ICF.cpp revision 360784
1//===- ICF.cpp ------------------------------------------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// ICF is short for Identical Code Folding. This is a size optimization to
10// identify and merge two or more read-only sections (typically functions)
11// that happened to have the same contents. It usually reduces output size
12// by a few percent.
13//
14// In ICF, two sections are considered identical if they have the same
15// section flags, section data, and relocations. Relocations are tricky,
16// because two relocations are considered the same if they have the same
17// relocation types, values, and if they point to the same sections *in
18// terms of ICF*.
19//
20// Here is an example. If foo and bar defined below are compiled to the
21// same machine instructions, ICF can and should merge the two, although
22// their relocations point to each other.
23//
24//   void foo() { bar(); }
25//   void bar() { foo(); }
26//
27// If you merge the two, their relocations point to the same section and
28// thus you know they are mergeable, but how do you know they are
29// mergeable in the first place? This is not an easy problem to solve.
30//
31// What we are doing in LLD is to partition sections into equivalence
32// classes. Sections in the same equivalence class when the algorithm
33// terminates are considered identical. Here are details:
34//
35// 1. First, we partition sections using their hash values as keys. Hash
36//    values contain section types, section contents and numbers of
37//    relocations. During this step, relocation targets are not taken into
38//    account. We just put sections that apparently differ into different
39//    equivalence classes.
40//
41// 2. Next, for each equivalence class, we visit sections to compare
42//    relocation targets. Relocation targets are considered equivalent if
43//    their targets are in the same equivalence class. Sections with
44//    different relocation targets are put into different equivalence
45//    classes.
46//
47// 3. If we split an equivalence class in step 2, two relocations
48//    previously target the same equivalence class may now target
49//    different equivalence classes. Therefore, we repeat step 2 until a
50//    convergence is obtained.
51//
52// 4. For each equivalence class C, pick an arbitrary section in C, and
53//    merge all the other sections in C with it.
54//
55// For small programs, this algorithm needs 3-5 iterations. For large
56// programs such as Chromium, it takes more than 20 iterations.
57//
58// This algorithm was mentioned as an "optimistic algorithm" in [1],
59// though gold implements a different algorithm than this.
60//
61// We parallelize each step so that multiple threads can work on different
62// equivalence classes concurrently. That gave us a large performance
63// boost when applying ICF on large programs. For example, MSVC link.exe
64// or GNU gold takes 10-20 seconds to apply ICF on Chromium, whose output
65// size is about 1.5 GB, but LLD can finish it in less than 2 seconds on a
66// 2.8 GHz 40 core machine. Even without threading, LLD's ICF is still
67// faster than MSVC or gold though.
68//
69// [1] Safe ICF: Pointer Safe and Unwinding aware Identical Code Folding
70// in the Gold Linker
71// http://static.googleusercontent.com/media/research.google.com/en//pubs/archive/36912.pdf
72//
73//===----------------------------------------------------------------------===//
74
75#include "ICF.h"
76#include "Config.h"
77#include "LinkerScript.h"
78#include "OutputSections.h"
79#include "SymbolTable.h"
80#include "Symbols.h"
81#include "SyntheticSections.h"
82#include "Writer.h"
83#include "lld/Common/Threads.h"
84#include "llvm/ADT/StringExtras.h"
85#include "llvm/BinaryFormat/ELF.h"
86#include "llvm/Object/ELF.h"
87#include "llvm/Support/xxhash.h"
88#include <algorithm>
89#include <atomic>
90
91using namespace llvm;
92using namespace llvm::ELF;
93using namespace llvm::object;
94
95namespace lld {
96namespace elf {
97namespace {
98template <class ELFT> class ICF {
99public:
100  void run();
101
102private:
103  void segregate(size_t begin, size_t end, bool constant);
104
105  template <class RelTy>
106  bool constantEq(const InputSection *a, ArrayRef<RelTy> relsA,
107                  const InputSection *b, ArrayRef<RelTy> relsB);
108
109  template <class RelTy>
110  bool variableEq(const InputSection *a, ArrayRef<RelTy> relsA,
111                  const InputSection *b, ArrayRef<RelTy> relsB);
112
113  bool equalsConstant(const InputSection *a, const InputSection *b);
114  bool equalsVariable(const InputSection *a, const InputSection *b);
115
116  size_t findBoundary(size_t begin, size_t end);
117
118  void forEachClassRange(size_t begin, size_t end,
119                         llvm::function_ref<void(size_t, size_t)> fn);
120
121  void forEachClass(llvm::function_ref<void(size_t, size_t)> fn);
122
123  std::vector<InputSection *> sections;
124
125  // We repeat the main loop while `Repeat` is true.
126  std::atomic<bool> repeat;
127
128  // The main loop counter.
129  int cnt = 0;
130
131  // We have two locations for equivalence classes. On the first iteration
132  // of the main loop, Class[0] has a valid value, and Class[1] contains
133  // garbage. We read equivalence classes from slot 0 and write to slot 1.
134  // So, Class[0] represents the current class, and Class[1] represents
135  // the next class. On each iteration, we switch their roles and use them
136  // alternately.
137  //
138  // Why are we doing this? Recall that other threads may be working on
139  // other equivalence classes in parallel. They may read sections that we
140  // are updating. We cannot update equivalence classes in place because
141  // it breaks the invariance that all possibly-identical sections must be
142  // in the same equivalence class at any moment. In other words, the for
143  // loop to update equivalence classes is not atomic, and that is
144  // observable from other threads. By writing new classes to other
145  // places, we can keep the invariance.
146  //
147  // Below, `Current` has the index of the current class, and `Next` has
148  // the index of the next class. If threading is enabled, they are either
149  // (0, 1) or (1, 0).
150  //
151  // Note on single-thread: if that's the case, they are always (0, 0)
152  // because we can safely read the next class without worrying about race
153  // conditions. Using the same location makes this algorithm converge
154  // faster because it uses results of the same iteration earlier.
155  int current = 0;
156  int next = 0;
157};
158}
159
160// Returns true if section S is subject of ICF.
161static bool isEligible(InputSection *s) {
162  if (!s->isLive() || s->keepUnique || !(s->flags & SHF_ALLOC))
163    return false;
164
165  // Don't merge writable sections. .data.rel.ro sections are marked as writable
166  // but are semantically read-only.
167  if ((s->flags & SHF_WRITE) && s->name != ".data.rel.ro" &&
168      !s->name.startswith(".data.rel.ro."))
169    return false;
170
171  // SHF_LINK_ORDER sections are ICF'd as a unit with their dependent sections,
172  // so we don't consider them for ICF individually.
173  if (s->flags & SHF_LINK_ORDER)
174    return false;
175
176  // Don't merge synthetic sections as their Data member is not valid and empty.
177  // The Data member needs to be valid for ICF as it is used by ICF to determine
178  // the equality of section contents.
179  if (isa<SyntheticSection>(s))
180    return false;
181
182  // .init and .fini contains instructions that must be executed to initialize
183  // and finalize the process. They cannot and should not be merged.
184  if (s->name == ".init" || s->name == ".fini")
185    return false;
186
187  // A user program may enumerate sections named with a C identifier using
188  // __start_* and __stop_* symbols. We cannot ICF any such sections because
189  // that could change program semantics.
190  if (isValidCIdentifier(s->name))
191    return false;
192
193  return true;
194}
195
196// Split an equivalence class into smaller classes.
197template <class ELFT>
198void ICF<ELFT>::segregate(size_t begin, size_t end, bool constant) {
199  // This loop rearranges sections in [Begin, End) so that all sections
200  // that are equal in terms of equals{Constant,Variable} are contiguous
201  // in [Begin, End).
202  //
203  // The algorithm is quadratic in the worst case, but that is not an
204  // issue in practice because the number of the distinct sections in
205  // each range is usually very small.
206
207  while (begin < end) {
208    // Divide [Begin, End) into two. Let Mid be the start index of the
209    // second group.
210    auto bound =
211        std::stable_partition(sections.begin() + begin + 1,
212                              sections.begin() + end, [&](InputSection *s) {
213                                if (constant)
214                                  return equalsConstant(sections[begin], s);
215                                return equalsVariable(sections[begin], s);
216                              });
217    size_t mid = bound - sections.begin();
218
219    // Now we split [Begin, End) into [Begin, Mid) and [Mid, End) by
220    // updating the sections in [Begin, Mid). We use Mid as an equivalence
221    // class ID because every group ends with a unique index.
222    for (size_t i = begin; i < mid; ++i)
223      sections[i]->eqClass[next] = mid;
224
225    // If we created a group, we need to iterate the main loop again.
226    if (mid != end)
227      repeat = true;
228
229    begin = mid;
230  }
231}
232
233// Compare two lists of relocations.
234template <class ELFT>
235template <class RelTy>
236bool ICF<ELFT>::constantEq(const InputSection *secA, ArrayRef<RelTy> ra,
237                           const InputSection *secB, ArrayRef<RelTy> rb) {
238  for (size_t i = 0; i < ra.size(); ++i) {
239    if (ra[i].r_offset != rb[i].r_offset ||
240        ra[i].getType(config->isMips64EL) != rb[i].getType(config->isMips64EL))
241      return false;
242
243    uint64_t addA = getAddend<ELFT>(ra[i]);
244    uint64_t addB = getAddend<ELFT>(rb[i]);
245
246    Symbol &sa = secA->template getFile<ELFT>()->getRelocTargetSym(ra[i]);
247    Symbol &sb = secB->template getFile<ELFT>()->getRelocTargetSym(rb[i]);
248    if (&sa == &sb) {
249      if (addA == addB)
250        continue;
251      return false;
252    }
253
254    auto *da = dyn_cast<Defined>(&sa);
255    auto *db = dyn_cast<Defined>(&sb);
256
257    // Placeholder symbols generated by linker scripts look the same now but
258    // may have different values later.
259    if (!da || !db || da->scriptDefined || db->scriptDefined)
260      return false;
261
262    // When comparing a pair of relocations, if they refer to different symbols,
263    // and either symbol is preemptible, the containing sections should be
264    // considered different. This is because even if the sections are identical
265    // in this DSO, they may not be after preemption.
266    if (da->isPreemptible || db->isPreemptible)
267      return false;
268
269    // Relocations referring to absolute symbols are constant-equal if their
270    // values are equal.
271    if (!da->section && !db->section && da->value + addA == db->value + addB)
272      continue;
273    if (!da->section || !db->section)
274      return false;
275
276    if (da->section->kind() != db->section->kind())
277      return false;
278
279    // Relocations referring to InputSections are constant-equal if their
280    // section offsets are equal.
281    if (isa<InputSection>(da->section)) {
282      if (da->value + addA == db->value + addB)
283        continue;
284      return false;
285    }
286
287    // Relocations referring to MergeInputSections are constant-equal if their
288    // offsets in the output section are equal.
289    auto *x = dyn_cast<MergeInputSection>(da->section);
290    if (!x)
291      return false;
292    auto *y = cast<MergeInputSection>(db->section);
293    if (x->getParent() != y->getParent())
294      return false;
295
296    uint64_t offsetA =
297        sa.isSection() ? x->getOffset(addA) : x->getOffset(da->value) + addA;
298    uint64_t offsetB =
299        sb.isSection() ? y->getOffset(addB) : y->getOffset(db->value) + addB;
300    if (offsetA != offsetB)
301      return false;
302  }
303
304  return true;
305}
306
307// Compare "non-moving" part of two InputSections, namely everything
308// except relocation targets.
309template <class ELFT>
310bool ICF<ELFT>::equalsConstant(const InputSection *a, const InputSection *b) {
311  if (a->numRelocations != b->numRelocations || a->flags != b->flags ||
312      a->getSize() != b->getSize() || a->data() != b->data())
313    return false;
314
315  // If two sections have different output sections, we cannot merge them.
316  assert(a->getParent() && b->getParent());
317  if (a->getParent() != b->getParent())
318    return false;
319
320  if (a->areRelocsRela)
321    return constantEq(a, a->template relas<ELFT>(), b,
322                      b->template relas<ELFT>());
323  return constantEq(a, a->template rels<ELFT>(), b, b->template rels<ELFT>());
324}
325
326// Compare two lists of relocations. Returns true if all pairs of
327// relocations point to the same section in terms of ICF.
328template <class ELFT>
329template <class RelTy>
330bool ICF<ELFT>::variableEq(const InputSection *secA, ArrayRef<RelTy> ra,
331                           const InputSection *secB, ArrayRef<RelTy> rb) {
332  assert(ra.size() == rb.size());
333
334  for (size_t i = 0; i < ra.size(); ++i) {
335    // The two sections must be identical.
336    Symbol &sa = secA->template getFile<ELFT>()->getRelocTargetSym(ra[i]);
337    Symbol &sb = secB->template getFile<ELFT>()->getRelocTargetSym(rb[i]);
338    if (&sa == &sb)
339      continue;
340
341    auto *da = cast<Defined>(&sa);
342    auto *db = cast<Defined>(&sb);
343
344    // We already dealt with absolute and non-InputSection symbols in
345    // constantEq, and for InputSections we have already checked everything
346    // except the equivalence class.
347    if (!da->section)
348      continue;
349    auto *x = dyn_cast<InputSection>(da->section);
350    if (!x)
351      continue;
352    auto *y = cast<InputSection>(db->section);
353
354    // Ineligible sections are in the special equivalence class 0.
355    // They can never be the same in terms of the equivalence class.
356    if (x->eqClass[current] == 0)
357      return false;
358    if (x->eqClass[current] != y->eqClass[current])
359      return false;
360  };
361
362  return true;
363}
364
365// Compare "moving" part of two InputSections, namely relocation targets.
366template <class ELFT>
367bool ICF<ELFT>::equalsVariable(const InputSection *a, const InputSection *b) {
368  if (a->areRelocsRela)
369    return variableEq(a, a->template relas<ELFT>(), b,
370                      b->template relas<ELFT>());
371  return variableEq(a, a->template rels<ELFT>(), b, b->template rels<ELFT>());
372}
373
374template <class ELFT> size_t ICF<ELFT>::findBoundary(size_t begin, size_t end) {
375  uint32_t eqClass = sections[begin]->eqClass[current];
376  for (size_t i = begin + 1; i < end; ++i)
377    if (eqClass != sections[i]->eqClass[current])
378      return i;
379  return end;
380}
381
382// Sections in the same equivalence class are contiguous in Sections
383// vector. Therefore, Sections vector can be considered as contiguous
384// groups of sections, grouped by the class.
385//
386// This function calls Fn on every group within [Begin, End).
387template <class ELFT>
388void ICF<ELFT>::forEachClassRange(size_t begin, size_t end,
389                                  llvm::function_ref<void(size_t, size_t)> fn) {
390  while (begin < end) {
391    size_t mid = findBoundary(begin, end);
392    fn(begin, mid);
393    begin = mid;
394  }
395}
396
397// Call Fn on each equivalence class.
398template <class ELFT>
399void ICF<ELFT>::forEachClass(llvm::function_ref<void(size_t, size_t)> fn) {
400  // If threading is disabled or the number of sections are
401  // too small to use threading, call Fn sequentially.
402  if (!threadsEnabled || sections.size() < 1024) {
403    forEachClassRange(0, sections.size(), fn);
404    ++cnt;
405    return;
406  }
407
408  current = cnt % 2;
409  next = (cnt + 1) % 2;
410
411  // Shard into non-overlapping intervals, and call Fn in parallel.
412  // The sharding must be completed before any calls to Fn are made
413  // so that Fn can modify the Chunks in its shard without causing data
414  // races.
415  const size_t numShards = 256;
416  size_t step = sections.size() / numShards;
417  size_t boundaries[numShards + 1];
418  boundaries[0] = 0;
419  boundaries[numShards] = sections.size();
420
421  parallelForEachN(1, numShards, [&](size_t i) {
422    boundaries[i] = findBoundary((i - 1) * step, sections.size());
423  });
424
425  parallelForEachN(1, numShards + 1, [&](size_t i) {
426    if (boundaries[i - 1] < boundaries[i])
427      forEachClassRange(boundaries[i - 1], boundaries[i], fn);
428  });
429  ++cnt;
430}
431
432// Combine the hashes of the sections referenced by the given section into its
433// hash.
434template <class ELFT, class RelTy>
435static void combineRelocHashes(unsigned cnt, InputSection *isec,
436                               ArrayRef<RelTy> rels) {
437  uint32_t hash = isec->eqClass[cnt % 2];
438  for (RelTy rel : rels) {
439    Symbol &s = isec->template getFile<ELFT>()->getRelocTargetSym(rel);
440    if (auto *d = dyn_cast<Defined>(&s))
441      if (auto *relSec = dyn_cast_or_null<InputSection>(d->section))
442        hash += relSec->eqClass[cnt % 2];
443  }
444  // Set MSB to 1 to avoid collisions with non-hash IDs.
445  isec->eqClass[(cnt + 1) % 2] = hash | (1U << 31);
446}
447
448static void print(const Twine &s) {
449  if (config->printIcfSections)
450    message(s);
451}
452
453// The main function of ICF.
454template <class ELFT> void ICF<ELFT>::run() {
455  // Compute isPreemptible early. We may add more symbols later, so this loop
456  // cannot be merged with the later computeIsPreemptible() pass which is used
457  // by scanRelocations().
458  for (Symbol *sym : symtab->symbols())
459    sym->isPreemptible = computeIsPreemptible(*sym);
460
461  // Collect sections to merge.
462  for (InputSectionBase *sec : inputSections) {
463    auto *s = cast<InputSection>(sec);
464    if (isEligible(s))
465      sections.push_back(s);
466  }
467
468  // Initially, we use hash values to partition sections.
469  parallelForEach(sections, [&](InputSection *s) {
470    s->eqClass[0] = xxHash64(s->data());
471  });
472
473  for (unsigned cnt = 0; cnt != 2; ++cnt) {
474    parallelForEach(sections, [&](InputSection *s) {
475      if (s->areRelocsRela)
476        combineRelocHashes<ELFT>(cnt, s, s->template relas<ELFT>());
477      else
478        combineRelocHashes<ELFT>(cnt, s, s->template rels<ELFT>());
479    });
480  }
481
482  // From now on, sections in Sections vector are ordered so that sections
483  // in the same equivalence class are consecutive in the vector.
484  llvm::stable_sort(sections, [](const InputSection *a, const InputSection *b) {
485    return a->eqClass[0] < b->eqClass[0];
486  });
487
488  // Compare static contents and assign unique IDs for each static content.
489  forEachClass([&](size_t begin, size_t end) { segregate(begin, end, true); });
490
491  // Split groups by comparing relocations until convergence is obtained.
492  do {
493    repeat = false;
494    forEachClass(
495        [&](size_t begin, size_t end) { segregate(begin, end, false); });
496  } while (repeat);
497
498  log("ICF needed " + Twine(cnt) + " iterations");
499
500  // Merge sections by the equivalence class.
501  forEachClassRange(0, sections.size(), [&](size_t begin, size_t end) {
502    if (end - begin == 1)
503      return;
504    print("selected section " + toString(sections[begin]));
505    for (size_t i = begin + 1; i < end; ++i) {
506      print("  removing identical section " + toString(sections[i]));
507      sections[begin]->replace(sections[i]);
508
509      // At this point we know sections merged are fully identical and hence
510      // we want to remove duplicate implicit dependencies such as link order
511      // and relocation sections.
512      for (InputSection *isec : sections[i]->dependentSections)
513        isec->markDead();
514    }
515  });
516
517  // InputSectionDescription::sections is populated by processSectionCommands().
518  // ICF may fold some input sections assigned to output sections. Remove them.
519  for (BaseCommand *base : script->sectionCommands)
520    if (auto *sec = dyn_cast<OutputSection>(base))
521      for (BaseCommand *sub_base : sec->sectionCommands)
522        if (auto *isd = dyn_cast<InputSectionDescription>(sub_base))
523          llvm::erase_if(isd->sections,
524                         [](InputSection *isec) { return !isec->isLive(); });
525}
526
527// ICF entry point function.
528template <class ELFT> void doIcf() { ICF<ELFT>().run(); }
529
530template void doIcf<ELF32LE>();
531template void doIcf<ELF32BE>();
532template void doIcf<ELF64LE>();
533template void doIcf<ELF64BE>();
534
535} // namespace elf
536} // namespace lld
537