sym = syms[i];
1304
1305    // ELF spec requires that all local symbols precede weak or global
1306    // symbols in each symbol table, and the index of first non-local symbol
1307    // is stored to sh_info. If a local symbol appears after some non-local
1308    // symbol, that's a violation of the spec.
1309    StringRef name = CHECK(sym.getName(this->stringTable), this);
1310    if (sym.getBinding() == STB_LOCAL) {
1311      warn("found local symbol '" + name +
1312           "' in global part of symbol table in file " + toString(this));
1313      continue;
1314    }
1315
1316    if (sym.isUndefined()) {
1317      Symbol *s = symtab->addSymbol(
1318          Undefined{this, name, sym.getBinding(), sym.st_other, sym.getType()});
1319      s->exportDynamic = true;
1320      continue;
1321    }
1322
1323    // MIPS BFD linker puts _gp_disp symbol into DSO files and incorrectly
1324    // assigns VER_NDX_LOCAL to this section global symbol. Here is a
1325    // workaround for this bug.
1326    uint32_t idx = versyms[i] & ~VERSYM_HIDDEN;
1327    if (config->emachine == EM_MIPS && idx == VER_NDX_LOCAL &&
1328        name == "_gp_disp")
1329      continue;
1330
1331    uint32_t alignment = getAlignment<ELFT>(sections, sym);
1332    if (!(versyms[i] & VERSYM_HIDDEN)) {
1333      symtab->addSymbol(SharedSymbol{*this, name, sym.getBinding(),
1334                                     sym.st_other, sym.getType(), sym.st_value,
1335                                     sym.st_size, alignment, idx});
1336    }
1337
1338    // Also add the symbol with the versioned name to handle undefined symbols
1339    // with explicit versions.
1340    if (idx == VER_NDX_GLOBAL)
1341      continue;
1342
1343    if (idx >= verdefs.size() || idx == VER_NDX_LOCAL) {
1344      error("corrupt input file: version definition index " + Twine(idx) +
1345            " for symbol " + name + " is out of bounds\n>>> defined in " +
1346            toString(this));
1347      continue;
1348    }
1349
1350    StringRef verName =
1351        this->stringTable.data() +
1352        reinterpret_cast<const Elf_Verdef *>(verdefs[idx])->getAux()->vda_name;
1353    versionedNameBuffer.clear();
1354    name = (name + "@" + verName).toStringRef(versionedNameBuffer);
1355    symtab->addSymbol(SharedSymbol{*this, saver.save(name), sym.getBinding(),
1356                                   sym.st_other, sym.getType(), sym.st_value,
1357                                   sym.st_size, alignment, idx});
1358  }
1359}
1360
1361static ELFKind getBitcodeELFKind(const Triple &t) {
1362  if (t.isLittleEndian())
1363    return t.isArch64Bit() ? ELF64LEKind : ELF32LEKind;
1364  return t.isArch64Bit() ? ELF64BEKind : ELF32BEKind;
1365}
1366
1367static uint8_t getBitcodeMachineKind(StringRef path, const Triple &t) {
1368  switch (t.getArch()) {
1369  case Triple::aarch64:
1370    return EM_AARCH64;
1371  case Triple::amdgcn:
1372  case Triple::r600:
1373    return EM_AMDGPU;
1374  case Triple::arm:
1375  case Triple::thumb:
1376    return EM_ARM;
1377  case Triple::avr:
1378    return EM_AVR;
1379  case Triple::mips:
1380  case Triple::mipsel:
1381  case Triple::mips64:
1382  case Triple::mips64el:
1383    return EM_MIPS;
1384  case Triple::msp430:
1385    return EM_MSP430;
1386  case Triple::ppc:
1387    return EM_PPC;
1388  case Triple::ppc64:
1389  case Triple::ppc64le:
1390    return EM_PPC64;
1391  case Triple::riscv32:
1392  case Triple::riscv64:
1393    return EM_RISCV;
1394  case Triple::x86:
1395    return t.isOSIAMCU() ? EM_IAMCU : EM_386;
1396  case Triple::x86_64:
1397    return EM_X86_64;
1398  default:
1399    error(path + ": could not infer e_machine from bitcode target triple " +
1400          t.str());
1401    return EM_NONE;
1402  }
1403}
1404
1405BitcodeFile::BitcodeFile(MemoryBufferRef mb, StringRef archiveName,
1406                         uint64_t offsetInArchive)
1407    : InputFile(BitcodeKind, mb) {
1408  this->archiveName = archiveName;
1409
1410  std::string path = mb.getBufferIdentifier().str();
1411  if (config->thinLTOIndexOnly)
1412    path = replaceThinLTOSuffix(mb.getBufferIdentifier());
1413
1414  // ThinLTO assumes that all MemoryBufferRefs given to it have a unique
1415  // name. If two archives define two members with the same name, this
1416  // causes a collision which result in only one of the objects being taken
1417  // into consideration at LTO time (which very likely causes undefined
1418  // symbols later in the link stage). So we append file offset to make
1419  // filename unique.
1420  StringRef name = archiveName.empty()
1421                       ? saver.save(path)
1422                       : saver.save(archiveName + "(" + path + " at " +
1423                                    utostr(offsetInArchive) + ")");
1424  MemoryBufferRef mbref(mb.getBuffer(), name);
1425
1426  obj = CHECK(lto::InputFile::create(mbref), this);
1427
1428  Triple t(obj->getTargetTriple());
1429  ekind = getBitcodeELFKind(t);
1430  emachine = getBitcodeMachineKind(mb.getBufferIdentifier(), t);
1431}
1432
1433static uint8_t mapVisibility(GlobalValue::VisibilityTypes gvVisibility) {
1434  switch (gvVisibility) {
1435  case GlobalValue::DefaultVisibility:
1436    return STV_DEFAULT;
1437  case GlobalValue::HiddenVisibility:
1438    return STV_HIDDEN;
1439  case GlobalValue::ProtectedVisibility:
1440    return STV_PROTECTED;
1441  }
1442  llvm_unreachable("unknown visibility");
1443}
1444
1445template <class ELFT>
1446static Symbol *createBitcodeSymbol(const std::vector<bool> &keptComdats,
1447                                   const lto::InputFile::Symbol &objSym,
1448                                   BitcodeFile &f) {
1449  StringRef name = saver.save(objSym.getName());
1450  uint8_t binding = objSym.isWeak() ? STB_WEAK : STB_GLOBAL;
1451  uint8_t type = objSym.isTLS() ? STT_TLS : STT_NOTYPE;
1452  uint8_t visibility = mapVisibility(objSym.getVisibility());
1453  bool canOmitFromDynSym = objSym.canBeOmittedFromSymbolTable();
1454
1455  int c = objSym.getComdatIndex();
1456  if (objSym.isUndefined() || (c != -1 && !keptComdats[c])) {
1457    Undefined newSym(&f, name, binding, visibility, type);
1458    if (canOmitFromDynSym)
1459      newSym.exportDynamic = false;
1460    Symbol *ret = symtab->addSymbol(newSym);
1461    ret->referenced = true;
1462    return ret;
1463  }
1464
1465  if (objSym.isCommon())
1466    return symtab->addSymbol(
1467        CommonSymbol{&f, name, binding, visibility, STT_OBJECT,
1468                     objSym.getCommonAlignment(), objSym.getCommonSize()});
1469
1470  Defined newSym(&f, name, binding, visibility, type, 0, 0, nullptr);
1471  if (canOmitFromDynSym)
1472    newSym.exportDynamic = false;
1473  return symtab->addSymbol(newSym);
1474}
1475
1476template <class ELFT> void BitcodeFile::parse() {
1477  std::vector<bool> keptComdats;
1478  for (StringRef s : obj->getComdatTable())
1479    keptComdats.push_back(
1480        symtab->comdatGroups.try_emplace(CachedHashStringRef(s), this).second);
1481
1482  for (const lto::InputFile::Symbol &objSym : obj->symbols())
1483    symbols.push_back(createBitcodeSymbol<ELFT>(keptComdats, objSym, *this));
1484
1485  for (auto l : obj->getDependentLibraries())
1486    addDependentLibrary(l, this);
1487}
1488
1489void BinaryFile::parse() {
1490  ArrayRef<uint8_t> data = arrayRefFromStringRef(mb.getBuffer());
1491  auto *section = make<InputSection>(this, SHF_ALLOC | SHF_WRITE, SHT_PROGBITS,
1492                                     8, data, ".data");
1493  sections.push_back(section);
1494
1495  // For each input file foo that is embedded to a result as a binary
1496  // blob, we define _binary_foo_{start,end,size} symbols, so that
1497  // user programs can access blobs by name. Non-alphanumeric
1498  // characters in a filename are replaced with underscore.
1499  std::string s = "_binary_" + mb.getBufferIdentifier().str();
1500  for (size_t i = 0; i < s.size(); ++i)
1501    if (!isAlnum(s[i]))
1502      s[i] = '_';
1503
1504  symtab->addSymbol(Defined{nullptr, saver.save(s + "_start"), STB_GLOBAL,
1505                            STV_DEFAULT, STT_OBJECT, 0, 0, section});
1506  symtab->addSymbol(Defined{nullptr, saver.save(s + "_end"), STB_GLOBAL,
1507                            STV_DEFAULT, STT_OBJECT, data.size(), 0, section});
1508  symtab->addSymbol(Defined{nullptr, saver.save(s + "_size"), STB_GLOBAL,
1509                            STV_DEFAULT, STT_OBJECT, data.size(), 0, nullptr});
1510}
1511
1512InputFile *createObjectFile(MemoryBufferRef mb, StringRef archiveName,
1513                            uint64_t offsetInArchive) {
1514  if (isBitcode(mb))
1515    return make<BitcodeFile>(mb, archiveName, offsetInArchive);
1516
1517  switch (getELFKind(mb, archiveName)) {
1518  case ELF32LEKind:
1519    return make<ObjFile<ELF32LE>>(mb, archiveName);
1520  case ELF32BEKind:
1521    return make<ObjFile<ELF32BE>>(mb, archiveName);
1522  case ELF64LEKind:
1523    return make<ObjFile<ELF64LE>>(mb, archiveName);
1524  case ELF64BEKind:
1525    return make<ObjFile<ELF64BE>>(mb, archiveName);
1526  default:
1527    llvm_unreachable("getELFKind");
1528  }
1529}
1530
1531void LazyObjFile::fetch() {
1532  if (mb.getBuffer().empty())
1533    return;
1534
1535  InputFile *file = createObjectFile(mb, archiveName, offsetInArchive);
1536  file->groupId = groupId;
1537
1538  mb = {};
1539
1540  // Copy symbol vector so that the new InputFile doesn't have to
1541  // insert the same defined symbols to the symbol table again.
1542  file->symbols = std::move(symbols);
1543
1544  parseFile(file);
1545}
1546
1547template <class ELFT> void LazyObjFile::parse() {
1548  using Elf_Sym = typename ELFT::Sym;
1549
1550  // A lazy object file wraps either a bitcode file or an ELF file.
1551  if (isBitcode(this->mb)) {
1552    std::unique_ptr<lto::InputFile> obj =
1553        CHECK(lto::InputFile::create(this->mb), this);
1554    for (const lto::InputFile::Symbol &sym : obj->symbols()) {
1555      if (sym.isUndefined())
1556        continue;
1557      symtab->addSymbol(LazyObject{*this, saver.save(sym.getName())});
1558    }
1559    return;
1560  }
1561
1562  if (getELFKind(this->mb, archiveName) != config->ekind) {
1563    error("incompatible file: " + this->mb.getBufferIdentifier());
1564    return;
1565  }
1566
1567  // Find a symbol table.
1568  ELFFile<ELFT> obj = check(ELFFile<ELFT>::create(mb.getBuffer()));
1569  ArrayRef<typename ELFT::Shdr> sections = CHECK(obj.sections(), this);
1570
1571  for (const typename ELFT::Shdr &sec : sections) {
1572    if (sec.sh_type != SHT_SYMTAB)
1573      continue;
1574
1575    // A symbol table is found.
1576    ArrayRef<Elf_Sym> eSyms = CHECK(obj.symbols(&sec), this);
1577    uint32_t firstGlobal = sec.sh_info;
1578    StringRef strtab = CHECK(obj.getStringTableForSymtab(sec, sections), this);
1579    this->symbols.resize(eSyms.size());
1580
1581    // Get existing symbols or insert placeholder symbols.
1582    for (size_t i = firstGlobal, end = eSyms.size(); i != end; ++i)
1583      if (eSyms[i].st_shndx != SHN_UNDEF)
1584        this->symbols[i] = symtab->insert(CHECK(eSyms[i].getName(strtab), this));
1585
1586    // Replace existing symbols with LazyObject symbols.
1587    //
1588    // resolve() may trigger this->fetch() if an existing symbol is an
1589    // undefined symbol. If that happens, this LazyObjFile has served
1590    // its purpose, and we can exit from the loop early.
1591    for (Symbol *sym : this->symbols) {
1592      if (!sym)
1593        continue;
1594      sym->resolve(LazyObject{*this, sym->getName()});
1595
1596      // MemoryBuffer is emptied if this file is instantiated as ObjFile.
1597      if (mb.getBuffer().empty())
1598        return;
1599    }
1600    return;
1601  }
1602}
1603
1604std::string replaceThinLTOSuffix(StringRef path) {
1605  StringRef suffix = config->thinLTOObjectSuffixReplace.first;
1606  StringRef repl = config->thinLTOObjectSuffixReplace.second;
1607
1608  if (path.consume_back(suffix))
1609    return (path + repl).str();
1610  return path;
1611}
1612
1613template void BitcodeFile::parse<ELF32LE>();
1614template void BitcodeFile::parse<ELF32BE>();
1615template void BitcodeFile::parse<ELF64LE>();
1616template void BitcodeFile::parse<ELF64BE>();
1617
1618template void LazyObjFile::parse<ELF32LE>();
1619template void LazyObjFile::parse<ELF32BE>();
1620template void LazyObjFile::parse<ELF64LE>();
1621template void LazyObjFile::parse<ELF64BE>();
1622
1623template class ObjFile<ELF32LE>;
1624template class ObjFile<ELF32BE>;
1625template class ObjFile<ELF64LE>;
1626template class ObjFile<ELF64BE>;
1627
1628template void SharedFile::parse<ELF32LE>();
1629template void SharedFile::parse<ELF32BE>();
1630template void SharedFile::parse<ELF64LE>();
1631template void SharedFile::parse<ELF64BE>();
1632
1633} // namespace elf
1634} // namespace lld
1635